1
|
Leigh S, Thorpe P, Snook RR, Ritchie MG. Sexual selection, genomic evolution and population fitness in Drosophila pseudoobscura. Proc Biol Sci 2025; 292:20242744. [PMID: 40169023 PMCID: PMC11961267 DOI: 10.1098/rspb.2024.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
Sexual selection shapes the genome in unique ways. It is also likely to have significant fitness consequences, such as purging deleterious mutations from the genome or conversely maintaining genetic load in a population via sexual conflict. Here, we examined what the influence of sexual selection has on genomic variation potentially underlying population fitness using experimentally evolved Drosophila pseudoobscura populations. Sexual selection was manipulated by keeping replicate lines in elevated polyandry or strict monogamy for approximately 200 generations followed by individual-based sequencing. Using pi (π), fixation index (Fst)and recombination rate measures, we confirmed signatures of selection were not dispersed but mainly localized to the third and X chromosome. Overall mutational load was similar between lines but our analysis of the distribution of fitness effects revealed considerable variation between lines and chromosomes. Furthermore, we found that the distribution of transposable elements differs between the lines, with a higher load in monogamous lines. Our results suggest that complex interactions between purifying selection and sexual conflict are shaping the genome, particularly on chromosome 3 and the sex chromosome; sexual selection influences divergence across chromosomes but in a more complex way than proposed by simple 'purging' of deleterious loci.
Collapse
Affiliation(s)
- Stewart Leigh
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Peter Thorpe
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rhonda R. Snook
- Department of Zoology, Stockholms Universitet, Stockholm, Sweden
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
2
|
Matheson J, Hernández U, Bertram J, Masel J. Human deleterious mutation rate slows adaptation and implies high fitness variance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.01.555871. [PMID: 37732183 PMCID: PMC10508744 DOI: 10.1101/2023.09.01.555871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Each new human has an expectedU d = 2 - 10 new deleterious mutations. Using a novel approach to capture complex linkage disequilibria from highU d using genome-wide simulations, we confirm that fitness decline due to the fixation of many slightly deleterious mutations can be compensated by rarer beneficial mutations of larger effect. The evolution of increased genome size and complexity have previously been attributed to a similarly asymmetric pattern of fixations, but we propose that the cause might be highU d rather than the small population size posited as causal by drift barrier theory. High within-population variance in relative fitness is an inevitable consequence of highU d ∼ 2 - 10 combined with inferred human deleterious effect sizes; two individuals will typically differ in fitness by 15-40%. The need to compensate for the deluge of deleterious mutations slows net adaptation (i.e. to the external environment) by ~13%-55%. The rate of beneficial fixations is more sensitive to changes in the mutation rate than the rate of deleterious fixations is. As a surprising consequence of this, an increase (e.g. 10%) in overall mutation rate leads to faster adaptation; this puts to rest dysgenic fears about increasing mutation rates due to rising paternal age.
Collapse
Affiliation(s)
- Joseph Matheson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, 92093, USA
| | - Ulises Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jason Bertram
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Mathematics, University of Western Ontario, London ON, Canada
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
4
|
West G, Pointer M, Nash W, Lewis R, Gage MJG, Richardson DS. Sexual selection matters in genetic rescue, but productivity benefits fade over time: a multi-generation experiment to inform conservation. Proc Biol Sci 2025; 292:20242374. [PMID: 39876725 PMCID: PMC11775606 DOI: 10.1098/rspb.2024.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Globally, many species are threatened by population decline because of anthropogenic changes leading to population fragmentation, genetic isolation and inbreeding depression. Genetic rescue, the controlled introduction of genetic variation, is a method used to relieve such effects in small populations. However, without understanding how the characteristics of rescuers impact rescue attempts interventions run the risk of being sub-optimal, or even counterproductive. We use the red flour beetle (Tribolium castaneum) to test the impact of rescuer sex, and sexual selection background, on population productivity. We record the impact of genetic rescue on population productivity in 24 and 36 replicated populations for ten generations following intervention. We find little or no impact of rescuer sex on the efficacy of rescue but show that a background of elevated sexual selection makes individuals more effective rescuers. In both experiments, rescue effects diminish 6-10 generations after the rescue. Our results confirm that the efficacy of genetic rescue can be influenced by characteristics of the rescuers and that the level of sexual selection in the rescuing population is an important factor. We show that any increase in fitness associated with rescue may last for a limited number of generations, suggesting implications for conservation policy and practice.
Collapse
Affiliation(s)
- George West
- University of East Anglia School of Biological Sciences, Norwich, UK
| | - Michael Pointer
- University of East Anglia School of Biological Sciences, Norwich, UK
| | - Will Nash
- Natural History Museum, London, England, UK
- Earlham Institute, Norwich, England, UK
| | - Rebecca Lewis
- University of East Anglia School of Biological Sciences, Norwich, UK
| | - Matt J. G. Gage
- University of East Anglia School of Biological Sciences, Norwich, UK
| | | |
Collapse
|
5
|
Orton RW, Hamilton PK, Frasier TR. Genomic Evidence for the Purging of Deleterious Genetic Variation in the Endangered North Atlantic Right Whale. Evol Appl 2024; 17:e70055. [PMID: 39717435 PMCID: PMC11665784 DOI: 10.1111/eva.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The reduced genetic diversity and frequent inbreeding associated with small population size may underpin the accumulation and expression of deleterious mutations (mutation load) in some declining populations. However, demographic perturbations and inbreeding coupled with purifying selection can also purge declining populations of deleterious mutations, leading to intriguing recoveries. To better understand the links between deleterious genetic variation and population status, we assess patterns of genetic diversity, inbreeding, and mutation load across the genomes of three species of Balaenidae whale with different demographic histories and recoveries following the end of commercial whaling in the 1980s. Unlike bowhead (BH) and Southern right whales (SRW), which show signs of recent recovery, reproductive rates of the endangered North Atlantic right whale (NARW) remain lower than expected. We show that the NARW is currently marked by low genetic diversity, historical inbreeding, and a high mutation load. Still, we reveal evidence that genetic purging has reduced the frequency of highly deleterious alleles in NARW, which could increase chances of future population recovery. We also identify a suite of mutations putatively linked to congenital defects that occur at high frequencies in nulliparous NARW females but are rare in NARW with high reproductive success. These same mutations are nearly absent in BH and SRW in this study, suggesting that the purging of key variants may shape the probability of population recovery. As anthropogenic disturbances continue to reduce the sizes of many populations in nature, resolving the links between population dynamics and mutation load could become increasingly important.
Collapse
Affiliation(s)
- Richard W. Orton
- Department of BiologySaint Mary's UniversityHalifaxNova ScotiaCanada
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | | |
Collapse
|
6
|
Melde RH, Abraham JM, Ugolini MR, Castle MP, Fjalstad MM, Blumstein DM, Durski SJ, Sharp NP. Sex-specific viability effects of mutations in Drosophila melanogaster. Evolution 2024; 78:1844-1853. [PMID: 39277542 DOI: 10.1093/evolut/qpae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
In populations with separate sexes, genetic load due to deleterious mutations may be expressed differently in males and females. Evidence from insect models suggests that selection against mutations is stronger in males. This pattern will reduce deleterious allele frequencies at the expense of males, such that female mean fitness is greater than expected, preserving population persistence in the face of high mutation rates. While previous studies focus on reproductive success, mutation load depends on total selection in each sex, including selection for viability. We might expect minimal sex differences in viability effects in fruit flies, since male and female larvae behave similarly, yet many genes show sex-biased expression in larvae. We measured the sex-specific viability effects of nine "marker" mutations and 123 mutagenized chromosomes. We find that both types of mutations generally reduce viability in both sexes. Among marker mutations we detect instances of sex-biased effects in each direction; mutagenized chromosomes show little sex-specific mutational variance, but recessive lethals show a female bias, including in FlyBase records. We conclude that mutations regularly affect viability in a sex-specific manner, but that the strong pattern of male-biased mutational effects observed previously for reproductive success is not apparent at the pre-reproductive stage.
Collapse
Affiliation(s)
- Robert H Melde
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - JoHanna M Abraham
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Maryn R Ugolini
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Madison P Castle
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Molly M Fjalstad
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Daniela M Blumstein
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Sarah J Durski
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| | - Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, United States
| |
Collapse
|
7
|
Mendel BM, Asselin AK, Johnson KN, McGuigan K. Effects of spontaneous mutations on survival and reproduction of Drosophila serrata infected with Drosophila C virus. Evolution 2024; 78:1661-1672. [PMID: 38934580 DOI: 10.1093/evolut/qpae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The impact of selection on host immune function genes has been widely documented. However, it remains essentially unknown how mutation influences the quantitative immune traits that selection acts on. Applying a classical mutation accumulation (MA) experimental design in Drosophila serrata, we found the mutational variation in susceptibility (median time of death, LT50) to Drosophila C virus (DCV) was of similar magnitude to that reported for intrinsic survival traits. Mean LT50 did not change as mutations accumulated, suggesting no directional bias in mutational effects. Maintenance of genetic variance in immune function is hypothesized to be influenced by pleiotropic effects on immunity and other traits that contribute to fitness. To investigate this, we assayed female reproductive output for a subset of MA lines with relatively long or short survival times under DCV infection. Longer survival time tended to be associated with lower reproductive output, suggesting that mutations affecting susceptibility to DCV had pleiotropic effects on investment in reproductive fitness. Further studies are needed to uncover the general patterns of mutational effect on immune responses and other fitness traits, and to determine how selection might typically act on new mutations via their direct and pleiotropic effects.
Collapse
Affiliation(s)
- Bonita M Mendel
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Angelique K Asselin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Karyn N Johnson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Katrina McGuigan
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Gayford JH, Flores-Flores EM. No evidence for population-level benefits of polyandry in sharks and rays. PLoS One 2024; 19:e0308141. [PMID: 39231154 PMCID: PMC11373851 DOI: 10.1371/journal.pone.0308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
Mating system variation refers to the spectrum between genetic monogamy and polyandry, and has important consequences for sexual conflict, sexual selection and individual fitness in animals. Theoretically this variation could also have substantial population-level effects, influencing population viability and extinction risk. Evidence for these effects is mixed, in part due to the fact that substantial environmental change is thought to be required for them to have visible demographic consequences. In this study we test for the presence of relationships between polyandry and population status in Elasmobranchii (sharks and rays). Elasmobranchii is a large vertebrate clade that exhibits substantial interspecific variation in both genetic mating system and population status, as well as being subject to intense anthropogenically-mediated environmental change. We also predict past macroevolutionary shifts in genetic mating system through elasmobranch phylogeny. Our results show that both genetic monogamy and polyandry have evolved multiple times independently within Elasmobranchii, and we suggest that both of these extremes represent alternative adaptive strategies that are favoured under discrete ecological and biological conditions. Nevertheless, there is no evidence of population-level consequences of mating system variation in elasmobranchs. These results are significant as they suggest that mating system variation in this clade is unlikely to be a major determinant of extinction vulnerability. Ultimately additional work will be required, however this study improves our understanding of the evolutionary dynamics underlying mating system variation in elasmobranchs, and the potential for resultant population-level consequences.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Shark Measurements, London, United Kingdom
| | | |
Collapse
|
9
|
Balfour VL, Corliss MK, Shuker DM. The role of condition on sexual selection in the seed bug Lygaeus simulans. Ecol Evol 2024; 14:e70226. [PMID: 39238569 PMCID: PMC11374529 DOI: 10.1002/ece3.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Organism condition plays an important role in sexual selection. Sexual ornaments and displays can be condition-dependent, reflecting either underlying genetic quality, experience of environmental stressors, or both. As such, the phenotypic expression of such traits, and the resulting patterns of mate choice acting on them, may be shaped by intrinsic genetic quality and the environment. Moreover, condition may also influence the choosing individual in mate choice, influencing their ability to invest in mate discrimination, or changing what traits of the chosen, including resources, are most preferred. Here we consider sexual selection and condition in the seed bug Lygaeus simulans, a species characterised by strong post-copulatory sexual selection, but rather limited pre-copulatory discrimination. We manipulated short-term condition in both males and females by restricting access to water for 24 h. Water is particularly important in these bugs, given their feeding ecology and physiology. We found that water-deprived males proved less likely to mate, while copulation duration with water-deprived females was significantly reduced. Given the importance of copulation duration for the successful transfer of sperm by males to females, the data suggest cryptic male choice acting against water-deprived females. These data add to those suggesting that cryptic male choice for fecund females plays an important role in sexual selection in this species. More generally, our results support the widespread importance of condition in terms of mating dynamics and sexual selection.
Collapse
Affiliation(s)
| | - Mia K Corliss
- School of Biology University of St Andrews St Andrews UK
| | - David M Shuker
- School of Biology University of St Andrews St Andrews UK
| |
Collapse
|
10
|
Talagala S, Rakosy E, Long TAF. Beyond simple vs. complex: exploring the nuanced and unexpected effects of spatial environmental complexity on mating patterns and female fecundity. J Evol Biol 2024; 37:1043-1054. [PMID: 39023119 DOI: 10.1093/jeb/voae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
The features of the physical environment set the stage upon which sexual selection operates, and consequently can have a significant impact on variation in realized individual fitness, and influence a population's evolutionary trajectory. This phenomenon has been explored empirically in several studies using fruit flies (Drosophila melanogaster) which have found that changing the spatial complexity of the mating environment influenced male-female interaction dynamics, (re)mating rates, and realized female fecundities. However, these studies did not explore mating patterns, which can dramatically alter the genetic composition of the next generation, and frequently only compared a single, small "simple" environment to a single larger "complex" environment. While these studies have shown that broadly changing the characteristics of the environment can have big effects on reproductive dynamics, the plasticity of this outcome to more subtle changes has not been extensively explored. Our study set out to compare patterns of mating and courtship between large- and small-bodied males and females, and female fecundities in both a simple environment and 2 distinctly different spatially complex environments. We found that realized offspring production patterns differed dramatically between all 3 environments, indicating that the effects of increasing spatial complexity on mating outcomes are sensitive to the specific type of environmental complexity. Furthermore, we observed female fecundities were higher for flies in both complex environments compared those in the simple environment, supporting its role as a mediator of sexual conflict. Together, these results show that the union of gametes within a population can be greatly influenced by the specific spatial features of the environment and that while some outcomes of increased environmental complexity are likely generalizable, other phenomena such as mating patterns and courtship rates may vary from one complex environment to another.
Collapse
Affiliation(s)
- Sanduni Talagala
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Emily Rakosy
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Tristan A F Long
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
11
|
Mason C, Tschirren B, Hemmings N. Effects of female-specific selection for reproductive investment on male fertility traits. J Evol Biol 2024; 37:1113-1124. [PMID: 39110095 DOI: 10.1093/jeb/voae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.
Collapse
Affiliation(s)
- Chloe Mason
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Nicola Hemmings
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Castano-Sanz V, Gomez-Mestre I, Rodriguez-Exposito E, Garcia-Gonzalez F. Pesticide exposure triggers sex-specific inter- and transgenerational effects conditioned by past sexual selection. Proc Biol Sci 2024; 291:20241037. [PMID: 39014998 PMCID: PMC11252676 DOI: 10.1098/rspb.2024.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.
Collapse
Affiliation(s)
- Veronica Castano-Sanz
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | - Ivan Gomez-Mestre
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | | | - Francisco Garcia-Gonzalez
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Wedell N, Kemp DJ. Ultraviolet signaling in a butterfly is preferred by females and conveys male genetic quality. Evolution 2024; 78:1372-1381. [PMID: 38776186 DOI: 10.1093/evolut/qpae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/24/2024]
Abstract
Indicator models of sexual selection posit that females choose males on the basis of traits that reveal male genetic quality and thereby enjoy increased offspring production. Here, we report that females of the butterfly Eurema hecabe receive indirect benefits from choosing males based on their ultraviolet (UV) wing coloration, a heritable and condition-dependent trait in this species. We first used a large laboratory-bred pedigree to demonstrate a per-family association between inbreeding and male UV trait value. Females exerted choice for UV-bright males within this protocol, and the average male UV trait value increased over six consecutive generations, presumably due to such selection and despite an increasing rate of pedigree-wide inbreeding. We then experimentally imposed a standard strength of inbreeding upon lines of divergent male UV trait values. Inbreeding depressed the siring performance of low UV treatment males more severely and resulted in a marginal reduction of their UV brightness, which rebounded sharply following subsequent outcrossing. These findings are consistent with the ornament-based signaling of genetic quality as a function of underlying individual-level mutational load.
Collapse
Affiliation(s)
- Nina Wedell
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Darrell J Kemp
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
14
|
Moore MP, Leith NT, Fowler-Finn KD, Medley KA. Human-modified habitats imperil ornamented dragonflies less than their non-ornamented counterparts at local, regional, and continental scales. Ecol Lett 2024; 27:e14455. [PMID: 38849293 DOI: 10.1111/ele.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024]
Abstract
Biologists have long wondered how sexual ornamentation influences a species' risk of extinction. Because the evolution of condition-dependent ornamentation can reduce intersexual conflict and accelerate the fixation of advantageous alleles, some theory predicts that ornamented taxa can be buffered against extinction in novel and/or stressful environments. Nevertheless, evidence from the wild remains limited. Here, we show that ornamented dragonflies are less vulnerable to extinction across multiple spatial scales. Population-occupancy models across the Western United States reveal that ornamented species have become more common relative to non-ornamented species over >100 years. Phylogenetic analyses indicate that ornamented species exhibit lower continent-wide extinction risk than non-ornamented species. Finally, spatial analyses of local dragonfly assemblages suggest that ornamented species possess advantages over non-ornamented taxa at living in habitats that have been converted to farms and cities. Together, these findings suggest that ornamented taxa are buffered against contemporary extinction at local, regional, and continental scales.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Noah T Leith
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Kasey D Fowler-Finn
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Kim A Medley
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Tyson Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Wanders K, Chen G, Feng S, Székely T, Urrutia AO. Role-reversed polyandry is associated with faster fast-Z in shorebirds. Proc Biol Sci 2024; 291:20240397. [PMID: 38864333 DOI: 10.1098/rspb.2024.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.
Collapse
Affiliation(s)
- Kees Wanders
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Department of Evolutionary Zoology and Human Biology, HUN-REN-DE Reproductive strategies Research Group, University of Debrecen , Debrecen, Hungary
- Natural History Museum of Denmark, University of Copenhagen , Copenhagen, Denmark
| | - Guangji Chen
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
- BGI Research , Wuhan, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, People's Republic of China
| | - Tamás Székely
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Department of Evolutionary Zoology and Human Biology, HUN-REN-DE Reproductive strategies Research Group, University of Debrecen , Debrecen, Hungary
- Debrecen Biodiversity Centre, University of Debrecen , Debrecen, Hungary
| | - Arraxi O Urrutia
- Department of Life Sciences, Milner Centre for Evolution, University of Bath , Bath, UK
- Instituto de Ecologia, UNAM , Mexico City, Mexico
| |
Collapse
|
16
|
Gómez-Llano M, Faria GS, García-Roa R, Noble DWA, Carazo P. Male harm suppresses female fitness, affecting the dynamics of adaptation and evolutionary rescue. Evol Lett 2024; 8:149-160. [PMID: 38370549 PMCID: PMC10871930 DOI: 10.1093/evlett/qrac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2023] [Accepted: 12/19/2022] [Indexed: 02/20/2024] Open
Abstract
One of the most pressing questions we face as biologists is to understand how climate change will affect the evolutionary dynamics of natural populations and how these dynamics will in turn affect population recovery. Increasing evidence shows that sexual selection favors population viability and local adaptation. However, sexual selection can also foster sexual conflict and drive the evolution of male harm to females. Male harm is extraordinarily widespread and has the potential to suppress female fitness and compromise population growth, yet we currently ignore its net effects across taxa or its influence on local adaptation and evolutionary rescue. We conducted a comparative meta-analysis to quantify the impact of male harm on female fitness and found an overall negative effect of male harm on female fitness. Negative effects seem to depend on proxies of sexual selection, increasing inversely to the female relative size and in species with strong sperm competition. We then developed theoretical models to explore how male harm affects adaptation and evolutionary rescue. We show that, when sexual conflict depends on local adaptation, population decline is reduced, but at the cost of slowing down genetic adaptation. This trade-off suggests that eco-evolutionary feedback on sexual conflict can act like a double-edged sword, reducing extinction risk by buffering the demographic costs of climate change, but delaying genetic adaptation. However, variation in the mating system and male harm type can mitigate this trade-off. Our work shows that male harm has widespread negative effects on female fitness and productivity, identifies potential mechanistic factors underlying variability in such costs across taxa, and underscores how acknowledging the condition-dependence of male harm may be important to understand the demographic and evolutionary processes that impact how species adapt to environmental change.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - Gonçalo S Faria
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Roberto García-Roa
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Department of Biology, Lund University, Lund, Sweden
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Pau Carazo
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Jarrett BJM, Miller CW. Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:41-57. [PMID: 37562047 DOI: 10.1146/annurev-ento-022823-020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Natural Sciences, Bangor University, Bangor, United Kingdom;
- Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| | - Christine W Miller
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
18
|
Berger D, Liljestrand-Rönn J. Environmental complexity mitigates the demographic impact of sexual selection. Ecol Lett 2024; 27:e14355. [PMID: 38225825 DOI: 10.1111/ele.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Sexual selection and the evolution of costly mating strategies can negatively impact population viability and adaptive potential. While laboratory studies have documented outcomes stemming from these processes, recent observations suggest that the demographic impact of sexual selection is contingent on the environment and therefore may have been overestimated in simple laboratory settings. Here we find support for this claim. We exposed copies of beetle populations, previously evolved with or without sexual selection, to a 10-generation heatwave while maintaining half of them in a simple environment and the other half in a complex environment. Populations with an evolutionary history of sexual selection maintained larger sizes and more stable growth rates in complex (relative to simple) environments, an effect not seen in populations evolved without sexual selection. These results have implications for evolutionary forecasting and suggest that the negative demographic impact of sexually selected mating strategies might be low in natural populations.
Collapse
Affiliation(s)
- David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
19
|
Zhang H, Lundberg M, Tarka M, Hasselquist D, Hansson B. Evidence of Site-Specific and Male-Biased Germline Mutation Rate in a Wild Songbird. Genome Biol Evol 2023; 15:evad180. [PMID: 37793164 PMCID: PMC10627410 DOI: 10.1093/gbe/evad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Germline mutations are the ultimate source of genetic variation and the raw material for organismal evolution. Despite their significance, the frequency and genomic locations of mutations, as well as potential sex bias, are yet to be widely investigated in most species. To address these gaps, we conducted whole-genome sequencing of 12 great reed warblers (Acrocephalus arundinaceus) in a pedigree spanning 3 generations to identify single-nucleotide de novo mutations (DNMs) and estimate the germline mutation rate. We detected 82 DNMs within the pedigree, primarily enriched at CpG sites but otherwise randomly located along the chromosomes. Furthermore, we observed a pronounced sex bias in DNM occurrence, with male warblers exhibiting three times more mutations than females. After correction for false negatives and adjusting for callable sites, we obtained a mutation rate of 7.16 × 10-9 mutations per site per generation (m/s/g) for the autosomes and 5.10 × 10-9 m/s/g for the Z chromosome. To demonstrate the utility of species-specific mutation rates, we applied our autosomal mutation rate in models reconstructing the demographic history of the great reed warbler. We uncovered signs of drastic population size reductions predating the last glacial period (LGP) and reduced gene flow between western and eastern populations during the LGP. In conclusion, our results provide one of the few direct estimates of the mutation rate in wild songbirds and evidence for male-driven mutations in accordance with theoretical expectations.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | - Maja Tarka
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Dapper AL, Diegel AE, Wade MJ. Relative rates of evolution of male-beneficial nuclear compensatory mutations and male-harming Mother's Curse mitochondrial alleles. Evolution 2023; 77:1945-1955. [PMID: 37208299 DOI: 10.1093/evolut/qpad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Mother's Curse alleles represent a significant source of potential male fitness defects. The maternal inheritance of mutations with the pattern of sex-specific fitness effects, s♀>0>s♂, allows Mother's Curse alleles to spread through a population even though they reduce male fitness. Although the mitochondrial genomes of animals contain only a handful of protein-coding genes, mutations in many of these genes have been shown to have a direct effect on male fertility. The evolutionary process of nuclear compensation is hypothesized to counteract the male-limited mitochondrial defects that spread via Mother's Curse. Here we use population genetic models to investigate the evolution of compensatory autosomal nuclear mutations that act to restore the loss of fitness caused by mitochondrial mutation pressures. We derive the rate of male fitness deterioration by Mother's Curse and the rate of restoration by nuclear compensatory evolution. We find that the rate of nuclear gene compensation is many times slower than that of its deterioration by cytoplasmic mutation pressure, resulting in a significant lag in the recovery of male fitness. Thus, the numbers of nuclear genes capable of restoring male mitochondrial fitness defects must be large in order to sustain male fitness in the face of mutation pressures.
Collapse
Affiliation(s)
- Amy L Dapper
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Amanda E Diegel
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, United States
| | - Michael J Wade
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
21
|
Singh A, Hasan A, Agrawal AF. An investigation of the sex-specific genetic architecture of fitness in Drosophila melanogaster. Evolution 2023; 77:2015-2028. [PMID: 37329263 DOI: 10.1093/evolut/qpad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
In dioecious populations, the sexes employ divergent reproductive strategies to maximize fitness and, as a result, genetic variants can affect fitness differently in males and females. Moreover, recent studies have highlighted an important role of the mating environment in shaping the strength and direction of sex-specific selection. Here, we measure adult fitness for each sex of 357 lines from the Drosophila Synthetic Population Resource in two different mating environments. We analyze the data using three different approaches to gain insight into the sex-specific genetic architecture for fitness: classical quantitative genetics, genomic associations, and a mutational burden approach. The quantitative genetics analysis finds that on average segregating genetic variation in this population has concordant fitness effects both across the sexes and across mating environments. We do not find specific genomic regions with strong associations with either sexually antagonistic (SA) or sexually concordant (SC) fitness effects, yet there is modest evidence of an excess of genomic regions with weak associations, with both SA and SC fitness effects. Our examination of mutational burden indicates stronger selection against indels and loss-of-function variants in females than in males.
Collapse
Affiliation(s)
- Amardeep Singh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Asad Hasan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Anholt RRH, Mackay TFC. The genetic architecture of behavioral canalization. Trends Genet 2023; 39:602-608. [PMID: 36878820 PMCID: PMC11856520 DOI: 10.1016/j.tig.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
23
|
Koppik M, Baur J, Berger D. Increased male investment in sperm competition results in reduced maintenance of gametes. PLoS Biol 2023; 21:e3002049. [PMID: 37014875 PMCID: PMC10072457 DOI: 10.1371/journal.pbio.3002049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Male animals often show higher mutation rates than their female conspecifics. A hypothesis for this male bias is that competition over fertilization of female gametes leads to increased male investment into reproduction at the expense of maintenance and repair, resulting in a trade-off between male success in sperm competition and offspring quality. Here, we provide evidence for this hypothesis by harnessing the power of experimental evolution to study effects of sexual selection on the male germline in the seed beetle Callosobruchus maculatus. We first show that 50 generations of evolution under strong sexual selection, coupled with experimental removal of natural selection, resulted in males that are more successful in sperm competition. We then show that these males produce progeny of lower quality if engaging in sociosexual interactions prior to being challenged to surveil and repair experimentally induced damage in their germline and that the presence of male competitors alone can be enough to elicit this response. We identify 18 candidate genes that showed differential expression in response to the induced germline damage, with several of these previously implicated in processes associated with DNA repair and cellular maintenance. These genes also showed significant expression changes across sociosexual treatments of fathers and predicted the reduction in quality of their offspring, with expression of one gene also being strongly correlated to male sperm competition success. Sex differences in expression of the same 18 genes indicate a substantially higher female investment in germline maintenance. While more work is needed to detail the exact molecular underpinnings of our results, our findings provide rare experimental evidence for a trade-off between male success in sperm competition and germline maintenance. This suggests that sex differences in the relative strengths of sexual and natural selection are causally linked to male mutation bias. The tenet advocated here, that the allocation decisions of an individual can affect plasticity of its germline and the resulting genetic quality of subsequent generations, has several interesting implications for mate choice processes.
Collapse
Affiliation(s)
- Mareike Koppik
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Baur
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Moiron M, Winkler L, Martin OY, Janicke T. Sexual selection moderates heat stress response in males and females. Funct Ecol 2022; 36:3096-3106. [PMID: 37064077 PMCID: PMC10092254 DOI: 10.1111/1365-2435.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022]
Abstract
A widespread effect of climate change is the displacement of organisms from their thermal optima. The associated thermal stress imposed by climate change has been argued to have a particularly strong impact on male reproduction but evidence for this postulated sex-specific stress response is equivocal.One important factor that may explain intra- and interspecific variation in stress responses is sexual selection, which is predicted to magnify negative effects of stress. Nevertheless, empirical studies exploring the interplay of sexual selection and heat stress are still scarce.We tested experimentally for an interaction between sexual selection and thermal stress in the red flour beetle Tribolium castaneum by contrasting heat responses in male and female reproductive success between enforced monogamy and polygamy.We found that polygamy magnifies detrimental effects of heat stress in males but relaxes the observed negative effects in females. Our results suggest that sexual selection can reverse sex differences in thermal sensitivity, and may therefore alter sex-specific selection on alleles associated with heat tolerance.Assuming that sexual selection and natural selection are aligned to favour the same genetic variants under environmental stress, our findings support the idea that sexual selection on males may promote the adaptation to current global warming. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Maria Moiron
- Centre d'Écologie Fonctionnelle et Évolutive, CNRSUniversity of Montpellier, EPHE, IRDMontpellier Cedex 05France
- Institute of Avian ResearchWilhelmshavenGermany
| | | | - Oliver Yves Martin
- Department of Biology & Institute of Integrative Biology IBZETH ZurichZürichSwitzerland
| | - Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRSUniversity of Montpellier, EPHE, IRDMontpellier Cedex 05France
| |
Collapse
|
25
|
Ruzicka F, Holman L, Connallon T. Polygenic signals of sex differences in selection in humans from the UK Biobank. PLoS Biol 2022; 20:e3001768. [PMID: 36067235 PMCID: PMC9481184 DOI: 10.1371/journal.pbio.3001768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 09/16/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Sex differences in the fitness effects of genetic variants can influence the rate of adaptation and the maintenance of genetic variation. For example, "sexually antagonistic" (SA) variants, which are beneficial for one sex and harmful for the other, can both constrain adaptation and increase genetic variability for fitness components such as survival, fertility, and disease susceptibility. However, detecting variants with sex-differential fitness effects is difficult, requiring genome sequences and fitness measurements from large numbers of individuals. Here, we develop new theory for studying sex-differential selection across a complete life cycle and test our models with genotypic and reproductive success data from approximately 250,000 UK Biobank individuals. We uncover polygenic signals of sex-differential selection affecting survival, reproductive success, and overall fitness, with signals of sex-differential reproductive selection reflecting a combination of SA polymorphisms and sexually concordant polymorphisms in which the strength of selection differs between the sexes. Moreover, these signals hold up to rigorous controls that minimise the contributions of potential confounders, including sequence mapping errors, population structure, and ascertainment bias. Functional analyses reveal that sex-differentiated sites are enriched in phenotype-altering genomic regions, including coding regions and loci affecting a range of quantitative traits. Population genetic analyses show that sex-differentiated sites exhibit evolutionary histories dominated by genetic drift and/or transient balancing selection, but not long-term balancing selection, which is consistent with theoretical predictions of effectively weak SA balancing selection in historically small populations. Overall, our results are consistent with polygenic sex-differential-including SA-selection in humans. Evidence for sex-differential selection is particularly strong for variants affecting reproductive success, in which the potential contributions of nonrandom sampling to signals of sex differentiation can be excluded.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Luke Holman
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Multivariate selection and the making and breaking of mutational pleiotropy. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe role of mutations have been subject to many controversies since the formation of the Modern Synthesis of evolution in the early 1940ties. Geneticists in the early half of the twentieth century tended to view mutations as a limiting factor in evolutionary change. In contrast, natural selection was largely viewed as a “sieve” whose main role was to sort out the unfit but which could not create anything novel alone. This view gradually changed with the development of mathematical population genetics theory, increased appreciation of standing genetic variation and the discovery of more complex forms of selection, including balancing selection. Short-term evolutionary responses to selection are mainly influenced by standing genetic variation, and are predictable to some degree using information about the genetic variance–covariance matrix (G) and the strength and form of selection (e. g. the vector of selection gradients, β). However, predicting long-term evolution is more challenging, and requires information about the nature and supply of novel mutations, summarized by the mutational variance–covariance matrix (M). Recently, there has been increased attention to the role of mutations in general and M in particular. Some evolutionary biologists argue that evolution is largely mutation-driven and claim that mutation bias frequently results in mutation-biased adaptation. Strong similarities between G and M have also raised questions about the non-randomness of mutations. Moreover, novel mutations are typically not isotropic in their phenotypic effects and mutational pleiotropy is common. Here I discuss the evolutionary origin and consequences of mutational pleiotropy and how multivariate selection directly shapes G and indirectly M through changed epistatic relationships. I illustrate these ideas by reviewing recent literature and models about correlational selection, evolution of G and M, sexual selection and the fitness consequences of sexual antagonism.
Collapse
|
27
|
Connallon T, Beasley IJ, McDonough Y, Ruzicka F. How much does the unguarded X contribute to sex differences in life span? Evol Lett 2022; 6:319-329. [PMID: 35937469 PMCID: PMC9346086 DOI: 10.1002/evl3.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
Females and males often have markedly different mortality rates and life spans, but it is unclear why these forms of sexual dimorphism evolve. The unguarded X hypothesis contends that dimorphic life spans arise from sex differences in X or Z chromosome copy number (i.e., one copy in the "heterogametic" sex; two copies in the "homogametic" sex), which leads to a disproportionate expression of deleterious mutations by the heterogametic sex (e.g., mammalian males; avian females). Although data on adult sex ratios and sex-specific longevity are consistent with predictions of the unguarded X hypothesis, direct experimental evidence remains scant, and alternative explanations are difficult to rule out. Using a simple population genetic model, we show that the unguarded X effect on sex differential mortality is a function of several reasonably well-studied evolutionary parameters, including the proportion of the genome that is sex linked, the genomic deleterious mutation rate, the mean dominance of deleterious mutations, the relative rates of mutation and strengths of selection in each sex, and the average effect of mutations on survival and longevity relative to their effects on fitness. We review published estimates of these parameters, parameterize our model with them, and show that unguarded X effects are too small to explain observed sex differences in life span across species. For example, sex differences in mean life span are known to often exceed 20% (e.g., in mammals), whereas our parameterized models predict unguarded X effects of a few percent (e.g., 1-3% in Drosophila and mammals). Indeed, these predicted unguarded X effects fall below statistical thresholds of detectability in most experiments, potentially explaining why direct tests of the hypothesis have generated little support for it. Our results suggest that evolution of sexually dimorphic life spans is predominantly attributable to other mechanisms, potentially including "toxic Y" effects and sexual dimorphism for optimal investment in survival versus reproduction.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Isobel J. Beasley
- School of BioSciencesThe University of MelbourneParkvilleVIC3010Australia
- Melbourne Integrative GenomicsThe University of MelbourneParkvilleVIC3010Australia
- St. Vincent's Institute of Medical ResearchFitzroyVIC3065Australia
| | - Yasmine McDonough
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
28
|
Pilakouta N, Baillet A. Effects of temperature on mating behaviour and mating success: A meta-analysis. J Anim Ecol 2022; 91:1642-1650. [PMID: 35811382 PMCID: PMC9541322 DOI: 10.1111/1365-2656.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
In light of global climate change, there is a pressing need to understand how populations will respond to rising temperatures. Understanding the effects of temperature changes on mating behaviour is particularly important, given its implications for population viability. To this end, we performed a meta-analysis of 53 studies to examine how temperature changes influence mating latency, choosiness and mating success. We hypothesized that if higher temperatures make mate searching and mate assessment more costly due to an elevated metabolism, this may lead to a reduction in mating latency and choosiness, thereby increasing overall mating success. We found no evidence for an overall effect of temperature on mating latency, choosiness, or mating success. There was an increase in mating success when animals were exposed to higher temperatures during mating trials but not when they were exposed before mating trials. In addition, in a subset of studies that measured both mating latency and mating success, there was a strong negative relationship between the effect sizes for these traits. This suggests that a decrease in mating latency at higher temperatures was associated with an increase in mating success and vice versa. In sum, our meta-analysis provides new insights into the effects of temperature on mating patterns. The absence of a consistent directional effect of temperature on mating behaviours and mating success suggests it may be difficult to predict changes in the strength of sexual selection in natural populations in a warming world. Nevertheless, there is some evidence that (a) higher temperatures during mating may lead to an increase in mating success and that (b) an increase in mating success is associated with a decrease in mating latency.
Collapse
Affiliation(s)
| | - Anaїs Baillet
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Observatoire des Sciences de l'Univers de Rennes (OSUR)Université de RennesRennesFrance
- Department of Wood and Forest SciencesLaval UniversityQuebecQCCanada
| |
Collapse
|
29
|
Parrett JM, Chmielewski S, Aydogdu E, Łukasiewicz A, Rombauts S, Szubert-Kruszyńska A, Babik W, Konczal M, Radwan J. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat Ecol Evol 2022; 6:1330-1342. [DOI: 10.1038/s41559-022-01816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
|
30
|
Hangartner S, Sgrò CM, Connallon T, Booksmythe I. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data. Ecol Lett 2022; 25:1550-1565. [PMID: 35334155 PMCID: PMC9311083 DOI: 10.1111/ele.14005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Populations must adapt to environmental changes to remain viable. Both evolution and phenotypic plasticity contribute to adaptation, with plasticity possibly being more important for coping with rapid change. Adaptation is complex in species with separate sexes, as the sexes can differ in the strength or direction of natural selection, the genetic basis of trait variation, and phenotypic plasticity. Many species show sex differences in plasticity, yet how these differences influence extinction susceptibility remains unclear. We first extend theoretical models of population persistence in changing environments and show that persistence is affected by sexual dimorphism for phenotypic plasticity, trait genetic architecture, and sex-specific selection. Our models predict that female-biased adaptive plasticity-particularly in traits with modest-to-low cross-sex genetic correlations-typically promotes persistence, though we also identify conditions where sexually monomorphic or male-biased plasticity promotes persistence. We then perform a meta-analysis of sex-specific plasticity under manipulated thermal conditions. Although examples of sexually dimorphic plasticity are widely observed, systematic sex differences are rare. An exception-cold resistance-is systematically female-biased and represents a trait wherein sexually dimorphic plasticity might elevate population viability in changing environments. We discuss our results in light of debates about the roles of evolution and plasticity in extinction susceptibility.
Collapse
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Isobel Booksmythe
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Lopez-Idiaquez D, Teplitsky C, Grégoire A, Fargevieille A, Rey MD, Franceschi CD, Charmantier A, Doutrelant C. Long-term decrease in coloration: a consequence of climate change? Am Nat 2022; 200:32-47. [DOI: 10.1086/719655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Sharda S, Kawecki TJ, Hollis B. Adaptation to a bacterial pathogen in Drosophila melanogaster is not aided by sexual selection. Ecol Evol 2022; 12:e8543. [PMID: 35169448 PMCID: PMC8840902 DOI: 10.1002/ece3.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Theory predicts that sexual selection should aid adaptation to novel environments, but empirical support for this idea is limited. Pathogens are a major driver of host evolution and, unlike abiotic selection pressures, undergo epidemiological and co-evolutionary cycles with the host involving adaptation and counteradaptation. Because of this, populations harbor ample genetic variation underlying immunity and the opportunity for sexual selection based on condition-dependent "good genes" is expected to be large. In this study, we evolved populations of Drosophila melanogaster in a 2-way factorial design manipulating sexual selection and pathogen presence, using a gram-negative insect pathogen Pseudomonas entomophila, for 14 generations. We then examined how the presence of sexual selection and the pathogen, as well as any potential interaction, affected the evolution of pathogen resistance. We found increased resistance to P. entomophila in populations that evolved under pathogen pressure, driven primarily by increased female survival after infection despite selection for resistance acting only on males over the course of experimental evolution. This result suggests that the genetic basis of resistance is in part shared between the sexes. We did not find any evidence of sexual selection aiding adaptation to pathogen, however, a finding contrary to the predictions of "good genes" theory. Our results therefore provide no support for a role for sexual selection in the evolution of immunity in this experimental system.
Collapse
Affiliation(s)
- Sakshi Sharda
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
33
|
Vega‐Trejo R, Boer RA, Fitzpatrick JL, Kotrschal A. Sex‐specific inbreeding depression: A meta‐analysis. Ecol Lett 2022; 25:1009-1026. [PMID: 35064612 PMCID: PMC9304238 DOI: 10.1111/ele.13961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Department of Zoology Edward Grey Institute University of Oxford Oxford UK
| | - Raïssa A. Boer
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
| | | | - Alexander Kotrschal
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Behavioural Ecology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
34
|
Singh A, Agrawal AF. Sex-specific Variance in Fitness and the Efficacy of Selection. Am Nat 2022; 199:587-602. [DOI: 10.1086/719015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Fieder M, Huber S. Contemporary selection pressures in modern societies? Which factors best explain variance in human reproduction and mating? EVOL HUM BEHAV 2022. [DOI: 10.1016/j.evolhumbehav.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Abstract
Charles Darwin published his second book “Sexual selection and the descent of man” in 1871 150 years ago, to try to explain, amongst other things, the evolution of the peacock’s train, something that he famously thought was problematic for his theory of evolution by natural selection. He proposed that the peacock’s train had evolved because females preferred to mate with males with more elaborate trains. This idea was very controversial at the time and it wasn’t until 1991 that a manuscript testing Darwin’s hypothesis was published. The idea that a character could arise as a result of a female preference is still controversial. Some argue that there is no need to distinguish sexual from natural selection and that natural selection can adequately explain the evolution of extravagant characteristics that are characteristic of sexually selected species. Here, I outline the reasons why I think that this is not the case and that Darwin was right to distinguish sexual selection as a distinct process. I present a simple verbal and mathematical model to expound the view that sexual selection is profoundly different from natural selection because, uniquely, it can simultaneously promote and maintain the genetic variation which fuels evolutionary change. Viewed in this way, sexual selection can help resolve other evolutionary conundrums, such as the evolution of sexual reproduction, that are characterised by having impossibly large costs and no obvious immediate benefits and which have baffled evolutionary biologists for a very long time. If sexual selection does indeed facilitate rapid adaptation to a changing environment as I have outlined, then it is very important that we understand the fundamentals of adaptive mate choice and guard against any disruption to this natural process.
Collapse
|
37
|
Heinen‐Kay JL, Kay AD, Zuk M. How urbanization affects sexual communication. Ecol Evol 2021; 11:17625-17650. [PMID: 35003629 PMCID: PMC8717295 DOI: 10.1002/ece3.8328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Urbanization is rapidly altering landscapes worldwide, changing environmental conditions, and creating novel selection pressures for many organisms. Local environmental conditions affect the expression and evolution of sexual signals and mating behaviors; changes in such traits have important evolutionary consequences because of their effect on reproduction. In this review, we synthesize research investigating how sexual communication is affected by the environmental changes associated with urbanization-including pollution from noise, light, and heavy metals, habitat fragmentation, impervious surfaces, urban heat islands, and changes in resources and predation. Urbanization often has negative effects on sexual communication through signal masking, altering condition-dependent signal expression, and weakening female preferences. Though there are documented instances of seemingly adaptive shifts in trait expression, the ultimate impact on fitness is rarely tested. The field of urban evolution is still relatively young, and most work has tested whether differences occur in response to various aspects of urbanization. There is limited information available about whether these responses represent phenotypic plasticity or genetic changes, and the extent to which observed shifts in sexual communication affect reproductive fitness. Our understanding of how sexual selection operates in novel, urbanized environments would be bolstered by more studies that perform common garden studies and reciprocal transplants, and that simultaneously evaluate multiple environmental factors to tease out causal drivers of observed phenotypic shifts. Urbanization provides a unique testing ground for evolutionary biologists to study the interplay between ecology and sexual selection, and we suggest that more researchers take advantage of these natural experiments. Furthermore, understanding how sexual communication and mating systems differ between cities and rural areas can offer insights on how to mitigate negative, and accentuate positive, consequences of urban expansion on the biota, and provide new opportunities to underscore the relevance of evolutionary biology in the Anthropocene.
Collapse
Affiliation(s)
- Justa L. Heinen‐Kay
- Department of Ecology, Evolution & BehaviorUniversity of MinnesotaSt. PaulUSA
| | - Adam D. Kay
- Biology DepartmentUniversity of St. ThomasSt. PaulUSA
| | - Marlene Zuk
- Department of Ecology, Evolution & BehaviorUniversity of MinnesotaSt. PaulUSA
| |
Collapse
|
38
|
Winkler L, Moiron M, Morrow EH, Janicke T. Stronger net selection on males across animals. eLife 2021; 10:e68316. [PMID: 34787569 PMCID: PMC8598160 DOI: 10.7554/elife.68316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Sexual selection is considered the major driver for the evolution of sex differences. However, the eco-evolutionary dynamics of sexual selection and their role for a population's adaptive potential to respond to environmental change have only recently been explored. Theory predicts that sexual selection promotes adaptation at a low demographic cost only if sexual selection is aligned with natural selection and if net selection is stronger on males compared to females. We used a comparative approach to show that net selection is indeed stronger in males and provide preliminary support that this sex bias is associated with sexual selection. Given that both sexes share the vast majority of their genes, our findings corroborate the notion that the genome is often confronted with a more stressful environment when expressed in males. Collectively, our study supports one of the long-standing key assumptions required for sexual selection to bolster adaptation, and sexual selection may therefore enable some species to track environmental change more efficiently.
Collapse
Affiliation(s)
| | - Maria Moiron
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | - Edward H Morrow
- Department for Environmental and Life Sciences, Karlstad UniversityKarlstadSweden
| | - Tim Janicke
- Applied Zoology, Technical University DresdenDresdenGermany
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| |
Collapse
|
39
|
Ruzicka F, Connallon T, Reuter M. Sex differences in deleterious mutational effects in Drosophila melanogaster: combining quantitative and population genetic insights. Genetics 2021; 219:6362879. [PMID: 34740242 DOI: 10.1093/genetics/iyab143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Fitness effects of deleterious mutations can differ between females and males due to: (i) sex differences in the strength of purifying selection; and (ii) sex differences in ploidy. Although sex differences in fitness effects have important broader implications (e.g., for the evolution of sex and lifespan), few studies have quantified their scope. Those that have belong to one of two distinct empirical traditions: (i) quantitative genetics, which focusses on multi-locus genetic variances in each sex, but is largely agnostic about their genetic basis; and (ii) molecular population genetics, which focusses on comparing autosomal and X-linked polymorphism, but is poorly suited for inferring contemporary sex differences. Here, we combine both traditions to present a comprehensive analysis of female and male adult reproductive fitness among 202 outbred, laboratory-adapted, hemiclonal genomes of Drosophila melanogaster. While we find no clear evidence for sex differences in the strength of purifying selection, sex differences in ploidy generate multiple signals of enhanced purifying selection for X-linked loci. These signals are present in quantitative genetic metrics-i.e., a disproportionate contribution of the X to male (but not female) fitness variation-and population genetic metrics-i.e., steeper regressions of an allele's average fitness effect on its frequency, and proportionally less nonsynonymous polymorphism on the X than autosomes. Fitting our data to models for both sets of metrics, we infer that deleterious alleles are partially recessive. Given the often-large gap between quantitative and population genetic estimates of evolutionary parameters, our study showcases the benefits of combining genomic and fitness data when estimating such parameters.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia.,Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Tim Connallon
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton 3800, VIC, Australia
| | - Max Reuter
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,Centre for Life's Origins and Evolution, University College London, London WC1E 6BT, UK
| |
Collapse
|
40
|
Rowe L, Rundle HD. The Alignment of Natural and Sexual Selection. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-033324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging.
Collapse
Affiliation(s)
- Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
41
|
Baur J, Jagusch D, Michalak P, Koppik M, Berger D. The mating system affects the temperature sensitivity of male and female fertility. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Dorian Jagusch
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
- Organismal and Evolutionary Biology Research Program Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Piotr Michalak
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - David Berger
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
42
|
Gamble MM, Calsbeek RG. A potential role for restricted intertactical heritability in preventing intralocus conflict. Evol Appl 2021; 14:2576-2590. [PMID: 34815740 PMCID: PMC8591329 DOI: 10.1111/eva.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Intralocus sexual conflict, which arises when the same trait has different fitness optima in males and females, reduces population growth rates. Recently, evolutionary biologists have recognized that intralocus conflict can occur between morphs or reproductive tactics within a sex and that intralocus tactical conflict might constrain tactical dimorphism and population growth rates just as intralocus sexual conflict constrains sexual dimorphism and population growth rates. However, research has only recently focused on sexual and tactical intralocus conflict simultaneously, and there is no formal theory connecting the two. We present a graphical model of how tactical and sexual conflict over the same trait could constrain both sexual and tactical dimorphisms. We then use Coho salmon (Oncorhynchus kisutch), an important species currently protected under the Endangered Species Act, to investigate the possibility of simultaneous sexual and tactical conflict. Larger Coho males gain access to females through fighting while smaller males are favored through sneaking tactics, and female reproductive success is positively correlated with length. We tested for antagonistic selection on length at maturity among sexes and tactics and then used parent-offspring regression to calculate sex- and tactic-specific heritabilities to determine whether and where intralocus conflict exists. Selection on length varied in intensity and form among tactics and years. Length was heritable between dams and daughters (h 2 ± 95% CI = 0.361 ± 0.252) and between fighter males and their fighter sons (0.867 ± 0.312), but no other heritabilities differed significantly from zero. The lack of intertactical heritabilities in this system, combined with similar selection on length among tactics, suggests the absence of intralocus conflict between sexes and among tactics, allowing for the evolution of sexual and tactical dimorphisms. Our results suggest that Coho salmon populations are unlikely to be constrained by intralocus conflict or artificial selection on male tactic.
Collapse
Affiliation(s)
- Madilyn M. Gamble
- Graduate Program in Ecology, Evolution, Ecosystems, and SocietyDartmouth CollegeHanoverNHUSA
| | - Ryan G. Calsbeek
- Graduate Program in Ecology, Evolution, Ecosystems, and SocietyDartmouth CollegeHanoverNHUSA
| |
Collapse
|
43
|
Herdegen-Radwan M, Cattelan S, Buda J, Raubic J, Radwan J. What do orange spots reveal about male (and female) guppies? A test using correlated responses to selection. Evolution 2021; 75:3037-3055. [PMID: 34658022 PMCID: PMC9299167 DOI: 10.1111/evo.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Female preferences for male ornamental traits can arise from indirect benefits, such as increased attractiveness or better viability of progeny, but empirical evidence for such benefits is inconsistent. Artificial selection offers a powerful way to investigate indirect effects of male ornaments. Here, we selected for the area of orange spots on male guppies, a trait subject to female preferences in our population, in replicated up‐ and down‐selected lines. We found a significant direct response to selection, and a correlated response in female preferences, with females from down‐selected lines showing less interest in more orange males. Nevertheless, up‐selected males sired more offspring in direct competition with low‐selected males, irrespective of female origin. We did not find a significantly correlated response to selection among any other fitness correlates we measured. Our results imply that female preferences for orange spots can lead to increased reproductive success of their sons, with no effect on general viability of progeny. Furthermore, although we demonstrate that female preferences may evolve via linkage disequilibrium with the preferred trait, the potential for runaway selection by positive feedback may be constrained by the lack of corresponding linkage with male reproductive competitiveness.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jarosław Raubic
- Population Ecology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| |
Collapse
|
44
|
Janicke T, Chapuis E, Meconcelli S, Bonel N, Delahaie B, David P. Environmental effects on the genetic architecture of fitness components in a simultaneous hermaphrodite. J Anim Ecol 2021; 91:124-137. [PMID: 34652857 DOI: 10.1111/1365-2656.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding how environmental change affects genetic variances and covariances of reproductive traits is key to formulate firm predictions on evolutionary responses. This is particularly true for sex-specific variance in reproductive success, which has been argued to affect how populations can adapt to environmental change. Our current knowledge on the impact of environmental stress on sex-specific genetic architecture of fitness components is still limited and restricted to separate-sexed organisms. However, hermaphroditism is widespread across animals and may entail interesting peculiarities with respect to genetic constraints imposed on the evolution of male and female reproduction. We explored how food restriction affects the genetic variance-covariance (G) matrix of body size and reproductive success of the simultaneously hermaphroditic freshwater snail Physa acuta. Our results provide strong evidence that the imposed environmental stress elevated the opportunity for selection in both sex functions. However, the G-matrix remained largely stable across the tested food treatments. Importantly, our results provide no support for cross-sex genetic correlations suggesting no strong evolutionary coupling of male and female reproductive traits. We discuss potential implications for the adaptation to changing environments and highlight the need for more quantitative genetic studies on male and female fitness components in simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Applied Zoology, Technical University Dresden, Dresden, Germany
| | - Elodie Chapuis
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Stefania Meconcelli
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - Nicolas Bonel
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Bahía Blanca, Argentina
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
45
|
Gómez-Llano M, Scott E, Svensson EI. The importance of pre- and postcopulatory sexual selection promoting adaptation to increasing temperatures. Curr Zool 2021; 67:321-327. [PMID: 34616924 PMCID: PMC8488992 DOI: 10.1093/cz/zoaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/27/2020] [Indexed: 11/13/2022] Open
Abstract
Global temperatures are increasing rapidly affecting species globally. Understanding if and how different species can adapt fast enough to keep up with increasing temperatures is of vital importance. One mechanism that can accelerate adaptation and promote evolutionary rescue is sexual selection. Two different mechanisms by which sexual selection can facilitate adaptation are pre- and postcopulatory sexual selection. However, the relative effects of these different forms of sexual selection in promoting adaptation are unknown. Here, we present the results from an experimental study in which we exposed fruit flies Drosophila melanogaster to either no mate choice or 1 of 2 different sexual selection regimes (pre- and postcopulatory sexual selection) for 6 generations, under different thermal regimes. Populations showed evidence of thermal adaptation under precopulatory sexual selection, but this effect was not detected in the postcopulatory sexual selection and the no choice mating regime. We further demonstrate that sexual dimorphism decreased when flies evolved under increasing temperatures, consistent with recent theory predicting more sexually concordant selection under environmental stress. Our results suggest an important role for precopulatory sexual selection in promoting thermal adaptation and evolutionary rescue.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eve Scott
- Faculty of Biology, Medicine and Health, The University of Manchester. Oxford Road, Manchester, M13 9PL, UK.,Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Erik I Svensson
- Biology Department, Lund University, Evolutionary Ecology Unit, Lund, 223 62, Sweden
| |
Collapse
|
46
|
Grieshop K, Maurizio PL, Arnqvist G, Berger D. Selection in males purges the mutation load on female fitness. Evol Lett 2021; 5:328-343. [PMID: 34367659 PMCID: PMC8327962 DOI: 10.1002/evl3.239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Theory predicts that the ability of selection and recombination to purge mutation load is enhanced if selection against deleterious genetic variants operates more strongly in males than females. However, direct empirical support for this tenet is limited, in part because traditional quantitative genetic approaches allow dominance and intermediate-frequency polymorphisms to obscure the effects of the many rare and partially recessive deleterious alleles that make up the main part of a population's mutation load. Here, we exposed the partially recessive genetic load of a population of Callosobruchus maculatus seed beetles via successive generations of inbreeding, and quantified its effects by measuring heterosis-the increase in fitness experienced when masking the effects of deleterious alleles by heterozygosity-in a fully factorial sex-specific diallel cross among 16 inbred strains. Competitive lifetime reproductive success (i.e., fitness) was measured in male and female outcrossed F1s as well as inbred parental "selfs," and we estimated the 4 × 4 male-female inbred-outbred genetic covariance matrix for fitness using Bayesian Markov chain Monte Carlo simulations of a custom-made general linear mixed effects model. We found that heterosis estimated independently in males and females was highly genetically correlated among strains, and that heterosis was strongly negatively genetically correlated to outbred male, but not female, fitness. This suggests that genetic variation for fitness in males, but not in females, reflects the amount of (partially) recessive deleterious alleles segregating at mutation-selection balance in this population. The population's mutation load therefore has greater potential to be purged via selection in males. These findings contribute to our understanding of the prevalence of sexual reproduction in nature and the maintenance of genetic variation in fitness-related traits.
Collapse
Affiliation(s)
- Karl Grieshop
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM5S 3B2Canada
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSE‐10691Sweden
| | - Paul L. Maurizio
- Section of Genetic Medicine, Department of MedicineUniversity of ChicagoChicagoIllinois60637
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| | - David Berger
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐75236Sweden
| |
Collapse
|
47
|
Bell DA, Kovach RP, Robinson ZL, Whiteley AR, Reed TE. The ecological causes and consequences of hard and soft selection. Ecol Lett 2021; 24:1505-1521. [PMID: 33931936 DOI: 10.1111/ele.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | - Zachary L Robinson
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Andrew R Whiteley
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|
48
|
Cally JG, Stuart-Fox D, Holman L, Dale J, Medina I. Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution 2021; 75:931-944. [PMID: 33559135 DOI: 10.1111/evo.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
Sexual selection is thought to shape phylogenetic diversity by affecting speciation or extinction rates. However, the net effect of sexual selection on diversification is hard to predict because many of the hypothesized effects on speciation or extinction have opposing signs and uncertain magnitudes. Theoretical work also suggests that the net effect of sexual selection on diversification should depend strongly on ecological factors, though this prediction has seldom been tested. Here, we test whether variation in sexual selection can predict speciation and extinction rates across passerine birds (up to 5812 species, covering most genera) and whether this relationship is mediated by environmental factors. Male-biased sexual selection, and specifically sexual size dimorphism, predicted two of the three measures of speciation rates that we examined. The link we observed between sexual selection and speciation was independent of environmental variability, though species with smaller ranges had higher speciation rates. There was no association between any proxies of sexual selection and extinction rate. Our findings support the view that male-biased sexual selection, as measured by frequent predictors of male-male competition, has shaped diversification in the largest radiation of birds.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James Dale
- School of Natural and Computational Sciences, Massey University (Albany Campus), Auckland, 0632, New Zealand
| | - Iliana Medina
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
49
|
Singh RS, Singh KK, Singh SM. Origin of Sex-Biased Mental Disorders: An Evolutionary Perspective. J Mol Evol 2021; 89:195-213. [PMID: 33630117 PMCID: PMC8116267 DOI: 10.1007/s00239-021-09999-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism or sex bias in diseases and mental disorders have two biological causes: sexual selection and sex hormones. We review the role of sexual selection theory and bring together decades of molecular studies on the variation and evolution of sex-biased genes and provide a theoretical basis for the causes of sex bias in disease and health. We present a Sexual Selection-Sex Hormone theory and show that male-driven evolution, including sexual selection, leads to: (1) increased male vulnerability due to negative pleiotropic effects associated with male-driven sexual selection and evolution; (2) increased rates of male-driven mutations and epimutations in response to early fitness gains and at the cost of late fitness; and (3) enhanced female immunity due to antagonistic responses to mutations that are beneficial to males but harmful to females, reducing female vulnerability to diseases and increasing the thresholds for disorders such as autism. Female-driven evolution, such as reproduction-related fluctuation in female sex hormones in association with stress and social condition, has been shown to be associated with increased risk of certain mental disorders such as major depression disorder in women. Bodies have history, cells have memories. An evolutionary framework, such as the Sexual Selection–Sex Hormone theory, provides a historical perspective for understanding how the differences in the sex-biased diseases and mental disorders have evolved over time. It has the potential to direct the development of novel preventive and treatment strategies.
Collapse
Affiliation(s)
- Rama S Singh
- Department of Biology, McMaster University, Hamilton, Canada.
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada.,Krembil Research Institute, University Health Network, Toronto, Canada
| | - Shiva M Singh
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
50
|
MacPherson B, Scott R, Gras R. Sex and recombination purge the genome of deleterious alleles: An Individual Based Modeling Approach. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|