1
|
Ubeysinghe S, Sebilleau CO, Thotamune W, Rajarathna C, Azibere S, Tennakoon M, Payton JL, Sprague RS, Martin RS, Sucheck SJ, Karunarathne A. Recombinant-Chemosynthetic Biosensors for Probing Cell Surface Signaling of Red Blood Cells and Other Cells. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:95-110. [PMID: 40018647 PMCID: PMC11863169 DOI: 10.1021/cbmi.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 03/01/2025]
Abstract
The complex signaling mechanisms in red blood cells (RBCs) enable them to adapt to physiological stresses such as exposure to low O2 levels, metabolic demands, oxidative stress, and shear stress. Since Ca2+ is a crucial determinant of RBC fate, various ion channels, pumps, and exchangers regulate the delicate balance of Ca2+ influx and efflux in RBCs. Elevated intracellular Ca2+ can activate processes such as membrane phospholipid scrambling and alter RBC deformability, which is essential for effective capillary transit. However, the dynamic information about Ca2+ regulation in RBCs is limited. Although static mapping and bioanalytical methods have been utilized, the absence of a nucleus and the presence of hemoglobin create challenges for real-time probing of RBC signaling, necessitating innovative approaches. This work introduces a synthetic chemistry-recombinant protein-based strategy to assemble sensors at genetically intact healthy human RBC surfaces for measuring dynamic signaling. Using this approach, we measured autocrine regulation of RBC Ca2+ influx in response to low O2 tension-induced ATP release. The study also explores the utilization of synthetic glycosylphosphatidylinositol (GPI) anchor mimics and sortagging for targeting sensors to the surfaces of primary as well as immortalized cells. This demonstrated the wide applicability of this approach to probe dynamic signaling in intact cells.
Collapse
Affiliation(s)
- Sithurandi Ubeysinghe
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Chloe O. Sebilleau
- Department
of Chemistry and Biochemistry, The University
of Toledo, Toledo, Ohio 43606, United States
| | - Waruna Thotamune
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Chathuri Rajarathna
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - Samuel Azibere
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
| | - Mithila Tennakoon
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, Saint
Louis, Missouri 63103, United States
| | - John L. Payton
- College
of Sciences, University of Findlay, Findlay, Ohio 45840, United States
| | - Randy S. Sprague
- Department
of Pharmacology and Physiology, Saint Louis
University School of Medicine, Saint Louis, Missouri 63104, United States
| | - R. Scott Martin
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
| | - Steven J. Sucheck
- Department
of Chemistry and Biochemistry, The University
of Toledo, Toledo, Ohio 43606, United States
| | - Ajith Karunarathne
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, Saint
Louis, Missouri 63103, United States
| |
Collapse
|
2
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Liu H, Li J, Wu N, She Y, Luo Y, Huang Y, Quan H, Fu W, Li X, Zeng D, Jia Y. Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes. Inflammation 2024; 47:609-625. [PMID: 38448631 DOI: 10.1007/s10753-023-01932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 03/08/2024]
Abstract
Siglec-9/E is a cell surface receptor expressed on immune cells and can be activated by sialoglycan ligands to play an immunosuppressive role. Our previous study showed that increasing the expression of Siglec-9 (the human paralog of mouse Siglec-E) ligands maintains functionally quiescent immune cells in the bloodstream, but the biological effects of Siglec-9 ligand alteration on atherogenesis were not further explored. In the present study, we demonstrated that the atherosclerosis risk factor ox-LDL or a high-fat diet could decrease the expression of Siglec-9/E ligands on erythrocytes. Increased expression of Siglec-E ligands on erythrocytes caused by dietary supplementation with glucose (20% glucose) had anti-inflammatory effects, and the mechanism was associated with glucose intake. In high-fat diet-fed apoE-/- mice, glucose supplementation decreased the area of atherosclerotic lesions and peripheral inflammation. These data suggested that increased systemic inflammation is attenuated by increasing the expression of Siglec-9/E ligands on erythrocytes. Therefore, Siglec-9/E ligands might be valuable targets for atherosclerosis therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Jin Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Niting Wu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yuanting She
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Yadan Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yan Huang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Hongyu Quan
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Wenying Fu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Dongfeng Zeng
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Toktogulova N, Breidert M, Eschbach J, Kudaibergenova I, Omurzakova U, Uvaidillaeva F, Tagaeva B, Sultanalieva R, Eftekhari P. Energy Metabolism in Residents in the Low- and Moderate Altitude Regions of Central Asia with MAFLD and Type 2 Diabetes Mellitus. Horm Metab Res 2024; 56:294-299. [PMID: 38373717 DOI: 10.1055/a-2256-6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The knowledge about the features of energy metabolism in MAFLD in the population living at different climatic and geographic heights is lacking. The goal of this study is to explore the biochemical parameters of blood and erythrocyte energy consumption in patients with MAFLD with and without DM2 living in the low- and moderate-altitude regions of Central Asia. Our study was carried out on patients living in low-altitude mountains: Bishkek, altitude=750-800 m; n=67 (MAFLD with DM 2: n=24; MAFLD without DM2: n=25; control: n=18), and At-Bashy District, Naryn Region, altitude=2046-2300 m; n=58 (MAFLD with DM2: n=28; MAFLD without DM2: n=18; control: n=12). Non-alcoholic fatty liver disease was diagnosed according to history, laboratory tests, liver ultrasound, and exclusion of other liver diseases. The level of liver fibrosis was determined using the FIB-4 score. Blood adenosine 5'-triphosphate (ATP) was determined using the CellTiter-Glo method. Healthy residents living in moderate altitudes have significantly higher levels of cytosolic ATP in their blood (p+≤+0.05) than residents living in low mountains. MAFLD is characterized by an increase in the level of ATP concentration in their blood. ATP concentration decreased significantly in patients with MAFLD with DM2 living in moderate-altitude in comparison to those living in low-altitude mountains. The results suggest that chronic altitude hypoxia leads to a breakdown in adaptive mechanisms of energy metabolism of ATP in patients with MAFLD with type 2 DM.
Collapse
Affiliation(s)
- Nurgul Toktogulova
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | | | - Judith Eschbach
- Inoviem Scientific Research, Inoviem Scientific SAS, Illkirch, France
| | - Indira Kudaibergenova
- Kyrgyz State Medical Institute of Post-Graduate Training and Advanced Training named after S B Daniyarov, Bishkek, Kyrgyzstan
| | - Uulkan Omurzakova
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Feruzakhan Uvaidillaeva
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Bermet Tagaeva
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Roza Sultanalieva
- Therapy1, Kyrgyz-Russian Slavic University named after B N Yeltsin, Bishkek, Kyrgyzstan
| | | |
Collapse
|
5
|
Coccarelli A, Nelson MD. Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques. Ann Biomed Eng 2023; 51:479-492. [PMID: 36709231 PMCID: PMC9928923 DOI: 10.1007/s10439-022-03134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/25/2022] [Indexed: 01/30/2023]
Abstract
Reactive hyperemia is a well-established technique for the non-invasive evaluation of the peripheral microcirculatory function, measured as the magnitude of limb re-perfusion after a brief period of ischemia. Despite widespread adoption by researchers and clinicians alike, many uncertainties remain surrounding interpretation, compounded by patient-specific confounding factors (such as blood pressure or the metabolic rate of the ischemic limb). Mathematical modeling can accelerate our understanding of the physiology underlying the reactive hyperemia response and guide in the estimation of quantities which are difficult to measure experimentally. In this work, we aim to provide a comprehensive guide for mathematical modeling techniques that can be used for describing the key phenomena involved in the reactive hyperemia response, alongside their limitations and advantages. The reported methodologies can be used for investigating specific reactive hyperemia aspects alone, or can be combined into a computational framework to be used in (pre-)clinical settings.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
6
|
Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C. The Pleiotropic Role of Extracellular ATP in Myocardial Remodelling. Molecules 2023; 28:molecules28052102. [PMID: 36903347 PMCID: PMC10004151 DOI: 10.3390/molecules28052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Suhaini Sudi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fiona Macniesia Thomas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siti Kadzirah Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Dayang Maryama Ag Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Health through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Willcox A, Lee NT, Nandurkar HH, Sashindranath M. CD39 in the development and progression of pulmonary arterial hypertension. Purinergic Signal 2022; 18:409-419. [PMID: 35947229 PMCID: PMC9832216 DOI: 10.1007/s11302-022-09889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating progressive disease characterised by pulmonary arterial vasoconstriction and vascular remodelling. Endothelial dysfunction has emerged as a contributing factor in the development of PAH. However, despite progress in the understanding of the pathophysiology of this disease, current therapies fail to impact upon long-term outcomes which remain poor in most patients. Recent observations have suggested the disturbances in the balance between ATP and adenosine may be integral to the vascular remodelling seen in PAH. CD39 is an enzyme important in regulating these nucleos(t)ides which may also provide a novel pathway to target for future therapies. This review summarises the role of adenosine signalling in the development and progression of PAH and highlights the therapeutic potential of CD39 for treatment of PAH.
Collapse
Affiliation(s)
- Abbey Willcox
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Natasha Ting Lee
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
8
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Autoimmune diseases affect over 40 million people in the United States. The cause of most autoimmune diseases is unknown; therefore, most therapies focus on treating the symptoms. This review will focus on the autoimmune diseases type 1 diabetes (T1D) and multiple sclerosis (MS) and the emerging roles of red blood cells (RBCs) in the mechanisms and treatment of T1D and MS. An understanding of the role of the RBC in human health is increasing, especially with respect to its role in the regulation of vascular caliber and vessel dilation. The RBC is known to participate in the regulation of blood flow through the release of key signaling molecules, such as adenosine triphosphate (ATP) and the potent vasodilator nitric oxide (NO). However, while these RBC-derived molecules are known to be determinants of blood flow in vivo, disruptions in their concentrations in the circulation are often measured in common autoimmune diseases. Chemical and physical properties of the RBC may play a role in autoimmune disease onset, especially T1D and MS, and complications associated with downstream extracellular levels of ATP and NO. Finally, both ATP and NO are highly reactive molecules in the circulation. Coupled with the challenging matrix posed by the bloodstream, the measurement of these two species is difficult, thus prompting an appraisal of recent and novel methods to quantitatively determining these potential early indicators of immune response.
Collapse
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Jiao T, Collado A, Mahdi A, Jurga J, Tengbom J, Saleh N, Verouhis D, Böhm F, Zhou Z, Yang J, Pernow J. Erythrocytes from patients with ST-elevation myocardial infarction induce cardioprotection through the purinergic P2Y 13 receptor and nitric oxide signaling. Basic Res Cardiol 2022; 117:46. [PMID: 36112326 PMCID: PMC9481504 DOI: 10.1007/s00395-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Red blood cells (RBCs) are suggested to play a role in cardiovascular regulation by exporting nitric oxide (NO) bioactivity and ATP under hypoxia. It remains unknown whether such beneficial effects of RBCs are protective in patients with acute myocardial infarction. We investigated whether RBCs from patients with ST-elevation myocardial infarction (STEMI) protect against myocardial ischemia-reperfusion injury and whether such effect involves NO and purinergic signaling in the RBCs. RBCs from patients with STEMI undergoing primary coronary intervention and healthy controls were administered to isolated rat hearts subjected to global ischemia and reperfusion. Compared to RBCs from healthy controls, RBCs from STEMI patients reduced myocardial infarct size (30 ± 12% RBC healthy vs. 11 ± 5% RBC STEMI patients, P < 0.001), improved recovery of left-ventricular developed pressure and dP/dt and reduced left-ventricular end-diastolic pressure in hearts subjected to ischemia-reperfusion. Inhibition of RBC NO synthase with L-NAME or soluble guanylyl cyclase (sGC) with ODQ, and inhibition of cardiac protein kinase G (PKG) abolished the cardioprotective effect. Furthermore, the non-selective purinergic P2 receptor antagonist PPADS but not the P1 receptor antagonist 8PT attenuated the cardioprotection induced by RBCs from STEMI patients. The P2Y13 receptor was expressed in RBCs and the cardioprotection was abolished by the P2Y13 receptor antagonist MRS2211. By contrast, perfusion with PPADS, L-NAME, or ODQ prior to RBCs administration failed to block the cardioprotection induced by RBCs from STEMI patients. Administration of RBCs from healthy subjects following pre-incubation with an ATP analog reduced infarct size from 20 ± 6 to 7 ± 2% (P < 0.001), and this effect was abolished by ODQ and MRS2211. This study demonstrates a novel function of RBCs in STEMI patients providing protection against myocardial ischemia-reperfusion injury through the P2Y13 receptor and the NO-sGC-PKG pathway.
Collapse
Affiliation(s)
- Tong Jiao
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Aida Collado
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mahdi
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Juliane Jurga
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Tengbom
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Nawzad Saleh
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Dinos Verouhis
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Böhm
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden ,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Ferguson BS, Neidert LE, Rogatzki MJ, Lohse KR, Gladden LB, Kluess HA. Red blood cell ATP release correlates with red blood cell hemolysis. Am J Physiol Cell Physiol 2021; 321:C761-C769. [PMID: 34495762 DOI: 10.1152/ajpcell.00510.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise matching of blood flow to skeletal muscle during exercise remains an important area of investigation. Release of adenosine triphosphate (ATP) from red blood cells (RBCs) is postulated as a mediator of peripheral vascular tone in response to shear stress, hypoxia, and mechanical deformation. We tested the following hypotheses: 1) RBCs of different densities contain different quantities of ATP; 2) hypoxia is a stimulus for ATP release from RBCs; and 3) hypoxic ATP release from RBCs is related to RBC lysis. Human blood was drawn from male and female volunteers (n = 11); the RBCs were isolated and washed. A Percoll gradient was used to separate RBCs based on cellular density. Density groups were then resuspended to 4% hematocrit and exposed to normoxia or hypoxia in a tonometer. Equilibrated samples were drawn and centrifuged; paired analyses of ATP (luminescence via a luciferase-catalyzed reaction) and hemolysis (Harboe spectrophotometric absorbance assay) were measured in the supernatant. ATP release was not different among low-density cells versus middle-density versus high-density cells. Similarly, hemoglobin (Hb) release was not different among the red blood cell subsets. No difference was found for either ATP release or Hb release following matched exposure to normoxic or hypoxic gas. The concentrations of ATP and Hb for all subsets combined were linearly correlated (r = 0.59, P ≤ 0.001). With simultaneous probing for Hb and ATP in the supernatant of each sample, we conclude that ATP release from RBCs can be explained by hemolysis and that hypoxia per se does not stimulate either ATP release or Hb release from RBCs.
Collapse
Affiliation(s)
- Brian S Ferguson
- College of Applied Health Sciences, University of Illinois, Chicago, Illinois
| | - Leslie E Neidert
- Naval Medical Research Unit San Antonio, Joint Base San Antonio-Ft. Sam Houston, San Antonio, Texas
| | - Matthew J Rogatzki
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Keith R Lohse
- Physical Therapy Program and Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Heidi A Kluess
- School of Kinesiology, Auburn University, Auburn, Alabama
| |
Collapse
|
11
|
Dao M, MacDonald I, Asaro RJ. Erythrocyte flow through the interendothelial slits of the splenic venous sinus. Biomech Model Mechanobiol 2021; 20:2227-2245. [PMID: 34535857 DOI: 10.1007/s10237-021-01503-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The flow patterns of red blood cells through the spleen are intimately linked to clearance of senescent RBCs, with clearance principally occurring within the open flow through the red pulp and slits of the venous sinus system that exists in humans, rats, and dogs. Passage through interendothelial slits (IESs) of the sinus has been shown by MacDonald et al. (Microvasc Res 33:118-134, 1987) to be mediated by the caliber, i.e., slit opening width, of these slits. IES caliber within a given slit of a given sinus section has been shown to operate in an asynchronous manner. Here, we describe a model and simulation results that demonstrate how the supporting forces exerted on the sinus by the reticular meshwork of the red pulp, combined with asymmetrical contractility of stress fibers within the endothelial cells comprising the sinus, describe this vital and intriguing behavior. These results shed light on the function of the sinus slits in species such as humans, rats, and dogs that possess sinusoidal sinuses. Instead of assuming a passive mechanical filtering mechanism of the IESs, our proposed model provides a mechanically consistent explanation for the dynamically modulated IES opening/filtering mechanism observed in vivo. The overall perspective provided is also consistent with the view that IES passage serves as a self-protective mechanism in RBC vesiculation and inclusion removal.
Collapse
Affiliation(s)
- Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - R J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Affiliation(s)
- Mark T Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
13
|
Zhou Z. Purinergic interplay between erythrocytes and platelets in diabetes-associated vascular dysfunction. Purinergic Signal 2021; 17:705-712. [PMID: 34410591 PMCID: PMC8677852 DOI: 10.1007/s11302-021-09807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular complications in diabetes are the leading causes for high morbidity and mortality. It has been shown that alteration of purinergic signaling contributes to diabetes-associated cardiovascular complications. Red blood cells (RBCs) and platelets play a fundamental role in regulation of oxygen transport and hemostasis, respectively. Of note, these cells undergo purinergic dysfunction in diabetes. Recent studies have established a novel function of RBCs as disease mediators for the development of endothelial dysfunction in type 2 diabetes (T2D). RBC-released ATP is defective in T2D, which has implication for induction of vascular dysfunction by dysregulating purinergic signaling. Platelets are hyperactive in diabetes. ADP-mediated P2Y1 and P2Y12 receptor activation contributes to platelet aggregation and targeting P2Y receptors particularly P2Y12 receptor in platelets is effective for the treatment of cardiovascular events. In contrast to other P2Y12 receptor antagonists, platelet-targeting drug ticagrelor has potential to initiate purinergic signaling in RBCs for the beneficial cardiovascular outcomes. It is increasingly clear that altered vascular purinergic signaling mediated by various nucleotides and nucleoside contributes to diabetes-associated vascular dysfunction. However, the contribution of complex purinergic networks between RBCs and platelets to the vascular dysfunction in diabetes remains unclear. This study discusses the possible interplay of RBCs and platelets via the purinergic network for diabetes-associated vascular dysfunction.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Mahdi A, Cortese-Krott MM, Kelm M, Li N, Pernow J. Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic Biol Med 2021; 168:95-109. [PMID: 33789125 DOI: 10.1016/j.freeradbiomed.2021.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
The fundamental physiology of circulating red blood cells (RBCs) and platelets involving regulation of oxygen transport and hemostasis, respectively, are well-described in the literature. Their abundance in the circulation and their interaction with the vascular wall and each other have attracted the attention of other putative physiological and pathophysiological effects of these cells. RBCs and platelets are both important regulators of redox balance harboring powerful pro-oxidant and anti-oxidant (enzymatic and non-enzymatic) capacities. They are also involved in the regulation of vascular tone mainly via export of nitric oxide bioactivity and adenosine triphosphate. Of further importance are emerging observations that these cells undergo functional alterations when exposed to risk factors for cardiovascular disease and during developed cardiometabolic diseases. Under these conditions, the RBCs and platelets contribute to increased oxidative stress by their formation of reactive species including superoxide anion radical, hydrogen peroxide and peroxynitrite. These alterations trigger key changes in the vascular wall characterized by enhanced oxidative stress, reduced nitric oxide bioavailability and endothelial dysfunction. Additional pathophysiological effects are triggered in the heart resulting in increased susceptibility to ischemia-reperfusion injury with impairment in cardiac function. Pharmacological interventions aiming at restoring circulating cell function has been shown to exert marked beneficial effects on cardiovascular function. In this review, we summarize the current knowledge of RBC and platelet biology with special focus on redox biology, their roles in the development of cardiovascular disease and potential therapeutic strategies targeting RBC and platelet dysfunction. Finally, the complex and scarcely understood interaction between RBCs and platelets is discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam M Cortese-Krott
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Nailin Li
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Abstract
RATIONALE Pre-eclampsia is a multisystem disorder associated with systemic vascular dysfunction and decreased nitric oxide (NO) bioactivity. Arginase competes with NO synthase (NOS) for l-arginine, and its upregulation may reduce NOS-derived NO formation or induce production of reactive oxygen species (ROS) via uncoupling of NOS, resulting in endothelial dysfunction. Red blood cells (RBCs) have emerged as key players in NO homeostasis via their interactions with the endothelium. Studies have demonstrated that abnormal RBC arginase function in patients with diabetes contributes to oxidative stress and endothelial dysfunction. AIM The aim of the study was to investigate if reduced NO bioavailability and increased ROS in pre-eclampsia is mediated via RBC-dependent mechanisms. METHODS In this translational study, plasma and RBCs were isolated from gestationally matched pre-eclamptic and healthy pregnant women and co-incubated overnight with mouse aortas for vascular reactivity studies. NO bioactivity, that is, nitrate, nitrite and cGMP, was assessed in plasma. Arginase activity and expression were analysed in RBCs. RESULTS Plasma markers of NO homeostasis and signalling were decreased in pre-eclamptic women vs. healthy pregnant women. Co-incubation of aorta with pre-eclamptic RBCs, but not healthy pregnant RBCs, induced endothelial dysfunction, which was ameliorated by pharmacological inhibition of arginase, scavenging of ROS, and by nitrite treatment. This pathological vascular phenotype was not observed following incubation with pre-eclamptic plasma. Arginase expression and activity in RBCs were increased in pre-eclamptic vs. healthy pregnant women and was associated with pre-eclampsia severity. Pre-eclamptic RBC-induced endothelial dysfunction was not because of increased haemolysis/cell-free haemoglobin. CONCLUSION This study demonstrates a novel role of the RBC in mediating the endothelial dysfunction associated with pre-eclampsia through arginase-dependent and oxidative stress-dependent mechanisms. Targeting of RBC arginase may provide a novel treatment modality for pre-eclampsia.
Collapse
|
16
|
Mahdi A, Tratsiakovich Y, Tengbom J, Jiao T, Garib L, Alvarsson M, Yang J, Pernow J, Zhou Z. Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling. Front Pharmacol 2020; 11:603226. [PMID: 33390992 PMCID: PMC7774325 DOI: 10.3389/fphar.2020.603226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023] Open
Abstract
It is well established that altered purinergic signaling contributes to vascular dysfunction in type 2 diabetes (T2D). Red blood cells (RBCs) serve as an important pool for circulating ATP and the release of ATP from RBCs in response to physiological stimuli is impaired in T2D. We recently demonstrated that RBCs from patients with T2D (T2D RBC) serve as key mediators of endothelial dysfunction. However, it remains unknown whether altered vascular purinergic signaling is involved in the endothelial dysfunction induced by dysfunctional RBCs in T2D. Here, we evaluated acetylcholine-induced endothelium-dependent relaxation (EDR) of isolated rat aortas after 18 h ex vivo co-incubation with human RBCs, and aortas of healthy recipient rats 4 h after in vivo transfusion with RBCs from T2D Goto-Kakizaki (GK) rats. Purinergic receptor (PR) antagonists were applied in isolated aortas to study the involvement of PRs. EDR was impaired in aortas incubated with T2D RBC but not with RBCs from healthy subjects ex vivo, and in aortas of healthy rats after transfusion with GK RBCs in vivo. The impairment in EDR by T2D RBC was attenuated by non-selective P1R and P2R antagonism, and specific A1R, P2X7R but not P2Y6R antagonism. Transfusion with GK RBCs in vivo impaired EDR in aortas of recipient rats, an effect that was attenuated by A1R, P2X7R but not P2Y6R antagonism. In conclusion, RBCs induce endothelial dysfunction in T2D via vascular A1R and P2X7R but not P2Y6R. Targeting vascular purinergic singling may serve as a potential therapy to prevent endothelial dysfunction induced by RBCs in T2D.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Tengbom
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tong Jiao
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Garib
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Wernly B, Erlinge D, Pernow J, Zhou Z. Ticagrelor: a cardiometabolic drug targeting erythrocyte-mediated purinergic signaling? Am J Physiol Heart Circ Physiol 2020; 320:H90-H94. [PMID: 33095055 DOI: 10.1152/ajpheart.00570.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiometabolic diseases lead to vascular complications, which cause increasing morbidity and mortality worldwide. The underlying mechanisms are multifactorial and complex but may involve altered purinergic signaling that significantly contributes to cardiovascular dysfunction. Ticagrelor is a successful purinergic drug directly targeting ADP-mediated P2Y12R signaling for platelet aggregation and is widely used in patients with acute coronary syndrome. In addition, ticagrelor can target red blood cells (RBCs) to release ATP and inhibit adenosine uptake by RBCs, which subsequently activate purinergic signaling. This involvement in purinergic signaling may allow ticagrelor to mediate pleiotropic effects and contribute to the beneficial cardiovascular outcomes observed in clinical studies. Recent studies have established a novel function of RBCs, which is that RBCs act as disease mediators for the development of cardiovascular complications in type 2 diabetes (T2D). RBC-released ATP is defective in T2D, which has implications for the induction of vascular dysfunction by dysregulating purinergic signaling. Ticagrelor might target RBCs and restore the bioavailability of ATP and adenosine, thereby attenuating cardiovascular complications. The present perspective discusses the pleiotropic effect of ticagrelor, with a focus on the possibility of ticagrelor for the treatment of cardiometabolic complications by targeting RBCs and initiating purinergic activation. A better understanding of the proposed cardiometabolic effects could support novel clinical indications for ticagrelor application.
Collapse
Affiliation(s)
- Bernhard Wernly
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - David Erlinge
- Department of Clinical Sciences, Cardiology, Lund University Hospital, Lund, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide‐ and nucleoside‐activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine‐mediated purinergic 1 receptor activation, particularly A2AR activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A2BR activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP‐mediated P2X7R activation and ADP‐mediated activation of P2Y1R and P2Y12R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A2BR signaling, counteracting hypoxia‐induced pulmonary injury, and that ATP release is impaired in erythrocyte in PAH implies erythrocyte dysfunction as an important trigger to affect purinergic signaling for pathogenesis of PAH. The present review focuses on current knowledge on alteration of nucleot(s)ide‐mediated purinergic signaling as a potential disease mechanism underlying the development of PAH.
Collapse
Affiliation(s)
- Zongye Cai
- Division of Experimental Cardiology Department of Cardiology Erasmus MCUniversity Medical Center Rotterdam Rotterdam the Netherlands
| | - Ly Tu
- INSERM UMR_S 999Hôpital Marie Lannelongue Le Plessis-Robinson France.,School of Medicine Université Paris-Saclay Kremlin-Bicêtre France
| | - Christophe Guignabert
- INSERM UMR_S 999Hôpital Marie Lannelongue Le Plessis-Robinson France.,School of Medicine Université Paris-Saclay Kremlin-Bicêtre France
| | - Daphne Merkus
- Division of Experimental Cardiology Department of Cardiology Erasmus MCUniversity Medical Center Rotterdam Rotterdam the Netherlands.,Walter Brendel Center of Experimental Medicine LMU Munich Munich Germany.,German Center for Cardiovascular Research, Partner Site MunichMunich Heart Alliance Munich Germany
| | - Zhichao Zhou
- Division of Cardiology Department of Medicine Karolinska University HospitalKarolinska Institutet Stockholm Sweden
| |
Collapse
|
19
|
Wernly B, Zhou 周稚超 Z. More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 319:H723-H729. [PMID: 32822211 DOI: 10.1152/ajpheart.00417.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality worldwide. Innovative new treatment options for this cardiovascular pandemic are urgently needed. Activation of purinergic receptors (PRs) is critically involved in the development and progression of cardiovascular disease including atherosclerosis, ischemic heart disease, hypertension, and diabetes. PRs have been targeted for the treatment of several cardiovascular diseases in a clinical setting. The P2Y12R antagonists such as clopidogrel, ticagrelor, and others are the most successful class of purinergic drugs targeting platelets for the treatment of acute coronary syndrome. In addition to targeting platelets, ticagrelor may exert P2Y12R-independent effect by targeting erythrocyte-mediated purinergic activation. The partial A1R agonist neladenoson and the A2AR agonist regadenoson have been applied in cardiovascular medicine. In experimental studies, many other PRs have been shown to play a significant role in the development and progression of cardiovascular diseases, and targeting these receptors have resulted in promising outcomes. Therefore, many of these PRs including A2BR, A3R, P2X3R, P2X4R, P2X7R, P2Y1R, P2Y4R, P2Y6R, and P2Y11R can be considered as therapeutic targets. However, the multitude of PR subtypes expressed in different cells of the cardiovascular system may constitute a challenge whether single or multiple receptors should be targeted at the same time for the best efficacy. The present review discusses the promising purinergic drugs used in clinical studies for the treatment of cardiovascular disease. We also update experimental evidence for many other PRs that can be considered as therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Bernhard Wernly
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Zhichao Zhou 周稚超
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Pernow J, Mahdi A, Yang J, Zhou Z. Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovasc Res 2020; 115:1596-1605. [PMID: 31198931 DOI: 10.1093/cvr/cvz156] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/07/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The primary role of red blood cells (RBCs) is to transport oxygen to the tissues and carbon dioxide to the lungs. However, emerging evidence suggests an important role of the RBC beyond being just a passive carrier of the respiratory gases. The RBCs are of importance for redox balance and are actively involved in the regulation of vascular tone, especially during hypoxic and ischaemic conditions by the release of nitric oxide (NO) bioactivity and adenosine triphosphate. The role of the RBC has gained further interest after recent discoveries demonstrating a markedly altered function of the cell in several pathological conditions. Such alterations include increased adhesion capability, increased formation of reactive oxygen species as well as altered protein content and enzymatic activities. Beyond signalling increased oxidative stress, the altered function of RBCs is characterized by reduced export of NO bioactivity regulated by increased arginase activity. Of further importance, the altered function of RBCs has important implications for several cardiovascular disease conditions. RBCs have been shown to induce endothelial dysfunction and to increase cardiac injury during ischaemia-reperfusion in diabetes mellitus. Finally, this new knowledge has led to novel therapeutic possibilities to intervene against cardiovascular disease by targeting signalling in the RBC. These novel data open up an entirely new view on the underlying pathophysiological mechanisms behind the cardiovascular disease processes in diabetes mellitus mediated by the RBC. This review highlights the current knowledge regarding the role of RBCs in cardiovascular regulation with focus on their importance for cardiovascular dysfunction in pathological conditions and therapeutic possibilities for targeting RBCs in cardiovascular disease.
Collapse
Affiliation(s)
- John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Tymko MM, Lawley JS, Ainslie PN, Hansen AB, Hofstaetter F, Rainer S, Amin S, Moralez G, Gasho C, Vizcardo-Galindo G, Bermudez D, Villafuerte FC, Hearon CM. Global Reach 2018 Heightened α-Adrenergic Signaling Impairs Endothelial Function During Chronic Exposure to Hypobaric Hypoxia. Circ Res 2020; 127:e1-e13. [PMID: 32268833 DOI: 10.1161/circresaha.119.316053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined. OBJECTIVE To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE. METHODS AND RESULTS We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude. Vascular function was assessed using intraarterial infusions (3 progressive doses) of acetylcholine (ACh; EDD) and sodium nitroprusside (endothelial-independent dilation) before and after local α+β adrenergic receptor blockade (phentolamine and propranolol). Intraarterial blood pressure, heart rate, and simultaneous brachial artery diameter and blood velocity were recorded at rest and during drug infusion. Changes in forearm vascular conductance were calculated. The main findings were (1) chronic hypoxia reduced EDD in lowlanders (changes in forearm vascular conductance from sea level: ACh1: -52.7±19.6%, ACh2: -25.4±38.7%, ACh3: -35.1±34.7%, all P≤0.02); and in Andeans with EE compared with non-EE (changes in forearm vascular conductance at ACh3: -36.4%, P=0.007). Adrenergic blockade fully restored EDD in lowlanders at high altitude, and normalized EDD between EE and non-EE Andeans. (2) Chronic hypoxia had no effect on endothelial-independent dilation in lowlanders, and no differences were detected between EE and non-EE Andeans; however, EID was increased in the non-EE Andeans after adrenergic blockade (P=0.012), but this effect was not observed in the EE Andeans. CONCLUSIONS These data indicate that chronic hypoxia reduces EDD via heightened α-adrenergic signaling in lowlanders and in Andeans with EE. These vascular mechanisms have important implications for understanding the physiological consequences of acute and chronic high altitude adaptation.
Collapse
Affiliation(s)
- Michael M Tymko
- From the Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada (M.M.T., P.N.A.).,Neurovascular Health Lab, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Canada (M.M.T.)
| | - Justin S Lawley
- University of Innsbruck, Austria (J.S.L., A.B.H., F.H., S.R., S.A.)
| | - Philip N Ainslie
- From the Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada (M.M.T., P.N.A.)
| | | | | | - Simon Rainer
- University of Innsbruck, Austria (J.S.L., A.B.H., F.H., S.R., S.A.)
| | - Sachin Amin
- University of Innsbruck, Austria (J.S.L., A.B.H., F.H., S.R., S.A.)
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX (G.M.)
| | | | | | | | | | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas (C.M.H.).,Department of Internal Medicine, University of Texas Southwestern Medical Center (C.M.H.)
| |
Collapse
|
22
|
Zhou Z, Yang J, Pernow J. Erythrocytes and cardiovascular complications. Aging (Albany NY) 2020; 10:3643-3644. [PMID: 30487318 PMCID: PMC6326677 DOI: 10.18632/aging.101688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
| |
Collapse
|
23
|
Zhou R, Dang X, Sprague RS, Mustafa SJ, Zhou Z. Alteration of purinergic signaling in diabetes: Focus on vascular function. J Mol Cell Cardiol 2020; 140:1-9. [PMID: 32057736 DOI: 10.1016/j.yjmcc.2020.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/02/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
Diabetes is an important risk factor for the development of cardiovascular disease including atherosclerosis and ischemic heart disease. Vascular complications including macro- and micro-vascular dysfunction are the leading causes of morbidity and mortality in diabetes. Disease mechanisms at present are unclear and no ideal therapies are available, which urgently calls for the identification of novel therapeutic targets/agents. An altered nucleotide- and nucleoside-mediated purinergic signaling has been implicated to cause diabetes-associated vascular dysfunction in major organs. Alteration of both purinergic P1 and P2 receptor sensitivity rather than the changes in receptor expression accounts for vascular dysfunction in diabetes. Activation of P2X7 receptors plays a crucial role in diabetes-induced retinal microvascular dysfunction. Recent findings have revealed that both ecto-nucleotidase CD39, a key enzyme hydrolyzing ATP, and CD73, an enzyme regulating adenosine turnover, are involved in the renal vascular injury in diabetes. Interestingly, erythrocyte dysfunction in diabetes by decreasing ATP release in response to physiological stimuli may serve as an important trigger to induce vascular dysfunction. Nucleot(s)ide-mediated purinergic activation also exerts long-term actions including inflammatory and atherogenic effects in hyperglycemic and diabetic conditions. This review highlights the current knowledge regarding the altered nucleot(s)ide-mediated purinergic signaling as an important disease mechanism for the diabetes-associated vascular complications. Better understanding the role of key receptor-mediated signaling in diabetes will provide more insights into their potential as targets for the treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of Education, Southwest Medical University, Luzhou, PR China
| | - Xitong Dang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of Education, Southwest Medical University, Luzhou, PR China
| | - Randy S Sprague
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Asaro RJ, Zhu Q. Vital erythrocyte phenomena: what can theory, modeling, and simulation offer? Biomech Model Mechanobiol 2020; 19:1361-1388. [DOI: 10.1007/s10237-020-01302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
25
|
Townsend AD, Sprague RS, Martin RS. Microfluidic device using a gold pillar array and integrated electrodes for on-chip endothelial cell immobilization, direct RBC contact, and amperometric detection of nitric oxide. ELECTROANAL 2019; 31:1409-1415. [PMID: 32999581 DOI: 10.1002/elan.201900157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe a microfluidic device that can be used to detect interactions between red blood cells (RBCs) and endothelial cells using a gold pillar array (created by electrodeposition) and an integrated detection electrode. Endothelial cells can release nitric oxide (NO) via stimulation by RBC-derived ATP. These studies incorporate on-chip endothelial cell immobilization, direct RBC contact, and detection of NO in a single microfluidic device. In order to study the RBC-EC interactions, this work used a microfluidic device made of a PDMS chip with two adjacent channels and a polystyrene base with embedded electrodes for creating a membrane (via gold pillars) and detecting NO (at a glassy carbon electrode coated with platinum-black and Nafion). RBCs were pharmacologically treated with treprostinil in the absence and presence of glybenclamide, and ATP release was determined as was the resultant NO release from endothelial cells. Treprostinil treatment of RBCs resulted in ATP release that stimulated endothelial cells to release on average 1.8 ± 0.2 nM NO per endothelial cell (average ± SEM, n = 8). Pretreatment of RBCs with glybenclamide inhibited treprostinil-induced ATP release and, therefore, less NO was produced by the endothelial cells (0.92 ± 0.1 nM NO per endothelial cell, n = 7). In the future, this device can be used to study interactions between many other cell types (both adherent and non-adherent cell lines) and incorporate other detection schemes.
Collapse
Affiliation(s)
- Alexandra D Townsend
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, MO 63103
| | - Randy S Sprague
- Department of Pharmacological and Physiological Science, Saint Louis University, 1402 S. Grand Boulevard, Saint Louis, MO 63103
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, Saint Louis, MO 63103
| |
Collapse
|
26
|
Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:281-288. [PMID: 31184577 DOI: 10.2450/2019.0072-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Red blood cells (RBCs) have been historically regarded as a critical model to investigate cellular and oxidant stress biology. First of all, they are constantly exposed to oxidant stress, as their main function is to transport and deliver oxygen to tissues. Second, they are devoid of de novo protein synthesis capacity, which prevents RBCs from replacing irreversibly oxidised proteins with newly synthesised ones. As such, RBCs have evolved to (i) protect themselves from oxidant stress, in order to prevent oxidant damage from reactive species; (ii) repair oxidatively damaged proteins, through mechanisms that involve glutathione and one-carbon metabolism; (iii) destroy irreversibly oxidised proteins through proteasomal or protease-dependent degradation; and (iv) sacrifice membrane portions through mechanism of vesiculation. In this brief review we will summarize these processes and their relevance to RBC redox biology (within the context of blood storage), with a focus on how polymorphisms in RBC antioxidant responses could contribute to explaining the heterogeneity in the progression and severity of the RBC storage lesion that can be observed across the healthy donor population.
Collapse
|
27
|
Dietary Fatty Acids Affect Red Blood Cell Membrane Composition and Red Blood Cell ATP Release in Dairy Cows. Int J Mol Sci 2019; 20:ijms20112769. [PMID: 31195708 PMCID: PMC6600345 DOI: 10.3390/ijms20112769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Diets of dairy cows are often based on maize silage (MS), delivering lower amounts of n-3 fatty acids (FA) compared to grass silage-based diets. The fatty acid composition of the cell membrane can affect the cell function. We evaluated the effects of an MS-based diet on bovine red blood cell (RBC) membrane FA composition and dietary effects on controlled ATP release of RBC. In trial 1, German Holstein cows were fed an MS-based total mixed ration for 24 weeks. The FA composition of RBC membranes from repeatedly taken blood samples was analysed in addition to the abundance of the RBC membrane protein flotillin-1, which is involved in, for example, cell signalling. In trial 2, four rumen fistulated MS-fed cows were abomasally infused in a 4 × 4 Latin square model with three successively increasing lipid dosages (coconut oil, linseed–safflower oil mix (EFA; rich in n-3 FA), Lutalin®, providing conjugated linoleic acids (CLA) or the combination of the supplements, EFA + CLA) for six weeks, followed by a three-week washout period. In trial 2, we analysed RBC ATP release, flotillin-1, and the membrane protein abundance of pannexin-1, which is involved in ATP release as the last part of a signalling cascade. In trial 1, the total amount of n-3 FA in RBC membranes decreased and the flotillin-1 abundance increased over time. In trial 2, the RBC n-3 FA amount was higher after the six-week infusion period of EFA or EFA + CLA. Furthermore, depending on the dosage of FA, the ATP release from RBC increased. The abundance of flotillin-1 and pannexin-1 was not affected in trial 2. It is concluded that changes of the membrane FA composition influence the RBC function, leading to altered ATP release from intact bovine RBC.
Collapse
|
28
|
Zhou Z, Matsumoto T, Jankowski V, Pernow J, Mustafa SJ, Duncker DJ, Merkus D. Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacol Res 2019; 141:32-45. [PMID: 30553823 PMCID: PMC6685433 DOI: 10.1016/j.phrs.2018.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/26/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Uridine adenosine tetraphosphate (Up4A), biosynthesized by activation of vascular endothelial growth factor receptor (VEGFR) 2, was initially identified as a potent endothelium-derived vasoconstrictor in perfused rat kidney. Subsequently, the effect of Up4A on vascular tone regulation was intensively investigated in arteries isolated from different vascular beds in rodents including rat pulmonary arteries, aortas, mesenteric and renal arteries as well as mouse aortas, in which Up4A produces vascular contraction. In contrast, Up4A produces vascular relaxation in porcine coronary small arteries and rat aortas. Intravenous infusion of Up4A into conscious rats or mice decreases blood pressure, and intravenous bolus injection of Up4A into anesthetized mice increases coronary blood flow, indicating an overall vasodilator influence in vivo. Although Up4A is the first dinucleotide described that contains both purine and pyrimidine moieties, its cardiovascular effects are exerted mainly through activation of purinergic receptors. These effects not only encompass regulation of vascular tone, but also endothelial angiogenesis, smooth muscle cell proliferation and migration, and vascular calcification. Furthermore, this review discusses a potential role for Up4A in cardiovascular pathophysiology, as plasma levels of Up4A are elevated in juvenile hypertensive patients and Up4A-mediated vascular purinergic signaling changes in cardiovascular disease such as hypertension, diabetes, atherosclerosis and myocardial infarction. Better understanding the vascular effect of the novel dinucleotide Up4A and the purinergic signaling mechanisms mediating its effects will enhance its potential as target for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Vera Jankowski
- RWTH-Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - S Jamal Mustafa
- Department of Physiology, Pharmacology & Neuroscience, Center for Cardiovascular and Respiratory Sciences, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Zheng S, Krump NA, McKenna MM, Li YH, Hannemann A, Garrett LJ, Gibson JS, Bodine DM, Low PS. Regulation of erythrocyte Na +/K +/2Cl - cotransport by an oxygen-switched kinase cascade. J Biol Chem 2018; 294:2519-2528. [PMID: 30563844 DOI: 10.1074/jbc.ra118.006393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Many erythrocyte processes and pathways, including glycolysis, the pentose phosphate pathway (PPP), KCl cotransport, ATP release, Na+/K+-ATPase activity, ankyrin-band 3 interactions, and nitric oxide (NO) release, are regulated by changes in O2 pressure that occur as a red blood cell (RBC) transits between the lungs and tissues. The O2 dependence of glycolysis, PPP, and ankyrin-band 3 interactions (affecting RBC rheology) are controlled by O2-dependent competition between deoxyhemoglobin (deoxyHb), but not oxyhemoglobin (oxyHb), and other proteins for band 3. We undertook the present study to determine whether the O2 dependence of Na+/K+/2Cl- cotransport (catalyzed by Na+/K+/2Cl- cotransporter 1 [NKCC1]) might similarly originate from competition between deoxyHb and a protein involved in NKCC1 regulation for a common binding site on band 3. Using three transgenic mouse strains having mutated deoxyhemoglobin-binding sites on band 3, we found that docking of deoxyhemoglobin at the N terminus of band 3 displaces the protein with no lysine kinase 1 (WNK1) from its overlapping binding site on band 3. This displacement enabled WNK1 to phosphorylate oxidative stress-responsive kinase 1 (OSR1), which, in turn, phosphorylated and activated NKCC1. Under normal solution conditions, the NKCC1 activation increased RBC volume and thereby induced changes in RBC rheology. Because the deoxyhemoglobin-mediated WNK1 displacement from band 3 in this O2 regulation pathway may also occur in the regulation of other O2-regulated ion transporters, we hypothesize that the NKCC1-mediated regulatory mechanism may represent a general pattern of O2 modulation of ion transporters in erythrocytes.
Collapse
Affiliation(s)
- Suilan Zheng
- From the Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nathan A Krump
- the Hematopoiesis Section, National Human Genome Research Institute and
| | - Mary M McKenna
- the Hematopoiesis Section, National Human Genome Research Institute and
| | - Yen-Hsing Li
- From the Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Anke Hannemann
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Lisa J Garrett
- the National Human Genome Research Institute Embryonic Stem Cell and Transgenic Mouse Core Facility, National Institutes of Health, Bethesda, Maryland 20815, and
| | - John S Gibson
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - David M Bodine
- the Hematopoiesis Section, National Human Genome Research Institute and
| | - Philip S Low
- From the Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907,
| |
Collapse
|
30
|
Lotfi R, Steppe L, Hang R, Rojewski M, Massold M, Jahrsdörfer B, Schrezenmeier H. ATP promotes immunosuppressive capacities of mesenchymal stromal cells by enhancing the expression of indoleamine dioxygenase. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:448-455. [PMID: 30306723 PMCID: PMC6247240 DOI: 10.1002/iid3.236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
Introduction MSCs are often found within tumors, promote cancer progression and enhance metastasis. MSCs can act as immuosuppressive cells, partially due to the expression of the enzyme indoleamine dioxygenase (IDO) which converts tryptophan to kynurenine. Decreased concentration of tryptophan and increased kynurenine, both interfere with effective immune response. Damage associated molecular patterns (DAMPs) including ATP are found within the tumor microenvironment, attract MSCs, and influence their biology. Methods Bone marrow derived MSCs were exposed to ATP for 4 days, in the presence of 100 ng IFNγ/mL. Intracellular expression of IDO in MSCs was assessed by FACS. Conditioned media from thus stimulated MSCs was analyzed for kynurenine content and its suppressive effect on lymphocyte proliferation. Apyrase or P2 × 7‐receptor antagonist (AZ 11645373) were applied in order to inhibit ATP induced effect on MSCs. Results We demonstrate, that ATP at concentrations between 0.062 and 0.5 mM increases dose dependently the expression of IDO in MSCs with subsequent increased kynurenine concentrations within the supernatant at about 60%. This effect could be abolished completely in the presence of ATP degrading enzyme (apyrase) or when MSCs were pretreated with a P2 × 7‐receptor antagonist (AZ 11645373). Consistently, supernatants from MSCs stimulated with ATP, inhibited lymphocyte proliferation from 65% to 16%. Conclusions We characterized ATP as a DAMP family member responsible for necrosis‐induced immunomodulation. Given the increased concentration of DAMPs within tumor tissue and the fact that DAMPs can act as chemotattractants to MSCs, our results have implications for therapeutic strategies targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Ramin Lotfi
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Lena Steppe
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Regina Hang
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Marina Massold
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Wuerttemberg-Hessen, Ulm, Germany
| |
Collapse
|
31
|
Gu B, Wang X, Twa MD, Tam J, Girkin CA, Zhang Y. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:3653-3677. [PMID: 30338146 PMCID: PMC6191635 DOI: 10.1364/boe.9.003653] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 05/18/2023]
Abstract
The flow of erythrocytes in parafoveal capillaries was imaged in the living human eye with an adaptive optics near-confocal ophthalmoscope at a frame rate of 800 Hz with a low coherence near-infrared (NIR) light source. Spatiotemporal traces of the erythrocyte movement were extracted from consecutive images. Erythrocyte velocity was measured using custom software based on the Radon transform. The impact of imaging speed on velocity measurement was estimated using images of frame rates of 200, 400, and 800 Hz. The NIR light allowed for long imaging periods without visually stimulating the retina and disturbing the natural rheological state. High speed near-confocal imaging enabled direct and accurate measurement of erythrocyte velocity, and revealed a distinctively cardiac-dependent pulsatile velocity waveform of the erythrocyte flow in retinal capillaries, disclosed the impact of the leukocytes on erythrocyte motion, and provided new metrics for precise assessment of erythrocyte movement. The approach may facilitate new investigations on the pathophysiology of retinal microcirculation with applications for ocular and systemic diseases.
Collapse
Affiliation(s)
- Boyu Gu
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Xiaolin Wang
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Michael D. Twa
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, 1716 University Boulevard, Birmingham, AL 35294, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| | - Yuhua Zhang
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
32
|
Munshi AS, Chen C, Townsend AD, Martin RS. Use of 3D Printing and Modular Microfluidics to Integrate Cell Culture, Injections and Electrochemical Analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:3364-3374. [PMID: 30923580 PMCID: PMC6433419 DOI: 10.1039/c8ay00829a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fabrication of microchip-based devices using 3-D printing technology offers a unique platform to create separate modules that can be put together when desired for analysis. A 3-D printed module approach offers various advantages such as file sharing and the ability to easily replace, customize, and modify the individual modules. Here, we describe the use of a modular approach to electrochemically detect the ATP-mediated release of nitric oxide (NO) from endothelial cells. Nitric oxide plays a significant role in the vasodilation process; however, detection of NO is challenging due to its short half-life. To enable this analysis, we use three distinct 3-D printed modules: cell culture, sample injection and detection modules. The detection module follows a pillar-based Wall-Jet Electrode design, where the analyte impinges normal to the electrode surface, offering enhanced sensitivity for the analyte. To further enhance the sensitivity and selectivity for NO detection the working electrode (100 μm gold) is modified by the addition of a 27 μm gold pillar and platinum-black coated with Nafion. The use of the pillar electrode leads to three-dimensional structure protruding into the channel enhancing the sensitivity by 12.4 times in comparison to the flat electrode (resulting LOD for NO = 210 nM). The next module, the 3-D printed sample injection module, follows a simple 4-Port injection rotor design made of two separate components that when assembled can introduce a specific volume of analyte. This module not only serves as a cheaper alternative to the commercially available 4-Port injection valves, but also demonstrates the ability of volume customization and reduced dead-volume issues with the use of capillary-free connections. Comparison between the 3-D printed and a commercial 4-Port injection valve showed similar sensitivities and reproducibility for NO analysis. Lastly, the cell culture module contains electrospun polystyrene fibers with immobilized endothelial cells, resulting in 3-D scaffold for cell culture. With the incorporation of all 3 modules, we can make reproducible ATP injections (via the 3-D printed sample injection module) that can stimulate NO release from endothelial cells cultured on a fibrous insert in the cell culture module which can then be quantitated by the pillar WJE module (0.19 ± 0.03 nM/cell, n = 27, 3 inserts analyzed each day, on 9 different days). The modular approach demonstrates the facile creation of custom and modifiable fluidic components that can be assembled as needed.
Collapse
Affiliation(s)
| | | | | | - R. Scott Martin
- corresponding author: Dr. R. Scott Martin, 3501 Laclede Ave, St. Louis, MO, USA 63103, +1 314-977-2836,
| |
Collapse
|
33
|
Vourc'h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol 2018; 9:1330. [PMID: 29963048 PMCID: PMC6013556 DOI: 10.3389/fimmu.2018.01330] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Trauma is one of the leading causes of death and disability in the world. Multiple trauma or isolated traumatic brain injury are both indicative of human tissue damage. In the early phase after trauma, damage-associated molecular patterns (DAMPs) are released and give rise to sterile systemic inflammatory response syndrome (SIRS) and organ failure. Later, protracted inflammation following sepsis will favor hospital-acquired infection and will worsen patient’s outcome through immunosuppression. Throughout medical care or surgical procedures, severe trauma patients will be subjected to endogenous or exogenous DAMPs. In this review, we summarize the current knowledge regarding DAMP-mediated SIRS or immunosuppression and the clinical consequences in terms of organ failure and infections.
Collapse
Affiliation(s)
- Mickael Vourc'h
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Antoine Roquilly
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| |
Collapse
|
34
|
Marziano C, Hong K, Cope EL, Kotlikoff MI, Isakson BE, Sonkusare SK. Nitric Oxide-Dependent Feedback Loop Regulates Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Cooperativity and Endothelial Function in Small Pulmonary Arteries. J Am Heart Assoc 2017; 6:JAHA.117.007157. [PMID: 29275372 PMCID: PMC5779028 DOI: 10.1161/jaha.117.007157] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies demonstrate that spatially restricted, local Ca2+ signals are key regulators of endothelium-dependent vasodilation in systemic circulation. There are drastic functional differences between pulmonary arteries (PAs) and systemic arteries, but the local Ca2+ signals that control endothelium-dependent vasodilation of PAs are not known. Localized, unitary Ca2+ influx events through transient receptor potential vanilloid 4 (TRPV4) channels, termed TRPV4 sparklets, regulate endothelium-dependent vasodilation in resistance-sized mesenteric arteries via activation of Ca2+-dependent K+ channels. The objective of this study was to determine the unique functional roles, signaling targets, and endogenous regulators of TRPV4 sparklets in resistance-sized PAs. METHODS AND RESULTS Using confocal imaging, custom image analysis, and pressure myography in fourth-order PAs in conjunction with knockout mouse models, we report a novel Ca2+ signaling mechanism that regulates endothelium-dependent vasodilation in resistance-sized PAs. TRPV4 sparklets exhibit distinct spatial localization in PAs when compared with mesenteric arteries, and preferentially activate endothelial nitric oxide synthase (eNOS). Nitric oxide released by TRPV4-endothelial nitric oxide synthase signaling not only promotes vasodilation, but also initiates a guanylyl cyclase-protein kinase G-dependent negative feedback loop that inhibits cooperative openings of TRPV4 channels, thus limiting sparklet activity. Moreover, we discovered that adenosine triphosphate dilates PAs through a P2 purinergic receptor-dependent activation of TRPV4 sparklets. CONCLUSIONS Our results reveal a spatially distinct TRPV4-endothelial nitric oxide synthase signaling mechanism and its novel endogenous regulators in resistance-sized PAs.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Eric L Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA .,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
35
|
Keller AS, Diederich L, Panknin C, DeLalio LJ, Drake JC, Sherman R, Jackson EK, Yan Z, Kelm M, Cortese-Krott MM, Isakson BE. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway. Am J Physiol Cell Physiol 2017; 313:C593-C603. [PMID: 28855161 DOI: 10.1152/ajpcell.00178.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023]
Abstract
Red blood cell (RBC)-derived adenosine triphosphate (ATP) has been proposed as an integral component in the regulation of oxygen supply to skeletal muscle. In ex vivo settings RBCs have been shown to release ATP in response to a number of stimuli, including stimulation of adrenergic receptors. Further evidence suggested that ATP release from RBCs was dependent on activation of adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)-dependent pathways and involved the pannexin 1 (Panx1) channel. Here we show that RBCs express Panx1 and confirm its absence in Panx1 knockout (-/-) RBCs. However, Panx1-/- mice lack any decrease in exercise performance, challenging the assumptions that Panx1 plays an essential role in increased blood perfusion to exercising skeletal muscle and therefore in ATP release from RBCs. We therefore tested the role of Panx1 in ATP release from RBCs ex vivo in RBC suspensions. We found that stimulation with hypotonic potassium gluconate buffer resulted in a significant increase in ATP in the supernatant, but this was highly correlated with RBC lysis. Next, we treated RBCs with a stable cAMP analog, which did not induce ATP release from wild-type or Panx1-/- mice. Similarly, multiple pharmacological treatments activating AC in RBCs increased intracellular cAMP levels (as measured via mass spectrometry) but did not induce ATP release. The data presented here question the importance of Panx1 for exercise performance and dispute the general assumption that ATP release from RBCs via Panx1 is regulated via cAMP.
Collapse
Affiliation(s)
- Alexander S Keller
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christina Panknin
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Leon J DeLalio
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Joshua C Drake
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robyn Sherman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Zhen Yan
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Malte Kelm
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany;
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
36
|
Hearon CM, Richards JC, Racine ML, Luckasen GJ, Larson DG, Joyner MJ, Dinenno FA. Sympatholytic effect of intravascular ATP is independent of nitric oxide, prostaglandins, Na + /K + -ATPase and K IR channels in humans. J Physiol 2017; 595:5175-5190. [PMID: 28590059 PMCID: PMC5538228 DOI: 10.1113/jp274532] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Intravascular ATP attenuates sympathetic vasoconstriction (sympatholysis) similar to what is observed in contracting skeletal muscle of humans, and may be an important contributor to exercise hyperaemia. Similar to exercise, ATP-mediated vasodilatation occurs via activation of inwardly rectifying potassium channels (KIR ), and synthesis of nitric oxide (NO) and prostaglandins (PG). However, recent evidence suggests that these dilatatory pathways are not obligatory for sympatholysis during exercise; therefore, we tested the hypothesis that the ability of ATP to blunt α1 -adrenergic vasoconstriction in resting skeletal muscle would be independent of KIR , NO, PGs and Na+ /K+ -ATPase activity. Blockade of KIR channels alone or in combination with NO, PGs and Na+ /K+ -ATPase significantly reduced the vasodilatatory response to ATP, although intravascular ATP maintained the ability to attenuate α1 -adrenergic vasoconstriction. This study highlights similarities in the vascular response to ATP and exercise, and further supports a potential role of intravascular ATP in blood flow regulation during exercise in humans. ABSTRACT Exercise and intravascular ATP elicit vasodilatation that is dependent on activation of inwardly rectifying potassium (KIR ) channels, with a modest reliance on nitric oxide (NO) and prostaglandin (PG) synthesis. Both exercise and intravascular ATP attenuate sympathetic α-adrenergic vasoconstriction (sympatholysis). However, KIR channels, NO, PGs and Na+ /K+ -ATPase activity are not obligatory to observe sympatholysis during exercise. To further determine similarities between exercise and intravascular ATP, we tested the hypothesis that inhibition of KIR channels, NO and PG synthesis, and Na+ /K+ -ATPase would not alter the ability of ATP to blunt α1 -adrenergic vasoconstriction. In healthy subjects, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to intra-arterial infusion of phenylephrine (PE; α1 -agonist) during ATP or control vasodilatator infusion, before and after KIR channel inhibition alone (barium chloride; n = 7; Protocol 1); NO (l-NMMA) and PG (ketorolac) inhibition alone, or combined NO, PGs, Na+ /K+ -ATPase (ouabain) and KIR channel inhibition (n = 6; Protocol 2). ATP attenuated PE-mediated vasoconstriction relative to adenosine (ADO) and sodium nitroprusside (SNP) (PE-mediated ΔFVC: ATP: -16 ± 2; ADO: -38 ± 6; SNP: -59 ± 6%; P < 0.05 vs. ADO and SNP). Blockade of KIR channels alone or combined with NO, PGs and Na+ /K+ -ATPase, attenuated ATP-mediated vasodilatation (∼35 and ∼60% respectively; P < 0.05 vs. control). However, ATP maintained the ability to blunt PE-mediated vasoconstriction (PE-mediated ΔFVC: KIR blockade alone: -6 ± 5%; combined blockade:-4 ± 14%; P > 0.05 vs. control). These findings demonstrate that intravascular ATP modulates α1 -adrenergic vasoconstriction via pathways independent of KIR channels, NO, PGs and Na+ /K+ -ATPase in humans, consistent with a role for endothelium-derived hyperpolarization in functional sympatholysis.
Collapse
Affiliation(s)
- Christopher M. Hearon
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Jennifer C. Richards
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Mathew L. Racine
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Gary J. Luckasen
- Medical Center of the Rockies FoundationUniversity of Colorado HealthLovelandCOUSA
| | - Dennis G. Larson
- Medical Center of the Rockies FoundationUniversity of Colorado HealthLovelandCOUSA
| | | | - Frank A. Dinenno
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
- Center for Cardiovascular ResearchColorado State UniversityFort CollinsCO80523USA
| |
Collapse
|
37
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
38
|
Begandt D, Good ME, Keller AS, DeLalio LJ, Rowley C, Isakson BE, Figueroa XF. Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 2017; 18:2. [PMID: 28124621 PMCID: PMC5267334 DOI: 10.1186/s12860-016-0119-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Control of blood flow distribution and tissue homeostasis depend on the tight regulation of and coordination between the microvascular network and circulating blood cells. Channels formed by connexins or pannexins that connect the intra- and extracellular compartments allow the release of paracrine signals, such as ATP and prostaglandins, and thus play a central role in achieving fine regulation and coordination of vascular function. This review focuses on vascular connexin hemichannels and pannexin channels. We review their expression pattern within the arterial and venous system with a special emphasis on how post-translational modifications by phosphorylation and S-nitrosylation of these channels modulate their function and contribute to vascular homeostasis. Furthermore, we highlight the contribution of these channels in smooth muscle cells and endothelial cells in the regulation of vasomotor tone as well as how these channels in endothelial cells regulate inflammatory responses such as during ischemic and hypoxic conditions. In addition, this review will touch on recent evidence implicating a role for these proteins in regulating red blood cell and platelet function.
Collapse
Affiliation(s)
- Daniela Begandt
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Miranda E Good
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alex S Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Carol Rowley
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
39
|
Reversible binding of hemoglobin to band 3 constitutes the molecular switch that mediates O2 regulation of erythrocyte properties. Blood 2016; 128:2708-2716. [PMID: 27688804 DOI: 10.1182/blood-2016-01-692079] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Functional studies have shown that the oxygenation state of the erythrocyte regulates many important pathways, including glucose metabolism, membrane mechanical stability, and cellular adenosine triphosphate (ATP) release. Deoxyhemoglobin (deoxyHb), but not oxyhemoglobin, binds avidly and reversibly to band 3, the major erythrocyte membrane protein. Because band 3 associates with multiple metabolic, solute transport, signal transduction, and structural proteins, the hypothesis naturally arises that the O2-dependent regulation of erythrocyte properties might be mediated by the reversible association of deoxyHb with band 3. To explore whether the band 3-deoxyHb interaction constitutes a "molecular switch" for regulating erythrocyte biology, we have generated transgenic mice with mutations in the deoxyHb-binding domain of band 3. One strain of mouse contains a "humanized" band 3 in which the N-terminal 45 residues of mouse band 3 are replaced by the homologous sequence from human band 3, including the normal human band 3 deoxyHb-binding site. The second mouse contains the same substitution as the first, except the deoxyHb site on band 3 (residues 12-23) has been deleted. Comparison of these animals with wild-type mice demonstrates that the following erythrocyte properties are controlled by the O2-dependent association of hemoglobin with band 3: (1) assembly of a glycolytic enzyme complex on the erythrocyte membrane which is associated with a shift in glucose metabolism between the pentose phosphate pathway and glycolysis, (2) interaction of ankyrin with band 3 and the concomitant regulation of erythrocyte membrane stability, and (3) release of ATP from the red cell which has been linked to vasodilation.
Collapse
|
40
|
Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65:665-78. [PMID: 27251171 DOI: 10.1007/s00011-016-0955-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Collapse
Affiliation(s)
- Rafaela Mendonça
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Angélica A A Silveira
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Nicola Conran
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
41
|
Leal Denis MF, Alvarez HA, Lauri N, Alvarez CL, Chara O, Schwarzbaum PJ. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes. PLoS One 2016; 11:e0158305. [PMID: 27355484 PMCID: PMC4927150 DOI: 10.1371/journal.pone.0158305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.
Collapse
Affiliation(s)
- M. Florencia Leal Denis
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - H. Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Natalia Lauri
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - Cora L. Alvarez
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - Osvaldo Chara
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden (TUD), Dresden, Germany
| | - Pablo J. Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
42
|
Ellsworth ML, Ellis CG, Sprague RS. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle. Acta Physiol (Oxf) 2016; 216:265-76. [PMID: 26336065 DOI: 10.1111/apha.12596] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/18/2015] [Accepted: 08/28/2015] [Indexed: 12/23/2022]
Abstract
In a 1914 book entitled The Respiratory Function of the Blood, Joseph Barcroft stated that 'the cell takes what it needs and leaves the rest'. He postulated that there must be both a 'call for oxygen' and a 'mechanism by which the call elicits a response...' In the past century, intensive investigation has provided significant insights into the haemodynamic and biophysical mechanisms involved in supplying oxygen to skeletal muscle. However, the identification of the mechanism by which tissue oxygen needs are sensed and the affector responsible for altering the upstream vasculature to enable the need to be appropriately met has been a challenge. In 1995, Ellsworth et al. proposed that the oxygen-carrying erythrocyte, by virtue of its capacity to release the vasoactive mediator ATP in response to a decrease in oxygen saturation, could serve both roles. Several in vitro and in situ studies have established that exposure of erythrocytes to reduced oxygen tension induces the release of ATP which does result in a conducted arteriolar vasodilation with a sufficiently rapid time course to make the mechanism physiologically relevant. The components of the signalling pathway for the controlled release of ATP from erythrocytes in response to exposure to low oxygen tension have been determined. In addition, the implications of defective ATP release on human pathological conditions have been explored. This review provides a perspective on oxygen supply and the role that such a mechanism plays in meeting the oxygen needs of skeletal muscle.
Collapse
Affiliation(s)
- M. L. Ellsworth
- Department of Pharmacological and Physiological Science; Saint Louis University School of Medicine; St. Louis MO USA
| | - C. G. Ellis
- Departments of Medical Biophysics and Medicine; Schulich School of Medicine & Dentistry; The University of Western Ontario; London ON Canada
| | - R. S. Sprague
- Department of Pharmacological and Physiological Science; Saint Louis University School of Medicine; St. Louis MO USA
| |
Collapse
|
43
|
Benedik PS, Hamlin SK. The physiologic role of erythrocytes in oxygen delivery and implications for blood storage. Crit Care Nurs Clin North Am 2016; 26:325-35. [PMID: 25169686 DOI: 10.1016/j.ccell.2014.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Erythrocytes are not just oxygen delivery devices but play an active metabolic role in modulating microvascular blood flow. Hemoglobin and red blood cell morphology change as local oxygen levels fall, eliciting the release of adenosine triphosphate and nitric oxide to initiate local vasodilation. Aged erythrocytes undergo physical and functional changes such that some of the red cell's most physiologically helpful attributes are diminished. This article reviews the functional anatomy and applied physiology of the erythrocyte and the microcirculation with an emphasis on how erythrocytes modulate microvascular function. The effects of cell storage on the metabolic functions of the erythrocyte are also briefly discussed.
Collapse
Affiliation(s)
- Penelope S Benedik
- Department of Acute and Continuing Care, School of Nursing, University of Texas Health Science Center at Houston, 6901 Bertner Street, SON 682, Houston, TX 77030, USA.
| | - Shannan K Hamlin
- Nursing Research and Evidence-Based Practice, Houston Methodist Hospital, 6565 Fannin, MGJ 11-017, Houston, TX 77030, USA
| |
Collapse
|
44
|
Kirby PL, Buerk DG, Parikh J, Barbee KA, Jaron D. Mathematical model for shear stress dependent NO and adenine nucleotide production from endothelial cells. Nitric Oxide 2016; 52:1-15. [PMID: 26529478 PMCID: PMC4703509 DOI: 10.1016/j.niox.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022]
Abstract
We developed a mass transport model for a parallel-plate flow chamber apparatus to predict the concentrations of nitric oxide (NO) and adenine nucleotides (ATP, ADP) produced by cultured endothelial cells (ECs) and investigated how the net rates of production, degradation, and mass transport for these three chemical species vary with changes in wall shear stress (τw). These simulations provide an improved understanding of experimental results obtained with parallel-plate flow chambers and allows quantitative analysis of the relationship between τw, adenine nucleotide concentrations, and NO produced by ECs. Experimental data obtained after altering ATP and ADP concentrations with apyrase were analyzed to quantify changes in the rate of NO production (RNO). The effects of different isoforms of apyrase on ATP and ADP concentrations and nucleotide-dependent changes in RNO could be predicted with the model. A decrease in ATP was predicted with apyrase, but an increase in ADP was simulated due to degradation of ATP. We found that a simple proportional relationship relating a component of RNO to the sum of ATP and ADP provided a close match to the fitted curve for experimentally measured changes in RNO with apyrase. Estimates for the proportionality constant ranged from 0.0067 to 0.0321 μM/s increase in RNO per nM nucleotide concentration, depending on which isoform of apyrase was modeled, with the largest effect of nucleotides on RNO at low τw (<6 dyn/cm(2)).
Collapse
Affiliation(s)
- Patrick L Kirby
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Jaimit Parikh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Nyberg M, Gliemann L, Hellsten Y. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scand J Med Sci Sports 2015; 25 Suppl 4:60-73. [DOI: 10.1111/sms.12591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Affiliation(s)
- M. Nyberg
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
47
|
Sluyter R. P2X and P2Y receptor signaling in red blood cells. Front Mol Biosci 2015; 2:60. [PMID: 26579528 PMCID: PMC4623207 DOI: 10.3389/fmolb.2015.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/10/2015] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of WollongongWollongong, NSW, Australia
- Centre for Medical and Molecular Bioscience, University of WollongongWollongong, NSW, Australia
- Illawarra Health and Medical Research InstituteWollongong, NSW, Australia
| |
Collapse
|
48
|
Nyberg M, Hellsten Y. Reduced blood flow to contracting skeletal muscle in ageing humans: is it all an effect of sand through the hourglass? J Physiol 2015; 594:2297-305. [PMID: 26095873 DOI: 10.1113/jp270594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/05/2015] [Indexed: 01/27/2023] Open
Abstract
The ability to sustain a given absolute submaximal workload declines with advancing age, likely to be due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle during exercise where systemic blood flow is not limited by cardiac output, thereby improving O2 delivery and allowing for an enhanced energy production from oxidative metabolism. The mechanisms underlying the increase in blood flow with regular physical activity include improved endothelial function and the ability for functional sympatholysis - an attenuation of the vasoconstrictor effect of sympathetic nervous activity. These vascular adaptations with physical activity are likely to be an effect of improved nitric oxide and ATP signalling. Collectively, precise matching of blood flow and O2 delivery to meet the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
49
|
Rapaport E, Salikhova A, Abraham EH. Continuous intravenous infusion of ATP in humans yields large expansions of erythrocyte ATP pools but extracellular ATP pools are elevated only at the start followed by rapid declines. Purinergic Signal 2015; 11:251-62. [PMID: 25917594 DOI: 10.1007/s11302-015-9450-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 01/18/2023] Open
Abstract
The pharmacokinetics of adenosine 5'-triphosphate (ATP) was investigated in a clinical trial that included 15 patients with advanced malignancies (solid tumors). ATP was administered by continuous intravenous infusions of 8 h once weekly for 8 weeks. Three values of blood ATP levels were determined. These were total blood (erythrocyte) and blood plasma (extracellular) ATP pools along with the initial rate of release of ATP into the blood plasma. We found that values related to erythrocyte ATP pools showed great variability (diversity) among individuals (standard deviation of about 30-40% of mean at baseline). It was discovered that erythrocyte baseline ATP pool sizes are unique to each individual and that they fall within a narrow range in each individual. At the end of an 8 h continuous intravenous infusion of ATP, intracellular erythrocyte ATP pools were increased in the range of 40-60% and extracellular ATP declined from elevated levels achieved at the beginning and middle of the infusion, to baseline levels. The ability of erythrocytes to sequester exogenously administered ATP to this degree, after its initial conversion to adenosine in the blood plasma is unexpected, considering that some of the adenosine is likely to have been degraded by in vivo catabolic activities or taken up by organs. The data suggest that administration of ATP by short-term intravenous infusions, of up to 4 h, may be a favorable way for elevating extracellular ATP pools. A large fraction of the total exogenously administered ATP is sequestered into the intracellular compartments of the erythrocytes after an 8 h intravenous infusion. Erythrocytes loaded with ATP are known to release their ATP pools by the application of previously established agents or conditions applied locally or globally to circulating erythrocytes. Rapid degradation of intravenously administered ATP to adenosine and subsequent accumulation of ATP inside erythrocytes indicate the existence of very effective mechanisms for uptake of adenosine from blood plasma. These in vivo studies offer an understanding as to how both adenosine and ATP can act as purinergic transmission signals. ATP levels in blood are always accompanied by adenosine formed by catabolism of ATP. The continuous uptake of adenosine enables both to act in transmission of sometimes opposite functions.
Collapse
|
50
|
Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc Natl Acad Sci U S A 2015; 112:6425-30. [PMID: 25810253 DOI: 10.1073/pnas.1502285112] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen delivery by Hb is essential for vertebrate life. Three amino acids in Hb are strictly conserved in all mammals and birds, but only two of those, a His and a Phe that stabilize the heme moiety, are needed to carry O2. The third conserved residue is a Cys within the β-chain (βCys93) that has been assigned a role in S-nitrosothiol (SNO)-based hypoxic vasodilation by RBCs. Under this model, the delivery of SNO-based NO bioactivity by Hb redefines the respiratory cycle as a triune system (NO/O2/CO2). However, the physiological ramifications of RBC-mediated vasodilation are unknown, and the apparently essential nature of βCys93 remains unclear. Here we report that mice with a βCys93Ala mutation are deficient in hypoxic vasodilation that governs blood flow autoregulation, the classic physiological mechanism that controls tissue oxygenation but whose molecular basis has been a longstanding mystery. Peripheral blood flow and tissue oxygenation are decreased at baseline in mutant animals and decline excessively during hypoxia. In addition, βCys93Ala mutation results in myocardial ischemia under basal normoxic conditions and in acute cardiac decompensation and enhanced mortality during transient hypoxia. Fetal viability is diminished also. Thus, βCys93-derived SNO bioactivity is essential for tissue oxygenation by RBCs within the respiratory cycle that is required for both normal cardiovascular function and circulatory adaptation to hypoxia.
Collapse
|