1
|
Johnson JA, Novak B, Athrey G, Sharo AG, Chase T, Toepfer J. Phylogenomics of the extinct Heath Hen provides support for sex-biased introgression among extant prairie grouse. Mol Phylogenet Evol 2023; 189:107927. [PMID: 37714443 DOI: 10.1016/j.ympev.2023.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Rapid divergence and subsequent reoccurring patterns of gene flow can complicate our ability to discern phylogenetic relationships among closely related species. To what degree such patterns may differ across the genome can provide an opportunity to extrapolate better how life history constraints may influence species boundaries. By exploring differences between autosomal and Z (or X) chromosomal-derived phylogenetic patterns, we can better identify factors that may limit introgression despite patterns of incomplete lineage sorting among closely related taxa. Here, using a whole-genome resequencing approach coupled with an exhaustive sampling of subspecies within the recently divergent prairie grouse complex (genus: Tympanuchus), including the extinct Heath Hen (T. cupido cupido), we show that their phylogenomic history differs depending on autosomal or Z-chromosome partitioned SNPs. Because the Heath Hen was allopatric relative to the other prairie grouse taxa, its phylogenetic signature should not be influenced by gene flow. In contrast, all the other extant prairie grouse taxa, except Attwater's Prairie-chicken (T. c. attwateri), possess overlapping contemporary geographic distributions and have been known to hybridize. After excluding samples that were likely translocated prairie grouse from the Midwest to the eastern coastal states or their resulting hybrids with mainland Heath Hens, species tree analyses based on autosomal SNPs consistently identified a paraphyletic relationship with regard to the Heath Hen with Lesser Prairie-chicken (T. pallidicinctus) sister to Greater Prairie-chicken (T. c. pinnatus) regardless of genic or intergenic partitions. In contrast, species trees based on the Z-chromosome were consistent with Heath Hen sister to a clade that included its conspecifics, Greater and Attwater's Prairie-chickens (T. c. attwateri). These results were further explained by historic gene flow, as shown with an excess of autosomal SNPs shared between Lesser and Greater Prairie-chickens but not with the Z-chromosome. Phylogenetic placement of Sharp-tailed Grouse (T. phasianellus), however, did not differ among analyses and was sister to a clade that included all other prairie grouse despite low levels of autosomal gene flow with Greater Prairie-chicken. These results, along with strong sexual selection (i.e., male hybrid behavioral isolation) and a lek breeding system (i.e., high variance in male mating success), are consistent with a pattern of female-biased introgression between prairie grouse taxa with overlapping geographic distributions. Additional study is warranted to explore how genomic components associated with the Z-chromosome influence the phenotype and thereby impact species limits among prairie grouse taxa despite ongoing contemporary gene flow.
Collapse
Affiliation(s)
- Jeff A Johnson
- The Peregrine Fund, Boise, ID 83709, USA; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | - Ben Novak
- Revive & Restore, Sausalito, CA 94965, USA
| | - Giridhar Athrey
- Department of Poultry Science & Faculty of Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| | - Andrew G Sharo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tom Chase
- Village and Wilderness, Martha's Vineyard, MA 02557, USA
| | - John Toepfer
- George Miksch Sutton Avian Research Center, Bartlesville, OK 74005, USA
| |
Collapse
|
2
|
Vázquez-Miranda H, Barker FK. Autosomal, sex-linked and mitochondrial loci resolve evolutionary relationships among wrens in the genus Campylorhynchus. Mol Phylogenet Evol 2021; 163:107242. [PMID: 34224849 DOI: 10.1016/j.ympev.2021.107242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023]
Abstract
Although there is general consensus that sampling of multiple genetic loci is critical in accurate reconstruction of species trees, the exact numbers and the best types of molecular markers remain an open question. In particular, the phylogenetic utility of sex-linked loci is underexplored. Here, we sample all species and 70% of the named diversity of the New World wren genus Campylorhynchus using sequences from 23 loci, to evaluate the effects of linkage on efficiency in recovering a well-supported tree for the group. At a tree-wide level, we found that most loci supported fewer than half the possible clades and that sex-linked loci produced similar resolution to slower-coalescing autosomal markers, controlling for locus length. By contrast, we did find evidence that linkage affected the efficiency of recovery of individual relationships; as few as two sex-linked loci were necessary to resolve a selection of clades with long to medium subtending branches, whereas 4-6 autosomal loci were necessary to achieve comparable results. These results support an expanded role for sampling of the avian Z chromosome in phylogenetic studies, including target enrichment approaches. Our concatenated and species tree analyses represent significant improvements in our understanding of diversification in Campylorhynchus, and suggest a relatively complex scenario for its radiation across the Miocene/Pliocene boundary, with multiple invasions of South America.
Collapse
Affiliation(s)
- Hernán Vázquez-Miranda
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - F Keith Barker
- Department of Ecology, Evolution and Behavior, Bell Museum of Natural History, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
3
|
Sotelo-Muñoz M, Maldonado-Coelho M, Svensson-Coelho M, Dos Santos SS, Miyaki CY. Vicariance, dispersal, extinction and hybridization underlie the evolutionary history of Atlantic forest fire-eye antbirds (Aves: Thamnophilidae). Mol Phylogenet Evol 2020; 148:106820. [PMID: 32283137 DOI: 10.1016/j.ympev.2020.106820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
In order to gain insights into the biogeographic processes underlying biotic diversification in the Atlantic Forest (AF), we used a multi-locus approach to examine the evolutionary history of the White-shouldered Fire-eye (Pyriglena leucoptera) and the Fringe-backed Fire-eye (Pyriglena atra), two parapatric sister species endemic to the AF. We sequenced one mitochondrial, three Z chromosome-linked and three anonymous markers of 556 individuals from 66 localities. We recovered four lineages throughout the AF: P. atra and three populations within P. leucoptera. All populations diverged during the late Pleistocene and presented varying levels of admixture. One Z-linked locus showed the highest level of differentiation between the two species. On the other hand, a mitochondrial haplotype was shared extensively between them. Our data supported vicariance driving speciation along with extinction and dispersal as processes underlying intraspecific diversification. Furthermore, signatures of demographic expansion in most populations and areas of genetic admixture were recovered throughout the AF, suggesting that forest fragmentation was also important in differentiation. Genetic admixture areas are located between large rivers suggesting that AF rivers may diminish gene flow. Our results indicated a complex and dynamic biogeographic history of Pyriglena in the AF, with vicariance, extinction, dispersal and secondary contact followed by introgression likely influencing the current patterns of genetic distribution.
Collapse
Affiliation(s)
- Manuelita Sotelo-Muñoz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Rua do Matão 277, 05508-090 São Paulo, Brazil.
| | | | - Maria Svensson-Coelho
- Lund University, Department of Biology, Ekologihuset, Sölvegatan 37, 22362 Lund, Sweden
| | - Sidnei S Dos Santos
- Programa de Pós-graduação em Diversidade Animal, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Cristina Y Miyaki
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Rua do Matão 277, 05508-090 São Paulo, Brazil
| |
Collapse
|
4
|
Bourgeois YXC, Bertrand JAM, Delahaie B, Holota H, Thébaud C, Milá B. Differential divergence in autosomes and sex chromosomes is associated with intra-island diversification at a very small spatial scale in a songbird lineage. Mol Ecol 2020; 29:1137-1153. [PMID: 32107807 DOI: 10.1111/mec.15396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome-wide markers to investigate the diversification of the Reunion grey white-eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping-by-sequencing and pooled RAD-seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z-linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.
Collapse
Affiliation(s)
- Yann X C Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK.,Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France
| | - Joris A M Bertrand
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France.,Laboratoire Génome & Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, Perpignan, France
| | - Boris Delahaie
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France.,Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Hélène Holota
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France
| | - Christophe Thébaud
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier, Toulouse, France
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
5
|
Wang W, Wang Y, Lei F, Liu Y, Wang H, Chen J. Incomplete lineage sorting and introgression in the diversification of Chinese spot-billed ducks and mallards. Curr Zool 2019; 65:589-597. [PMID: 31616490 PMCID: PMC6784501 DOI: 10.1093/cz/zoy074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Incomplete lineage sorting and introgression are 2 major and nonexclusive causes of species-level non-monophyly. Distinguishing between these 2 processes is notoriously difficult because they can generate similar genetic signatures. Previous studies have suggested that 2 closely related duck species, the Chinese spot-billed duck Anas zonorhyncha and the mallard A. platyrhynchos were polyphyletically intermixed. Here, we utilized a wide geographical sampling, multilocus data and a coalescent-based model to revisit this system. Our study confirms the finding that Chinese spot-billed ducks and Mallards are not monophyletic. There was no apparent interspecific differentiation across loci except those at the mitochondrial DNA (mtDNA) control region and the Z chromosome (CHD1Z). Based on an isolation-with-migration model and the geographical distribution of lineages, we suggest that both introgression and incomplete lineage sorting might contribute to the observed non-monophyly of the 2 closely related duck species. The mtDNA introgression was asymmetric, with high gene flow from Chinese spot-billed ducks to Mallards and negligible gene flow in the opposite direction. Given that the 2 duck species are phenotypically distinctive but weakly genetically differentiated, future work based on genome-scale data is necessary to uncover genomic regions that are involved in divergence, and this work may provide further insights into the evolutionary histories of the 2 species and other waterfowls.
Collapse
Affiliation(s)
- Wenjuan Wang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- Institute of Biodiversity Science, Fudan University, Shanghai, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
- National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang, China
| | - Yafang Wang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haitao Wang
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiakuan Chen
- Institute of Biodiversity Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Batalha-Filho H, Maldonado-Coelho M, Miyaki CY. Historical climate changes and hybridization shaped the evolution of Atlantic Forest spinetails (Aves: Furnariidae). Heredity (Edinb) 2019; 123:675-693. [PMID: 31123344 DOI: 10.1038/s41437-019-0234-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 01/23/2023] Open
Abstract
Combining phylogeographic approaches and hybrid zone inference in a single framework is a robust way to depict respectively the biogeographic history of lineages and the evolutionary processes responsible for speciation. Here, we studied the spatiotemporal patterns of diversification and characterize the hybrid zone between two Atlantic Forest spinetails (Synallaxis ruficapilla and Synallaxis cinerea) using mitochondrial DNA and nuclear (autosomal and Z-linked) genes. We consistently recovered divergence between and within the two species during the late Pliocene and Pleistocene using an isolation with migration model. Also, our results indicate distinct levels of introgression among lineages. Ecological niche models and demographic inferences, used to infer range distributions throughout the late Quaternary, were not consistent with the hypothesis of a large river as a primary barrier responsible for the divergence of the two species. Instead, a scenario of isolation and divergence followed by geographic expansion and admixture as a consequence of Quaternary climatic oscillations was supported. Paleomodels also were not consistent with the idea that the hybrid zone originated in primary differentiation and favor a secondary contact scenario. Model fitting indicated that clines of different loci spanning the hybrid zone are coincident and concordant. The narrow cline for one Z-linked locus could be indicative of some form of post-zygotic selection hindering genetic homogenization between the two species.
Collapse
Affiliation(s)
| | | | - Cristina Yumi Miyaki
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat Ecol Evol 2019; 3:834-844. [DOI: 10.1038/s41559-019-0850-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
|
8
|
|
9
|
Oatley G, De Swardt DH, Nuttall RJ, Crowe TM, Bowie RCK. Phenotypic and genotypic variation across a stable white-eye (Zosterops sp.) hybrid zone in central South Africa. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Hung CM, Drovetski SV, Zink RM. Matching loci surveyed to questions asked in phylogeography. Proc Biol Sci 2016; 283:20152340. [PMID: 26962145 DOI: 10.1098/rspb.2015.2340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although mitochondrial DNA (mtDNA) has long been used for assessing genetic variation within and between populations, its workhorse role in phylogeography has been criticized owing to its single-locus nature. The only choice for testing mtDNA results is to survey nuclear loci, which brings into contrast the difference in locus effective size and coalescence times. Thus, it remains unclear how erroneous mtDNA-based estimates of species history might be, especially for evolutionary events in the recent past. To test the robustness of mtDNA and nuclear sequences in phylogeography, we provide one of the largest paired comparisons of summary statistics and demographic parameters estimated from mitochondrial, five Z-linked and 10 autosomal genes of 30 avian species co-distributed in the Caucasus and Europe. The results suggest that mtDNA is robust in estimating inter-population divergence but not in intra-population diversity, which is sensitive to population size change. Here, we provide empirical evidence showing that mtDNA was more likely to detect population divergence than any other single locus owing to its smaller Ne and thus faster coalescent time. Therefore, at least in birds, numerous studies that have based their inferences of phylogeographic patterns solely on mtDNA should not be readily dismissed.
Collapse
Affiliation(s)
- Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sergei V Drovetski
- Division of Birds, National Museum of Natural History, Smithsonian Institution, Washington, DC 20004, USA
| | - Robert M Zink
- Bell Museum and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
11
|
Cortimiglia C, Castiglioni B, Pizzi F, Stella A, Capra E. Involvement of tyrosinase-related protein 1 gene in the light brown plumage phenotype of Falco cherrug. Anim Genet 2016; 48:125-126. [PMID: 27611661 DOI: 10.1111/age.12506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Claudia Cortimiglia
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Einstein, 26900, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Einstein, 26900, Lodi, Italy
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Einstein, 26900, Lodi, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Einstein, 26900, Lodi, Italy
| |
Collapse
|
12
|
Ottenburghs J, van Hooft P, van Wieren SE, Ydenberg RC, Prins HHT. Hybridization in geese: a review. Front Zool 2016; 13:20. [PMID: 27182276 PMCID: PMC4866292 DOI: 10.1186/s12983-016-0153-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large knowledge gap in geese. In this review, we assemble the available information on hybrid geese by focusing on three main themes: (1) incidence and frequency, (2) behavioural mechanisms leading to hybridization, and (3) hybrid fertility. Hybridization in geese is common on a species-level, but rare on a per-individual level. An overview of the different behavioural mechanisms indicates that forced extra-pair copulations and interspecific nest parasisitm can both lead to hybridization. Other sources of hybrids include hybridization in captivity and vagrant geese, which may both lead to a scarcity of conspecifics. The different mechanisms are not mutually exclusive and it is currently not possible to discriminate between the different mechanisms without quantitative data. Most hybrid geese are fertile; only in crosses between distantly related species do female hybrids become sterile. This fertility pattern, which is in line with Haldane's Rule, may facilitate interspecific gene flow between closely related species. The knowledge on hybrid geese should be used, in combination with the information available on hybridization in ducks, to study the process of avian speciation.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| | - Pim van Hooft
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| | - Sipke E van Wieren
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| | - Ronald C Ydenberg
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands ; Centre of Wildlife Ecology, Simon Fraser University, V5A 1S6 Burnaby, BC Canada
| | - Herbert H T Prins
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA. Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds. Heredity (Edinb) 2015; 115:452-9. [PMID: 26014526 PMCID: PMC4611240 DOI: 10.1038/hdy.2015.46] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023] Open
Abstract
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The π(Z)/π(A) ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that N(eZ)/N(eA) in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.
Collapse
Affiliation(s)
- S J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - R S Cornman
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - K L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - J A Fike
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| |
Collapse
|
14
|
Nater A, Burri R, Kawakami T, Smeds L, Ellegren H. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data. Syst Biol 2015; 64:1000-17. [PMID: 26187295 PMCID: PMC4604831 DOI: 10.1093/sysbio/syv045] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/24/2015] [Indexed: 01/25/2023] Open
Abstract
Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow.
Collapse
Affiliation(s)
- Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Phylogenetic analysis of the Australian rosella parrots (Platycercus) reveals discordance among molecules and plumage. Mol Phylogenet Evol 2015; 91:150-9. [DOI: 10.1016/j.ympev.2015.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022]
|
16
|
Moyle RG, Hosner PA, Jones AW, Outlaw DC. Phylogeny and biogeography of Ficedula flycatchers (Aves: Muscicapidae): Novel results from fresh source material. Mol Phylogenet Evol 2015; 82 Pt A:87-94. [DOI: 10.1016/j.ympev.2014.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 11/27/2022]
|
17
|
Peters JL, Winker K, Millam KC, Lavretsky P, Kulikova I, Wilson RE, Zhuravlev YN, McCracken KG. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas). Mol Ecol 2014; 23:2961-74. [PMID: 24854419 DOI: 10.1111/mec.12799] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/29/2022]
Abstract
Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.
Collapse
Affiliation(s)
- Jeffrey L Peters
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Trier CN, Hermansen JS, Sætre GP, Bailey RI. Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species. PLoS Genet 2014; 10:e1004075. [PMID: 24415954 PMCID: PMC3886922 DOI: 10.1371/journal.pgen.1004075] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function (“mother's curse”) at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows. Hybridization between two species has the potential to create a third, hybrid species. However this process, known as hybrid speciation, is thought to be unlikely because it requires reproductive barriers against both parent species to develop despite the barriers between parents being weak enough to allow for the formation of viable, fertile hybrids. The Italian sparrow, which occupies the entire Italian peninsula and some Mediterranean islands, is the product of past hybridization between house and Spanish sparrows and therefore represents one of the few documented cases of vertebrate hybrid speciation in nature. We show that reproductive barriers between Italian sparrows and their parent species exist and that genes on the sex (Z) chromosome and mitochondria are heavily involved. We suggest that speciation in this system may have been driven by dissociation of the sex (Z) chromosome into blocks of different parent species-specific genes, which have shifted alongside mitochondrial genes to form reproductive barriers where the hybrid now meets each of its parent species.
Collapse
Affiliation(s)
- Cassandra N. Trier
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway
| | - Jo S. Hermansen
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway
- * E-mail:
| | - Richard I. Bailey
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 2013; 9:e1003942. [PMID: 24244198 PMCID: PMC3820794 DOI: 10.1371/journal.pgen.1003942] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/23/2013] [Indexed: 01/05/2023] Open
Abstract
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.
Collapse
Affiliation(s)
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Pall I. Olason
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Backström N, Saetre GP, Ellegren H. Inferring the demographic history of European Ficedula flycatcher populations. BMC Evol Biol 2013; 13:2. [PMID: 23282063 PMCID: PMC3556140 DOI: 10.1186/1471-2148-13-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/22/2012] [Indexed: 12/03/2022] Open
Abstract
Background Inference of population and species histories and population stratification using genetic data is important for discriminating between different speciation scenarios and for correct interpretation of genome scans for signs of adaptive evolution and trait association. Here we use data from 24 intronic loci re-sequenced in population samples of two closely related species, the pied flycatcher and the collared flycatcher. Results We applied Isolation-Migration models, assignment analyses and estimated the genetic differentiation and diversity between species and between populations within species. The data indicate a divergence time between the species of <1 million years, significantly shorter than previous estimates using mtDNA, point to a scenario with unidirectional gene-flow from the pied flycatcher into the collared flycatcher and imply that barriers to hybridisation are still permeable in a recently established hybrid zone. Furthermore, we detect significant population stratification, predominantly between the Spanish population and other pied flycatcher populations. Conclusions Our results provide further evidence for a divergence process where different genomic regions may be at different stages of speciation. We also conclude that forthcoming analyses of genotype-phenotype relations in these ecological model species should be designed to take population stratification into account.
Collapse
Affiliation(s)
- Niclas Backström
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | | | | |
Collapse
|
21
|
Hogner S, Sæther SA, Borge T, Bruvik T, Johnsen A, Sætre GP. Increased divergence but reduced variation on the Z chromosome relative to autosomes in Ficedula flycatchers: differential introgression or the faster-Z effect? Ecol Evol 2012; 2:379-96. [PMID: 22423331 PMCID: PMC3298950 DOI: 10.1002/ece3.92] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/09/2011] [Accepted: 11/23/2011] [Indexed: 11/06/2022] Open
Abstract
Recent multilocus studies of congeneric birds have shown a pattern of elevated interspecific divergence on the Z chromosome compared to the autosomes. In contrast, intraspecifically, birds exhibit less polymorphism on the Z chromosome relative to the autosomes. We show that the four black-and-white Ficedula flycatcher species show greater genetic divergence on the Z chromosome than on the autosomes, and that the ratios of intraspecific polymorphism at Z-linked versus autosomal markers are below the neutral expectation of 75%. In all species pairs, we found more fixed substitutions and fewer shared polymorphisms on the Z chromosome than on the autosomes. Finally, using isolation with migration (IMa) models we estimated gene flow among the four closely related flycatcher species. The results suggest that different pattern of evolution of Z chromosomes and autosomes is best explained by the faster-Z hypothesis, since the estimated long-term gene flow parameters were close to zero in all comparisons.
Collapse
Affiliation(s)
- Silje Hogner
- National Centre for Biosystematics, Natural History Museum, University of OsloP.O. Box 1172, Blindern, NO-0318 Oslo, Norway
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of OsloP. O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Stein A Sæther
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of OsloP. O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Thomas Borge
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of OsloP. O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Torbjørn Bruvik
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of OsloP. O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Arild Johnsen
- National Centre for Biosystematics, Natural History Museum, University of OsloP.O. Box 1172, Blindern, NO-0318 Oslo, Norway
| | - Glenn-Peter Sætre
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of OsloP. O. Box 1066, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
22
|
PETERS JEFFREYL, McCRACKEN KEVING, PRUETT CHRISTINL, ROHWER SIEVERT, DROVETSKI SERGEIV, ZHURAVLEV YURIYN, KULIKOVA IRINA, GIBSON DANIELD, WINKER KEVIN. A parapatric propensity for breeding precludes the completion of speciation in common teal (Anas crecca, sensu lato). Mol Ecol 2012; 21:4563-77. [DOI: 10.1111/j.1365-294x.2012.05711.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Abstract
Character displacement occurs when competition for either resources or successful reproduction imposes divergent selection on interacting species, causing divergence in traits associated with resource use or reproduction. Here, we describe how character displacement can be mediated either by genetically canalized changes (i.e., changes that reflect allelic or genotype frequency changes) or by phenotypic plasticity. We also discuss how these two mechanisms influence the tempo of character displacement. Specifically, we suggest that, under some conditions, character displacement mediated by phenotypic plasticity might occur more rapidly than that mediated by genetically canalized changes. Finally, we describe how these two mechanisms may act together and determine character displacement's mode, such that it proceeds through an initial phase in which trait divergence is environmentally induced to a later phase in which divergence becomes genetically canalized. This plasticity-first hypothesis predicts that character displacement should be generally mediated by ancestral plasticity and that it will arise similarly in multiple, independently evolving populations. We conclude by highlighting future directions for research that would test these predictions.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
24
|
Corl A, Ellegren H. THE GENOMIC SIGNATURE OF SEXUAL SELECTION IN THE GENETIC DIVERSITY OF THE SEX CHROMOSOMES AND AUTOSOMES. Evolution 2012; 66:2138-49. [DOI: 10.1111/j.1558-5646.2012.01586.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved.
Collapse
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Carnicer J, Brotons L, Stefanescu C, Peñuelas J. Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biol Rev Camb Philos Soc 2011; 87:457-79. [PMID: 22129434 DOI: 10.1111/j.1469-185x.2011.00210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter-specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.
Collapse
Affiliation(s)
- Jofre Carnicer
- Community and Conservation Ecology Group, Centre for Life Sciences, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
27
|
SMADJA CAROLEM, BUTLIN ROGERK. A framework for comparing processes of speciation in the presence of gene flow. Mol Ecol 2011; 20:5123-40. [DOI: 10.1111/j.1365-294x.2011.05350.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Elgvin TO, Hermansen JS, Fijarczyk A, Bonnet T, Borge T, Saether SA, Voje KL, Saetre GP. Hybrid speciation in sparrows II: a role for sex chromosomes? Mol Ecol 2011; 20:3823-37. [PMID: 21762432 DOI: 10.1111/j.1365-294x.2011.05182.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homoploid hybrid speciation in animals is poorly understood, mainly because of the scarcity of well-documented cases. Here, we present the results of a multilocus sequence analysis on the house sparrow (Passer domesticus), Spanish sparrow (P. hispaniolensis) and their proposed hybrid descendant, the Italian sparrow (P. italiae). The Italian sparrow is shown to be genetically intermediate between the house sparrow and Spanish sparrow, exhibiting genealogical discordance and a mosaic pattern of alleles derived from either of the putative parental species. The average variation on the Z chromosome was significantly reduced compared with autosomal variation in the putative parental species, the house sparrow and Spanish sparrow. Additionally, divergence between the two species was elevated on the Z chromosome relative to the autosomes. This pattern of variation and divergence is consistent with reduced introgression of Z-linked genes and/or a faster-Z effect (increased rate of adaptive divergence on the Z). F(ST) -outlier tests were consistent with the faster-Z hypothesis: two of five Z-linked loci (CHD1Z and PLAA) were identified as candidates for being subject to positive, divergent selection in the putative parental species. Interestingly, the two latter genes showed a mosaic pattern in the (hybrid) Italian sparrow; that is, the Italian sparrow was found to be fixed for Spanish sparrow alleles at CHD1Z and to mainly have house sparrow alleles at PLAA. Preliminary evidence presented in this study thus suggests that sex chromosomes may play a significant role in this case of homoploid hybrid speciation.
Collapse
Affiliation(s)
- Tore O Elgvin
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|