1
|
Wang JB, Lu HL, Sheng H, St Leger RJ. A Drosophila melanogaster model shows that fast growing Metarhizium species are the deadliest despite eliciting a strong immune response. Virulence 2023; 14:2275493. [PMID: 37941391 PMCID: PMC10732690 DOI: 10.1080/21505594.2023.2275493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
We used Drosophila melanogaster to investigate how differences between Metarhizium species in growth rate and mechanisms of pathogenesis influence the outcome of infection. We found that the most rapid germinators and growers in vitro and on fly cuticle were the fastest killers, suggesting that pre-penetration competence is key to Metarhizium success. Virulent strains also induced the largest immune response, which did not depend on profuse growth within hosts as virulent toxin-producing strains only proliferated post-mortem while slow-killing strains that were specialized to other insects grew profusely pre-mortem. Metarhizium strains have apparently evolved resistance to widely distributed defenses such as the defensin Toll product drosomycin, but they were inhibited by Bomanins only found in Drosophila spp. Disrupting a gene (Dif), that mediates Toll immunity has little impact on the lethality of most Metarhizium strains (an exception being the early diverged M. frigidum and another insect pathogen Beauveria bassiana). However, disrupting the sensor of fungal proteases (Persephone) allowed rapid proliferation of strains within hosts (with the exception of M. album), and flies succumbed rapidly. Persephone also mediates gender differences in immune responses that determine whether male or female flies die sooner. We conclude that some strain differences in growth within hosts depend on immune-mediated interactions but intrinsic differences in pathogenic mechanisms are more important. Thus, Drosophila varies greatly in tolerance to different Metarhizium strains, in part because some of them produce toxins. Our results further develop D. melanogaster as a tractable model system for understanding insect-Metarhizium interactions.
Collapse
Affiliation(s)
- Jonathan B Wang
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Huiyu Sheng
- Department of Entomology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
2
|
Lewis JA, Penley MJ, Sylla H, Ahumada SD, Morran LT. Antagonistic Coevolution Limits the Range of Host Defense in C. elegans Populations. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.758745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host populations often evolve defenses against parasites due to the significant fitness costs imposed by infection. However, adaptation to a specific parasite may alter the effectiveness of the host’s defenses in general. Consequently, the specificity of host defense may be influenced by a host population’s evolutionary history with parasites. Further, the degree of reciprocal change within an interaction may profoundly alter the range of host defense, given that antagonistic coevolutionary interactions are predicted to favor defense against specific parasite genotypes. Here, we examined the effect of host evolutionary history on host defense range by assessing the mortality rates of Caenorhabditis elegans host populations exposed to an array of Serratia marcescens bacterial parasite strains. Importantly, each of the host populations were derived from the same genetic background but have different experimental evolution histories with parasites. Each of these histories (exposure to either heat-killed, fixed genotype, or coevolving parasites) carries a different level of evolutionary reciprocity. Overall, we observed an effect of host evolutionary history in that previously coevolved host populations were generally the most susceptible to novel parasite strains. This data demonstrates that host evolutionary history can have a significant impact on host defense, and that host-parasite coevolution can increase host susceptibility to novel parasites.
Collapse
|
3
|
Wang JB, Elya C, St Leger RJ. Genetic variation for resistance to the specific fly pathogen Entomophthora muscae. Sci Rep 2020; 10:14284. [PMID: 32868814 PMCID: PMC7459287 DOI: 10.1038/s41598-020-71262-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
We found substantial variation in resistance to the fly-specific pathogen Entomophthora muscae 'Berkeley' (Entomophthoromycota), in 20 lines from the Drosophila melanogaster Genetic Reference Panel (DGRP). Resistance to E. muscae is positively (r = 0.55) correlated with resistance to the broad host range ascomycete entomopathogen Metarhizium anisopliae (Ma549), indicative of generalist (non-specific) defenses. Most of the lines showing above average resistance to Ma549 showed cross-resistance to E. muscae. However, lines that succumbed quickly to Ma549 exhibited the full range of resistance to E. muscae. This suggests fly populations differ in E. muscae-specific resistance mechanisms as well as generic defences effective against both Ma549 and E. muscae. We looked for trade-offs that could account for inter-line variation, but increases (decreases) in disease resistance to E. muscae are not consistently associated with increases (decreases) of resistance to oxidative stress, starvation stress and sleep indices. That these pathogens are dynamic agents of selection on hosts is reflected in this genetic variation for resistance in lines derived from wild populations.
Collapse
Affiliation(s)
- Jonathan B Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
5
|
Karasov TL, Shirsekar G, Schwab R, Weigel D. What natural variation can teach us about resistance durability. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:89-98. [PMID: 32535454 DOI: 10.1016/j.pbi.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Breeding a crop variety to be resistant to a pathogen usually takes years. This is problematic because pathogens, with short generation times and fluid genomes, adapt quickly to overcome resistance. The triumph of the pathogen is not inevitable, however, as there are numerous examples of durable resistance, particularly in wild plants. Which factors then contribute to such resistance stability over millennia? We review current knowledge of wild and agricultural pathosystems, detailing the importance of genetic, species and spatial heterogeneity in the prevention of pathogen outbreaks. We also highlight challenges associated with increasing resistance diversity in crops, both in light of pathogen (co-)evolution and breeding practices. Historically it has been difficult to incorporate heterogeneity into agriculture due to reduced efficiency in harvesting. Recent advances implementing computer vision and automation in agricultural production may improve our ability to harvest mixed genotype and mixed species plantings, thereby increasing resistance durability.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 2019; 15:e1007810. [PMID: 31136630 PMCID: PMC6555541 DOI: 10.1371/journal.ppat.1007810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild ecosystems through the analysis of plant-virus coevolution, which requires a negative effect of infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diversity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 individuals collected in 76 A. thaliana Iberian wild populations were inoculated with different CMV strains. Resistance was estimated from the level of virus multiplication in infected plants, and tolerance from the effect of infection on host progeny production. Resistance and tolerance to CMV showed substantial genetic variation within and between host populations, and depended on the virus x host genotype interaction, two conditions for coevolution. Resistance and tolerance were co-occurring independent traits that have evolved independently from related life-history traits involved in adaptation to climate. The comparison of the genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses) indicated that both defence traits are likely under uniform selection. These results strongly suggest that CMV infection selects for defence on A. thaliana populations, and support plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the field conditions of the wild A. thaliana populations studied.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
7
|
Alex A, Antunes A. Whole-Genome Comparisons Among the Genus Shewanella Reveal the Enrichment of Genes Encoding Ankyrin-Repeats Containing Proteins in Sponge-Associated Bacteria. Front Microbiol 2019; 10:5. [PMID: 30787909 PMCID: PMC6372511 DOI: 10.3389/fmicb.2019.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
The bacterial members of the genus Shewanella are widely distributed and inhabit both freshwater and marine environments. Some members of Shewanella have gained considerable attention due to its ability to survive in redox-stratified environments. However, a gap of knowledge exists on the key genomic features of the sponge-associated Shewanella sp. involving the successful host-bacteria interaction, as sponge-symbiotic Shewanella are largely underrepresented in the public repositories. With the aim of identifying the genomic signatures of sponge-Shewanella association, we generated a high-quality genome data of a sponge-associated, Shewanella sp. OPT22, isolated from the intertidal marine sponge Ophlitaspongia papilla and performed comprehensive comparative analyses of 68 genome strains of the genus Shewanella including two previously reported genomes of sponge-associated bacteria, Shewanella spongiae KCTC 22492 and Shewanella sp. Alg231_23. The 16S rRNA-based phylogenetic reconstruction showed the well-supported affiliation of OPT22 and KCTC 22492 with previously reported sponge-associated bacteria, affirming the “sponge-specific” nature of these two bacterial strains isolated from different marine sponge species from the Atlantic and Pacific (East Sea) Oceans, respectively. The genome comparison of the 68 strains of Shewanella inhabiting different habitats revealed the unusual/previously unreported abundance of genes encoding for ankyrin-repeat containing proteins (ANKs) in the genomes of the two sponge-associated strains, OPT22 (ANKs; n = 45) and KCTC 22492 (ANKs; n = 52), which might be involved in sponge-Shewanella interactions. Focused analyses detected the syntenic organization of the gene cluster encoding major secretion system (type III/IV/VI) components and the presence of effector homologs in OPT22 and KCTC 22492 that seem to play a role in the virulence of the sponge bacteria. The genomic island (GI) of Shewanella sp. OPT22 was identified to localize a gene cluster encoding T4SS components and ANK (n = 1), whereas S. spongiae KCTC 22492 harbored a total of seven ANKs within multiple GIs. GIs may play a pivotal role in the dissemination of symbioses-related genes (ANKs) through the horizontal gene transfer, contributing to the diversification and adaptation of sponge-associated Shewanella. Overall, the genome analyses of Shewanella isolates from marine sponges revealed genomic repertoires that might be involved in establishing successful symbiotic relationships with the sponge hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, Kersten S, Lundberg DS, Neumann M, Regalado J, Neher RA, Kemen E, Weigel D. Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable Associations over Evolutionary Timescales. Cell Host Microbe 2018; 24:168-179.e4. [PMID: 30001519 PMCID: PMC6054916 DOI: 10.1016/j.chom.2018.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/16/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
Crop disease outbreaks are often associated with clonal expansions of single pathogenic lineages. To determine whether similar boom-and-bust scenarios hold for wild pathosystems, we carried out a multi-year, multi-site survey of Pseudomonas in its natural host Arabidopsis thaliana. The most common Pseudomonas lineage corresponded to a ubiquitous pathogenic clade. Sequencing of 1,524 genomes revealed this lineage to have diversified approximately 300,000 years ago, containing dozens of genetically identifiable pathogenic sublineages. There is differentiation at the level of both gene content and disease phenotype, although the differentiation may not provide fitness advantages to specific sublineages. The coexistence of sublineages indicates that in contrast to crop systems, no single strain has been able to overtake the studied A. thaliana populations in the recent past. Our results suggest that selective pressures acting on a plant pathogen in wild hosts are likely to be much more complex than those in agricultural systems.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Juliana Almario
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMITP, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Friedemann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Wei Ding
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Michael Giolai
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Darren Heavens
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Julian Regalado
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Richard A Neher
- University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eric Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, IMITP, University of Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proc Natl Acad Sci U S A 2018; 115:E5440-E5449. [PMID: 29848634 DOI: 10.1073/pnas.1710980115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infectious diseases are often affected by specific pairings of hosts and pathogens and therefore by both of their genomes. The integration of a pair of genomes into genome-wide association mapping can provide an exquisitely detailed view of the genetic landscape of complex traits. We present a statistical method, ATOMM (Analysis with a Two-Organism Mixed Model), that maps a trait of interest to a pair of genomes simultaneously; this method makes use of whole-genome sequence data for both host and pathogen organisms. ATOMM uses a two-way mixed-effect model to test for genetic associations and cross-species genetic interactions while accounting for sample structure including interactions between the genetic backgrounds of the two organisms. We demonstrate the applicability of ATOMM to a joint association study of quantitative disease resistance (QDR) in the Arabidopsis thaliana-Xanthomonas arboricola pathosystem. Our method uncovers a clear host-strain specificity in QDR and provides a powerful approach to identify genetic variants on both genomes that contribute to phenotypic variation.
Collapse
|
10
|
Höckerstedt LM, Siren JP, Laine AL. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J Evol Biol 2018; 31:844-852. [PMID: 29569292 PMCID: PMC6032904 DOI: 10.1111/jeb.13268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Both theory and experimental evolution studies predict migration to influence the outcome of antagonistic coevolution between hosts and their parasites, with higher migration rates leading to increased diversity and evolutionary potential. Migration rates are expected to vary in spatially structured natural pathosystems, yet how spatial structure generates variation in coevolutionary trajectories across populations occupying the same landscape has not been tested. Here, we studied the effect of spatial connectivity on host evolutionary potential in a natural pathosystem characterized by a stable Plantago lanceolata host network and a highly dynamic Podosphaera plantaginis parasite metapopulation. We designed a large inoculation experiment to test resistance of five isolated and five well‐connected host populations against sympatric and allopatric pathogen strains, over 4 years. Contrary to our expectations, we did not find consistently higher resistance against sympatric pathogen strains in the well‐connected populations. Instead, host local adaptation varied considerably among populations and through time with greater fluctuations observed in the well‐connected populations. Jointly, our results suggest that in populations where pathogens have successfully established, they have the upper hand in the coevolutionary arms race, but hosts may be better able to respond to pathogen‐imposed selection in the well‐connected than in the isolated populations. Hence, the ongoing and extensive fragmentation of natural habitats may increase vulnerability to diseases.
Collapse
Affiliation(s)
| | - Jukka Pekka Siren
- Department of Computer Science, School of Sciences, Aalto University, Espoo, Finland
| | - Anna-Liisa Laine
- Faculty of Environmental and Biological Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Straub C, Colombi E, Li L, Huang H, Templeton MD, McCann HC, Rainey PB. The ecological genetics ofPseudomonas syringaefrom kiwifruit leaves. Environ Microbiol 2018. [DOI: 10.1111/1462-2920.14092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Straub
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Elena Colombi
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan People's Republic of China
| | - Hongwen Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou People's Republic of China
| | | | - Honour C. McCann
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
- Max Planck Institute for Evolutionary Biology, Department of Microbial Population BiologyPlön Germany
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris Tech), Laboratoire de Génétique de l'EvolutionParis France
| |
Collapse
|
12
|
Wininger K, Rank N. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens. Ann N Y Acad Sci 2017; 1408:46-60. [PMID: 29125186 DOI: 10.1111/nyas.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research.
Collapse
Affiliation(s)
- Kerry Wininger
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, California
| |
Collapse
|
13
|
Karasov TL, Barrett L, Hershberg R, Bergelson J. Similar levels of gene content variation observed for Pseudomonas syringae populations extracted from single and multiple host species. PLoS One 2017; 12:e0184195. [PMID: 28880925 PMCID: PMC5589212 DOI: 10.1371/journal.pone.0184195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
Bacterial strains of the same species collected from different hosts frequently exhibit differences in gene content. In the ubiquitous plant pathogen Pseudomonas syringae, more than 30% of genes encoded by each strain are not conserved among strains colonizing other host species. Although they are often implicated in host specificity, the role of this large fraction of the genome in host-specific adaptation is largely unexplored. Here, we sought to relate variation in gene content between strains infecting different species to variation that persists between strains on the same host. We fully sequenced a collection of P. syringae strains collected from wild Arabidopsis thaliana populations in the Midwestern United States. We then compared patterns of variation observed in gene content within these A. thaliana-isolated strains to previously published P. syringae sequence from strains collected on a diversity of crop species. We find that strains collected from the same host, A. thaliana, differ in gene content by 21%, 2/3 the level of gene content variation observed across strains collected from different hosts. Furthermore, the frequency with which specific genes are present among strains collected within the same host and among strains collected from different hosts is highly correlated. This implies that most gene content variation is maintained irrespective of host association. At the same time, we identify specific genes whose presence is important for P. syringae's ability to flourish within A. thaliana. Specifically, the A. thaliana strains uniquely share a genomic island encoding toxins active against plants and surrounding microbes, suggesting a role for microbe-microbe interactions in dictating the abundance within this host. Overall, our results demonstrate that while variation in the presence of specific genes can affect the success of a pathogen within its host, the majority of gene content variation is not strongly associated with patterns of host use.
Collapse
Affiliation(s)
- Talia L. Karasov
- Committee On Genetics Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Luke Barrett
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Ruth Hershberg
- Department of Genetics, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joy Bergelson
- Committee On Genetics Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
15
|
Meaden S, Koskella B. Adaptation of the pathogen, Pseudomonas syringae, during experimental evolution on a native vs. alternative host plant. Mol Ecol 2017; 26:1790-1801. [PMID: 28207977 PMCID: PMC6849854 DOI: 10.1111/mec.14060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
The specialization and distribution of pathogens among species has substantial impact on disease spread, especially when reservoir hosts can maintain high pathogen densities or select for increased pathogen virulence. Theory predicts that optimal within‐host growth rate will vary among host genotypes/species and therefore that pathogens infecting multiple hosts should experience different selection pressures depending on the host environment in which they are found. This should be true for pathogens with broad host ranges, but also those experiencing opportunistic infections on novel hosts or that spill over among host populations. There is very little empirical data, however, regarding how adaptation to one host might directly influence infectivity and growth on another. We took an experimental evolution approach to examine short‐term adaptation of the plant pathogen, Pseudomonas syringae pathovar tomato, to its native tomato host compared with an alternative host, Arabidopsis, in either the presence or absence of bacteriophages. After four serial passages (20 days of selection in planta), we measured bacterial growth of selected lines in leaves of either the focal or alternative host. We found that passage through Arabidopsis led to greater within‐host bacterial densities in both hosts than did passage through tomato. Whole genome resequencing of evolved isolates identified numerous single nucleotide polymorphisms based on our novel draft assembly for strain PT23. However, there was no clear pattern of clustering among plant selection lines at the genetic level despite the phenotypic differences observed. Together, the results emphasize that previous host associations can influence the within‐host growth rate of pathogens.
Collapse
Affiliation(s)
- Sean Meaden
- University of Exeter, Penryn Campus, Penryn, Cornwall, TR11 4EH, UK.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
17
|
Vetter M, Karasov TL, Bergelson J. Differentiation between MAMP Triggered Defenses in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006068. [PMID: 27336582 PMCID: PMC4919071 DOI: 10.1371/journal.pgen.1006068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
A first line of defense against pathogen attack for both plants and animals involves the detection of microbe-associated molecular patterns (MAMPs), followed by the induction of a complex immune response. Plants, like animals, encode several receptors that recognize different MAMPs. While these receptors are thought to function largely redundantly, the physiological responses to different MAMPs can differ in detail. Responses to MAMP exposure evolve quantitatively in natural populations of Arabidopsis thaliana, perhaps in response to environment specific differences in microbial threat. Here, we sought to determine the extent to which the detection of two canonical MAMPs were evolving redundantly or distinctly within natural populations. Our results reveal negligible correlation in plant growth responses between the bacterial MAMPs EF-Tu and flagellin. Further investigation of the genetic bases of differences in seedling growth inhibition and validation of 11 candidate genes reveal substantial differences in the genetic loci that underlie variation in response to these two MAMPs. Our results indicate that natural variation in MAMP recognition is largely MAMP-specific, indicating an ability to differentially tailor responses to EF-Tu and flagellin in A. thaliana populations. Specialized receptors encoded by plants detect different components of bacterial machinery, and initiate an immune response. These recognition events are thought to induce largely redundant defense signaling, the magnitude of which varies quantitatively among populations, perhaps in response to environment specific differences in microbial threat. Here, we sought to determine whether plants evolve distinct or shared responses to two canonical MAMPs within natural populations. We comprehensively tested the extent of functional redundancy in the response of 186 genotypes of Arabidopsis thaliana to variants of each of two classes of bacterial signals, flagellin and EF-Tu. Although plants respond similarly to recognition of different variants of the same MAMP, we found the response to one MAMP class to be largely uncorrelated with the response to the other class. We further investigated the genetic bases underlying growth changes to determine whether similar genes contribute to variation in the response to EF-Tu and flagellin bacterial signals. We find limited genetic similarity, revealing novel MAMP-specific signaling components. The differentiation of these responses reveals MAMP-specific fine tuning of the immune response.
Collapse
Affiliation(s)
- Madlen Vetter
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Talia L. Karasov
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Beckstead J, Meyer SE, Ishizuka TS, McEvoy KM, Coleman CE. Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda. PLoS One 2016; 11:e0151058. [PMID: 26950931 PMCID: PMC4780786 DOI: 10.1371/journal.pone.0151058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 12/01/2022] Open
Abstract
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen.
Collapse
Affiliation(s)
- Julie Beckstead
- Department of Biology, Gonzaga University, Spokane, Washington, 99258, United States of America
| | - Susan E. Meyer
- USDA Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, UT 84606, United States of America
- * E-mail:
| | - Toby S. Ishizuka
- Department of Biology, Gonzaga University, Spokane, Washington, 99258, United States of America
| | - Kelsey M. McEvoy
- Department of Biology, Gonzaga University, Spokane, Washington, 99258, United States of America
| | - Craig E. Coleman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, United States of America
| |
Collapse
|
19
|
Penczykowski RM, Laine A, Koskella B. Understanding the ecology and evolution of host-parasite interactions across scales. Evol Appl 2016; 9:37-52. [PMID: 27087838 PMCID: PMC4780374 DOI: 10.1111/eva.12294] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Predicting the emergence, spread and evolution of parasites within and among host populations requires insight to both the spatial and temporal scales of adaptation, including an understanding of within-host up through community-level dynamics. Although there are very few pathosystems for which such extensive data exist, there has been a recent push to integrate studies performed over multiple scales or to simultaneously test for dynamics occurring across scales. Drawing on examples from the literature, with primary emphasis on three diverse host-parasite case studies, we first examine current understanding of the spatial structure of host and parasite populations, including patterns of local adaptation and spatial variation in host resistance and parasite infectivity. We then explore the ways to measure temporal variation and dynamics in host-parasite interactions and discuss the need to examine change over both ecological and evolutionary timescales. Finally, we highlight new approaches and syntheses that allow for simultaneous analysis of dynamics across scales. We argue that there is great value in examining interplay among scales in studies of host-parasite interactions.
Collapse
Affiliation(s)
- Rachel M. Penczykowski
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Britt Koskella
- BiosciencesUniversity of ExeterTremoughUK
- Integrative BiologyUniversity of CaliforniaBerkeleyUSA
| |
Collapse
|
20
|
Wendling CC, Wegner KM. Adaptation to enemy shifts: rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters. Proc Biol Sci 2015; 282:20142244. [PMID: 25716784 DOI: 10.1098/rspb.2014.2244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.
Collapse
Affiliation(s)
- Carolin C Wendling
- Coastal Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstraße 43, List 25992, Germany
| | - K Mathias Wegner
- Coastal Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstraße 43, List 25992, Germany
| |
Collapse
|
21
|
Abstract
Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.
Collapse
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria;
| |
Collapse
|
22
|
Roulin AC, Mariadassou M, Hall MD, Walser JC, Haag C, Ebert D. High genetic variation in resting-stage production in a metapopulation: Is there evidence for local adaptation? Evolution 2015; 69:2747-56. [DOI: 10.1111/evo.12770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Anne C. Roulin
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Institute of Plant Biology; University of Zurich; Zollikerstrasse 107 8008 Zurich Switzerland
| | | | - Matthew D. Hall
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- School of Biological Sciences; Monash University; Melbourne 3800 Australia
| | - Jean-Claude Walser
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Genetic Diversity Centre; Universitätstrasse 16, CHN E 55 8092 Zürich Switzerland
| | - Christoph Haag
- CNRS-UMR5175 CEFE; 1919, Route de Mende 34293 Montpellier France
| | - Dieter Ebert
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Tvärminne Zoological Station; Helsinki University; Hanko Finland
| |
Collapse
|
23
|
The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 2014; 512:436-440. [PMID: 25043057 DOI: 10.1038/nature13439] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/01/2014] [Indexed: 11/09/2022]
Abstract
Plant resistance (R) genes are a crucial component in plant defence against pathogens. Although R genes often fail to provide durable resistance in an agricultural context, they frequently persist as long-lived balanced polymorphisms in nature. Standard theory explains the maintenance of such polymorphisms through a balance of the costs and benefits of resistance and virulence in a tightly coevolving host-pathogen pair. However, many plant-pathogen interactions lack such specificity. Whether, and how, balanced polymorphisms are maintained in diffusely interacting species is unknown. Here we identify a naturally interacting R gene and effector pair in Arabidopsis thaliana and its facultative plant pathogen, Pseudomonas syringae. The protein encoded by the R gene RPS5 recognizes an AvrPphB homologue (AvrPphB2) and exhibits a balanced polymorphism that has been maintained for over 2 million years (ref. 3). Consistent with the presence of an ancient balanced polymorphism, the R gene confers a benefit when plants are infected with P. syringae carrying avrPphB2 but also incurs a large cost in the absence of infection. RPS5 alleles are maintained at intermediate frequencies in populations globally, suggesting ubiquitous selection for resistance. However, the presence of P. syringae carrying avrPphB is probably insufficient to explain the RPS5 polymorphism. First, avrPphB homologues occur at very low frequencies in P. syringae populations on A. thaliana. Second, AvrPphB only rarely confers a virulence benefit to P. syringae on A. thaliana. Instead, we find evidence that selection for RPS5 involves multiple non-homologous effectors and multiple pathogen species. These results and an associated model suggest that the R gene polymorphism in A. thaliana may not be maintained through a tightly coupled interaction involving a single coevolved R gene and effector pair. More likely, the stable polymorphism is maintained through complex and diffuse community-wide interactions.
Collapse
|
24
|
Karasov TL, Horton MW, Bergelson J. Genomic variability as a driver of plant-pathogen coevolution? CURRENT OPINION IN PLANT BIOLOGY 2014; 18:24-30. [PMID: 24491596 PMCID: PMC4696489 DOI: 10.1016/j.pbi.2013.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 05/03/2023]
Abstract
Pathogens apply one of the strongest selective pressures in plant populations. Understanding plant-pathogen coevolution has therefore been a major research focus for at least sixty years [1]. Recent comparative genomic studies have revealed that the genes involved in plant defense and pathogen virulence are among the most polymorphic in the respective genomes. Which fraction of this diversity influences the host-pathogen interaction? Do coevolutionary dynamics maintain variation? Here we review recent literature on the evolutionary and molecular processes that shape this variation, focusing primarily on gene-for-gene interactions. In summarizing theoretical and empirical studies of the processes that shape this variation in natural plant and pathogen populations, we find a disconnect between the complexity of ecological interactions involving hosts and their myriad microbes, and the models that describe them.
Collapse
Affiliation(s)
- Talia L Karasov
- University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics and Systems Biology
| | | | - Joy Bergelson
- University of Chicago, Chicago, IL 60637, USA; Department of Ecology & Evolution.
| |
Collapse
|
25
|
McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, Guttman DS, Wang PW, Straub C, Vanneste J, Rainey PB, Templeton MD. Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 2013; 9:e1003503. [PMID: 23935484 PMCID: PMC3723570 DOI: 10.1371/journal.ppat.1003503] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.
Collapse
Affiliation(s)
- Honour C. McCann
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Frederic Bertels
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mark Fiers
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Ashley Lu
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Jonathan Rees-George
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark T. Andersen
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Gleave
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | - Mark W. Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Christina Straub
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton, New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study and Allan Wilson Centre, Massey University, Auckland, New Zealand
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Antonovics J, Boots M, Ebert D, Koskella B, Poss M, Sadd BM. THE ORIGIN OF SPECIFICITY BY MEANS OF NATURAL SELECTION: EVOLVED AND NONHOST RESISTANCE IN HOST-PATHOGEN INTERACTIONS. Evolution 2012; 67:1-9. [DOI: 10.1111/j.1558-5646.2012.01793.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Barrett LG, Heil M. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. TRENDS IN PLANT SCIENCE 2012; 17:282-92. [PMID: 22465042 DOI: 10.1016/j.tplants.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/13/2012] [Accepted: 02/28/2012] [Indexed: 05/08/2023]
Abstract
Host ranges are commonly quantified to classify herbivores and plant pathogens as either generalists or specialists. Here, we summarize patterns and mechanisms in the interactions of plants with these enemies along different axes of specificity. We highlight the many dimensions within which plant enemies can specify and consider the underlying ecological, evolutionary and molecular mechanisms. Host resistance traits and enemy effectors emerge as central players determining host utilization and thus host range. Finally, we review approaches to studying the causes and consequences of variation in the specificity of plant-enemy interactions. Knowledge of the molecular mechanisms that determine host range is required to understand host shifts, and evolutionary transitions among specialist and generalist strategies, and to predict potential host ranges of pathogens and herbivores.
Collapse
Affiliation(s)
- Luke G Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT, 2601, Australia
| | | |
Collapse
|
28
|
Roth O, Keller I, Landis SH, Salzburger W, Reusch TB. HOSTS ARE AHEAD IN A MARINE HOST-PARASITE COEVOLUTIONARY ARMS RACE: INNATE IMMUNE SYSTEM ADAPTATION IN PIPEFISH SYNGNATHUS TYPHLE AGAINST VIBRIO PHYLOTYPES. Evolution 2012; 66:2528-39. [DOI: 10.1111/j.1558-5646.2012.01614.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Demba Diallo M, Monteil CL, Vinatzer BA, Clarke CR, Glaux C, Guilbaud C, Desbiez C, Morris CE. Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME JOURNAL 2012; 6:1325-35. [PMID: 22237542 DOI: 10.1038/ismej.2011.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The type III secretion system (T3SS) is an important virulence factor of pathogenic bacteria, but the natural occurrence of variants of bacterial plant pathogens with deficiencies in their T3SS raises questions about the significance of the T3SS for fitness. Previous work on T3SS-deficient plant pathogenic bacteria has focused on strains from plants or plant debris. Here we have characterized T3SS-deficient strains of Pseudomonas syringae from plant and nonplant substrates in pristine nonagricultural contexts, many of which represent recently described clades not yet found associated with crop plants. Strains incapable of inducing a hypersensitive reaction (HR(-)) in tobacco were detected in 65% of 126 samples from headwaters of rivers (mountain creeks and lakes), snowpack, epilithic biofilms, wild plants and leaf litter and constituted 2 to 100% of the P. syringae population associated with each sample. All HR(-) strains lacked at least one gene in the canonical hrp/hrc locus or the associated conserved effector locus, but most lacked all six of the genes tested (hrcC, hrpL, hrpK1, avrE1 and hrpW1) and represented several disparate phylogenetic clades. Although most HR(-) strains were incapable of causing symptoms on cantaloupe seedlings as expected, strains in the recently described TA-002 clade caused severe symptoms in spite of the absence of any of the six conserved genes of the canonical T3SS according to PCR and Southern blot assays. The phylogenetic context of the T3SS variants we observed provides insight into the evolutionary history of P. syringae as a pathogen and as an environmental saprophyte.
Collapse
|
30
|
Barrett LG, Broadhurst LM, Thrall PH. Geographic adaptation in plant-soil mutualisms: tests using Acacia spp. and rhizobial bacteria. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01940.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Barrett LG, Bell T, Dwyer G, Bergelson J. Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecol Lett 2011; 14:1149-57. [PMID: 21951910 DOI: 10.1111/j.1461-0248.2011.01687.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The evolutionary dynamics of pathogens are critically important for disease outcomes, prevalence and emergence. In this study we investigate ecological conditions that may promote the long-term maintenance of virulence polymorphisms in pathogen populations. Recent theory predicts that evolution towards increased virulence can be reversed if less-aggressive social 'cheats' exploit more aggressive 'cooperator' pathogens. However, there is no evidence that social exploitation operates within natural pathogen populations. We show that for the bacterium Pseudomonas syringae, major polymorphisms for pathogenicity are maintained at unexpectedly high frequencies in populations infecting the host Arabidopsis thaliana. Experiments reveal that less-aggressive strains substantially increase their growth potential in mixed infections and have a fitness advantage in non-host environments. These results suggest that niche differentiation can contribute to the maintenance of virulence polymorphisms, and that both within-host and between-host growth rates modulate cheating and cooperation in P. syringae populations.
Collapse
Affiliation(s)
- Luke G Barrett
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|