1
|
Aykanat T, McLennan D, Metcalfe NB, Prokkola JM. Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation. Evolution 2024; 78:1441-1452. [PMID: 38736399 DOI: 10.1093/evolut/qpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Large effect loci often contain genes with critical developmental functions and potentially broad effects across life stages. However, their life stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity and several physiological and behavioral traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early-life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high nutrients but not in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation but by maternal genotypes in the six6 locus and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects of large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.
Collapse
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Darryl McLennan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jenni M Prokkola
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Oulu, Finland
| |
Collapse
|
2
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
3
|
Begum M, Nolan V, MacColl ADC. Ecological constraint, rather than opportunity, promotes adaptive radiation in three-spined stickleback ( Gasterosteus aculeatus) on North Uist. Ecol Evol 2023; 13:e9716. [PMID: 36644706 PMCID: PMC9831901 DOI: 10.1002/ece3.9716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
The context and cause of adaptive radiations have been widely described and explored but why rapid evolutionary diversification does not occur in related evolutionary lineages has yet to be understood. The standard answer is that evolutionary diversification is provoked by ecological opportunity and that some lineages do not encounter the opportunity. Three-spined sticklebacks on the Scottish island of North Uist show enormous diversification, which seems to be associated with the diversity of aquatic habitats. Sticklebacks on the neighboring island of South Uist have not been reported to show the same level of evolutionary diversity, despite levels of environmental variation that we might expect to be similar to North Uist. In this study, we compared patterns of morphological and environmental diversity on North and South Uist. Ancestral anadromous sticklebacks from both islands exhibited similar morphology including size and bony "armor." Resident sticklebacks showed significant variation in armor traits in relation to pH of water. However, North Uist sticklebacks exhibited greater diversity of morphological traits than South Uist and this was associated with greater diversity in pH of the waters of lochs on North Uist. Highly acidic and highly alkaline freshwater habitats are missing, or uncommon, on South Uist. Thus, pH appears to act as a causal factor driving the evolutionary diversification of stickleback in local adaptation in North and South Uist. This is consistent with diversification being more associated with ecological constraint than ecological opportunity.
Collapse
Affiliation(s)
- Mahmuda Begum
- School of Life SciencesUniversity of NottinghamNottinghamUK
- Zoology Section, Biological Research DivisionBangladesh Council of Scientific & Industrial Research (BCSIR)DhakaBangladesh
| | - Victoria Nolan
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
4
|
Characterizing phenotypic diversity in marine populations of the threespine stickleback. Sci Rep 2022; 12:17923. [PMID: 36289364 PMCID: PMC9606258 DOI: 10.1038/s41598-022-22872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
The threespine stickleback (Gasterosteus aculeatus) is an important model for studying the evolution of vertebrate morphology. Sticklebacks inhabit freshwater, brackish, and marine northern hemisphere waters. Anadromous and marine populations (hereafter marine) are assumed to have remained unchanged morphologically from ancestral marine sticklebacks, despite marine environments varying on regional and local scales. Recent studies suggest that genetic and phenotypic structure exists in marine populations, yet the scale of this variation, and its ecological causes remain unclear. Our goal was to assess morphological trait variation in marine stickleback populations around Southern British Columbia (BC) and determine if oceanographic and habitat characteristics were associated with this variation. Between May-July 2019, we sampled 534 sticklebacks from 15 sites around Vancouver Island, a region characterized by a large diversity of oceanographic and habitat features. We characterized trait variation using two-dimensional (2D) geometric morphometric analysis, comparing individuals between oceanographic regions and habitats. We focused on head and body shape. We found that marine sticklebacks varied morphologically among and between regions and habitats, but the variation did not appear to be related to environmental variation. Sexual dimorphism was the largest source of variation, but oceanographic and habitat variables influenced differences between sexes. We concluded that marine sticklebacks offer abundant opportunities for expanding our knowledge of drivers of morphology.
Collapse
|
5
|
Giraldo-Deck LM, Loveland JL, Goymann W, Tschirren B, Burke T, Kempenaers B, Lank DB, Küpper C. Intralocus conflicts associated with a supergene. Nat Commun 2022; 13:1384. [PMID: 35296671 PMCID: PMC8927407 DOI: 10.1038/s41467-022-29033-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/23/2022] [Indexed: 11/12/2022] Open
Abstract
Chromosomal inversions frequently underlie major phenotypic variation maintained by divergent selection within and between sexes. Here we examine whether and how intralocus conflicts contribute to balancing selection stabilizing an autosomal inversion polymorphism in the ruff Calidris pugnax. In this lekking shorebird, three male mating morphs (Independents, Satellites and Faeders) are controlled by an inversion-based supergene. We show that in a captive population, Faeder females, who are smaller and whose inversion haplotype has not undergone recombination, have lower average reproductive success in terms of laying rate, egg size, and offspring survival than Independent females, who lack the inversion. Satellite females, who carry a recombined inversion haplotype and have intermediate body size, more closely resemble Independent than Faeder females in reproductive performance. We inferred that the lower reproductive output of Faeder females is most likely balanced by higher than average reproductive success of individual Faeder males. These findings suggest that intralocus conflicts may play a major role in the evolution and maintenance of supergene variants.
Collapse
Affiliation(s)
- Lina M Giraldo-Deck
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
| | - Jasmine L Loveland
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - David B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Clemens Küpper
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
| |
Collapse
|
6
|
Schluter D, Marchinko KB, Arnegard ME, Zhang H, Brady SD, Jones FC, Bell MA, Kingsley DM. Fitness maps to a large-effect locus in introduced stickleback populations. Proc Natl Acad Sci U S A 2021; 118:e1914889118. [PMID: 33414274 PMCID: PMC7826376 DOI: 10.1073/pnas.1914889118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations of small effect underlie most adaptation to new environments, but beneficial variants with large fitness effects are expected to contribute under certain conditions. Genes and genomic regions having large effects on phenotypic differences between populations are known from numerous taxa, but fitness effect sizes have rarely been estimated. We mapped fitness over a generation in an F2 intercross between a marine and a lake stickleback population introduced to a freshwater pond. A quantitative trait locus map of the number of surviving offspring per F2 female detected a single, large-effect locus near Ectodysplasin (Eda), a gene having an ancient freshwater allele causing reduced bony armor and other changes. F2 females homozygous for the freshwater allele had twice the number of surviving offspring as homozygotes for the marine allele, producing a large selection coefficient, s = 0.50 ± 0.09 SE. Correspondingly, the frequency of the freshwater allele increased from 0.50 in F2 mothers to 0.58 in surviving offspring. We compare these results to allele frequency changes at the Eda gene in an Alaskan lake population colonized by marine stickleback in the 1980s. The frequency of the freshwater Eda allele rose steadily over multiple generations and reached 95% within 20 y, yielding a similar estimate of selection, s = 0.49 ± 0.05, but a different degree of dominance. These findings are consistent with other studies suggesting strong selection on this gene (and/or linked genes) in fresh water. Selection on ancient genetic variants carried by colonizing ancestors is likely to increase the prevalence of large-effect fitness variants in adaptive evolution.
Collapse
Affiliation(s)
- Dolph Schluter
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Kerry B Marchinko
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Matthew E Arnegard
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Haili Zhang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, CA 94720
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Koch EL, Sbilordo SH, Guillaume F. Genetic variance in fitness and its cross‐sex covariance predict adaptation during experimental evolution. Evolution 2020; 74:2725-2740. [DOI: 10.1111/evo.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
- Department of Animal and Plant Science University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| |
Collapse
|
8
|
Archambeault SL, Durston DJ, Wan A, El-Sabaawi RW, Matthews B, Peichel CL. Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (Gasterosteus aculeatus). Evolution 2020; 74:2088-2104. [PMID: 32537747 PMCID: PMC7773418 DOI: 10.1111/evo.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Connecting the selective forces that drive the evolution of phenotypes to their underlying genotypes is key to understanding adaptation, but such connections are rarely tested experimentally. Threespine stickleback (Gasterosteus aculeatus) are a powerful model for such tests because genotypes that underlie putatively adaptive traits have been identified. For example, a regulatory mutation in the Ectodysplasin (Eda) gene causes a reduction in the number of bony armor plates, which occurs rapidly and repeatedly when marine sticklebacks invade freshwater. However, the source of selection on plate loss in freshwater is unknown. Here, we tested whether dietary reduction of phosphorus can account for selection on plate loss due to a growth advantage of low-plated fish in freshwater. We crossed marine fish heterozygous for the 16 kilobase freshwater Eda haplotype and compared the growth of offspring with different genotypes under contrasting levels of dietary phosphorus in both saltwater and freshwater. Eda genotype was not associated with growth differences in any treatment, or with mechanisms that could mitigate the impacts of phosphorus limitation, such as differential phosphorus deposition, phosphorus excretion, or intestine length. This study highlights the importance of experimentally testing the putative selective forces acting on phenotypes and their underlying genotypes in the wild.
Collapse
Affiliation(s)
- Sophie L. Archambeault
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Alex Wan
- Aquaculture Nutrition and Aquafeed Research Unit (ANARU), Carna Research Station, Ryan Institute, NUI Galway, Ireland
| | | | - Blake Matthews
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
9
|
Archambeault SL, Bärtschi LR, Merminod AD, Peichel CL. Adaptation via pleiotropy and linkage: Association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol Lett 2020; 4:282-301. [PMID: 32774879 PMCID: PMC7403726 DOI: 10.1002/evl3.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022] Open
Abstract
Genomic mapping of the loci associated with phenotypic evolution has revealed genomic "hotspots," or regions of the genome that control multiple phenotypic traits. This clustering of loci has important implications for the speed and maintenance of adaptation and could be due to pleiotropic effects of a single mutation or tight genetic linkage of multiple causative mutations affecting different traits. The threespine stickleback (Gasterosteus aculeatus) is a powerful model for the study of adaptive evolution because the marine ecotype has repeatedly adapted to freshwater environments across the northern hemisphere in the last 12,000 years. Freshwater ecotypes have repeatedly fixed a 16 kilobase haplotype on chromosome IV that contains Ectodysplasin (Eda), a gene known to affect multiple traits, including defensive armor plates, lateral line sensory hair cells, and schooling behavior. Many additional traits have previously been mapped to a larger region of chromosome IV that encompasses the Eda freshwater haplotype. To identify which of these traits specifically map to this adaptive haplotype, we made crosses of rare marine fish heterozygous for the freshwater haplotype in an otherwise marine genetic background. Further, we performed fine-scale association mapping in a fully interbreeding, polymorphic population of freshwater stickleback to disentangle the effects of pleiotropy and linkage on the phenotypes affected by this haplotype. Although we find evidence that linked mutations have small effects on a few phenotypes, a small 1.4-kb region within the first intron of Eda has large effects on three phenotypic traits: lateral plate count, and both the number and patterning of the posterior lateral line neuromasts. Thus, the Eda haplotype is a hotspot of adaptation in stickleback due to both a small, pleiotropic region affecting multiple traits as well as multiple linked mutations affecting additional traits.
Collapse
Affiliation(s)
- Sophie L. Archambeault
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| | - Luis R. Bärtschi
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
| | | | - Catherine L. Peichel
- Institute of Ecology and EvolutionUniversity of BernBern3012Switzerland
- Graduate Program in Molecular and Cellular BiologyUniversity of WashingtonSeattleWashington98195
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington98109
| |
Collapse
|
10
|
Moore MP, Martin RA. On the evolution of carry-over effects. J Anim Ecol 2019; 88:1832-1844. [PMID: 31402447 DOI: 10.1111/1365-2656.13081] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these 'carry-over effects' influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry-over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry-over effects. Carry-over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., 'adaptive decoupling'). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry-over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry-over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage-specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry-over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry-over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry-over effects that influence sexually selected traits.
Collapse
Affiliation(s)
- Michael P Moore
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Morris MRJ, Kaufman R, Rogers SM. Heterozygosity and asymmetry:
Ectodysplasin
as a form of genetic stress in marine threespine stickleback. Evolution 2019; 73:378-389. [DOI: 10.1111/evo.13678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew R. J. Morris
- Biological SciencesUniversity of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
- Current Address: Biological SciencesAmbrose University 150 Ambrose Cir SW Calgary AB T3H 0L5 Canada
| | - Rebecca Kaufman
- Biological SciencesUniversity of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| | - Sean M. Rogers
- Biological SciencesUniversity of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| |
Collapse
|
12
|
Hohenlohe PA, Magalhaes IS. The Population Genomics of Parallel Adaptation: Lessons from Threespine Stickleback. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_67] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Gould BA, Chen Y, Lowry DB. Gene regulatory divergence between locally adapted ecotypes in their native habitats. Mol Ecol 2018; 27:4174-4188. [PMID: 30168223 DOI: 10.1111/mec.14852] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023]
Abstract
Local adaptation is a key driver of ecological specialization and the formation of new species. Despite its importance, the evolution of gene regulatory divergence among locally adapted populations is poorly understood, especially how that divergence manifests in nature. Here, we evaluate gene expression divergence and allele-specific gene expression responses for locally adapted coastal perennial and inland annual accessions of the yellow monkeyflower, Mimulus guttatus, in a field reciprocal transplant experiment. Overall, 6765 (73%) of surveyed genes were differentially expressed between coastal and inland habitats, while 7213 (77%) were differentially expressed between the coastal perennial and inland annual accessions. Cis-regulatory variation was pervasive, affecting 79% (5532) of differentially expressed genes. We detected trans effects for 52% (3611) of differentially expressed genes. Expression plasticity of alleles across habitats (G × E interactions) appears to be relatively common (affecting 18% of transcripts) and could minimize fitness trade-offs at loci that contribute to local adaptation. We also found evidence that at least one chromosomal inversion may act as supergene by holding together haplotypes of differentially expressed genes, but this pattern depends on habitat context. Our results highlight multiple key patterns regarding the relationship between gene expression and the evolution of locally adapted populations.
Collapse
Affiliation(s)
- Billie A Gould
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Myriad Women's Health, South San Francisco, California
| | - Yani Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Morris MRJ, Bowles E, Allen BE, Jamniczky HA, Rogers SM. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol Biol 2018; 18:113. [PMID: 30021523 PMCID: PMC6052716 DOI: 10.1186/s12862-018-1228-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/03/2018] [Indexed: 11/25/2022] Open
Abstract
Background Populations that have repeatedly colonized novel environments are useful for studying the role of ecology in adaptive divergence – particularly if some individuals persist in the ancestral habitat. Such “contemporary ancestors” can be used to demonstrate the effects of selection by comparing phenotypic and genetic divergence between the derived population and their extant ancestors. However, evolution and demography in these “contemporary ancestors” can complicate inferences about the source (standing genetic variation, de novo mutation) and pace of adaptive divergence. Marine threespine stickleback (Gasterosteus aculeatus) have colonized freshwater environments along the Pacific coast of North America, but have also persisted in the marine environment. To what extent are marine stickleback good proxies of the ancestral condition? Results We sequenced > 5800 variant loci in over 250 marine stickleback from eight locations extending from Alaska to California, and phenotyped them for platedness and body shape. Pairwise FST varied from 0.02 to 0.18. Stickleback were divided into five genetic clusters, with a single cluster comprising stickleback from Washington to Alaska. Plate number, Eda, body shape, and candidate loci showed evidence of being under selection in the marine environment. Comparisons to a freshwater population demonstrated that candidate loci for freshwater adaptation varied depending on the choice of marine populations. Conclusions Marine stickleback are structured into phenotypically and genetically distinct populations that have been evolving as freshwater stickleback evolved. This variation complicates their usefulness as proxies of the ancestors of freshwater populations. Lessons from stickleback may be applied to other “contemporary ancestor”-derived population studies. Electronic supplementary material The online version of this article (10.1186/s12862-018-1228-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew R J Morris
- Department of Biology, Ambrose University, 150 Ambrose Circle SW, Calgary, AB, T3H 0L5, Canada.
| | - Ella Bowles
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Brandon E Allen
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Heather A Jamniczky
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
15
|
Melián CJ, Matthews B, de Andreazzi CS, Rodríguez JP, Harmon LJ, Fortuna MA. Deciphering the Interdependence between Ecological and Evolutionary Networks. Trends Ecol Evol 2018; 33:504-512. [DOI: 10.1016/j.tree.2018.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023]
|
16
|
Mück I, Heubel KU. Ecological variation along the salinity gradient in the Baltic Sea Area and its consequences for reproduction in the common goby. Curr Zool 2018; 64:259-270. [PMID: 30402067 PMCID: PMC5905452 DOI: 10.1093/cz/zoy006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/13/2018] [Indexed: 11/27/2022] Open
Abstract
Although it has become clear that sexual selection may shape mating systems and drive speciation, the potential constraints of environmental factors on processes and outcomes of sexual selection are largely unexplored. Here, we investigate the geographic variation of such environmental factors, more precisely the quality and quantity of nest resources (bivalve shells) along a salinity gradient in the Baltic Sea Area (Baltic Sea, Sounds and Belts, and Kattegat). We further test whether we find any salinity-associated morphological differences in body size between populations of common gobies Pomatoschistus microps, a small marine fish with a resource-based mating system. In a geographically expansive field study, we sampled 5 populations of P. microps occurring along the salinity gradient (decreasing from West to East) in the Baltic Sea Area over 3 consecutive years. Nest resource quantity and quality decreased from West to East, and a correlation between mussel size and male body size was detected. Population density, sex ratios, mating- and reproductive success as well as brood characteristics also differed between populations but with a less clear relation to salinity. With this field study we shed light on geographic variation of distinct environmental parameters possibly acting on population differentiation. We provide insights on relevant ecological variation, and draw attention to its importance in the framework of context-dependent plasticity of sexual selection.
Collapse
Affiliation(s)
- Isabel Mück
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Katja U Heubel
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Institute for Zoology, Ecological Research Station Rees, University of Cologne, Grietherbusch 3a, D-46459 Rees, Germany
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | | |
Collapse
|
17
|
Østbye K, Taugbøl A, Ravinet M, Harrod C, Pettersen RA, Bernatchez L, Vøllestad LA. Ongoing niche differentiation under high gene flow in a polymorphic brackish water threespine stickleback (Gasterosteus aculeatus) population. BMC Evol Biol 2018; 18:14. [PMID: 29402230 PMCID: PMC5800020 DOI: 10.1186/s12862-018-1128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine threespine sticklebacks colonized and adapted to brackish and freshwater environments since the last Pleistocene glacial. Throughout the Holarctic, three lateral plate morphs are observed; the low, partial and completely plated morph. We test if the three plate morphs in the brackish water Lake Engervann, Norway, differ in body size, trophic morphology (gill raker number and length), niche (stable isotopes; δ15N, δ13C, and parasites (Theristina gasterostei, Trematoda spp.)), genetic structure (microsatellites) and the lateral-plate encoding Stn382 (Ectodysplasin) gene. We examine differences temporally (autumn 2006/spring 2007) and spatially (upper/lower sections of the lake - reflecting low versus high salinity). RESULTS All morphs belonged to one gene pool. The complete morph was larger than the low plated, with the partial morph intermediate. The number of lateral plates ranged 8-71, with means of 64.2 for complete, 40.3 for partial, and 14.9 for low plated morph. Stickleback δ15N was higher in the lower lake section, while δ13C was higher in the upper section. Stickleback isotopic values were greater in autumn. The low plated morph had larger variances in δ15N and δ13C than the other morphs. Sticklebacks in the upper section had more T. gasterostei than in the lower section which had more Trematoda spp. Sticklebacks had less T. gasterostei, but more Trematoda spp. in autumn than spring. Sticklebacks with few and short rakers had more T. gasterostei, while sticklebacks with longer rakers had more Trematoda. spp. Stickleback with higher δ15N values had more T. gasterostei, while sticklebacks with higher δ15N and δ13C values had more Trematoda spp. The low plated morph had fewer Trematoda spp. than other morphs. CONCLUSIONS Trait-ecology associations may imply that the three lateral plate morphs in the brackish water lagoon of Lake Engervann are experiencing ongoing divergent selection for niche and migratory life history strategies under high gene flow. As such, the brackish water zone may generally act as a generator of genomic diversity to be selected upon in the different environments where threespine sticklebacks can live.
Collapse
Affiliation(s)
- Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO2418 Elverum, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Annette Taugbøl
- Norwegian Institute for nature research (NINA), Fakkelgården, 2624 Lillehammer, Norway
| | - Mark Ravinet
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Chris Harrod
- Department of Physiological Ecology, Max Planck Institute for Limnology, Postfach 165, D-24302 Plön, Germany
- Universidad de Antofagasta, Fish and Stable Isotope Ecology Laboratory, Instituto de Ciencias Naturales Alexander von Humbolt, Avenida Angamos, 601 Antofagasta, Chile
| | - Ruben Alexander Pettersen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Louis Bernatchez
- Department of Biology, Université Laval, Pavillon Charles-Eugène-Marchand 1030, Avenue de la Medecine, Quebec, G1V 0A6 Canada
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
18
|
Low temperature and low salinity drive putatively adaptive growth differences in populations of threespine stickleback. Sci Rep 2017; 7:16766. [PMID: 29196675 PMCID: PMC5711929 DOI: 10.1038/s41598-017-16919-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Colonisation can expose organisms to novel combinations of abiotic and biotic factors and drive adaptive divergence. Yet, studies investigating the interactive effects of multiple abiotic factors on the evolution of physiological traits remain rare. Here we examine the effects of low salinity, low temperature, and their interaction on the growth of three North American populations of threespine stickleback (Gasterosteus aculeatus). In north-temperate freshwater habitats, stickleback populations experience a combination of low salinity and low winter temperatures that are not experienced by the ancestral marine and anadromous populations. Here we show that both salinity and temperature, and their interaction, have stronger negative effects on marine and anadromous populations than a freshwater population. Freshwater stickleback showed only a ~20% reduction in specific growth rate when exposed to 4 °C, while marine and anadromous stickleback showed sharp declines (82% and 74% respectively) under these conditions. The modest decreases in growth in freshwater stickleback in fresh water in the cold strongly suggest that this population has the capacity for physiological compensation to offset the negative thermodynamic effects of low temperature on growth. These results are suggestive of adaptive evolution in response to the interactive effects of low salinity and low temperature during freshwater colonisation.
Collapse
|
19
|
Durston DJ, El‐Sabaawi RW. Bony traits and genetics drive intraspecific variation in vertebrate elemental composition. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Robertson S, Bradley JE, MacColl ADC. Eda haplotypes in three-spined stickleback are associated with variation in immune gene expression. Sci Rep 2017; 7:42677. [PMID: 28195171 PMCID: PMC5307360 DOI: 10.1038/srep42677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
Haplotypes underlying local adaptation and speciation are predicted to have numerous phenotypic effects, but few genes involved have been identified, with much work to date concentrating on visible, morphological, phenotypes. The link between genes controlling these adaptive morphological phenotypes and the immune system has seldom been investigated, even though changes in the immune system could have profound adaptive consequences. The Eda gene in three-spined stickleback is one of the best studied major adaptation genes; it directly controls bony plate architecture and has been associated with additional aspects of adaptation to freshwater. Here, we exposed F2 hybrids, used to separate Eda genotype from genetic background, to contrasting conditions in semi-natural enclosures. We demonstrate an association between the Eda haplotype block and the expression pattern of key immune system genes. Furthermore, low plated fish grew less and experienced higher burdens of a common ectoparasite with fitness consequences. Little is currently known about the role of the immune system in facilitating adaptation to novel environments, but this study provides an indication of its potential importance.
Collapse
Affiliation(s)
- Shaun Robertson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
21
|
Saltz JB, Hessel FC, Kelly MW. Trait Correlations in the Genomics Era. Trends Ecol Evol 2017; 32:279-290. [PMID: 28139251 DOI: 10.1016/j.tree.2016.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/30/2023]
Abstract
Thinking about the evolutionary causes and consequences of trait correlations has been dominated by quantitative genetics theory that is focused on hypothetical loci. Since this theory was initially developed, technology has enabled the identification of specific genetic variants that contribute to trait correlations. Here, we review studies of the genetic basis of trait correlations to ask: What has this new information taught us? We find that causal variants can be pleiotropic and/or linked in different ways, indicating that pleiotropy and linkage are not alternative genetic mechanisms. Further, many trait correlations have a polygenic basis, suggesting that both pleiotropy and linkage likely contribute. We discuss implications of these findings for the evolutionary causes and consequences of trait correlations.
Collapse
Affiliation(s)
- Julia B Saltz
- Rice University,6100 Main Street, Houston, TX 77005, USA.
| | - Frances C Hessel
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Morgan W Kelly
- Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
22
|
Chavarie L, Muir AM, Zimmerman MS, Baillie SM, Hansen MJ, Nate NA, Yule DL, Middel T, Bentzen P, Krueger CC. Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a small postglacial lake. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Louise Chavarie
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| | - Andrew M. Muir
- Great Lakes Fishery Commission; 2100 Commonwealth Blvd. Suite 100 Ann Arbor Michigan USA
| | - Mara S. Zimmerman
- Washington Department of Fish and Wildlife; 600 Capitol Way N. Olympia Washington USA
| | - Shauna M. Baillie
- Department of Biology; Dalhousie University; 1355 Oxford St. Halifax Nova Scotia Canada
| | - Michael J. Hansen
- United States Geological Survey; Hammond Bay Biological Station; 11188 Ray Road Millersburg Michigan USA
| | - Nancy A. Nate
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| | - Daniel L. Yule
- United States Geological Survey; Lake Superior Biological Station; 2800 Lakeshore Drive Ashland Wisconsin USA
| | - Trevor Middel
- Harkness Laboratory of Fisheries Research; Ontario Ministry of Natural Resources and Forestry; Trent University; 2140 East Bank Drive Peterborough Ontario Canada
| | - Paul Bentzen
- Department of Biology; Dalhousie University; 1355 Oxford St. Halifax Nova Scotia Canada
| | - Charles C. Krueger
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| |
Collapse
|
23
|
Variation in Lateral Plate Quality in Threespine Stickleback from Fresh, Brackish and Marine Water: A Micro-Computed Tomography Study. PLoS One 2016; 11:e0164578. [PMID: 27764140 PMCID: PMC5072691 DOI: 10.1371/journal.pone.0164578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/27/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction It is important to understand the drivers leading to adaptive phenotypic diversity within and among species. The threespine stickleback (Gasterosteus aculeatus) has become a model system for investigating the genetic and phenotypic responses during repeated colonization of fresh waters from the original marine habitat. During the freshwater colonization process there has been a recurrent and parallel reduction in the number of lateral bone plates, making it a suitable system for studying adaptability and parallel evolution. Objective The aim of this study was to investigate an alternative evolutionary path of lateral plate reduction, where lateral plates are reduced in size rather than number. Materials and Methods A total of 72 threespine stickleback individuals from freshwater (n = 54), brackish water (n = 27) and marine water (n = 9) were analysed using microcomputed tomography (μCT) to determine variation in size, thickness and structure of the lateral plates. Furthermore, whole-body bone volume, and bone volume, bone surface and porosity of lateral plate number 4 were quantified in all specimens from each environment. Results The results showed a significant difference in plate size (area and volume) among populations, where threespine stickleback from polymorphic freshwater and brackish water populations displayed lateral plates reduced in size (area and volume) compared to marine stickleback Conclusions Reduction of lateral plates in threespine stickleback in fresh and brackish water occurs by both plate loss and reduction in plate size (area and volume).
Collapse
|
24
|
Wood CW, Brodie ED. Environmental effects on the structure of the G-matrix. Evolution 2016; 69:2927-40. [PMID: 26462609 DOI: 10.1111/evo.12795] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments.
Collapse
Affiliation(s)
- Corlett W Wood
- Mountain Lake Biological Station, and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.
| | - Edmund D Brodie
- Mountain Lake Biological Station, and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
25
|
Wood CW, Brodie ED. Evolutionary response when selection and genetic variation covary across environments. Ecol Lett 2016; 19:1189-200. [DOI: 10.1111/ele.12662] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Corlett W. Wood
- Mountain Lake Biological Station and Department of Biology University of Virginia Charlottesville VA22904 USA
| | - Edmund D. Brodie
- Mountain Lake Biological Station and Department of Biology University of Virginia Charlottesville VA22904 USA
| |
Collapse
|
26
|
Hansson TH, Fischer B, Mazzarella AB, Voje KL, Vøllestad LA. Lateral plate number in low-plated threespine stickleback: a study of plasticity and heritability. Ecol Evol 2016; 6:3154-60. [PMID: 27096076 PMCID: PMC4829041 DOI: 10.1002/ece3.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/06/2022] Open
Abstract
In the threespine stickleback Gasterosteus aculeatus model system, phenotypes are often classified into three morphs according to lateral plate number. Morph identity has been shown to be largely genetically determined, but substantial within-morph variation in plate number exists. In this study, we test whether plate number has a plastic component in response to salinity in the low-plated morph using a split-clutch experiment where families were split in two, one half raised in water at 0 and the other at 30 ppt salt. We find a small salinity-induced plastic effect on plate number in an unexpected direction, opposite to what we predicted: Fish raised in freshwater on average have slightly more plates than fish raised in saltwater. Our results confirm that heritability of plate number is high. Additionally, we find that variance in plate number at the family level can be predicted from other family level traits, which might indicate that epistatic interactions play a role in creating the observed pattern of lateral plate number variation.
Collapse
Affiliation(s)
- Truls H Hansson
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern N-0316 Oslo Norway
| | - Barbara Fischer
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern N-0316 Oslo Norway; Department of Theoretical Biology University of Vienna Althanstrasse 141090 Vienna Austria; Konrad Lorenz Institute for Evolution and Cognition Research Martinstrasse 12A-3400 Klosterneuburg Austria
| | - Anna B Mazzarella
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern N-0316 Oslo Norway
| | - Kjetil L Voje
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern N-0316 Oslo Norway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern N-0316 Oslo Norway
| |
Collapse
|
27
|
El-Sabaawi RW, Warbanski ML, Rudman SM, Hovel R, Matthews B. Investment in boney defensive traits alters organismal stoichiometry and excretion in fish. Oecologia 2016; 181:1209-20. [PMID: 27075487 DOI: 10.1007/s00442-016-3599-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/28/2016] [Indexed: 01/29/2023]
Abstract
Understanding how trait diversification alters ecosystem processes is an important goal for ecological and evolutionary studies. Ecological stoichiometry provides a framework for predicting how traits affect ecosystem function. The growth rate hypothesis of ecological stoichiometry links growth and phosphorus (P) body composition in taxa where nucleic acids are a significant pool of body P. In vertebrates, however, most of the P is bound within bone, and organisms with boney structures can vary in terms of the relative contributions of bones to body composition. Threespine stickleback populations have substantial variation in boney armour plating. Shaped by natural selection, this variation provides a model system to study the links between evolution of bone content, elemental body composition, and P excretion. We measure carbon:nitrogen:P body composition from stickleback populations that vary in armour phenotype. We develop a mechanistic mass-balance model to explore factors affecting P excretion, and measure P excretion from two populations with contrasting armour phenotypes. Completely armoured morphs have higher body %P but excrete more P per unit body mass than other morphs. The model suggests that such differences are driven by phenotypic differences in P intake as well as body %P composition. Our results show that while investment in boney traits alters the elemental composition of vertebrate bodies, excretion rates depend on how acquisition and assimilation traits covary with boney trait investment. These results also provide a stoichiometric hypothesis to explain the repeated loss of boney armour in threespine sticklebacks upon colonizing freshwater ecosystems.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Biology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Misha L Warbanski
- Department of Biology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Seth M Rudman
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Rachel Hovel
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA
| | - Blake Matthews
- Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Eawag, Kastanienbaum, 6047, Switzerland
| |
Collapse
|
28
|
Bowles E, Johnston RA, Vanderzwan SL, Rogers SM. Genetic basis for body size variation between an anadromous and two derived lacustrine populations of threespine stickleback Gasterosteus aculeatus in southwest Alaska. Curr Zool 2016; 62:71-78. [PMID: 29491893 PMCID: PMC5804130 DOI: 10.1093/cz/zov007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/23/2015] [Indexed: 12/15/2022] Open
Abstract
Body size is a highly variable trait among geographically separated populations. Size-assortative reproductive isolation has been linked to recent adaptive radiations of threespine stickleback (Gasterosteus aculeatus) into freshwater, but the genetic basis of the commonly found size difference between anadromous and derived lacustrine sticklebacks has not been tested. We studied the genetic basis of size differences between recently diverging stickleback lineages in southwest Alaska using a common environment experiment. We crossed stickleback within one anadromous (Naknek River) and one lake (Pringle Lake) population and between the anadromous and two lake populations (Pringle and JoJo Lakes), and raised them in a salinity of 4–6 ppt. The F1 anadromous and freshwater forms differed significantly in size, whereas hybrids were intermediate or exhibited dominance toward the anadromous form. Additionally, the size of freshwater F1s differed from their wild counterparts, with within-population F1s from Pringle Lake growing larger than their wild counterparts, while there was no size difference between lab-raised and wild anadromous fish. Sexual dimorphism was always present in anadromous fish, but not in freshwater, and not always in the hybrid crosses. These results, along with parallel changes among anadromous and freshwater forms in other regions, suggest that this heritable trait is both plastic and may be under divergent and/or sexual selection.
Collapse
Affiliation(s)
- Ella Bowles
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Rebecca A Johnston
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Stevi L Vanderzwan
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
29
|
Gibbons TC, Rudman SM, Schulte PM. Responses to simulated winter conditions differ between threespine stickleback ecotypes. Mol Ecol 2016; 25:764-75. [DOI: 10.1111/mec.13507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Taylor C. Gibbons
- Biodiversity Research Centre; Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Seth M. Rudman
- Biodiversity Research Centre; Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Biodiversity Research Centre; Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
30
|
Pavličev M, Cheverud JM. Constraints Evolve: Context Dependency of Gene Effects Allows Evolution of Pleiotropy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091721] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihaela Pavličev
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229;
| | | |
Collapse
|
31
|
Foster SA, Wund MA, Graham MA, Earley RL, Gardiner R, Kearns T, Baker JA. Iterative development and the scope for plasticity: contrasts among trait categories in an adaptive radiation. Heredity (Edinb) 2015; 115:335-48. [PMID: 26243135 PMCID: PMC4815453 DOI: 10.1038/hdy.2015.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
Phenotypic plasticity can influence evolutionary change in a lineage, ranging from facilitation of population persistence in a novel environment to directing the patterns of evolutionary change. As the specific nature of plasticity can impact evolutionary consequences, it is essential to consider how plasticity is manifested if we are to understand the contribution of plasticity to phenotypic evolution. Most morphological traits are developmentally plastic, irreversible, and generally considered to be costly, at least when the resultant phenotype is mis-matched to the environment. At the other extreme, behavioral phenotypes are typically activational (modifiable on very short time scales), and not immediately costly as they are produced by constitutive neural networks. Although patterns of morphological and behavioral plasticity are often compared, patterns of plasticity of life history phenotypes are rarely considered. Here we review patterns of plasticity in these trait categories within and among populations, comprising the adaptive radiation of the threespine stickleback fish Gasterosteus aculeatus. We immediately found it necessary to consider the possibility of iterated development, the concept that behavioral and life history trajectories can be repeatedly reset on activational (usually behavior) or developmental (usually life history) time frames, offering fine tuning of the response to environmental context. Morphology in stickleback is primarily reset only in that developmental trajectories can be altered as environments change over the course of development. As anticipated, the boundaries between the trait categories are not clear and are likely to be linked by shared, underlying physiological and genetic systems.
Collapse
Affiliation(s)
- S A Foster
- Department of Biology, Clark University, Worcester, MA, USA
| | - M A Wund
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - M A Graham
- Department of Biology, Clark University, Worcester, MA, USA
| | - R L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - R Gardiner
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - T Kearns
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - J A Baker
- Department of Biology, Clark University, Worcester, MA, USA
| |
Collapse
|
32
|
Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes. Mol Ecol 2015; 24:4159-74. [PMID: 26179373 DOI: 10.1111/mec.13309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/19/2015] [Accepted: 07/03/2015] [Indexed: 01/19/2023]
Abstract
Evolution of ecomorphologically relevant traits such as body shapes is important to colonize and persist in a novel environment. Habitat-related adaptive divergence of these traits is therefore common among animals. We studied the genomic architecture of habitat-related divergence in the body shape of Gnathopogon fishes, a novel example of lake-stream ecomorphological divergence, and tested for the action of directional selection on body shape differentiation. Compared to stream-dwelling Gnathopogon elongatus, the sister species Gnathopogon caerulescens, exclusively inhabiting a large ancient lake, had an elongated body, increased proportion of the caudal region and small head, which would be advantageous in the limnetic environment. Using an F2 interspecific cross between the two Gnathopogon species (195 individuals), quantitative trait locus (QTL) analysis with geometric morphometric quantification of body shape and restriction-site associated DNA sequencing-derived markers (1622 loci) identified 26 significant QTLs associated with the interspecific differences of body shape-related traits. These QTLs had small to moderate effects, supporting polygenic inheritance of the body shape-related traits. Each QTL was mostly located on different genomic regions, while colocalized QTLs were detected for some ecomorphologically relevant traits that are proxy of body and caudal peduncle depths, suggesting different degree of modularity among traits. The directions of the body shape QTLs were mostly consistent with the interspecific difference, and QTL sign test suggested a genetic signature of directional selection in the body shape divergence. Thus, we successfully elucidated the genomic architecture underlying the adaptive changes of the quantitative and complex morphological trait in a novel system.
Collapse
Affiliation(s)
- Ryo Kakioka
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, 1-1 Gakuen-cho, Obama, 917-0003, Japan
| | - Hiroki Kumada
- Department of Marine Bioscience, Fukui Prefectural University, 1-1 Gakuen-cho, Obama, 917-0003, Japan
| | - Katsutoshi Watanabe
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Noboru Okuda
- Center for Ecological Research, Kyoto University, 509-3 Hirano 2-chome, Otsu, 520-2113, Japan
| |
Collapse
|
33
|
Ravinet M, Hynes R, Poole R, Cross TF, McGinnity P, Harrod C, Prodöhl PA. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks. PLoS One 2015; 10:e0122825. [PMID: 25874617 PMCID: PMC4397041 DOI: 10.1371/journal.pone.0122825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/14/2015] [Indexed: 11/28/2022] Open
Abstract
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.
Collapse
Affiliation(s)
- Mark Ravinet
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rosaleen Hynes
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Russell Poole
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Tom F. Cross
- Aquaculture, Fisheries and Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Phil McGinnity
- Aquaculture, Fisheries and Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Chris Harrod
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paulo A. Prodöhl
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Rennison DJ, Heilbron K, Barrett RDH, Schluter D. Discriminating selection on lateral plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback. Am Nat 2014; 185:150-6. [PMID: 25560560 DOI: 10.1086/679280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
When a signature of natural selection is discovered on a gene that is pleiotropic or in tight linkage with other genes, it is challenging to determine which of the affected phenotypes is under selection. One way to make progress is to employ methods for analyzing natural selection on correlated traits, including both genotype and phenotype. We used this approach in threespine stickleback to estimate selection on a rapidly evolving trait, lateral armor plates, while controlling for variation at its major underlying gene, Ectodysplasin (Eda), and vice versa. This allowed for independent estimates of selection on lateral plates and on Eda via other traits. Previously, we demonstrated allele frequency changes at Eda in a pond experiment. Here we show that this resulted from selection on both plates and on Eda, implying additional selection on other phenotypic traits affected by the same gene. This represents the first evidence for direct selection on lateral plates independent of selection on the Eda locus and highlights the value of measuring selection on both phenotypes and genotypes in studies of adaptation.
Collapse
Affiliation(s)
- Diana J Rennison
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | |
Collapse
|
35
|
Küttner E, Parsons KJ, Easton AA, Skúlason S, Danzmann RG, Ferguson MM. Hidden genetic variation evolves with ecological specialization: the genetic basis of phenotypic plasticity in Arctic charr ecomorphs. Evol Dev 2014; 16:247-57. [PMID: 24920458 DOI: 10.1111/ede.12087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The genetic variance that determines phenotypic variation can change across environments through developmental plasticity and in turn play a strong role in evolution. Induced changes in genotype-phenotype relationships should strongly influence adaptation by exposing different sets of heritable variation to selection under some conditions, while also hiding variation. Therefore, the heritable variation exposed or hidden from selection is likely to differ among habitats. We used ecomorphs from two divergent populations of Arctic charr (Salvelinus alpinus) to test the prediction that genotype-phenotype relationships would change in relation to environment. If present over several generations this should lead to divergence in genotype-phenotype relationships under common conditions, and to changes in the amount and type of hidden genetic variance that can evolve. We performed a common garden experiment whereby two ecomorphs from each of two Icelandic lakes were reared under conditions that mimicked benthic and limnetic prey to induce responses in craniofacial traits. Using microsatellite based genetic maps, we subsequently detected QTL related to these craniofacial traits. We found substantial changes in the number and type of QTL between diet treatments and evidence that novel diet treatments can in some cases provide a higher number of QTL. These findings suggest that selection on phenotypic variation, which is both genetically and environmentally determined, has shaped the genetic architecture of adaptive divergence in Arctic charr. However, while adaptive changes are occurring in the genome there also appears to be an accumulation of hidden genetic variation for loci not expressed in the contemporary environment.
Collapse
Affiliation(s)
- Eva Küttner
- Department of Integrative Biology, University of Guelph, Guelph, 50 Stone Road West, ON, Canada, N1G 2W1
| | | | | | | | | | | |
Collapse
|
36
|
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A. Genomics and the origin of species. Nat Rev Genet 2014; 15:176-92. [PMID: 24535286 DOI: 10.1038/nrg3644] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.
Collapse
Affiliation(s)
- Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Roger K Butlin
- Department of Animal and Plant Sciences, the University of Sheffield, Sheffield S10 2TN, UK; and the Sven Lovén Centre - Tjärnö, University of Gothenburg, S-452 96 Strömstad, Sweden
| | - Irene Keller
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; and the Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| | - Catherine E Wagner
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Janette W Boughman
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Department of Zoology; Ecology, Evolutionary Biology and Behavior Program; BEACON Center, Michigan State University, 203 Natural Sciences, East Lansing, Michigan 48824, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute of Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844-3051, USA
| | - Catherine L Peichel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Glenn-Peter Saetre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO BOX 1066, Blindern, N-0316 Oslo, Norway
| | - Claudia Bank
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ake Brännström
- Integrated Science Laboratory and the Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Fabrice Eroukhmanoff
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO BOX 1066, Blindern, N-0316 Oslo, Norway
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369 USA
| | - Martin C Fischer
- Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| | - Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark. Present address: the Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kay Lucek
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; and the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Martine E Maan
- Behavioural Biology Group, Centre for Behaviour and Neurosciences, University of Groningen, PO BOX 11103, 9700 CC Groningen, The Netherlands
| | - David A Marques
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, and the Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Blake Matthews
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Joana I Meier
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, and the Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Markus Möst
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; and the Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA
| | - Etsuko Nonaka
- Integrated Science Laboratory and Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Diana J Rennison
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Julia Schwarzer
- Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland; the Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; and Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Eric T Watson
- Department of Biology, The University of Texas at Arlington, 76010-0498 Texas, USA
| | - Anja M Westram
- Department of Animal and Plant Sciences, the University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zürich, ETH Zentrum CHN, 8092 Zürich, Switzerland
| |
Collapse
|
37
|
Schielzeth H, Husby A. Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Ann N Y Acad Sci 2014; 1320:35-57. [PMID: 24689944 DOI: 10.1111/nyas.12397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that facilitate or impede evolutionary adaptation in natural populations. For this, we must understand the genetic loci contributing to trait variation and the selective forces acting on them. The decreased costs and increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated gene mapping in natural populations, particularly because organisms whose genetics have been historically difficult to study are now within reach. Here we review the methods available to evolutionary ecologists interested in dissecting the genetic basis of traits in natural populations. Our focus lies on standing genetic variation in outbred populations. We present an overview of the current state of research in the field, covering studies on both plants and animals. We also draw attention to particular challenges associated with the discovery of quantitative trait loci and discuss parallels to studies on crops, livestock, and humans. Finally, we point to some likely future developments in genetic mapping studies.
Collapse
Affiliation(s)
- Holger Schielzeth
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
38
|
Berner D, Moser D, Roesti M, Buescher H, Salzburger W. GENETIC ARCHITECTURE OF SKELETAL EVOLUTION IN EUROPEAN LAKE AND STREAM STICKLEBACK. Evolution 2014; 68:1792-805. [DOI: 10.1111/evo.12390] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Daniel Berner
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Dario Moser
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Marius Roesti
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Heinz Buescher
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Walter Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| |
Collapse
|
39
|
Mills MG, Greenwood AK, Peichel CL. Pleiotropic effects of a single gene on skeletal development and sensory system patterning in sticklebacks. EvoDevo 2014; 5:5. [PMID: 24499504 PMCID: PMC3976036 DOI: 10.1186/2041-9139-5-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Adaptation to a new environment can be facilitated by co-inheritance of a suite of phenotypes that are all advantageous in the new habitat. Although experimental evidence demonstrates that multiple phenotypes often map to the same genomic regions, it is challenging to determine whether phenotypes are associated due to pleiotropic effects of a single gene or to multiple tightly linked genes. In the threespine stickleback fish (Gasterosteus aculeatus), multiple phenotypes are associated with a genomic region around the gene Ectodysplasin (Eda), but only the presence of bony lateral plates has been conclusively shown to be caused by Eda. Results Here, we ask whether pleiotropy or linkage is responsible for the association between lateral plates and the distribution of the neuromasts of the lateral line. We first identify a strong correlation between plate appearance and changes in the spatial distribution of neuromasts through development. We then use an Eda transgene to induce the formation of ectopic plates in low plated fish, which also results in alterations to neuromast distribution. Our results also show that other loci may modify the effects of Eda on plate formation and neuromast distribution. Conclusions Together, these results demonstrate that Eda has pleiotropic effects on at least two phenotypes, highlighting the role of pleiotropy in the genetic basis of adaptation.
Collapse
Affiliation(s)
| | | | - Catherine L Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA, 98109, USA.
| |
Collapse
|
40
|
DeFaveri J, Merilä J. Local adaptation to salinity in the three-spined stickleback? J Evol Biol 2013; 27:290-302. [PMID: 24330503 DOI: 10.1111/jeb.12289] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023]
Abstract
Different lines of evidence suggest that the occurrence and extent of local adaptation in high gene flow marine environments - even in mobile and long-lived vertebrates with complex life cycles - may be more widespread than earlier thought. We conducted a common garden experiment to test for local adaptation to salinity in Baltic Sea sticklebacks (Gasterosteus aculeatus). Fish from three different native salinity regimes (high, mid and low) were subjected to three salinity treatments (high, mid and low) in a full-factorial experimental design. Irrespective of their origin, fish subjected to low (and mid) salinity treatments exhibited higher juvenile survival, grew to largest sizes and were in better condition than fish subjected to the high salinity treatment. However, a significant interaction between native and treatment salinities - resulting mainly from the poor performance of fish native to low salinity in the high salinity treatment - provided clear cut evidence for adaptation to local variation in salinity. Additional support for this inference was provided by the fact that the results concur with an earlier demonstration of significant differentiation in a number of genes with osmoregulatory functions across the same populations and that the population-specific responses to salinity treatments exceeded that to be expected by random genetic drift.
Collapse
Affiliation(s)
- J DeFaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
41
|
Raeymaekers JAM, Konijnendijk N, Larmuseau MHD, Hellemans B, De Meester L, Volckaert FAM. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow. Mol Ecol 2013; 23:162-81. [PMID: 24192132 DOI: 10.1111/mec.12582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three-spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low-plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North-western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta-analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.
Collapse
Affiliation(s)
- Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, Leuven, B-3000, Belgium; Zoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Bradic M, Teotónio H, Borowsky RL. The population genomics of repeated evolution in the blind cavefish Astyanax mexicanus. Mol Biol Evol 2013; 30:2383-400. [PMID: 23927992 PMCID: PMC3808867 DOI: 10.1093/molbev/mst136] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment.
Collapse
|
43
|
DeFaveri J, Merilä J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J Evol Biol 2013; 26:1700-15. [DOI: 10.1111/jeb.12168] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022]
Affiliation(s)
- J. DeFaveri
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; Helsinki Finland
| | - J. Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
44
|
Culumber ZW, Bautista-Hernández CE, Monks S. Physiological stress and the maintenance of adaptive genetic variation in a livebearing fish. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9663-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Ishikawa A, Takeuchi N, Kusakabe M, Kume M, Mori S, Takahashi H, Kitano J. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. J Evol Biol 2013; 26:1417-30. [PMID: 23663028 DOI: 10.1111/jeb.12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 01/19/2013] [Accepted: 02/11/2013] [Indexed: 01/28/2023]
Abstract
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish-water type of the P. pungitius-P. sinensis species complex. They utilize divergent habitats along coast-stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well-established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage-specific patterns of phenotypic diversification.
Collapse
Affiliation(s)
- A Ishikawa
- Ecological Genetics Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Moser D, Roesti M, Berner D. Repeated lake-stream divergence in stickleback life history within a Central European lake basin. PLoS One 2012; 7:e50620. [PMID: 23226528 PMCID: PMC3514289 DOI: 10.1371/journal.pone.0050620] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence.
Collapse
Affiliation(s)
- Dario Moser
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
| | - Daniel Berner
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Grøtan K, Østbye K, Taugbøl A, Vøllestad LA. No short-term effect of salinity on oxygen consumption in threespine stickleback (Gasterosteus aculeatus) from fresh, brackish, and salt water. CAN J ZOOL 2012. [DOI: 10.1139/cjz-2012-0121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine threespine stickleback ( Gasterosteus aculatus L., 1758) have repeatedly colonized Holarctic freshwater environments after the retreat of the Pleistocene glaciers, and based on their ability to move rapidly between salinities have apparently retained a robust osmoregulatory apparatus that can cope with both short- and long-term exposure to non-native salinity environments. Standard metabolic rate (SMR), measured as oxygen consumption at rest, can be used as an indicator of the cost of osmoregulation when fish are exposed to new environmental conditions. Following freshwater colonization, reduction in the number of lateral plates, an antipredator defence structure, is common. Completely plated fish dominate in the sea, low-plated fish dominate in fresh water, and partially plated fish often dominate in brackish water environments. In a laboratory experiment, we estimated SMR in locally adapted populations from salt, brackish, and freshwater environments at three different salinities (0, 15, and 30 practical salinity units (PSU)). In addition, we tested for correlations between SMR and lateral plate number and lateral plate genotype at the Ectodysplasin locus for stickleback originating from the brackish water population. Contrary to our expectations, no differences were found in SMR between any of the experimental groups in our experiment. Apparently, the threespine stickleback is able to move among salinity environments without large short-term metabolic costs, irrespective of their environment of origin.
Collapse
Affiliation(s)
- Kyrre Grøtan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Kjartan Østbye
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
- Department of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, NO-2418 Elverum, Norway
| | - Annette Taugbøl
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - L. Asbjørn Vøllestad
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
48
|
Gratten J, Pilkington JG, Brown EA, Clutton-Brock TH, Pemberton JM, Slate J. Selection and microevolution of coat pattern are cryptic in a wild population of sheep. Mol Ecol 2012; 21:2977-90. [PMID: 22432567 DOI: 10.1111/j.1365-294x.2012.05536.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the maintenance of genetic variation in natural populations is a core aim of evolutionary genetics. Insight can be gained by quantifying selection at the level of the genotype, as opposed to the phenotype. Here, we show that in a natural population of Soay sheep which is polymorphic for coat pattern, recessive genetic variants at the causal gene, agouti signalling protein (ASIP) are associated with reduced lifetime fitness. This was due primarily to a reduction in juvenile survival of uniformly coloured (self-type) sheep, which are homozygous recessive, and occurs despite significantly higher reproductive success in surviving self-type adults. Consistent with their relatively low fitness, we show that the frequency of self-type individuals has declined from 1985 to 2008. Remarkably though, the frequency of the underlying self-allele has increased, because the frequency of heterozygous individuals (who harbour the majority of all self-alleles) has increased. Indeed, the ratio of observed/expected heterozygous individuals has increased during the study, such that there is now a significant excess of heterozygotyes. By employing gene-dropping simulations, we show that microevolutionary trends in the frequency and excess of ASIP heterozygotes are too pronounced to be caused by genetic drift. Studying this polymorphism at the level of phenotype rather than underlying genotype would have failed to detect cryptic fitness differences. We would also have been unable to rule out genetic drift as an evolutionary force driving genetic change. This highlights the importance of resolving the underlying genetic basis of phenotypic variation in explaining evolutionary dynamics.
Collapse
Affiliation(s)
- J Gratten
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
49
|
A model of developmental evolution: selection, pleiotropy and compensation. Trends Ecol Evol 2012; 27:316-22. [PMID: 22385978 DOI: 10.1016/j.tree.2012.01.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 11/20/2022]
Abstract
Development and physiology translate genetic variation into phenotypic variation and determine the genotype-phenotype map, such as which gene affects which character (pleiotropy). Any genetic change in this mapping reflects a change in development. Here, we discuss evidence for variation in pleiotropy and propose the selection, pleiotropy and compensation model (SPC) for adaptive evolution. It predicts that adaptive change in one character is associated with deleterious pleiotropy in others and subsequent selection to compensate for these pleiotropic effects. The SPC model provides a unifying perspective for a variety of puzzling phenomena, including developmental systems drift and character homogenization. The model suggests that most adaptive signatures detected in genome scans could be the result of compensatory changes, rather than of progressive character adaptations.
Collapse
|
50
|
Dalziel AC, Ou M, Schulte PM. Mechanisms underlying parallel reductions in aerobic capacity in non-migratory threespine stickleback (Gasterosteus aculeatus) populations. J Exp Biol 2012; 215:746-59. [DOI: 10.1242/jeb.065425] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SUMMARY
Non-migratory, stream-resident populations of threespine stickleback, Gasterosteus aculeatus, have a lower maximum oxygen consumption (ṀO2,max) than ancestral migratory marine populations. Here, we examined laboratory-bred stream-resident and marine crosses from two locations (West and Bonsall Creeks) to determine which steps in the oxygen transport and utilization cascade evolved in conjunction with, and thus have the potential to contribute to, these differences in ṀO2,max. We found that West Creek stream-resident fish have larger muscle fibres (not measured in Bonsall fish), Bonsall Creek stream-resident fish have smaller ventricles, and both stream-resident populations have evolved smaller pectoral adductor and abductor muscles. However, many steps of the oxygen cascade did not evolve in stream-resident populations (gill surface area, hematocrit, mean cellular hemoglobin content and the activities of mitochondrial enzymes per gram ventricle and pectoral muscle), arguing against symmorphosis. We also studied F1 hybrids to determine which traits in the oxygen cascade have a genetic architecture similar to that of ṀO2,max. In West Creek, ṀO2,max, abductor and adductor size all showed dominance of marine alleles, whereas in Bonsall Creek, ṀO2,max and ventricle mass showed dominance of stream-resident alleles. We also found genetically based differences among marine populations in hematocrit, ventricle mass, pectoral muscle mass and pectoral muscle pyruvate kinase activity. Overall, reductions in pectoral muscle mass evolved in conjunction with reductions in ṀO2,max in both stream-resident populations, but the specific steps in the oxygen cascade that have a genetic basis similar to that of ṀO2,max, and are thus predicted to have the largest impact on ṀO2,max, differ among populations.
Collapse
Affiliation(s)
- Anne C. Dalziel
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Michelle Ou
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Patricia M. Schulte
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| |
Collapse
|