1
|
Tran Lu Y A, Ruault S, Daguin-Thiebaut C, Le Port AS, Ballenghien M, Castel J, Gagnaire PA, Bierne N, Arnaud-Haond S, Poitrimol C, Thiebaut E, Lallier F, Broquet T, Jollivet D, Bonhomme F, Hourdez S. Comparative Population Genomics Unveils Congruent Secondary Suture Zone in Southwest Pacific Hydrothermal Vents. Mol Biol Evol 2025; 42:msaf024. [PMID: 39882942 PMCID: PMC11878553 DOI: 10.1093/molbev/msaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
How the interplay of biotic and abiotic factors shapes current genetic diversity at the community level remains an open question, particularly in the deep sea. Comparative phylogeography of multiple species can reveal the influence of past climatic events, geographic barriers, and species life history traits on spatial patterns of genetic structure across lineages. To shed light on the factors that shape community-level genetic variation and to improve our understanding of deep-sea biogeographic patterns, we conducted a comparative population genomics study on seven hydrothermal vent species co-distributed in the Back-Arc Basins of the Southwest Pacific region. Using ddRAD-seq, we compared the range-wide distribution of genomic diversity across species and discovered a shared phylogeographic break. Demogenetic inference revealed shared histories of lineage divergence and a secondary contact. Low levels of asymmetric gene flow probably occurred in most species between the Woodlark and North Fiji basins, but the exact location of contact zones varied from species to species. For two species, we found individuals from the two lineages co-occurring in sympatry in Woodlark Basin. Although species exhibit congruent patterns of spatial structure (Eastern vs. Western sites), they also show variation in the degree of divergence among lineages across the suture zone. Our results also show heterogeneous gene flow across the genome, indicating possible partial reproductive isolation between lineages and early speciation. Our comparative study highlights the pivotal role of historical and contemporary factors, underscoring the need for a comprehensive approach-especially in addressing knowledge gaps on the life history traits of deep-sea species.
Collapse
Affiliation(s)
- Adrien Tran Lu Y
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Sète, France
| | - Stéphanie Ruault
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | | | - Anne-Sophie Le Port
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Marion Ballenghien
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Jade Castel
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Camille Poitrimol
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Eric Thiebaut
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - François Lallier
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Thomas Broquet
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Didier Jollivet
- UMR 7144 AD2M, CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | | | - Stephane Hourdez
- UMR 8222 LECOB, CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-mer, France
| |
Collapse
|
2
|
Xi L, Sun Y, Xu T, Wang Z, Chiu MY, Plouviez S, Jollivet D, Qiu J. Phylogenetic divergence and population genetics of the hydrothermal vent annelid genus
Hesiolyra
along the East Pacific Rise: Reappraisal using multi‐locus data. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Leyi Xi
- Department of Biology Hong Kong Baptist University Hong Kong China
| | - Yanan Sun
- Department of Biology Hong Kong Baptist University Hong Kong China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
- Department of Ocean Science The Hong Kong University of Science and Technology Hong Kong China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
- Department of Ocean Science The Hong Kong University of Science and Technology Hong Kong China
| | - Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Man Ying Chiu
- Department of Biology Hong Kong Baptist University Hong Kong China
| | - Sophie Plouviez
- Department of Biology University of Louisiana at Lafayette Lafayette Louisiana USA
| | - Didier Jollivet
- Sorbonne Université‐CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Equipe DyDiv Station Biologique de Roscoff Roscoff France
| | - Jian‐Wen Qiu
- Department of Biology Hong Kong Baptist University Hong Kong China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| |
Collapse
|
3
|
Tran Lu Y A, Ruault S, Daguin-Thiébaut C, Castel J, Bierne N, Broquet T, Wincker P, Perdereau A, Arnaud-Haond S, Gagnaire PA, Jollivet D, Hourdez S, Bonhomme F. Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deep-sea hydrothermal gastropod Ifremeria nautilei. Mol Ecol 2022; 31:2796-2813. [PMID: 35305041 DOI: 10.1111/mec.16430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Hydrothermal vents form archipelagos of ephemeral deep-sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction-recolonization processes. These metal-rich environments are coveted for the mineral resources they harbor, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine-scale genetic connectivity is now possible based on genome-wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back-arc basins in the Southwest Pacific. The global analysis, based on 10 570 single nucleotide polymorphism (SNP) markers derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), depicted two semi-isolated and homogeneous genetic clusters. Demo-genetic modeling suggests that these two groups began to diverge about 70 000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighboring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic datasets to understand fine-scale connectivity patterns in hydrothermal vents and the deep sea.
Collapse
Affiliation(s)
- Adrien Tran Lu Y
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Stéphanie Ruault
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Claire Daguin-Thiébaut
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Jade Castel
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Nicolas Bierne
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thomas Broquet
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Patrick Wincker
- Génomique Métabolique, Génoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Aude Perdereau
- Génomique Métabolique, Génoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Sophie Arnaud-Haond
- MARBEC, Marine Biodiversity Exploitation and Conservation, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France
| | | | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Stéphane Hourdez
- Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - François Bonhomme
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Thaler AD, Amon D. 262 Voyages Beneath the Sea: a global assessment of macro- and megafaunal biodiversity and research effort at deep-sea hydrothermal vents. PeerJ 2019; 7:e7397. [PMID: 31404427 PMCID: PMC6688594 DOI: 10.7717/peerj.7397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
For over 40 years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here, we provide the first systematic assessment of macrofaunal and megafaunal biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of family-level incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.
Collapse
Affiliation(s)
- Andrew D Thaler
- Blackbeard Biologic: Science and Environmental Advisors, St. Michaels, MD, USA.,Center for Environmental Science, Horn Point Laboratory, University of Maryland, Cambridge, MD, USA
| | - Diva Amon
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
5
|
Eilertsen MH, Georgieva MN, Kongsrud JA, Linse K, Wiklund H, Glover AG, Rapp HT. Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments. Sci Rep 2018; 8:4810. [PMID: 29556042 PMCID: PMC5859262 DOI: 10.1038/s41598-018-23076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
The paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.
Collapse
Affiliation(s)
- Mari H Eilertsen
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway. .,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.
| | - Magdalena N Georgieva
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, PO Box 7800, N-5020, Bergen, Norway
| | - Katrin Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Hans T Rapp
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway.,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.,Uni Research, Uni Environment, PO Box 7810, N-5020, Bergen, Norway
| |
Collapse
|
6
|
De Groote A, Hauquier F, Vanreusel A, Derycke S. Population genetic structure in Sabatieria (Nematoda) reveals intermediary gene flow and admixture between distant cold seeps from the Mediterranean Sea. BMC Evol Biol 2017; 17:154. [PMID: 28668078 PMCID: PMC5494145 DOI: 10.1186/s12862-017-1003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/21/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There is a general lack of information on the dispersal and genetic structuring for populations of small-sized deep-water taxa, including free-living nematodes which inhabit and dominate the seafloor sediments. This is also true for unique and scattered deep-sea habitats such as cold seeps. Given the limited dispersal capacity of marine nematodes, genetic differentiation between such geographically isolated habitat patches is expected to be high. Against this background, we examined genetic variation in both mitochondrial (COI) and nuclear (18S and 28S ribosomal) DNA markers of 333 individuals of the genus Sabatieria, abundantly present in reduced cold-seep sediments. Samples originated from four Eastern Mediterranean cold seeps, separated by hundreds of kilometers, and one seep in the Southeast Atlantic. RESULTS Individuals from the Mediterranean and Atlantic were divided into two separate but closely-related species clades. Within the Eastern Mediterranean, all specimens belonged to a single species, but with a strong population genetic structure (ΦST = 0.149). The haplotype network of COI contained 19 haplotypes with the most abundant haplotype (52% of the specimens) shared between all four seeps. The number of private haplotypes was high (15), but the number of mutations between haplotypes was low (1-8). These results indicate intermediary gene flow among the Mediterranean Sabatieria populations with no evidence of long-term barriers to gene flow. CONCLUSIONS The presence of shared haplotypes and multiple admixture events indicate that Sabatieria populations from disjunct cold seeps are not completely isolated, with gene flow most likely facilitated through water current transportation of individuals and/or eggs. Genetic structure and molecular diversity indices are comparable to those of epiphytic shallow-water marine nematodes, while no evidence of sympatric cryptic species was found for the cold-seep Sabatieria.
Collapse
Affiliation(s)
- Annelies De Groote
- Marine Biology Research Group, Biology Department, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Freija Hauquier
- Marine Biology Research Group, Biology Department, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Biology Department, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Sofie Derycke
- Marine Biology Research Group, Biology Department, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
- Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences (RBINS), Rue Vautier 29, 1000 Brussels, Belgium
| |
Collapse
|
7
|
Miller KJ, Gunasekera RM. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci Rep 2017; 7:46103. [PMID: 28393887 PMCID: PMC5385499 DOI: 10.1038/srep46103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean’s surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.
Collapse
Affiliation(s)
- Karen J Miller
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, The University of Western Australia (MO96), 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
8
|
Breusing C, Vrijenhoek RC, Reusch TBH. Widespread introgression in deep-sea hydrothermal vent mussels. BMC Evol Biol 2017; 17:13. [PMID: 28086786 PMCID: PMC5237248 DOI: 10.1186/s12862-016-0862-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022] Open
Abstract
Background The analysis of hybrid zones is crucial for gaining a mechanistic understanding of the process of speciation and the maintenance of species boundaries. Hybrid zones have been studied intensively in terrestrial and shallow-water ecosystems, but very little is known about their occurrence in deep-sea environments. Here we used diagnostic, single nucleotide polymorphisms in combination with one mitochondrial gene to re-examine prior hypotheses about a contact zone involving deep-sea hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis, living along the Mid-Atlantic Ridge. Results Admixture was found to be asymmetric with respect to the parental species, while introgression was more widespread geographically than previously recognized. Admixed individuals with a majority of alleles from one of the parental species were most frequent in habitats corresponding to that species. Mussels found at a geographically intermediate vent field constituted a genetically mixed population that showed no evidence for hybrid incompatibilities, a finding that does not support a previously inferred tension zone model. Conclusions Our analyses indicate that B. azoricus and B. puteoserpentis hybridize introgressively across a large geographic area without evidence for general hybrid incompatibilities. While these findings shed new light onto the genetic structure of this hybrid zone, many aspects about its nature still remain obscure. Our study sets a baseline for further research that should primarily focus on the acquisition of additional mussel samples and environmental data, a detailed exploration of vent areas and hidden populations as well as genomic analyses in both mussel hosts and their bacterial symbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0862-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinna Breusing
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany. .,Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA, 95039, USA.
| | - Robert C Vrijenhoek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA, 95039, USA
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
9
|
Jang SJ, Park E, Lee WK, Johnson SB, Vrijenhoek RC, Won YJ. Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries. BMC Evol Biol 2016; 16:235. [PMID: 27793079 PMCID: PMC5084463 DOI: 10.1186/s12862-016-0807-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background The Equator and Easter Microplate regions of the eastern Pacific Ocean exhibit geomorphological and hydrological features that create barriers to dispersal for a number of animals associated with deep-sea hydrothermal vent habitats. This study examined effects of these boundaries on geographical subdivision of the vent polychaete Alvinella pompejana. DNA sequences from one mitochondrial and eleven nuclear genes were examined in samples collected from ten vent localities that comprise the species’ known range from 23°N latitude on the East Pacific Rise to 38°S latitude on the Pacific Antarctic Ridge. Results Multi-locus genotypes inferred from these sequences clustered the individual worms into three metapopulation segments — the northern East Pacific Rise (NEPR), southern East Pacific Rise (SEPR), and northeastern Pacific Antarctic Ridge (PAR) — separated by the Equator and Easter Microplate boundaries. Genetic diversity estimators were negatively correlated with tectonic spreading rates. Application of the isolation-with-migration (IMa2) model provided information about divergence times and demographic parameters. The PAR and NEPR metapopulation segments were estimated to have split roughly 4.20 million years ago (Mya) (2.42–33.42 Mya, 95 % highest posterior density, (HPD)), followed by splitting of the SEPR and NEPR segments about 0.79 Mya (0.07–6.67 Mya, 95 % HPD). Estimates of gene flow between the neighboring regions were mostly low (2 Nm < 1). Estimates of effective population size decreased with southern latitudes: NEPR > SEPR > PAR. Conclusions Highly effective dispersal capabilities allow A. pompejana to overcome the temporal instability and intermittent distribution of active hydrothermal vents in the eastern Pacific Ocean. Consequently, the species exhibits very high levels of genetic diversity compared with many co-distributed vent annelids and mollusks. Nonetheless, its levels of genetic diversity in partially isolated populations are inversely correlated with tectonic spreading rates. As for many other vent taxa, this pioneering colonizer is similarly affected by local rates of habitat turnover and by major dispersal filters associated with the Equator and the Easter Microplate region. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0807-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sook-Jin Jang
- Interdisciplinary Program of EcoCreative, The Graduate School, Ewha Womans University, Seoul, South Korea
| | - Eunji Park
- Division of Ecoscience, Ewha Womans University, Seoul, South Korea
| | - Won-Kyung Lee
- Division of Ecoscience, Ewha Womans University, Seoul, South Korea
| | - Shannon B Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039-9644, USA
| | | | - Yong-Jin Won
- Interdisciplinary Program of EcoCreative, The Graduate School, Ewha Womans University, Seoul, South Korea. .,Division of Ecoscience, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
10
|
Baco AR, Etter RJ, Ribeiro PA, von der Heyden S, Beerli P, Kinlan BP. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol Ecol 2016; 25:3276-98. [PMID: 27146215 DOI: 10.1111/mec.13689] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/12/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
Abstract
With anthropogenic impacts rapidly advancing into deeper waters, there is growing interest in establishing deep-sea marine protected areas (MPAs) or reserves. Reserve design depends on estimates of connectivity and scales of dispersal for the taxa of interest. Deep-sea taxa are hypothesized to disperse greater distances than shallow-water taxa, which implies that reserves would need to be larger in size and networks could be more widely spaced; however, this paradigm has not been tested. We compiled population genetic studies of deep-sea fauna and estimated dispersal distances for 51 studies using a method based on isolation-by-distance slopes. Estimates of dispersal distance ranged from 0.24 km to 2028 km with a geometric mean of 33.2 km and differed in relation to taxonomic and life-history factors as well as several study parameters. Dispersal distances were generally greater for fishes than invertebrates with the Mollusca being the least dispersive sampled phylum. Species that are pelagic as adults were more dispersive than those with sessile or sedentary lifestyles. Benthic species from soft-substrate habitats were generally less dispersive than species from hard substrate, demersal or pelagic habitats. As expected, species with pelagic and/or feeding (planktotrophic) larvae were more dispersive than other larval types. Many of these comparisons were confounded by taxonomic or other life-history differences (e.g. fishes being more dispersive than invertebrates) making any simple interpretation difficult. Our results provide the first rough estimate of the range of dispersal distances in the deep sea and allow comparisons to shallow-water assemblages. Overall, dispersal distances were greater for deeper taxa, although the differences were not large (0.3-0.6 orders of magnitude between means), and imbalanced sampling of shallow and deep taxa complicates any simple interpretation. Our analyses suggest the scales of dispersal and connectivity for reserve design in the deep sea might be comparable to or slightly larger than those in shallow water. Deep-sea reserve design will need to consider the enormous variety of taxa, life histories, hydrodynamics, spatial configuration of habitats and patterns of species distributions. The many caveats of our analyses provide a strong impetus for substantial future efforts to assess connectivity of deep-sea species from a variety of habitats, taxonomic groups and depth zones.
Collapse
Affiliation(s)
- Amy R Baco
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, 117 N. Woodward Ave, Tallahassee, FL, 32306, USA
| | - Ron J Etter
- Biology Department, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Pedro A Ribeiro
- Department of Oceanography and Fisheries, MARE- Marine and Environmental Sciences Centre & IMAR- Institute of Marine Research, University of the Azores, 9901-862, Horta, Portugal.,Okeanos- R&D Center, University of the Azores, 9901-862, Horta, Portugal
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Peter Beerli
- Department of Scientific Computing, Florida State University, 150-T Dirac Science Library, Tallahassee, FL, 32306, USA
| | - Brian P Kinlan
- NOAA National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment, Biogeography Branch, 1305 East-West Hwy, N/SCI-1, Silver Spring, MD, 20910-3281, USA.,CSS-Dynamac Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA, 22030, USA
| |
Collapse
|
11
|
Georgieva MN, Wiklund H, Bell JB, Eilertsen MH, Mills RA, Little CTS, Glover AG. A chemosynthetic weed: the tubeworm Sclerolinum contortum is a bipolar, cosmopolitan species. BMC Evol Biol 2015; 15:280. [PMID: 26667806 PMCID: PMC4678467 DOI: 10.1186/s12862-015-0559-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sclerolinum (Annelida: Siboglinidae) is a genus of small, wiry deep-sea tubeworms that depend on an endosymbiosis with chemosynthetic bacteria for their nutrition, notable for their ability to colonise a multitude of reducing environments. Since the early 2000s, a Sclerolinum population has been known to inhabit sediment-hosted hydrothermal vents within the Bransfield Strait, Southern Ocean, and whilst remaining undescribed, it has been suggested to play an important ecological role in this ecosystem. Here, we show that the Southern Ocean Sclerolinum population is not a new species, but more remarkably in fact belongs to the species S. contortum, first described from an Arctic mud volcano located nearly 16,000 km away. RESULTS Our new data coupled with existing genetic studies extend the range of this species across both polar oceans and the Gulf of Mexico. Our analyses show that the populations of this species are structured on a regional scale, with greater genetic differentiation occurring between rather than within populations. Further details of the external morphology and tube structure of S. contortum are revealed through confocal and SEM imaging, and the ecology of this worm is discussed. CONCLUSIONS These results shed further insight into the plasticity and adaptability of this siboglinid group to a range of reducing conditions, and into the levels of gene flow that occur between populations of the same species over a global extent.
Collapse
Affiliation(s)
- Magdalena N Georgieva
- Life Sciences Department, Natural History Museum, London, UK.
- School of Earth and Environment, University of Leeds, Leeds, UK.
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, London, UK.
| | - James B Bell
- Life Sciences Department, Natural History Museum, London, UK.
- School of Geography, University of Leeds, Leeds, UK.
| | - Mari H Eilertsen
- Centre for Geobiology, University of Bergen, Bergen, Norway.
- Department of Biology, University of Bergen, Bergen, Norway.
| | - Rachel A Mills
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.
| | | | - Adrian G Glover
- Life Sciences Department, Natural History Museum, London, UK.
| |
Collapse
|
12
|
Plouviez S, Faure B, Le Guen D, Lallier FH, Bierne N, Jollivet D. A new barrier to dispersal trapped old genetic clines that escaped the Easter Microplate tension zone of the Pacific vent mussels. PLoS One 2013; 8:e81555. [PMID: 24312557 PMCID: PMC3846894 DOI: 10.1371/journal.pone.0081555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 10/21/2013] [Indexed: 11/23/2022] Open
Abstract
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S.
Collapse
Affiliation(s)
- Sophie Plouviez
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
- * E-mail:
| | - Baptiste Faure
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
- Université Montpellier 2, Montpellier, France
- CNRS UMR 5554, Institut des Sciences de l’Evolution, Station Méditerranéenne de l’Environnement Littoral, Sète, France
| | - Dominique Le Guen
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - François H. Lallier
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Bierne
- Université Montpellier 2, Montpellier, France
- CNRS UMR 5554, Institut des Sciences de l’Evolution, Station Méditerranéenne de l’Environnement Littoral, Sète, France
| | - Didier Jollivet
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
13
|
Borda E, Kudenov JD, Chevaldonné P, Blake JA, Desbruyères D, Fabri MC, Hourdez S, Pleijel F, Shank TM, Wilson NG, Schulze A, Rouse GW. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps. Proc Biol Sci 2013; 280:20131876. [PMID: 24026823 DOI: 10.1098/rspb.2013.1876] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.
Collapse
Affiliation(s)
- Elizabeth Borda
- Scripps Institution of Oceanography, , UC San Diego, La Jolla, CA 93093, USA, Department of Biological Sciences, University of Alaska Anchorage, , Anchorage, AK 99508, USA, CNRS, UMR 7263 IMBE, Institut Méditerranéen de la Biodiversité et d'Ecologie Marine et Continentale, Aix-Marseille Université, , Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France, AECOM Marine and Coastal Center, , Woods Hole, MA 02543, USA, Woods Hole Oceanographic Institution, , Woods Hole, MA 02543, USA, Département Etude des Ecosystèmes Profonds, Centre de Brest de l'IFREMER, , 29280 Plouzané Cedex, France, CNRS, UPMC UMR 7127, , Station Biologique de Roscoff, 29682 Roscoff, France, Department of Marine Ecology, University of Gothenburg, , Tjärnö, Strömstad, Sweden, Marine Biology Department, Texas A&M University at Galveston, , Galveston, TX 77553, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Johnson SB, Won YJ, Harvey JB, Vrijenhoek RC. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents. BMC Evol Biol 2013; 13:21. [PMID: 23347448 PMCID: PMC3740784 DOI: 10.1186/1471-2148-13-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/11/2013] [Indexed: 11/24/2022] Open
Abstract
Background The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. Results A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Conclusions Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self-recruitment of mussels by removing planktotrophic larvae from the ridge axis. Furthermore, frequent local extinction events in this tectonically dynamic region might produce a demographic sink rather than a source for dispersing mussel larvae. Historical changes in tectonic rates and current patterns appear to permit intermittent contact and introgression between the two species.
Collapse
Affiliation(s)
- Shannon B Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039-9644, USA.
| | | | | | | |
Collapse
|
15
|
Teixeira S, Serrão EA, Arnaud-Haond S. Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic Ridge. PLoS One 2012; 7:e38521. [PMID: 22679511 PMCID: PMC3367947 DOI: 10.1371/journal.pone.0038521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/05/2012] [Indexed: 12/03/2022] Open
Abstract
Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms.
Collapse
Affiliation(s)
- Sara Teixeira
- Ifremer - Centre de Brest, Departement Etude des Ecosystèmes Profonds - DEEP, Brest, France.
| | | | | |
Collapse
|
16
|
Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Garabato AN, Pancost RD, Pearce DA, Polunin NVC, German CR, Shank T, Boersch-Supan PH, Alker BJ, Aquilina A, Bennett SA, Clarke A, Dinley RJJ, Graham AGC, Green DRH, Hawkes JA, Hepburn L, Hilario A, Huvenne VAI, Marsh L, Ramirez-Llodra E, Reid WDK, Roterman CN, Sweeting CJ, Thatje S, Zwirglmaier K. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography. PLoS Biol 2012; 10:e1001234. [PMID: 22235194 PMCID: PMC3250512 DOI: 10.1371/journal.pbio.1001234] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022] Open
Abstract
A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities. Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised. Deep-sea hydrothermal vents are mainly associated with seafloor spreading at mid-ocean ridges and in basins near volcanic island arcs. They host animals found nowhere else that derive their energy not from the sun but from bacterial oxidation of chemicals in the vent fluids, particularly hydrogen sulphide. Hydrothermal vents and their communities of organisms have become important models for understanding the origins and limits of life as well as evolution of island-like communities in the deep ocean. We describe the fauna associated with high-temperature hydrothermal vents on the East Scotia Ridge, Southern Ocean, to our knowledge the first to be discovered in Antarctic waters. These communities are dominated by a new species of yeti crab, stalked barnacles, limpets and snails, sea anemones, and a predatory seven-armed starfish. Animals commonly found in hydrothermal vents of the Pacific, Atlantic, and Indian Oceans, including giant Riftia tubeworms, annelid worms, vent mussels, vent crabs, and vent shrimps, were not present at the Southern Ocean vents. These discoveries suggest that the environmental conditions of the Southern Ocean may act as a barrier to some vent animals and that the East Scotia Ridge communities form a new biogeographic province with a unique species composition and structure.
Collapse
Affiliation(s)
- Alex D Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thaler AD, Zelnio K, Saleu W, Schultz TF, Carlsson J, Cunningham C, Vrijenhoek RC, Van Dover CL. The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the southwest Pacific. BMC Evol Biol 2011; 11:372. [PMID: 22192622 PMCID: PMC3265507 DOI: 10.1186/1471-2148-11-372] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep-sea hydrothermal vents provide patchy, ephemeral habitats for specialized communities of animals that depend on chemoautotrophic primary production. Unlike eastern Pacific hydrothermal vents, where population structure has been studied at large (thousands of kilometres) and small (hundreds of meters) spatial scales, population structure of western Pacific vents has received limited attention. This study addresses the scale at which genetic differentiation occurs among populations of a western Pacific vent-restricted gastropod, Ifremeria nautilei. RESULTS We used mitochondrial and DNA microsatellite markers to infer patterns of gene flow and population subdivision. A nested sampling strategy was employed to compare genetic diversity in discrete patches of Ifremeria nautilei separated by a few meters within a single vent field to distances as great as several thousand kilometres between back-arc basins that encompass the known range of the species. No genetic subdivisions were detected among patches, mounds, or sites within Manus Basin. Although I. nautilei from Lau and North Fiji Basins (~1000 km apart) also exhibited no evidence for genetic subdivision, these populations were genetically distinct from the Manus Basin population. CONCLUSIONS An unknown process that restricts contemporary gene flow isolates the Manus Basin population of Ifremeria nautilei from widespread populations that occupy the North Fiji and Lau Basins. A robust understanding of the genetic structure of hydrothermal vent populations at multiple spatial scales defines natural conservation units and can help minimize loss of genetic diversity in situations where human activities are proposed and managed.
Collapse
Affiliation(s)
- Andrew D Thaler
- Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Miller KJ, Rowden AA, Williams A, Häussermann V. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS One 2011; 6:e19004. [PMID: 21611159 PMCID: PMC3097177 DOI: 10.1371/journal.pone.0019004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/25/2011] [Indexed: 11/19/2022] Open
Abstract
Deep sea scleractinian corals will be particularly vulnerable to the effects of
climate change, facing loss of up to 70% of their habitat as the
Aragonite Saturation Horizon (below which corals are unable to form calcium
carbonate skeletons) rises. Persistence of deep sea scleractinian corals will
therefore rely on the ability of larvae to disperse to, and colonise, suitable
shallow-water habitat. We used DNA sequence data of the internal transcribed
spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial
control region (MtC) to determine levels of gene flow both within and among
populations of the deep sea coral Desmophyllum dianthus in SE
Australia, New Zealand and Chile to assess the ability of corals to disperse
into different regions and habitats. We found significant genetic subdivision
among the three widely separated geographic regions consistent with isolation
and limited contemporary gene flow. Furthermore, corals from different depth
strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the
same or nearby seamounts were strongly differentiated, indicating limited
vertical larval dispersal. Genetic differentiation with depth is consistent with
the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water,
the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we
propose that coral larvae will be retained within, and rarely migrate among,
these water masses. The apparent absence of vertical larval dispersal suggests
deep populations of D. dianthus are unlikely to colonise
shallow water as the aragonite saturation horizon rises and deep waters become
uninhabitable. Similarly, assumptions that deep populations will act as refuges
for shallow populations that are impacted by activities such as fishing or
mining are also unlikely to hold true. Clearly future environmental management
strategies must consider both regional and depth-related isolation of deep-sea
coral populations.
Collapse
Affiliation(s)
- Karen J Miller
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | |
Collapse
|
19
|
Coykendall DK, Johnson SB, Karl SA, Lutz RA, Vrijenhoek RC. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents. BMC Evol Biol 2011; 11:96. [PMID: 21489281 PMCID: PMC3100261 DOI: 10.1186/1471-2148-11-96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/13/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. RESULTS Genetic differentiation (F(ST)) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. CONCLUSIONS Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.
Collapse
Affiliation(s)
| | | | - Stephen A Karl
- Hawai`i Institute of Marine Biology, University of Hawai`i, Mānoa, Kāne`ohe, HI, USA
| | - Richard A Lutz
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | | |
Collapse
|
20
|
McClain CR, Hardy SM. The dynamics of biogeographic ranges in the deep sea. Proc Biol Sci 2010; 277:3533-46. [PMID: 20667884 PMCID: PMC2982252 DOI: 10.1098/rspb.2010.1057] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/05/2010] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.
Collapse
Affiliation(s)
- Craig R McClain
- National Evolutionary Synthesis Center, 2024 West Main Street, Durham, NC 27705, USA.
| | | |
Collapse
|
21
|
VRIJENHOEK ROBERTC. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol Ecol 2010; 19:4391-411. [DOI: 10.1111/j.1365-294x.2010.04789.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Plouviez S, Le Guen D, Lecompte O, Lallier FH, Jollivet D. Determining gene flow and the influence of selection across the equatorial barrier of the East Pacific Rise in the tube-dwelling polychaete Alvinella pompejana. BMC Evol Biol 2010; 10:220. [PMID: 20663123 PMCID: PMC2924869 DOI: 10.1186/1471-2148-10-220] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/22/2010] [Indexed: 11/20/2022] Open
Abstract
Background Comparative phylogeography recently performed on the mitochondrial cytochrome oxidase I (mtCOI) gene from seven deep-sea vent species suggested that the East Pacific Rise fauna has undergone a vicariant event with the emergence of a north/south physical barrier at the Equator 1-2 Mya. Within this specialised fauna, the tube-dwelling polychaete Alvinella pompejana showed reciprocal monophyly at mtCOI on each side of the Equator (9°50'N/7°25'S), suggesting potential, ongoing allopatric speciation. However, the development of a barrier to gene flow is a long and complex process. Secondary contact between previously isolated populations can occur when physical isolation has not persisted long enough to result in reproductive isolation between genetically divergent lineages, potentially leading to hybridisation and subsequent allelic introgression. The present study evaluates the strength of the equatorial barrier to gene flow and tests for potential secondary contact zones between A. pompejana populations by comparing the mtCOI gene with nuclear genes. Results Allozyme frequencies and the analysis of nucleotide polymorphisms at three nuclear loci confirmed the north/south genetic differentiation of Alvinella pompejana populations along the East Pacific Rise. Migration was oriented north-to-south with a moderate allelic introgression between the two geographic groups over a narrow geographic range just south of the barrier. Multilocus analysis also indicated that southern populations have undergone demographic expansion as previously suggested by a multispecies approach. A strong shift in allozyme frequencies together with a high level of divergence between alleles and a low number of 'hybrid' individuals were observed between the northern and southern groups using the phosphoglucomutase gene. In contrast, the S-adenosylhomocysteine hydrolase gene exhibited reduced diversity and a lack of population differentiation possibly due to a selective sweep or hitch-hiking. Conclusions The equatorial barrier leading to the separation of East Pacific Rise vent fauna into two distinct geographic groups is still permeable to migration, with a probable north-to-south migration route for A. pompejana. This separation also coincides with demographic expansion in the southern East Pacific Rise. Our results suggest that allopatry resulting from ridge offsetting is a common mechanism of speciation for deep-sea hydrothermal vent organisms.
Collapse
Affiliation(s)
- Sophie Plouviez
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Roscoff, France
| | | | | | | | | |
Collapse
|