1
|
Zheng P, Gong Y, Wang B, Yu H, Huang S, Liao X, Jiang J, Ran J, Xie F. Love Hug-Functional Validation of Nuptial Pad-Secreted Pheromone in Anurans. Animals (Basel) 2024; 14:1550. [PMID: 38891597 PMCID: PMC11171324 DOI: 10.3390/ani14111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Chemical communication is an important mode of communication in the courtship and breeding processes of amphibians. In caudates, multiple components of sexual pheromones have been identified and functionally verified. One of these pheromone systems is plethodontid modulating factor (PMF). In anurans, the pheromone called amplexin was found in nuptial pads of ranids and was considered a member of the PMF system, yet its bio-function has not been tested. In this study, we obtained 18 amplexin transcript sequences from nuptial pads of Nidirana pleuraden (Amphibia, Ranidae) by transcriptome sequencing and found that the proteins translated by these transcripts are diversified, hydrophilic, and relatively stable. We also acquired a N. pleuraden amplexin isoform with the highest expression level in the transcriptome analysis through the prokaryotic expression system. Using two different animal behavioral experimental settings, we have tested the bio-function of the recombinant PMF protein (rPMF) in N. pleuraden's reproduction and found that the rPMF does not attract females but shortens the duration of amplexus significantly. This is the first study to verify the function of the PMF pheromone in Anura, indicating the pervasiveness of chemical communication during breeding in amphibians.
Collapse
Affiliation(s)
- Puyang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhou Gong
- Shanghai Natural History Museum, Branch of Shanghai Science & Technology Museum, Shanghai 200041, China;
- School of Life Science, East China Normal University, Shanghai 200062, China
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoqi Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sining Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghong Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Feng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.Z.); (B.W.); (H.Y.); (S.H.); (X.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wilburn DB, Kunkel CL, Feldhoff RC, Feldhoff PW, Searle BC. Recurrent Co-Option and Recombination of Cytokine and Three Finger Proteins in Multiple Reproductive Tissues Throughout Salamander Evolution. Front Cell Dev Biol 2022; 10:828947. [PMID: 35281090 PMCID: PMC8904931 DOI: 10.3389/fcell.2022.828947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Reproductive proteins evolve at unparalleled rates, resulting in tremendous diversity of both molecular composition and biochemical function between gametes of different taxonomic clades. To date, the proteomic composition of amphibian gametes is largely a molecular mystery, particularly for Urodeles (salamanders and newts) for which few genomic-scale resources exist. In this study, we provide the first detailed molecular characterization of gametes from two salamander species (Plethodon shermani and Desmognathus ocoee) that are models of reproductive behavior. Long-read PacBio transcriptome sequencing of testis and ovary of both species revealed sex-specific expression of many genes common to vertebrate gametes, including a similar expression profile to the egg coat genes of Xenopus oocytes. In contrast to broad conservation of oocyte genes, major testis transcripts included paralogs of salamander-specific courtship pheromones (PRF, PMF, and SPF) that were confirmed as major sperm proteins by mass spectrometry proteomics. Sperm-specific paralogs of PMF and SPF are likely the most abundant secreted proteins in P. shermani and D. ocoee, respectively. In contrast, sperm PRF lacks a signal peptide and may be expressed in cytoplasm. PRF pheromone genes evolved independently multiple times by repeated gene duplication of sperm PRF genes with signal peptides recovered through recombination with PMF genes. Phylogenetic analysis of courtship pheromones and their sperm paralogs support that each protein family evolved for these two reproductive contexts at distinct evolutionary time points between 17 and 360 million years ago. Our combined phylogenetic, transcriptomic and proteomic analyses of plethodontid reproductive tissues support that the recurrent co-option and recombination of TFPs and cytokine-like proteins have been a novel driving force throughout salamander evolution and reproduction.
Collapse
Affiliation(s)
- Damien B. Wilburn
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Damien B. Wilburn,
| | - Christy L. Kunkel
- Department of Biology, John Carroll University, Cleveland Heights, OH, United States
| | - Richard C. Feldhoff
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Pamela W. Feldhoff
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Brian C. Searle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Rivera AM, Swanson WJ. The Importance of Gene Duplication and Domain Repeat Expansion for the Function and Evolution of Fertilization Proteins. Front Cell Dev Biol 2022; 10:827454. [PMID: 35155436 PMCID: PMC8830517 DOI: 10.3389/fcell.2022.827454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The process of gene duplication followed by gene loss or evolution of new functions has been studied extensively, yet the role gene duplication plays in the function and evolution of fertilization proteins is underappreciated. Gene duplication is observed in many fertilization protein families including Izumo, DCST, ZP, and the TFP superfamily. Molecules mediating fertilization are part of larger gene families expressed in a variety of tissues, but gene duplication followed by structural modifications has often facilitated their cooption into a fertilization function. Repeat expansions of functional domains within a gene also provide opportunities for the evolution of novel fertilization protein. ZP proteins with domain repeat expansions are linked to species-specificity in fertilization and TFP proteins that experienced domain duplications were coopted into a novel sperm function. This review outlines the importance of gene duplications and repeat domain expansions in the evolution of fertilization proteins.
Collapse
Affiliation(s)
- Alberto M. Rivera
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
4
|
Herrboldt MA, Steffen MA, McGouran CN, Bonett RM. Pheromone Gene Diversification and the Evolution of Courtship Glands in Plethodontid Salamanders. J Mol Evol 2021; 89:576-587. [PMID: 34392385 DOI: 10.1007/s00239-021-10026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Proteinaceous pheromones that diversify through gene duplication can result in shifts in courtship cocktails that may serve as a mechanism for reproductive isolation. The molecular evolution of pheromones has been extensively studied in salamanders, but how these genes and associated novel courtship glands have codiversified has not been evaluated. In this study we used transcriptional analyses to examine the relationship between pheromone diversification and gland type in three divergent lineages of plethodontid salamanders. Our results revealed that plethodontid salamanders express up to eight divergent Sodefrin Precursor-like Factor genes (spf, representing both alpha and beta subfamilies) along with Plethodontid Modulating Factor (pmf) and Plethodontid Receptivity Factor (prf). Expression of pheromone genes is tissue specific with pmf, prf, and some spf genes restricted to the mental gland. In contrast, the caudal gland shows strong expression of the other spf genes. We found evidence for punctuated changes in pheromone cocktail composition related to the loss of metamorphosis, and subsequent extreme reduction of the mental gland, in a paedomorphic lineage. Our study provides insight into how pheromone diversification can be partitioned into unique glands, which may lead to cocktail specificity in behavioral modules during courtship.
Collapse
Affiliation(s)
- Madison A Herrboldt
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA.
| | - Michael A Steffen
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | - Carissa N McGouran
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| |
Collapse
|
5
|
Woodley SK, Staub NL. Pheromonal communication in urodelan amphibians. Cell Tissue Res 2021; 383:327-345. [PMID: 33427952 DOI: 10.1007/s00441-020-03408-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 01/24/2023]
Abstract
Pheromonal communication is an ancient and pervasive sensory modality in urodelan amphibians. One family of salamander pheromones (the sodefrin precursor-like factor (SPF) family) originated 300 million years ago, at the origin of amphibians. Although salamanders are often thought of as relatively simple animals especially when compared to mammals, the pheromonal systems are varied and complex with nuanced effects on behavior. Here, we review the function and evolution of pheromonal signals involved in male-female reproductive interactions. After describing common themes of salamander pheromonal communication, we describe what is known about the rich diversity of pheromonal communication in each salamander family. Several pheromones have been described, ranging from simple, invariant molecules to complex, variable blends of pheromones. While some pheromones elicit overt behavioral responses, others have more nuanced effects. Pheromonal signals have diversified within salamander lineages and have experienced rapid evolution. Once receptors have been matched to pheromonal ligands, rapid advance can be made to better understand the olfactory detection and processing of salamander pheromones. In particular, a large number of salamander species deliver pheromones across the skin of females, perhaps reflecting a novel mode of pheromonal communication. At the end of our review, we list some of the many intriguing unanswered questions. We hope that this review will inspire a new generation of scientists to pursue work in this rewarding field.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA, 99203, USA
| |
Collapse
|
6
|
Species Variation in a Pheromone Complex is Maintained at the Population Level in the Eastern Red-Backed Salamander. J HERPETOL 2019. [DOI: 10.1670/18-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Wilburn DB, Feldhoff RC. An annual cycle of gene regulation in the red-legged salamander mental gland: from hypertrophy to expression of rapidly evolving pheromones. BMC DEVELOPMENTAL BIOLOGY 2019; 19:10. [PMID: 31029098 PMCID: PMC6487043 DOI: 10.1186/s12861-019-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Background Cell differentiation is mediated by synchronized waves of coordinated expression for hundreds to thousands of genes, and must be regulated to produce complex tissues and phenotypes. For many animal species, sexual selection has driven the development of elaborate male ornaments, requiring sex-specific differentiation pathways. One such male ornament is the pheromone-producing mental gland of the red-legged salamander (Plethodon shermani). Mental gland development follows an annual cycle of extreme hypertrophy, production of pheromones for the ~ 2 month mating season, and then complete resorption before repeating the process in the following year. At the peak of the mating season, the transcriptional and translational machinery of the mental gland are almost exclusively redirected to the synthesis of rapidly evolving pheromones. Of these pheromones, Plethodontid Modulating Factor (PMF) has experienced an unusual history: following gene duplication, the protein coding sequence diversified from positive sexual selection while the untranslated regions have been conserved by purifying selection. The molecular underpinnings that bridge the processes of gland hypertrophy, pheromone synthesis, and conservation of the untranslated regions remain to be determined. Results Using Illumina sequencing, we prepared a de novo transcriptome of the mental gland at six stages of development. Differential expression analysis and immunohistochemistry revealed that the mental gland initially adopts a highly proliferative, almost tumor-like phenotype, followed by a rapid increase in pheromone mRNA and protein. One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), which selectively and cooperatively binds the highly conserved PMF 3′ UTR. CIRBP, along with other proteins associated with stress response, have seemingly been co-opted to aid in mental gland development by helping to regulate pheromone synthesis. Conclusions The P. shermani mental gland utilizes a complex system of transcriptional and post-transcriptional gene regulation to facilitate its hypertrophication and pheromone synthesis. The data support the evolutionary interplay of coding and noncoding segments in rapid gene evolution, and necessitate the study of co-evolution between pheromone gene products and their transcriptional/translational regulators. Additionally, the mental gland could be a powerful emerging model of regulated tissue proliferation and subsequent resorption within the dermis and share molecular links to skin cancer biology. Electronic supplementary material The online version of this article (10.1186/s12861-019-0190-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Richard C Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
8
|
Wilburn DB, Arnold SJ, Houck LD, Feldhoff PW, Feldhoff RC. Gene Duplication, Co-option, Structural Evolution, and Phenotypic Tango in the Courtship Pheromones of Plethodontid Salamanders. HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-16-00082.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Damien B. Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stevan J. Arnold
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Lynne D. Houck
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Pamela W. Feldhoff
- Department of Biochemistry, University of Louisville, Louisville, KY 40292, USA
| | - Richard C. Feldhoff
- Department of Biochemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Wilburn DB, Doty KA, Chouinard AJ, Eddy SL, Woodley SK, Houck LD, Feldhoff RC. Olfactory effects of a hypervariable multicomponent pheromone in the red-legged salamander, Plethodon shermani. PLoS One 2017; 12:e0174370. [PMID: 28358844 PMCID: PMC5373537 DOI: 10.1371/journal.pone.0174370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Chemical communication via chemosensory signaling is an essential process for promoting and modifying reproductive behavior in many species. During courtship in plethodontid salamanders, males deliver a mixture of non-volatile proteinaceous pheromones that activate chemosensory neurons in the vomeronasal epithelium (VNE) and increase female receptivity. One component of this mixture, Plethodontid Modulating Factor (PMF), is a hypervariable pheromone expressed as more than 30 unique isoforms that differ between individual males-likely driven by co-evolution with female receptors to promote gene duplication and positive selection of the PMF gene complex. Courtship trials with females receiving different PMF isoform mixtures had variable effects on female mating receptivity, with only the most complex mixtures increasing receptivity, such that we believe that sufficient isoform diversity allows males to improve their reproductive success with any female in the mating population. The aim of this study was to test the effects of isoform variability on VNE neuron activation using the agmatine uptake assay. All isoform mixtures activated a similar number of neurons (>200% over background) except for a single purified PMF isoform (+17%). These data further support the hypothesis that PMF isoforms act synergistically in order to regulate female receptivity, and different putative mechanisms are discussed.
Collapse
Affiliation(s)
- Damien B. Wilburn
- Dept of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Dept of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Kari A. Doty
- Dept of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Adam J. Chouinard
- Dept of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sarah L. Eddy
- Dept of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sarah K. Woodley
- Dept of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Lynne D. Houck
- Dept of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Richard C. Feldhoff
- Dept of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
10
|
Characterisation of urinary WFDC12 in small nocturnal basal primates, mouse lemurs (Microcebus spp.). Sci Rep 2017; 7:42940. [PMID: 28225021 PMCID: PMC5320513 DOI: 10.1038/srep42940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 01/18/2023] Open
Abstract
Mouse lemurs are basal primates that rely on chemo- and acoustic signalling for social interactions in their dispersed social systems. We examined the urinary protein content of two mouse lemurs species, within and outside the breeding season, to assess candidates used in species discrimination, reproductive or competitive communication. Urine from Microcebus murinus and Microcebus lehilahytsara contain a predominant 10 kDa protein, expressed in both species by some, but not all, males during the breeding season, but at very low levels by females. Mass spectrometry of the intact proteins confirmed the protein mass and revealed a 30 Da mass difference between proteins from the two species. Tandem mass spectrometry after digestion with three proteases and sequencing de novo defined the complete protein sequence and located an Ala/Thr difference between the two species that explained the 30 Da mass difference. The protein (mature form: 87 amino acids) is an atypical member of the whey acidic protein family (WFDC12). Seasonal excretion of this protein, species difference and male-specific expression during the breeding season suggest that it may have a function in intra- and/or intersexual chemical signalling in the context of reproduction, and could be a cue for sexual selection and species recognition.
Collapse
|
11
|
Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins. EVOLUTION OF VENOMOUS ANIMALS AND THEIR TOXINS 2017. [DOI: 10.1007/978-94-007-6458-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Van Bocxlaer I, Maex M, Treer D, Janssenswillen S, Janssens R, Vandebergh W, Proost P, Bossuyt F. Beyond sodefrin: evidence for a multi-component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae). Sci Rep 2016; 6:21880. [PMID: 26935790 PMCID: PMC4776240 DOI: 10.1038/srep21880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF’s were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide.
Collapse
Affiliation(s)
- Ines Van Bocxlaer
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Maex
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Dag Treer
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven, Minderbroedersstraat 10 - box 1030, B-3000 Leuven, Belgium
| | - Wim Vandebergh
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven, Minderbroedersstraat 10 - box 1030, B-3000 Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
13
|
Eddy SL, Wilburn DB, Chouinard AJ, Doty KA, Kiemnec-Tyburczy KM, Houck LD. Male terrestrial salamanders demonstrate sequential mate choice based on female gravidity and size. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Doty KA, Wilburn DB, Bowen KE, Feldhoff PW, Feldhoff RC. Co-option and evolution of non-olfactory proteinaceous pheromones in a terrestrial lungless salamander. J Proteomics 2015; 135:101-111. [PMID: 26385001 DOI: 10.1016/j.jprot.2015.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 11/17/2022]
Abstract
Gene co-option is a major force in the evolution of novel biological functions. In plethodontid salamanders, males deliver proteinaceous courtship pheromones to the female olfactory system or transdermally to the bloodstream. Molecular studies identified three families of highly duplicated, rapidly evolving pheromones (PRF, PMF, and SPF). Analyses for Plethodon salamanders revealed pheromone mixtures of primarily PRF and PMF. The current study demonstrates that in Desmognathus ocoee--a plesiomorphic species with transdermal delivery--SPF is the major pheromone component representing >30% of total protein. Chromatographic profiles of D. ocoee pheromones were consistent from May through October. LC/MS-MS analysis suggested uniform SPF isoform expression between individual male D. ocoee. A gene ancestry for SPF with the Three-Finger Protein superfamily was supported by intron-exon boundaries, but not by the disulfide bonding pattern. Further analysis of the pheromone mixture revealed paralogs to peptide hormones that contained mutations in receptor binding regions, such that these novel molecules may alter female physiology by acting as hormone agonists/antagonists. Cumulatively, gene co-option, duplication, and neofunctionalization have permitted recruitment of additional gene families for pheromone activity. Such independent co-option events may be playing a key role in salamander speciation by altering male traits that influence reproductive success.
Collapse
Affiliation(s)
- Kari A Doty
- Department of Biochemistry and Molecular Biology,University of Louisville, Louisville, KY
| | - Damien B Wilburn
- Department of Biochemistry and Molecular Biology,University of Louisville, Louisville, KY; Department of Genome Sciences,University of Washington, Seattle, WA.
| | - Kathleen E Bowen
- Department of Biochemistry and Molecular Biology,University of Louisville, Louisville, KY
| | - Pamela W Feldhoff
- Department of Biochemistry and Molecular Biology,University of Louisville, Louisville, KY
| | - Richard C Feldhoff
- Department of Biochemistry and Molecular Biology,University of Louisville, Louisville, KY
| |
Collapse
|
15
|
Wilburn DB, Swanson WJ. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J Proteomics 2015; 135:12-25. [PMID: 26074353 DOI: 10.1016/j.jprot.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Genome Sciences, University of Washington, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, United States
| |
Collapse
|
16
|
Woodley S. Chemosignals, hormones, and amphibian reproduction. Horm Behav 2015; 68:3-13. [PMID: 24945995 DOI: 10.1016/j.yhbeh.2014.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/24/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.
Collapse
Affiliation(s)
- Sarah Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
17
|
Wilburn DB, Eddy SL, Chouinard AJ, Arnold SJ, Feldhoff RC, Houck LD. Pheromone isoform composition differentially affects female behaviour in the red-legged salamander, Plethodon shermani. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2014.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Proteomic analyses of courtship pheromones in the redback salamander, Plethodon cinereus. J Chem Ecol 2014; 40:928-39. [PMID: 25179396 DOI: 10.1007/s10886-014-0489-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/07/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
The evolutionary success of plethodontid salamanders for ~100 MY is due partly to the use of courtship pheromones that regulate female receptivity. In ~90 % of plethodontid species, males deliver pheromones by "scratching" a female's dorsum, where pheromones diffuse transdermally into the bloodstream. However, in a single clade, representing ~10 % of Plethodon spp., males apply pheromones to the female's nares for olfactory delivery. Molecular studies have identified three major pheromone families: Plethodontid Receptivity Factor (PRF), Plethodontid Modulating Factor (PMF), and Sodefrin Precursor-like Factor (SPF). SPF and PMF genes are relatively ancient and found in all plethodontid species; however, PRF is found exclusively in the genus Plethodon - which includes species with transdermal, olfactory, and intermediate delivery behaviors. While previous proteomic analyses suggested PRF and PMF are dominant in slapping species and SPF is dominant in non-Plethodon scratching species, it was unclear how protein expression of different pheromone components may vary across delivery modes within Plethodon. Therefore, the aim of this study was to proteomically characterize the pheromones of a key scratching species in this evolutionary transition, Plethodon cinereus. Using mass spectrometry-based techniques, our data support the functional replacement of SPF by PRF in Plethodon spp. and an increase in PMF gene duplication events in both lineage-dependent and delivery-dependent manners. Novel glycosylation was observed on P. cinereus PRFs, which may modulate the metabolism and/or mechanism of action for PRF in scratching species. Cumulatively, these molecular data suggest that the replacement of pheromone components (e.g., SPF by PRF) preceded the evolutionary transition of the functional complex from transdermal to olfactory delivery.
Collapse
|
19
|
|
20
|
Wilburn DB, Bowen KE, Doty KA, Arumugam S, Lane AN, Feldhoff PW, Feldhoff RC. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani. PLoS One 2014; 9:e96975. [PMID: 24849290 PMCID: PMC4029566 DOI: 10.1371/journal.pone.0096975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique adaptation may establish new paradigms for how receptor:ligand pairs co-evolve, in particular with respect to sexual conflict.
Collapse
Affiliation(s)
- Damien B. Wilburn
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Kathleen E. Bowen
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Kari A. Doty
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sengodagounder Arumugam
- J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Andrew N. Lane
- J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Pamela W. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Richard C. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
21
|
Treer D, Van Bocxlaer I, Matthijs S, Du Four D, Janssenswillen S, Willaert B, Bossuyt F. Love is blind: indiscriminate female mating responses to male courtship pheromones in newts (Salamandridae). PLoS One 2013; 8:e56538. [PMID: 23457580 PMCID: PMC3574087 DOI: 10.1371/journal.pone.0056538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.
Collapse
Affiliation(s)
- Dag Treer
- Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ines Van Bocxlaer
- Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Severine Matthijs
- Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri Du Four
- Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Bert Willaert
- Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|