1
|
Robinson AE, Novick I, Herrmann J, DeFelice L, Engel A, Famin D, Fetherston C, Frintu B, Meyersiek J, Mishi M, Nguyễn TGH, Buston PM, Sherratt TN, Mullen SP. Is temporal synchrony necessary for effective Batesian mimicry? Proc Biol Sci 2025; 292:20241737. [PMID: 39837508 PMCID: PMC11750401 DOI: 10.1098/rspb.2024.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Batesian mimicry occurs when palatable mimics gain protection from predators by evolving a phenotypic resemblance to an aposematic model species. While common in nature, the mechanisms maintaining mimicry are not fully understood. Patterns of temporal synchrony (i.e. temporal co-occurrence) and model first occurrence have been observed in several mimicry systems, but the hypothesis that predator foraging decisions can drive the evolution of prey phenology has not been experimentally tested. Here, using phenotypically accurate butterfly replicas, we measured predation rates on the chemically defended model species Battus philenor and its imperfect Batesian mimic Limenitis arthemis astyanax under four different phenological conditions to understand the importance of temporal synchrony and model first occurrence in mimicry complexes. We predicted that protection for mimics increases when predators learn to avoid the models' aposematic signal right before encountering the mimic, and that learned avoidance breaks down over time in the model's absence. Surprisingly, we found that asynchronous model first occurrence, even on short time scales, did not provide increased protection for mimics. Mimics were only protected under conditions of temporal synchrony, suggesting that predators rely on current information, not previously learned information, when making foraging decisions.
Collapse
Affiliation(s)
| | - Isabel Novick
- Department of Biology, Boston University, Boston, MA02215, USA
| | | | - Lily DeFelice
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Aidan Engel
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Dina Famin
- Department of Biology, Boston University, Boston, MA02215, USA
| | | | - Bianca Frintu
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Julia Meyersiek
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Musfika Mishi
- Department of Biology, Boston University, Boston, MA02215, USA
| | | | - Peter M. Buston
- Department of Biology, Boston University, Boston, MA02215, USA
| | - Thomas N. Sherratt
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | - Sean P. Mullen
- Department of Biology, Boston University, Boston, MA02215, USA
| |
Collapse
|
2
|
Kaczmarek JM, Kaczmarski M, Mazurkiewicz J, Kloskowski J. Forget the toad and eat the frog: no associational protection against fish from a chemically defended toad to a later-breeding anuran species. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.1967455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jan M. Kaczmarek
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, Poznań 60-625, Poland
| | - Mikołaj Kaczmarski
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, Poznań 60-625, Poland
| | - Jan Mazurkiewicz
- Department of Inland Fisheries and Aquaculture, Poznań University of Life Sciences, Wojska Polskiego 71C, Poznań 60-625, Poland
| | - Janusz Kloskowski
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, Poznań 60-625, Poland
| |
Collapse
|
3
|
Palumbo R, Manesh MF, Sorrentino M. Mapping the State of the Art to Envision the Future of Large-Scale Citizen Science Projects: An Interpretive Review. INTERNATIONAL JOURNAL OF INNOVATION AND TECHNOLOGY MANAGEMENT 2022. [DOI: 10.1142/s0219877022300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Citizen science, i.e. citizens’ involvement in research activities, is achieving an increasing relevance across disparate scientific domains. However, literature is not consistent in arguing citizen science’s attributes and implications when large-scale projects are concerned. The paper systematizes extant scientific knowledge in this field and identifies avenues for further developments through a bibliometric analysis and an interpretive review. Various approaches to citizen science are implemented to engage citizens in scientific research. They can be located in a continuum composed of two extremes: a contributory approach, which serves research institutions’ needs, and an open science approach, which focuses on citizens’ active participation in knowledge co-creation. Although contributory citizen science paves the way for participatory science, it falls short in empowering citizens, which is central in the open science approach. Interventions aimed at enabling citizens to have an active role in co-creating knowledge in a perspective of science democratization are key to overcoming the understanding of citizen science as a low-cost model of scientific research and to boost the transition towards an open science approach.
Collapse
Affiliation(s)
- Rocco Palumbo
- Department of Management & Law, University “Tor Vergata” of Rome, Italy
| | | | - Maddalena Sorrentino
- Department of Economics, Management and Quantitative Methods, University of Milan, Italy
| |
Collapse
|
4
|
Wilson L, Lonsdale G, Curlis JD, Hunter EA, Cox CL. Predator-based selection and the impact of edge sympatry on components of coral snake mimicry. Evol Ecol 2022. [DOI: 10.1007/s10682-021-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Kikuchi DW, Herberstein ME, Barfield M, Holt RD, Mappes J. Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol Rev Camb Philos Soc 2021; 96:2446-2460. [PMID: 34128583 DOI: 10.1111/brv.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.
Collapse
Affiliation(s)
- David W Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Evolutionary Biology, Universität Bielefeld, Konsequez 45, Bielefeld, 33615, Germany
| | - Marie E Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, U.S.A
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
6
|
Cabras AA, Medina MN, Bollino M. Two new species of the genus Metapocyrtus Heller, 1912 (Coleoptera, Curculionidae, Entiminae, Pachyrhynchini), subgenus Orthocyrtus Heller, 1912, from Mindanao Island, Philippines. Zookeys 2021; 1029:139-154. [PMID: 33935553 PMCID: PMC8050020 DOI: 10.3897/zookeys.1029.63023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Two new species of Metapocyrtus Heller, 1912, subgenus Orthocyrtus Heller, 1912 (Coleoptera, Curculionidae, Entiminae, Pachyrhynchini) are described and illustrated from Mindanao Island, Philippines. The species are Metapocyrtus (Orthocyrtus) davaoensissp. nov. and Metapocyrtus (Orthocyrtus) hirakuisp. nov. from Davao City and Bukidnon, respectively. Brief bionomical notes and phenotypic characters compared to their sympatric Entiminae counterparts are also reported. The discovery of M. (O.) davaoensissp. nov. in Davao City confirms how understudied Coleoptera are in Mindanao and underlines the potential for the discovery of new species even in highly urbanized areas.
Collapse
Affiliation(s)
- Analyn A Cabras
- Coleoptera Research Center, Institute of Biodiversity and Environment, University of Mindanao, Davao City, 8000, Philippines University of Mindanao Davao City Philippines
| | - Milton Norman Medina
- Coleoptera Research Center, Institute of Biodiversity and Environment, University of Mindanao, Davao City, 8000, Philippines University of Mindanao Davao City Philippines
| | - Maurizio Bollino
- Museo di Storia naturale del Salento, 73021 Calimera, Lecce, Italy Museo di Storia naturale del Salento Calimera Italy
| |
Collapse
|
7
|
Prusa LA, Hill RI. Umbrella of protection: spatial and temporal dynamics in a temperate butterfly Batesian mimicry system. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Batesian mimicry involves both spatial and temporal interactions between model, mimic and predator. Fundamental predictions in Batesian mimicry involve space, time and abundance; specifically, that the model and mimic are found in sympatry and that protection for the mimic is increased when predators interact with the model first and more frequently. Research has generally confirmed these predictions for Batesian mimicry at large spatial scales, with recent work on two nymphalid butterflies in western North America, the mimic Limenitis lorquini (Boisduval, 1852) and its model Adelpha californica (Butler, 1865) in western North America indicating that the mimic generally has lower abundance and emerges later in the season among widely separated populations in the California Coast Ranges and Sierra Nevada. However, no studies have investigated model–mimic dynamics at small scales in the temperate zone to test whether temporal habitat use and movements conform to predictions. If mimicry is as important a part of the biology of these temperate species as it is for their tropical counterparts, then in addition to emerging later and being less abundant overall, the mimic should be less widespread, should be less abundant in each habitat and should move less among available habitats. Our results using mark–release–recapture methods confirm these predictions and indicate that the mimic, L. lorquini, is enjoying an umbrella of protection against habitat specialist and generalist predators alike.
Collapse
Affiliation(s)
- Louis A Prusa
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
8
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
9
|
Mullen SP, VanKuren NW, Zhang W, Nallu S, Kristiansen EB, Wuyun Q, Liu K, Hill RI, Briscoe AD, Kronforst MR. Disentangling Population History and Character Evolution among Hybridizing Lineages. Mol Biol Evol 2021; 37:1295-1305. [PMID: 31930401 DOI: 10.1093/molbev/msaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.
Collapse
Affiliation(s)
- Sean P Mullen
- Department of Biology, Boston University, Boston, MA
| | | | - Wei Zhang
- School of Life Sciences, Peking University, Beijing, P.R. China
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | | | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Kevin Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA
| | | |
Collapse
|
10
|
Allf BC, Sparkman AM, Pfennig DW. Microevolutionary change in mimicry? Potential erosion of rattling behaviour among nonvenomous snakes on islands lacking rattlesnakes. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1837962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bradley C. Allf
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Scriber JM. Assessing ecological and physiological costs of melanism in North American Papilio glaucus females: two decades of dark morph frequency declines. INSECT SCIENCE 2020; 27:583-612. [PMID: 30456932 PMCID: PMC7277061 DOI: 10.1111/1744-7917.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
Polymorphisms for melanic form of insects may provide various selective advantages. However, melanic alleles may have significant/subtle pleiotrophic "costs." Several potential pleiotrophic effects of the W (=Y)-linked melanism gene in Papilio glaucus L. (Lepidoptera) showed no costs for melanic versus yellow in adult size, oviposition preferences, fecundity, egg viability, larval survival/growth rates, cold stress tolerance, or postdiapause emergence times. Sexual selection (males choosing yellow rather than mimetic dark females) had been suggested to provide a balanced polymorphism in P. glaucus, but spermatophore counts in wild females and direct field tethering studies of size-matched pairs of virgin females (dark and yellow), show that male preferences are random or frequency-dependent from Florida to Michigan, providing no yellow counter-advantages. Recent frequency declines of dark (melanic/mimetic) females in P. glaucus populations are shown in several major populations from Florida (27.3°N latitude) to Ohio (38.5° N). Summer temperatures have increased significantly at all these locations during this time (1999-2018), but whether dark morphs may be more vulnerable (in any stage) to such climate warming remains to be determined. Additional potential reasons for the frequency declines in mimetic females are discussed: (i) genetic introgression of Z-linked melanism suppressor genes from P. canadensis (R & J) and the hybrid species, P. appalachiensis (Pavulaan & Wright), (ii) differential developmental incompatibilities, or Haldane effects, known to occur in hybrids, (iii) selection against intermediately melanic ("dusty") females (with the W-linked melanic gene, b+) which higher temperatures can cause.
Collapse
Affiliation(s)
- J. Mark Scriber
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- McGuire Center for Lepidoptera and BiodiversityFlorida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
12
|
Affiliation(s)
- Marinus L. de Jager
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| | - Bruce Anderson
- Botany and Zoology Department Stellenbosch University Matieland South Africa
| |
Collapse
|
13
|
Prudic KL, Timmermann BN, Papaj DR, Ritland DB, Oliver JC. Mimicry in viceroy butterflies is dependent on abundance of the model queen butterfly. Commun Biol 2019; 2:68. [PMID: 30793046 PMCID: PMC6379391 DOI: 10.1038/s42003-019-0303-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Mimics should not exist without their models, yet often they do. In the system involving queen and viceroy butterflies, the viceroy is both mimic and co-model depending on the local abundance of the model, the queen. Here, we integrate population surveys, chemical analyses, and predator behavior assays to demonstrate how mimics may persist in locations with low-model abundance. As the queen becomes less locally abundant, the viceroy becomes more chemically defended and unpalatable to predators. However, the observed changes in viceroy chemical defense and palatability are not attributable to differing host plant chemical defense profiles. Our results suggest that mimetic viceroy populations are maintained at localities of low-model abundance through an increase in their toxicity. Sharing the burden of predator education in some places but not others may also lower the fitness cost of warning signals thereby supporting the origin and maintenance of aposematism. Kathleen Prudic et al. examine the persistence of mimicry in viceroy butterflies in locations with low model abundance. They show that when queen butterflies are less abundant, viceroy butterflies become more abundant, but also increase their chemical defenses to gain protection from predation.
Collapse
Affiliation(s)
- Kathleen L Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Barbara N Timmermann
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Daniel R Papaj
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - David B Ritland
- Department of Biology, Erskine College, Due West, SC, 29639, USA
| | - Jeffrey C Oliver
- Office of Digital Innovation & Stewardship, University Libraries, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
14
|
Creative citizen science illuminates complex ecological responses to climate change. Proc Natl Acad Sci U S A 2019; 116:720-722. [PMID: 30610180 DOI: 10.1073/pnas.1820266116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Panettieri S, Gjinaj E, John G, Lohman DJ. Different ommochrome pigment mixtures enable sexually dimorphic Batesian mimicry in disjunct populations of the common palmfly butterfly, Elymnias hypermnestra. PLoS One 2018; 13:e0202465. [PMID: 30208047 PMCID: PMC6135364 DOI: 10.1371/journal.pone.0202465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/04/2018] [Indexed: 11/18/2022] Open
Abstract
With varied, brightly patterned wings, butterflies have been the focus of much work on the evolution and development of phenotypic novelty. However, the chemical structures of wing pigments from few butterfly species have been identified. We characterized the orange wing pigments of female Elymnias hypermnestra butterflies (Lepidoptera: Nymphalidae: Satyrinae) from two Southeast Asian populations. This species is a sexually dimorphic Batesian mimic of several model species. Females are polymorphic: in some populations, females are dark, resemble conspecific males, and mimic Euploea spp. In other populations, females differ from males and mimic orange Danaus spp. Using LC-MS/MS, we identified nine ommochrome pigments: six from a population in Chiang Mai, Thailand, and five compounds from a population in Bali, Indonesia. Two ommochromes were found in both populations, and only two of the nine compounds have been previously reported. The sexually dimorphic Thai and Balinese populations are separated spatially by monomorphic populations in peninsular Malaysia, Singapore, and Sumatra, suggesting independent evolution of mimetic female wing pigments in these disjunct populations. These results indicate that other butterfly wing pigments remain to be discovered.
Collapse
Affiliation(s)
- Silvio Panettieri
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | - Erisa Gjinaj
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
| | - George John
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
- * E-mail: (DJL); (GJ)
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, United States of America
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, United States of America
- Entomology Section, National Museum of the Philippines, Manila, Philippines
- * E-mail: (DJL); (GJ)
| |
Collapse
|
16
|
Kristiansen EB, Finkbeiner SD, Hill RI, Prusa L, Mullen SP. Testing the adaptive hypothesis of Batesian mimicry among hybridizing North American admiral butterflies. Evolution 2018; 72:1436-1448. [PMID: 29851081 DOI: 10.1111/evo.13488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/04/2018] [Indexed: 12/01/2022]
Abstract
Batesian mimicry is characterized by phenotypic convergence between an unpalatable model and a palatable mimic. However, because convergent evolution may arise via alternative evolutionary mechanisms, putative examples of Batesian mimicry must be rigorously tested. Here, we used artificial butterfly facsimiles (N = 4000) to test the prediction that (1) palatable Limenitis lorquini butterflies should experience reduced predation when in sympatry with their putative model, Adelpha californica, (2) protection from predation on L. lorquini should erode outside of the geographical range of the model, and (3) mimetic color pattern traits are more variable in allopatry, consistent with relaxed selection for mimicry. We find support for these predictions, implying that this convergence is the result of selection for Batesian mimicry. Additionally, we conducted mark-recapture studies to examine the effect of mimicry and found that mimics survive significantly longer at sites where the model is abundant. Finally, in contrast to theoretical predictions, we found evidence that the Batesian model (A. californica) is protected from predation outside of its geographic range. We discuss these results considering the ongoing hybridization between L. lorquini and its sister species, L. weidemeyerii, and growing evidence that selection for mimicry predictably leads to a reduction in gene flow between nascent species.
Collapse
Affiliation(s)
- Evan B Kristiansen
- Department of Biological Sciences, Boston University, Boston, Massachusetts, 02215
| | - Susan D Finkbeiner
- Department of Biological Sciences, Boston University, Boston, Massachusetts, 02215
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, California, 95211
| | - Louis Prusa
- Department of Biological Sciences, University of the Pacific, Stockton, California, 95211
| | - Sean P Mullen
- Department of Biological Sciences, Boston University, Boston, Massachusetts, 02215
| |
Collapse
|
17
|
Bury S, Cichoń M. Resemblance of a model species and its mimic: Reply to Valkonen and Mappes 2014. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:484-486. [PMID: 29377332 DOI: 10.1111/cobi.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/12/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Stanisław Bury
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Akcali CK, Pfennig DW. Geographic variation in mimetic precision among different species of coral snake mimics. J Evol Biol 2017; 30:1420-1428. [PMID: 28425157 DOI: 10.1111/jeb.13094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/03/2017] [Indexed: 11/27/2022]
Abstract
Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in 'deep sympatry'), rare (i.e. at the sympatry/allopatry boundary or 'edge sympatry') and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision - within and among different mimics - offers novel insights into the causes and consequences of mimicry.
Collapse
Affiliation(s)
- C K Akcali
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - D W Pfennig
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Komata S, Lin CP, Sota T. Temporal dynamics of the mimetic allele frequency at the doublesex locus, which controls polymorphic Batesian mimicry in Papilio memnon butterflies. Sci Rep 2017; 7:12926. [PMID: 29018221 PMCID: PMC5635110 DOI: 10.1038/s41598-017-13419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Tracking allele frequencies is essential for understanding how polymorphisms of adaptive traits are maintained. In Papilio memnon butterflies, which exhibit a female-limited Batesian mimicry polymorphism (wing-pattern polymorphism), two alleles at the doublesex (dsx) locus correspond to mimetic and non-mimetic forms in females; males carry both dsx alleles but display only the non-mimetic form. This polymorphism is thought to be maintained by a negative frequency-dependent selection. By tracking dsx allele frequencies in both sexes at a Taiwanese site over four years, we found that the mimetic allele persists at intermediate frequencies even when the unpalatable model papilionid butterflies (Pachliopta and Atrophaneura species) were very rare or absent. The rates of male mate choice did not differ between the two female forms; neither did insemination number nor age composition, suggesting equivalent reproductive performance of the two forms over time. Our results characterised the temporal dynamics of the mimetic allele frequency in the field for the first time and give insights into underlying processes involved in the persistence of the female-limited Batesian mimicry polymorphism.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Wiggering B, Glaubrecht M. Two potential players in the evolutionary theatre: Do caddisflies mimic gastropods? ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Benedikt Wiggering
- Department of Animal Diversity; Center of Natural History (CeNak); Universität Hamburg; Hamburg Germany
| | - Matthias Glaubrecht
- Department of Animal Diversity; Center of Natural History (CeNak); Universität Hamburg; Hamburg Germany
| |
Collapse
|
21
|
Abstract
Species co-occurrence in ecological communities is thought to be influenced by multiple ecological and evolutionary processes, especially colonization and competition. However, effects of other interspecific interactions and evolutionary relationships are less explored. We examined evolutionary histories of community members and roles of mutualistic and parasitic interactions (Müllerian and Batesian mimicry, respectively) in the assembly of mimetic butterfly communities called mimicry rings in tropical forests of the Western Ghats, India. We found that Müllerian mimics were phylogenetically clustered, sharing aposematic signals due to common ancestry. On the other hand, Batesian mimics joined mimicry rings through convergent evolution and random phylogenetic assembly. Since the Western Ghats are a habitat island, we compared species diversity and composition in its mimicry rings with those of habitat mainland to test effects of biogeographic connectivity. The Western Ghats consisted of fewer mimicry rings and an overall smaller number of aposematic species and mimics compared to habitat mainland. The depauperate mimicry rings in the Western Ghats could have resulted from stochastic processes, reflecting their long temporal and spatial isolation and trickling colonization by the mimetic butterfly communities. These results highlight how evolutionary history, biogeographic isolation, and stochastic colonization influence the evolutionary assembly and diversity of ecological communities.
Collapse
|
22
|
Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, McGuire JA. Coral snakes predict the evolution of mimicry across New World snakes. Nat Commun 2016; 7:11484. [PMID: 27146100 PMCID: PMC4858746 DOI: 10.1038/ncomms11484] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Batesian mimicry, in which harmless species (mimics) deter predators by deceitfully imitating the warning signals of noxious species (models), generates striking cases of phenotypic convergence that are classic examples of evolution by natural selection. However, mimicry of venomous coral snakes has remained controversial because of unresolved conflict between the predictions of mimicry theory and empirical patterns in the distribution and abundance of snakes. Here we integrate distributional, phenotypic and phylogenetic data across all New World snake species to demonstrate that shifts to mimetic coloration in nonvenomous snakes are highly correlated with coral snakes in both space and time, providing overwhelming support for Batesian mimicry. We also find that bidirectional transitions between mimetic and cryptic coloration are unexpectedly frequent over both long- and short-time scales, challenging traditional views of mimicry as a stable evolutionary 'end point' and suggesting that insect and snake mimicry may have different evolutionary dynamics.
Collapse
Affiliation(s)
- Alison R. Davis Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, 3101 Valley Life Sciences, Berkeley, California 94720, USA
| | - Christian L. Cox
- Department of Biology, Georgia Southern University, PO Box 8042, Statesboro, Georgia 30460, USA
- Department of Biology, The University of Texas, Arlington, Texas 76019, USA
| | - Daniel L. Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
| | - Pascal O. Title
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
| | - Iris A. Holmes
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109, USA
| | - Anat Feldman
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, 3101 Valley Life Sciences, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Swengel SR, Swengel AB. Status and Trend of Regal Fritillary (Speyeria idalia) (Lepidoptera: Nymphalidae) in the 4th of July Butterfly Count Program in 1977-2014. SCIENTIFICA 2016; 2016:2572056. [PMID: 27239370 PMCID: PMC4864579 DOI: 10.1155/2016/2572056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Regal Fritillary (Speyeria idalia) primarily inhabits prairie, a native grassland of central North America, and occurs rarely in nonprairie grasslands further east. This butterfly has experienced widespread decline and marked range contraction. We analyze Regal Fritillary incidence and abundance during 1977-2014 in 4th of July Butterfly Counts, an annual census of butterflies in North America. Volunteers count within the same 24 km diameter circle each year. Only 6% of counts in range reported a Regal, while 18% of counts in core range in the Midwest and Great Plains did. 99.9% of Regal individuals occurred in core range. Only four circles east of core range reported this species, and only during the first half of the study period. All individuals reported west of its main range occurred in two circles in Colorado in the second half of the study. The number of counts per year and survey effort per count increased during the study. During 1991-2014, >31 counts occurred per year in core Regal range, compared to 0-23 during 1975-1990. During 1991-2014, all measures of Regal presence and abundance declined, most significantly. These results agree with other sources that Regal Fritillary has contracted its range and declined in abundance.
Collapse
|
24
|
Pfennig DW, Akcali CK, Kikuchi DW. Batesian mimicry promotes pre- and postmating isolation in a snake mimicry complex. Evolution 2015; 69:1085-90. [DOI: 10.1111/evo.12624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- David W. Pfennig
- Department of Biology; University of North Carolina; Chapel Hill North Carolina 27599
| | - Christopher K. Akcali
- Department of Biology; University of North Carolina; Chapel Hill North Carolina 27599
| | - David W. Kikuchi
- Department of Biology; University of North Carolina; Chapel Hill North Carolina 27599
- Department of Biology; Carleton University, Ottawa; ON K1S 5B6 Canada
| |
Collapse
|
25
|
Ancient homology underlies adaptive mimetic diversity across butterflies. Nat Commun 2014; 5:4817. [PMID: 25198507 PMCID: PMC4183220 DOI: 10.1038/ncomms5817] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022] Open
Abstract
Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demonstrate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged >65 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time. Little is known about the genetic basis of convergent evolution in deeply diverged species. Here, the authors show that variation in the WntA gene is associated with parallel wing pattern variation in two butterflies that diverged more than 65 million years ago.
Collapse
|
26
|
Kikuchi DW, Pfennig DW. Imperfect mimicry and the limits of natural selection. QUARTERLY REVIEW OF BIOLOGY 2014; 88:297-315. [PMID: 24552099 DOI: 10.1086/673758] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mimicry--when one organism (the mimic) evolves a phenotypic resemblance to another (the model) due to selective benefits--is widely used to illustrate natural selection's power to generate adaptations. However, many putative mimics resemble their models imprecisely, and such imperfect mimicry represents a specific challenge to mimicry theory and a general one to evolutionary theory. Here, we discuss 11 nonmutually exclusive hypotheses for imperfect mimicry. We group these hypotheses according to whether imperfect mimicry reflects: an artifact of human perception, which is not shared by any naturally occurring predators and therefore is not truly an instance of imperfect mimicry; genetic, developmental or time-lag constraints, which (temporarily) prevent a response to selection for perfect mimicry; relaxed selection, where imperfect mimicry is as adaptive as perfect mimicry; or tradeoffs, where imperfect mimicry is (locally) more adaptive than perfect mimicry. We find that the relaxed selection hypothesis has garnered the most support. However, because only a few study systems have thus far been comprehensively evaluated, the relative contributions of the various hypotheses toward explaining the evolution of imperfect mimicry remain unclear. Ultimately, clarifying why imperfect mimicry exists should provide critical insights into the limits of natural selection in producing complex adaptations.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
27
|
Lehmann KDS, Goldman BW, Dworkin I, Bryson DM, Wagner AP. From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system. PLoS One 2014; 9:e91783. [PMID: 24614755 PMCID: PMC3948874 DOI: 10.1371/journal.pone.0091783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Brian W. Goldman
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Ian Dworkin
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Bryson
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Aaron P. Wagner
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
28
|
Parr CS, Guralnick R, Cellinese N, Page RD. Evolutionary informatics: unifying knowledge about the diversity of life. Trends Ecol Evol 2012; 27:94-103. [PMID: 22154516 DOI: 10.1016/j.tree.2011.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/23/2023]
|
29
|
Kunte K, Shea C, Aardema ML, Scriber JM, Juenger TE, Gilbert LE, Kronforst MR. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet 2011; 7:e1002274. [PMID: 21931567 PMCID: PMC3169544 DOI: 10.1371/journal.pgen.1002274] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022] Open
Abstract
Hybrid speciation, or the formation of a daughter species due to interbreeding between two parental species, is a potentially important means of diversification, because it generates new forms from existing variation. However, factors responsible for the origin and maintenance of hybrid species are largely unknown. Here we show that the North American butterfly Papilio appalachiensis is a hybrid species, with genomic admixture from Papilio glaucus and Papilio canadensis. Papilio appalachiensis has a mosaic phenotype, which is hypothesized to be the result of combining sex-linked traits from P. glaucus and P. canadensis. We show that P. appalachiensis' Z-linked genes associated with a cooler thermal habitat were inherited from P. canadensis, whereas its W-linked mimicry and mitochondrial DNA were inherited from P. glaucus. Furthermore, genome-wide AFLP markers showed nearly equal contributions from each parental species in the origin of P. appalachiensis, indicating that it formed from a burst of hybridization between the parental species, with little subsequent backcrossing. However, analyses of genetic differentiation, clustering, and polymorphism based on molecular data also showed that P. appalachiensis is genetically distinct from both parental species. Population genetic simulations revealed P. appalachiensis to be much younger than the parental species, with unidirectional gene flow from P. glaucus and P. canadensis into P. appalachiensis. Finally, phylogenetic analyses, combined with ancestral state reconstruction, showed that the two traits that define P. appalachiensis' mosaic phenotype, obligatory pupal diapause and mimicry, evolved uniquely in P. canadensis and P. glaucus, respectively, and were then recombined through hybridization to form P. appalachiensis. These results suggest that natural selection and sex-linked traits may have played an important role in the origin and maintenance of P. appalachiensis as a hybrid species. In particular, ecological barriers associated with a steep thermal cline appear to maintain the distinct, mosaic genome of P. appalachiensis despite contact and occasional hybridization with both parental species.
Collapse
Affiliation(s)
- Krushnamegh Kunte
- Section of Integrative Biology, University of Texas, Austin, Texas, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Cristina Shea
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Matthew L. Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - J. Mark Scriber
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas E. Juenger
- Section of Integrative Biology, University of Texas, Austin, Texas, United States of America
| | - Lawrence E. Gilbert
- Section of Integrative Biology, University of Texas, Austin, Texas, United States of America
| | - Marcus R. Kronforst
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
30
|
Mullen SP, Savage WK, Wahlberg N, Willmott KR. Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proc Biol Sci 2011; 278:1777-85. [PMID: 21106589 PMCID: PMC3097834 DOI: 10.1098/rspb.2010.2140] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/05/2010] [Indexed: 11/12/2022] Open
Abstract
Latitudinal gradients in species richness are among the most well-known biogeographic patterns in nature, and yet there remains much debate and little consensus over the ecological and evolutionary causes of these gradients. Here, we evaluated whether two prominent alternative hypotheses (namely differences in diversification rate or clade age) could account for the latitudinal diversity gradient in one of the most speciose neotropical butterfly genera (Adelpha) and its close relatives. We generated a multilocus phylogeny of a diverse group of butterflies in the containing tribe Limenitidini, which has both temperate and tropical representatives. Our results suggest there is no relationship between clade age and species richness that could account for the diversity gradient, but that instead it could be explained by a significantly higher diversification rate within the predominantly tropical genus Adelpha. An apparent early larval host-plant shift to Rubiaceae and other plant families suggests that the availability of new potential host plants probably contributed to an increase in diversification of Adelpha in the lowland Neotropics. Collectively, our results support the hypothesis that the equatorial peak in species richness observed within Adelpha is the result of increased diversification rate in the last 10-15 Myr rather than a function of clade age, perhaps reflecting adaptive divergence in response to the dramatic host-plant diversity found within neotropical ecosystems.
Collapse
Affiliation(s)
- Sean P Mullen
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
31
|
Pfennig DW, Mullen SP. Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes. Proc Biol Sci 2010; 277:2577-85. [PMID: 20484238 DOI: 10.1098/rspb.2010.0586] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Batesian mimicry evolves when a palatable species (the 'mimic') co-opts a warning signal from a dangerous species (the 'model') and thereby deceives its potential predators. Longstanding theory predicts that this protection from predation should break down where the model is absent. Thus, mimics are expected to only co-occur with their model. Yet, many mimics violate this prediction and occur in areas where their model is absent. Here, we discuss the causes and consequences of such allopatric mimics. We also describe how these 'rule-bending' mimics provide critical insights into diverse topics ranging from how Batesian mimicry evolves to its possible role in speciation.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
32
|
Kunte K. Female-limited mimetic polymorphism: a review of theories and a critique of sexual selection as balancing selection. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Abstract
Papilio swallowtail butterflies exhibit a remarkable diversity of Batesian mimicry, manifested in several sex-limited and polymorphic types. There is little understanding of how this diversity is distributed within Papilio, and how different mimicry types have evolved in relation to each other. To answer these questions, I present a graphical model that connects various mimicry types by hypothetical character state changes within a phylogenetic framework. A maximum likelihood analysis of evolution of mimicry types on the Papilio phylogeny showed that sexually monomorphic mimicry and female-limited mimicry have evolved repeatedly but predominantly independently in different clades. However, transitions between these mimicry types are rarely observed. The frequency distribution of character state changes was skewed in favor of the evolution of mimicry, whereas many theoretically plausible character state changes, especially evolutionary loss of mimicry, were not evident. I discuss these findings in relation to studying the tempo of evolutionary change, loss of traits, and directionality and connectivity among character states. The pathway approach and phylogenetic patterns of mimicry demonstrated in Papilio are useful to test novel hypotheses regarding the diversity and evolutionary directionality of Batesian mimicry in other systems.
Collapse
Affiliation(s)
- Krushnamegh Kunte
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
34
|
Savage WK, Mullen SP. A single origin of Batesian mimicry among hybridizing populations of admiral butterflies (Limenitis arthemis) rejects an evolutionary reversion to the ancestral phenotype. Proc Biol Sci 2009; 276:2557-65. [PMID: 19369265 DOI: 10.1098/rspb.2009.0256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Batesian mimicry is a fundamental example of adaptive phenotypic evolution driven by strong natural selection. Given the potentially dramatic impacts of selection on individual fitness, it is important to understand the conditions under which mimicry is maintained versus lost. Although much empirical and theoretical work has been devoted to the maintenance of Batesian mimicry, there are no conclusive examples of its loss in natural populations. Recently, it has been proposed that non-mimetic populations of the polytypic Limenitis arthemis species complex represent an evolutionary loss of Batesian mimicry, and a reversion to the ancestral phenotype. Here, we evaluate this conclusion using segregating amplified fragment length polymorphism markers to investigate the history and fate of mimicry among forms of the L. arthemis complex and closely related Nearctic Limenitis species. In contrast to the previous finding, our results support a single origin of mimicry within the L. arthemis complex and the retention of the ancestral white-banded form in non-mimetic populations. Our finding is based on a genome-wide sampling approach to phylogeny reconstruction that highlights the challenges associated with inferring the evolutionary relationships among recently diverged species or populations (i.e. incomplete lineage sorting, introgressive hybridization and/or selection).
Collapse
Affiliation(s)
- Wesley K Savage
- Department of Biological Sciences, Lehigh University, B217 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015-4732, USA.
| | | |
Collapse
|