1
|
Liaghat A, Yang J, Whitaker R, Pascual M. Punctuated virus-driven succession generates dynamical alternations in CRISPR-mediated microbe-virus coevolution. J R Soc Interface 2024; 21:20240195. [PMID: 39165171 PMCID: PMC11336687 DOI: 10.1098/rsif.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
The coevolutionary dynamics of lytic viruses and microbes with CRISPR-Cas immunity exhibit alternations between sustained host control of viral proliferation and major viral epidemics in previous computational models. These alternating dynamics have yet to be observed in other host-pathogen systems. Here, we address the breakdown of control and transition to large outbreaks with a stochastic eco-evolutionary model. We establish the role of host density-dependent competition in punctuated virus-driven succession and associated diversity trends that concentrate escape pathways during control phases. Using infection and escape networks, we derive the viral emergence probability whose fluctuations of increasing size and frequency characterize the approach to large outbreaks. We explore alternation probabilities as a function of non-dimensional parameters related to the probability of viral escape and host competition. Our results demonstrate how emergent feedbacks between host competition and viral diversification render the host immune structure fragile, potentiating a dynamical transition to large epidemics.
Collapse
Affiliation(s)
- Armun Liaghat
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Biology, New York University, New York, NY, USA
| | - Jiayue Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, USA
- Department of Environmental Studies, New York University, New York, NY, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
2
|
Watson BNJ, Pursey E, Gandon S, Westra ER. Transient eco-evolutionary dynamics early in a phage epidemic have strong and lasting impact on the long-term evolution of bacterial defences. PLoS Biol 2023; 21:e3002122. [PMID: 37713428 PMCID: PMC10530023 DOI: 10.1371/journal.pbio.3002122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/27/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023] Open
Abstract
Organisms have evolved a range of constitutive (always active) and inducible (elicited by parasites) defence mechanisms, but we have limited understanding of what drives the evolution of these orthogonal defence strategies. Bacteria and their phages offer a tractable system to study this: Bacteria can acquire constitutive resistance by mutation of the phage receptor (surface mutation, sm) or induced resistance through their CRISPR-Cas adaptive immune system. Using a combination of theory and experiments, we demonstrate that the mechanism that establishes first has a strong advantage because it weakens selection for the alternative resistance mechanism. As a consequence, ecological factors that alter the relative frequencies at which the different resistances are acquired have a strong and lasting impact: High growth conditions promote the evolution of sm resistance by increasing the influx of receptor mutation events during the early stages of the epidemic, whereas a high infection risk during this stage of the epidemic promotes the evolution of CRISPR immunity, since it fuels the (infection-dependent) acquisition of CRISPR immunity. This work highlights the strong and lasting impact of the transient evolutionary dynamics during the early stages of an epidemic on the long-term evolution of constitutive and induced defences, which may be leveraged to manipulate phage resistance evolution in clinical and applied settings.
Collapse
Affiliation(s)
| | - Elizabeth Pursey
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Sylvain Gandon
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Edze Rients Westra
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| |
Collapse
|
3
|
Amundson KK, Roux S, Shelton JL, Wilkins MJ. Long-term CRISPR locus dynamics and stable host-virus co-existence in subsurface fractured shales. Curr Biol 2023; 33:3125-3135.e4. [PMID: 37402375 DOI: 10.1016/j.cub.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Viruses are the most ubiquitous biological entities on Earth. Even so, elucidating the impact of viruses on microbial communities and associated ecosystem processes often requires identification of unambiguous host-virus linkages-an undeniable challenge in many ecosystems. Subsurface fractured shales present a unique opportunity to first make these strong linkages via spacers in CRISPR-Cas arrays and subsequently reveal complex long-term host-virus dynamics. Here, we sampled two replicated sets of fractured shale wells for nearly 800 days, resulting in 78 metagenomes from temporal sampling of six wells in the Denver-Julesburg Basin (Colorado, USA). At the community level, there was strong evidence for CRISPR-Cas defense systems being used through time and likely in response to viral interactions. Within our host genomes, represented by 202 unique MAGs, we also saw that CRISPR-Cas systems were widely encoded. Together, spacers from host CRISPR loci facilitated 2,110 CRISPR-based viral linkages across 90 host MAGs spanning 25 phyla. We observed less redundancy in host-viral linkages and fewer spacers associated with hosts from the older, more established wells, possibly reflecting enrichment of more beneficial spacers through time. Leveraging temporal patterns of host-virus linkages across differing well ages, we report how host-virus co-existence dynamics develop and converge through time, possibly reflecting selection for viruses that can evade host CRISPR-Cas systems. Together, our findings shed light on the complexities of host-virus interactions as well as long-term dynamics of CRISPR-Cas defense among diverse microbial populations.
Collapse
Affiliation(s)
- Kaela K Amundson
- Colorado State University, Department of Soil & Crop Sciences, 301 University Ave., Fort Collins, CO 80523, USA.
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jenna L Shelton
- United States Geological Survey, 12201 Sunrise Valley Dr., Reston, VA 20192, USA
| | - Michael J Wilkins
- Colorado State University, Department of Soil & Crop Sciences, 301 University Ave., Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Chabas H, Müller V, Bonhoeffer S, Regoes RR. Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems. PLoS Comput Biol 2022; 18:e1010329. [PMID: 35881633 PMCID: PMC9355216 DOI: 10.1371/journal.pcbi.1010329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/05/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteria have adaptive immunity against viruses (phages) in the form of CRISPR-Cas immune systems. Currently, 6 types of CRISPR-Cas systems are known and the molecular study of three of these has revealed important molecular differences. It is unknown if and how these molecular differences change the outcome of phage infection and the evolutionary pressure the CRISPR-Cas systems faces. To determine the importance of these molecular differences, we model a phage outbreak entering a population defending exclusively with a type I/II or a type III CRISPR-Cas system. We show that for type III CRISPR-Cas systems, rapid phage extinction is driven by the probability to acquire at least one resistance spacer. However, for type I/II CRISPR-Cas systems, rapid phage extinction is characterized by an a threshold-like behaviour: any acquisition probability below this threshold leads to phage survival whereas any acquisition probability above it, results in phage extinction. We also show that in the absence of autoimmunity, high acquisition rates evolve. However, when CRISPR-Cas systems are prone to autoimmunity, intermediate levels of acquisition are optimal during a phage outbreak. As we predict an optimal probability of spacer acquisition 2 factors of magnitude above the one that has been measured, we discuss the origin of such a discrepancy. Finally, we show that in a biologically relevant parameter range, a type III CRISPR-Cas system can outcompete a type I/II CRISPR-Cas system with a slightly higher probability of acquisition. CRISPR-Cas systems are adaptive immune systems that use a complex 3-step molecular mechanism to defend prokaryotes against phages. Viral infections of populations defending themselves with CRISPR-Cas can result in rapid phage extinction or in medium-term phage maintenance. To investigate what controls the fate of the phage population, we use mathematical modeling of type I/II and type III CRISPR-Cas systems, and show that two parameters control the epidemiological short-term outcome: the type of CRISPR-Cas systems and CRISPR-Cas probability of resistance acquisition. Furthermore, the latter impacts host fitness. From this, we derive that 1) for both types, CRISPR-Cas acquisition probability is a key predictor of the efficiency and of the cost of a CRISPR-Cas system, 2) during an outbreak, there is an optimal probability of resistance acquisition balancing the cost of autoimmunity and immune efficiency and 3) type I/II CRISPR-Cas systems are likely to evolve higher acquisition probability than type III.
Collapse
Affiliation(s)
- Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | | | - Roland R. Regoes
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Chen H, Mayer A, Balasubramanian V. A scaling law in CRISPR repertoire sizes arises from the avoidance of autoimmunity. Curr Biol 2022; 32:2897-2907.e5. [PMID: 35659862 DOI: 10.1016/j.cub.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022]
Abstract
Some prokaryotes possess CRISPR-Cas systems that use DNA segments called spacers, which are acquired from invading phages, to guide immune defense. Here, we propose that cross-reactive CRISPR targeting can, however, lead to "heterologous autoimmunity," whereby foreign spacers guide self-targeting in a spacer-length-dependent fashion. Balancing antiviral defense against autoimmunity predicts a scaling relation between spacer length and CRISPR repertoire size. We find evidence for this scaling through a comparative analysis of sequenced prokaryotic genomes and show that this association also holds at the level of CRISPR types. By contrast, the scaling is absent in strains with nonfunctional CRISPR loci. Finally, we demonstrate that stochastic spacer loss can explain variations around the scaling relation, even between strains of the same species. Our results suggest that heterologous autoimmunity is a selective factor shaping the evolution of CRISPR-Cas systems, analogous to the trade-offs between immune specificity, breadth, and autoimmunity that constrain the diversity of adaptive immune systems in vertebrates.
Collapse
Affiliation(s)
- Hanrong Chen
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Metagenomic Technologies and Microbial Systems, Genome Institute of Singapore, Singapore 138672, Singapore.
| | - Andreas Mayer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Vijay Balasubramanian
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Theoretische Natuurkunde, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
7
|
Gupta A, Peng S, Leung CY, Borin JM, Medina S, Weitz JS, Meyer JR. Leapfrog dynamics in phage‐bacteria coevolution revealed by joint analysis of cross‐infection phenotypes and whole genome sequencing. Ecol Lett 2022; 25:876-888. [PMID: 35092147 PMCID: PMC10167754 DOI: 10.1111/ele.13965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023]
Abstract
Viruses and their hosts can undergo coevolutionary arms races where hosts evolve increased resistance and viruses evolve counter-resistance. Given these arms race dynamics (ARD), both players are predicted to evolve along a single trajectory as more recently evolved genotypes replace their predecessors. By coupling phenotypic and genomic analyses of coevolving populations of bacteriophage λ and Escherichia coli, we find conflicting evidence for ARD. Virus-host infection phenotypes fit the ARD model, yet genomic analyses revealed fluctuating selection dynamics. Rather than coevolution unfolding along a single trajectory, cryptic genetic variation emerges and is maintained at low frequency for generations until it eventually supplants dominant lineages. These observations suggest a hybrid 'leapfrog' dynamic, revealing weaknesses in the predictive power of standard coevolutionary models. The findings shed light on the mechanisms that structure coevolving ecological networks and reveal the limits of using phenotypic or genomic data alone to differentiate coevolutionary dynamics.
Collapse
Affiliation(s)
- Animesh Gupta
- Department of Physics University of California San Diego La Jolla California USA
| | - Shengyun Peng
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Chung Yin Leung
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Joshua M. Borin
- Division of Biological Science University of California San Diego La Jolla California USA
| | - Sarah J. Medina
- Division of Biological Science University of California San Diego La Jolla California USA
| | - Joshua S. Weitz
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
- School of Physics Georgia Institute of Technology Atlanta Georgia USA
| | - Justin R. Meyer
- Division of Biological Science University of California San Diego La Jolla California USA
| |
Collapse
|
8
|
DeWerff SJ, Zhang C, Schneider J, Whitaker RJ. Intraspecific antagonism through viral toxin encoded by chronic Sulfolobus spindle-shaped virus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200476. [PMID: 34839697 PMCID: PMC8628083 DOI: 10.1098/rstb.2020.0476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Virus-host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus-host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus-host mutualism. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Samantha J. DeWerff
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Changyi Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John Schneider
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel J. Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Weissman JL, Alseth EO, Meaden S, Westra ER, Fuhrman JA. Immune lag is a major cost of prokaryotic adaptive immunity during viral outbreaks. Proc Biol Sci 2021; 288:20211555. [PMID: 34666523 PMCID: PMC8527200 DOI: 10.1098/rspb.2021.1555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptive immune systems enable bacteria and archaea to efficiently respond to viral pathogens by creating a genomic record of previous encounters. These systems are broadly distributed across prokaryotic taxa, yet are surprisingly absent in a majority of organisms, suggesting that the benefits of adaptive immunity frequently do not outweigh the costs. Here, combining experiments and models, we show that a delayed immune response which allows viruses to transiently redirect cellular resources to reproduction, which we call ‘immune lag’, is extremely costly during viral outbreaks, even to completely immune hosts. Critically, the costs of lag are only revealed by examining the early, transient dynamics of a host–virus system occurring immediately after viral challenge. Lag is a basic parameter of microbial defence, relevant to all intracellular, post-infection antiviral defence systems, that has to-date been largely ignored by theoretical and experimental treatments of host-phage systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biological Sciences-Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| | - Ellinor O Alseth
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Sean Meaden
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Jed A Fuhrman
- Department of Biological Sciences-Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Gulbudak H, Salceanu PL, Wolkowicz GSK. A delay model for persistent viral infections in replicating cells. J Math Biol 2021; 82:59. [PMID: 33993422 DOI: 10.1007/s00285-021-01612-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023]
Abstract
Persistently infecting viruses remain within infected cells for a prolonged period of time without killing the cells and can reproduce via budding virus particles or passing on to daughter cells after division. The ability for populations of infected cells to be long-lived and replicate viral progeny through cell division may be critical for virus survival in examples such as HIV latent reservoirs, tumor oncolytic virotherapy, and non-virulent phages in microbial hosts. We consider a model for persistent viral infection within a replicating cell population with time delay in the eclipse stage prior to infected cell replicative form. We obtain reproduction numbers that provide criteria for the existence and stability of the equilibria of the system and provide bifurcation diagrams illustrating transcritical (backward and forward), saddle-node, and Hopf bifurcations, and provide evidence of homoclinic bifurcations and a Bogdanov-Takens bifurcation. We investigate the possibility of long term survival of the infection (represented by chronically infected cells and free virus) in the cell population by using the mathematical concept of robust uniform persistence. Using numerical continuation software with parameter values estimated from phage-microbe systems, we obtain two parameter bifurcation diagrams that divide parameter space into regions with different dynamical outcomes. We thus investigate how varying different parameters, including how the time spent in the eclipse phase, can influence whether or not the virus survives.
Collapse
Affiliation(s)
- Hayriye Gulbudak
- Mathematics Department, University of Louisiana at Lafayette, Lafayette, LA, USA.
| | - Paul L Salceanu
- Mathematics Department, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Gail S K Wolkowicz
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Arya S, Todman H, Baker M, Hooton S, Millard A, Kreft JU, Hobman JL, Stekel DJ. A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer. FEMS Microbiol Ecol 2020; 96:5850753. [PMID: 32490523 DOI: 10.1093/femsec/fiaa100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/02/2020] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a major global challenge. Of particular concern are mobilizable elements that can transfer resistance genes between bacteria, leading to pathogens with new combinations of resistance. To date, mathematical models have largely focussed on transfer of resistance by plasmids, with fewer studies on transfer by bacteriophages. We aim to understand how best to model transfer of resistance by transduction by lytic phages. We show that models of lytic bacteriophage infection with empirically derived realistic phage parameters lead to low numbers of bacteria, which, in low population or localised environments, lead to extinction of bacteria and phage. Models that include antagonistic co-evolution of phage and bacteria produce more realistic results. Furthermore, because of these low numbers, stochastic dynamics are shown to be important, especially to spread of resistance. When resistance is introduced, resistance can sometimes be fixed, and at other times die out, with the probability of each outcome sensitive to bacterial and phage parameters. Specifically, that outcome most strongly depends on the baseline death rate of bacteria, with phage-mediated spread favoured in benign environments with low mortality over more hostile environments. We conclude that larger-scale models should consider spatial compartmentalisation and heterogeneous microenviroments, while encompassing stochasticity and co-evolution.
Collapse
Affiliation(s)
- Sankalp Arya
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Henry Todman
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michelle Baker
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Steven Hooton
- Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jon L Hobman
- Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Dov J Stekel
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
12
|
Westra ER, Levin BR. It is unclear how important CRISPR-Cas systems are for protecting natural populations of bacteria against infections by mobile genetic elements. Proc Natl Acad Sci U S A 2020; 117:27777-27785. [PMID: 33122438 PMCID: PMC7668106 DOI: 10.1073/pnas.1915966117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Articles on CRISPR commonly open with some variant of the phrase "these short palindromic repeats and their associated endonucleases (Cas) are an adaptive immune system that exists to protect bacteria and archaea from viruses and infections with other mobile genetic elements." There is an abundance of genomic data consistent with the hypothesis that CRISPR plays this role in natural populations of bacteria and archaea, and experimental demonstrations with a few species of bacteria and their phage and plasmids show that CRISPR-Cas systems can play this role in vitro. Not at all clear are the ubiquity, magnitude, and nature of the contribution of CRISPR-Cas systems to the ecology and evolution of natural populations of microbes and the strength of selection mediated by different types of phage and plasmids to the evolution and maintenance of CRISPR-Cas systems. In this perspective, with the aid of heuristic mathematical-computer simulation models, we explore the a priori conditions under which exposure to lytic and temperate phage and conjugative plasmids will select for and maintain CRISPR-Cas systems in populations of bacteria and archaea. We review the existing literature addressing these ecological and evolutionary questions and highlight the experimental and other evidence needed to fully understand the conditions responsible for the evolution and maintenance of CRISPR-Cas systems and the contribution of these systems to the ecology and evolution of bacteria, archaea, and the mobile genetic elements that infect them.
Collapse
Affiliation(s)
- Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, TR10 9FE Cornwall, United Kingdom;
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA 30307
| |
Collapse
|
13
|
Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, Dundar M, Bertelli M. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020024. [PMID: 33170167 PMCID: PMC8023132 DOI: 10.23750/abm.v91i13-s.10819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | | | | | | | | | | | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Matteo Bertelli
- EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy.
| |
Collapse
|
14
|
The network structure and eco-evolutionary dynamics of CRISPR-induced immune diversification. Nat Ecol Evol 2020; 4:1650-1660. [PMID: 33077929 DOI: 10.1038/s41559-020-01312-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023]
Abstract
As a heritable sequence-specific adaptive immune system, CRISPR-Cas is a powerful force shaping strain diversity in host-virus systems. While the diversity of CRISPR alleles has been explored, the associated structure and dynamics of host-virus interactions have not. We explore the role of CRISPR in mediating the interplay between host-virus interaction structure and eco-evolutionary dynamics in a computational model and compare the results with three empirical datasets from natural systems. We show that the structure of the networks describing who infects whom and the degree to which strains are immune, are respectively modular (containing groups of hosts and viruses that interact strongly) and weighted-nested (specialist hosts are more susceptible to subsets of viruses that in turn also infect the more generalist hosts with many spacers matching many viruses). The dynamic interplay between these networks influences transitions between dynamical regimes of virus diversification and host control. The three empirical systems exhibit weighted-nested immunity networks, a pattern our theory shows is indicative of hosts able to suppress virus diversification. Previously missing from studies of microbial host-pathogen systems, the immunity network plays a key role in the coevolutionary dynamics.
Collapse
|
15
|
Bradde S, Mora T, Walczak AM. Cost and benefits of clustered regularly interspaced short palindromic repeats spacer acquisition. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180095. [PMID: 30905281 PMCID: PMC6452266 DOI: 10.1098/rstb.2018.0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-mediated immunity in bacteria allows bacterial populations to protect themselves against pathogens. However, it also exposes them to the dangers of auto-immunity by developing protection that targets its own genome. Using a simple model of the coupled dynamics of phage and bacterial populations, we explore how acquisition rates affect the probability of the bacterial colony going extinct. We find that the optimal strategy depends on the initial population sizes of both viruses and bacteria. Additionally, certain combinations of acquisition and dynamical rates and initial population sizes guarantee protection, owing to a dynamical balance between the evolving population sizes, without relying on acquisition of viral spacers. Outside this regime, the high cost of auto-immunity limits the acquisition rate. We discuss these optimal strategies that minimize the probability of the colony going extinct in terms of recent experiments. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- Serena Bradde
- 1 American Physical Society , 1 Research Road, Ridge, NY 11961-2701 , USA.,2 David Rittenhouse Laboratories, University of Pennsylvania , Philadelphia, PA 19104 , USA
| | - Thierry Mora
- 3 Laboratoire de physique statistique, CNRS, Sorbonne Université , Paris , France.,4 Université Paris-Diderot , 24, rue Lhomond, 75005 Paris , France.,5 École Normale Supérieure (PSL University) , 24, rue Lhomond, 75005 Paris , France
| | - Aleksandra M Walczak
- 5 École Normale Supérieure (PSL University) , 24, rue Lhomond, 75005 Paris , France.,6 Laboratoire de physique théorique, CNRS, Sorbonne Université , 24, rue Lhomond, 75005 Paris , France
| |
Collapse
|
16
|
Gurney J, Pleška M, Levin BR. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180096. [PMID: 30905282 PMCID: PMC6452257 DOI: 10.1098/rstb.2018.0096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction–modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- James Gurney
- 1 School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30314 , USA
| | - Maroš Pleška
- 2 The Rockefeller University , New York, NY 10065 , USA
| | | |
Collapse
|
17
|
Lopatina A, Medvedeva S, Artamonova D, Kolesnik M, Sitnik V, Ispolatov Y, Severinov K. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180092. [PMID: 30905291 PMCID: PMC6452258 DOI: 10.1098/rstb.2018.0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the diversity of CRISPR spacers of Thermus communities from two locations in Italy, two in Chile and one location in Russia. Among the five sampling sites, a total of more than 7200 unique spacers belonging to different CRISPR-Cas systems types and subtypes were identified. Most of these spacers are not found in CRISPR arrays of sequenced Thermus strains. Comparison of spacer sets revealed that samples within the same area (separated by few to hundreds of metres) have similar spacer sets, which appear to be largely stable at least over the course of several years. While at further distances (hundreds of kilometres and more) the similarity of spacer sets is decreased, there are still multiple common spacers in Thermus communities from different continents. The common spacers can be reconstructed in identical or similar CRISPR arrays, excluding their independent appearance and suggesting an extensive migration of thermophilic bacteria over long distances. Several new Thermus phages were isolated in the sampling sites. Mapping of spacers to bacteriophage sequences revealed examples of local acquisition of spacers from some phages and distinct patterns of targeting of phage genomes by different CRISPR-Cas systems. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- Anna Lopatina
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,2 Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Sofia Medvedeva
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,4 Pasteur Institute , Paris , France
| | - Daria Artamonova
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Matvey Kolesnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Vasily Sitnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Yaroslav Ispolatov
- 5 Department of Physics, University of Santiago de Chile , Santiago , Chile
| | - Konstantin Severinov
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,6 Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey , Piscataway, NJ , USA.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
18
|
Abstract
Some bacteria possess an adaptive immune system that maintains a memory of past viral infections in the CRISPR loci of their genomes. This memory is used to mount targeted responses against later threats but is remarkably shallow: it remembers only a few dozen to a few hundred viruses. We present a statistical theory of CRISPR-based immunity that quantitatively predicts the depth of bacterial immune memory in terms of a tradeoff with fundamental constraints of the cellular biochemical machinery. Some bacteria and archaea possess an immune system, based on the CRISPR-Cas mechanism, that confers adaptive immunity against viruses. In such species, individual prokaryotes maintain cassettes of viral DNA elements called spacers as a memory of past infections. Typically, the cassettes contain several dozen expressed spacers. Given that bacteria can have very large genomes and since having more spacers should confer a better memory, it is puzzling that so little genetic space would be devoted by prokaryotes to their adaptive immune systems. Here, assuming that CRISPR functions as a long-term memory-based defense against a diverse landscape of viral species, we identify a fundamental tradeoff between the amount of immune memory and effectiveness of response to a given threat. This tradeoff implies an optimal size for the prokaryotic immune repertoire in the observational range.
Collapse
|
19
|
Abstract
The emergence of emerging and reemerging infectious diseases throughout history has been the product of the interaction of infectious agents, immunity, selective pressure, and environmental factors. The origin of the viral ancestors remains controversial, the debate remains whether the viruses existed before their host cells, evolved as molecular structures that adapted to the intracellular development or of the cells that infected or housed them as hosts. The nature of the viruses could propose a hypothetical evolutionary model based on the way they parasitize cells and the way they fuse with their host cells. So far there are no “universal” viral genes that have not allowed the hypotheses of the “common viral ancestor” to be conclusive. Insects have a special role in understanding viral evolution and how they became pathogens, suggesting a coevolutionary scenario of colonization that would initially allow the survival of viruses and later an ecological niche required for the cycle of virus replication. The coevolution of viruses and defense systems of hosts represents a fundamental role in the evolution of both viruses and host cells, a kind of arms race between viruses and hosts, and the deescalation of that war could explain the coexistence of viruses and hosts. Viruses are playing an important role in the understanding of cell evolution and have earned the right to be included in the tree of life. The aim of this chapter is to review the viral evolution and the insects as host.
Collapse
|
20
|
Pauly MD, Bautista MA, Black JA, Whitaker RJ. Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180093. [PMID: 30905292 PMCID: PMC6452263 DOI: 10.1098/rstb.2018.0093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
The population diversity and structure of CRISPR-Cas immunity provides key insights into virus-host interactions. Here, we examined two geographically and genetically distinct natural populations of the thermophilic crenarchaeon Sulfolobus islandicus and their interactions with Sulfolobus spindle-shaped viruses (SSVs) and S. islandicus rod-shaped viruses (SIRVs). We found that both virus families can be targeted with high population distributed immunity, whereby most immune strains target a virus using unique unshared CRISPR spacers. In Kamchatka, Russia, we observed high immunity to chronic SSVs that increases over time. In this context, we found that some SSVs had shortened genomes lacking genes that are highly targeted by the S. islandicus population, indicating a potential mechanism of immune evasion. By contrast, in Yellowstone National Park, we found high inter- and intra-strain immune diversity targeting lytic SIRVs and low immunity to chronic SSVs. In this population, we observed evidence of SIRVs evolving immunity through mutations concentrated in the first five bases of protospacers. These results indicate that diversity and structure of antiviral CRISPR-Cas immunity for a single microbial species can differ by both the population and virus type, and suggest that different virus families use different mechanisms to evade CRISPR-Cas immunity. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Matthew D. Pauly
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Maria A. Bautista
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Jesse A. Black
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Rachel J. Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Common J, Morley D, Westra ER, van Houte S. CRISPR-Cas immunity leads to a coevolutionary arms race between Streptococcus thermophilus and lytic phage. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180098. [PMID: 30905285 PMCID: PMC6452269 DOI: 10.1098/rstb.2018.0098] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/22/2023] Open
Abstract
CRISPR-Cas is an adaptive prokaryotic immune system that prevents phage infection. By incorporating phage-derived 'spacer' sequences into CRISPR loci on the host genome, future infections from the same phage genotype can be recognized and the phage genome cleaved. However, the phage can escape CRISPR degradation by mutating the sequence targeted by the spacer, allowing them to re-infect previously CRISPR-immune hosts, and theoretically leading to coevolution. Previous studies have shown that phage can persist over long periods in populations of Streptococcus thermophilus that can acquire CRISPR-Cas immunity, but it has remained less clear whether this coexistence was owing to coevolution, and if so, what type of coevolutionary dynamics were involved. In this study, we performed highly replicated serial transfer experiments over 30 days with S. thermophilus and a lytic phage. Using a combination of phenotypic and genotypic data, we show that CRISPR-mediated resistance and phage infectivity coevolved over time following an arms race dynamic, and that asymmetry between phage infectivity and host resistance within this system eventually causes phage extinction. This work provides further insight into the way CRISPR-Cas systems shape the population and coevolutionary dynamics of bacteria-phage interactions. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | | | | | - Stineke van Houte
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
22
|
Shapiro BJ. Reuniting ecology and evolution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:13-14. [PMID: 30556305 DOI: 10.1111/1758-2229.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Affiliation(s)
- B Jesse Shapiro
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
23
|
Gulbudak H, Weitz JS. Heterogeneous viral strategies promote coexistence in virus-microbe systems. J Theor Biol 2019; 462:65-84. [DOI: 10.1016/j.jtbi.2018.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 09/15/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
|
24
|
Ali Q. Non-conventional therapeutic technique to replace CRISPR bacteria from biofilm by inducible lysogen. JOURNAL OF BIOLOGICAL DYNAMICS 2018; 13:151-178. [PMID: 30295162 DOI: 10.1080/17513758.2018.1527958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Bacteriophage can be an effective means of regulating bacterial populations when conditions allow phage invasion of bacterial colonies. Phage can either infect and lyse a host cell, or insert their DNA into the host cell genome; the latter process is called lysogeny. The clustered regularly interspaced short palindromic repeat (CRISPR) system, linked with CRISPR-associated (Cas) genes, is a regulatory system present in a variety of bacteria which confers immunity against bacteriophage. Studies of the group behaviour of bacteria with CRISPR/Cas systems have provided evidence that CRISPR in lysogenized bacteria can cause an inability to form biofilm. This allows CRISPR-immune bacteria in biofilms to effectively resist phage therapy. Our recent work has described a potential therapeutic technique to eradicate CRISPR-immune bacteria from a biofilm by a continuous influx of lysogens carrying an identical phage sequence. However, this model predicted that the CRISPR-immune population could persist for long times before eradication. Our current focus is on the use of diverse lysogens against CRISPR-capable bacterial populations. The goal of this work is to find a suitable strategy which can eradicate bacteria with a CRISPR system through the influx of finite amounts of distinct lysogens over fixed intervals.
Collapse
Affiliation(s)
- Qasim Ali
- a Department of Mathematics, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
25
|
How adaptive immunity constrains the composition and fate of large bacterial populations. Proc Natl Acad Sci U S A 2018; 115:E7462-E7468. [PMID: 30038015 DOI: 10.1073/pnas.1802887115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Features of the CRISPR-Cas system, in which bacteria integrate small segments of phage genome (spacers) into their DNA to neutralize future attacks, suggest that its effect is not limited to individual bacteria but may control the fate and structure of whole populations. Emphasizing the population-level impact of the CRISPR-Cas system, recent experiments show that some bacteria regulate CRISPR-associated genes via the quorum sensing (QS) pathway. Here we present a model that shows that from the highly stochastic dynamics of individual spacers under QS control emerges a rank-abundance distribution of spacers that is time invariant, a surprising prediction that we test with dynamic spacer-tracking data from literature. This distribution depends on the state of the competing phage-bacteria population, which due to QS-based regulation may coexist in multiple stable states that vary significantly in their phage-to-bacterium ratio, a widely used ecological measure to characterize microbial systems.
Collapse
|
26
|
Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A, Chabas H, Buckling A, Westra ER, van Houte S. Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity. Cell 2018; 174:908-916.e12. [PMID: 30033365 PMCID: PMC6086933 DOI: 10.1016/j.cell.2018.05.058] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/20/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics. Bacteria with CRISPR immunity remain partially resistant to Acr-phage Sequentially infecting Acr-phages cooperate to overcome CRISPR resistance Acr-phage epidemiology depends on the initial phage density CRISPR-resistant bacteria can drive Acr-phages extinct
Collapse
Affiliation(s)
- Mariann Landsberger
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS Université de Montpellier Université Paul-Valéry Montpellier EPHE, 34293 Montpellier Cedex 5, France
| | - Sean Meaden
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Clare Rollie
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Anne Chevallereau
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Hélène Chabas
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Angus Buckling
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Edze R Westra
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
| | - Stineke van Houte
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
| |
Collapse
|
27
|
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) constitute a multi-functional, constantly evolving immune system in bacteria and archaea cells. A heritable, molecular memory is generated of phage, plasmids, or other mobile genetic elements that attempt to attack the cell. This memory is used to recognize and interfere with subsequent invasions from the same genetic elements. This versatile prokaryotic tool has also been used to advance applications in biotechnology. Here we review a large body of CRISPR-Cas research to explore themes of evolution and selection, population dynamics, horizontal gene transfer, specific and cross-reactive interactions, cost and regulation, non-immunological CRISPR functions that boost host cell robustness, as well as applicable mechanisms for efficient and specific genetic engineering. We offer future directions that can be addressed by the physics community. Physical understanding of the CRISPR-Cas system will advance uses in biotechnology, such as developing cell lines and animal models, cell labeling and information storage, combatting antibiotic resistance, and human therapeutics.
Collapse
Affiliation(s)
- Melia E Bonomo
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America. Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
| | | |
Collapse
|
28
|
Haerter JO, Mitarai N, Sneppen K. Theory of invasion extinction dynamics in minimal food webs. Phys Rev E 2018; 97:022404. [PMID: 29548095 DOI: 10.1103/physreve.97.022404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 11/07/2022]
Abstract
When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.
Collapse
Affiliation(s)
- Jan O Haerter
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Immune loss as a driver of coexistence during host-phage coevolution. ISME JOURNAL 2018; 12:585-597. [PMID: 29328063 PMCID: PMC5776473 DOI: 10.1038/ismej.2017.194] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Bacteria and their viral pathogens face constant pressure for augmented immune and
infective capabilities, respectively. Under this reciprocally imposed selective regime, we
expect to see a runaway evolutionary arms race, ultimately leading to the extinction of
one species. Despite this prediction, in many systems host and pathogen coexist with
minimal coevolution even when well-mixed. Previous work explained this puzzling phenomenon
by invoking fitness tradeoffs, which can diminish an arms race dynamic. Here we propose
that the regular loss of immunity by the bacterial host can also produce host-phage
coexistence. We pair a general model of immunity with an experimental and theoretical case
study of the CRISPR-Cas immune system to contrast the behavior of tradeoff and loss
mechanisms in well-mixed systems. We find that, while both mechanisms can produce stable
coexistence, only immune loss does so robustly within realistic parameter ranges.
Collapse
|
30
|
Peering into the Genetic Makeup of Natural Microbial Populations Using Metagenomics. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Martynov A, Severinov K, Ispolatov I. Optimal number of spacers in CRISPR arrays. PLoS Comput Biol 2017; 13:e1005891. [PMID: 29253874 PMCID: PMC5749868 DOI: 10.1371/journal.pcbi.1005891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/02/2018] [Accepted: 11/24/2017] [Indexed: 11/19/2022] Open
Abstract
Prokaryotic organisms survive under constant pressure of viruses. CRISPR-Cas system provides its prokaryotic host with an adaptive immune defense against viruses that have been previously encountered. It consists of two components: Cas-proteins that cleave the foreign DNA and CRISPR array that suits as a virus recognition key. CRISPR array consists of a series of spacers, short pieces of DNA that originate from and match the corresponding parts of viral DNA called protospacers. Here we estimate the number of spacers in a CRISPR array of a prokaryotic cell which maximizes its protection against a viral attack. The optimality follows from a competition between two trends: too few distinct spacers make host vulnerable to an attack by a virus with mutated corresponding protospacers, while an excessive variety of spacers dilutes the number of the CRISPR complexes armed with the most recent and thus most useful spacers. We first evaluate the optimal number of spacers in a simple scenario of an infection by a single viral species and later consider a more general case of multiple viral species. We find that depending on such parameters as the concentration of CRISPR-Cas interference complexes and its preference to arm with more recently acquired spacers, the rate of viral mutation, and the number of viral species, the predicted optimal number of spacers lies within a range that agrees with experimentally-observed values. CRISPR-Cas systems provide adaptive immunity defense in bacteria and archaea against viruses. They function by accumulating in prokaryotic genome an array of spacers, or fragments of virus DNA from previous attacks. By matching spacers to corresponding parts of viral DNA called protospacers, a CRISPR-Cas system identifies and destroys intruder DNA. Here we theoretically estimate the number of spacers that maximizes prokaryotic host cell survival. This optimum emerges from a competition between two trends: More spacers allow a prokaryotic cell to hedge against mutations in viral protospacers. However, the older spacers loose efficiency as corresponding protospacers mutate. For a limited pool of CRISPR-Cas molecular machines, keeping too many spacers leaves fewer of such machines armed with more efficient young (most recently acquired) spacers. We have shown that a higher efficiency of CRISPR-Cas system allows a prokaryotic cell to utilize more spacers, increasing the optimal number of spacers. On contrary, a higher viral mutation rate makes older spacers useless and favors shorter arrays. A higher diversity in viral species reduces the efficiency of CRISPR-Cas but does not necessary lead to longer arrays. Our study provides a new viewpoint at a variety of the observed array spacer number and could be used as a base for evolutionary models of host-phage coexistence.
Collapse
Affiliation(s)
- Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- * E-mail: (II); (AM)
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Iaroslav Ispolatov
- Department of Physics, University of Santiago de Chile, Santiago, Chile
- * E-mail: (II); (AM)
| |
Collapse
|
32
|
Han P, Deem MW. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats. J R Soc Interface 2017; 14:rsif.2016.0905. [PMID: 28202591 DOI: 10.1098/rsif.2016.0905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 02/02/2023] Open
Abstract
CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon.
Collapse
Affiliation(s)
- Pu Han
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Michael W Deem
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA .,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| |
Collapse
|
33
|
Ali Q, Wahl LM. Mathematical modelling of CRISPR-Cas system effects on biofilm formation. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:264-284. [PMID: 28426329 DOI: 10.1080/17513758.2017.1314025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.
Collapse
Affiliation(s)
- Qasim Ali
- a Department of Applied Mathematics , University of Western Ontario , London , ON , Canada
| | - Lindi M Wahl
- a Department of Applied Mathematics , University of Western Ontario , London , ON , Canada
| |
Collapse
|
34
|
Louca S, Doebeli M. Taxonomic variability and functional stability in microbial communities infected by phages. Environ Microbiol 2017; 19:3863-3878. [PMID: 28371143 DOI: 10.1111/1462-2920.13743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
Microbial communities can display large variation in taxonomic composition, yet this variation can coincide with stable metabolic functional structure and performance. The mechanisms driving the taxonomic variation within functional groups remain largely unknown. Biotic interactions, such as predation by phages, have been suggested as potential cause of taxonomic turnover, but the conditions for this scenario have not been rigorously examined. Further, it is unknown how predation by phages affects community function, and how these effects are modulated by functional redundancy in the communities. Here, we address these questions using a model for a methanogenic microbial community that includes several interacting metabolic functional groups. Each functional group comprises multiple competing clades, and each clade is attacked by a specialist lytic phage. Our model predicts that phages induce intense taxonomic turnover, resembling the variability observed in previous experiments. The functional structure and performance of the community are also disturbed by phage predation, but they become more stable as the functional redundancy in the community increases. The extent of this stabilization depends on the particular functions considered. Our model suggests mechanisms by which functional redundancy stabilizes community function and supports the interpretation that biotic interactions promote taxonomic turnover within microbial functional groups.
Collapse
Affiliation(s)
- Stilianos Louca
- Biodiversity Research Centre, University of British Columbia, Canada.,Department of Zoology, University of British Columbia, Canada
| | - Michael Doebeli
- Biodiversity Research Centre, University of British Columbia, Canada.,Department of Zoology, University of British Columbia, Canada.,Department of Mathematics, University of British Columbia, Canada
| |
Collapse
|
35
|
Bradde S, Vucelja M, Teşileanu T, Balasubramanian V. Dynamics of adaptive immunity against phage in bacterial populations. PLoS Comput Biol 2017; 13:e1005486. [PMID: 28414716 PMCID: PMC5411097 DOI: 10.1371/journal.pcbi.1005486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 05/01/2017] [Accepted: 03/29/2017] [Indexed: 01/21/2023] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations exhibit damped oscillations, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a “winner-take-all” scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition probability. The CRISPR system in bacteria and archaea provides adaptive immunity by incorporating foreign DNA (spacers) into the genome, and later targeting DNA sequences that match these spacers. The way in which bacteria choose spacer sequences from a clonal phage population is not understood. Our model considers competing effects of ease of acquisition and effectiveness against infections in shaping the spacer distribution. The model suggests that a diverse spacer population results when the acquisition rate is high, or when spacers are similarly effective. At moderate acquisition rates, the spacer distribution becomes highly sensitive to spacer effectiveness. There is a rich landscape of behaviors including bacteria-phage coexistence and oscillations in the populations.
Collapse
Affiliation(s)
- Serena Bradde
- Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York, United States of America
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marija Vucelja
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
- Department of Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tiberiu Teşileanu
- Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York, United States of America
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York, United States of America
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gulbudak H, Weitz JS. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc Biol Sci 2016; 283:rspb.2016.1037. [PMID: 27683365 DOI: 10.1098/rspb.2016.1037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/02/2016] [Indexed: 11/12/2022] Open
Abstract
The canonical view of the interactions between viruses and their microbial hosts presumes that changes in host and virus fate requires the initiation of infection of a host by a virus. Infection may lead to the death of the host cell and release of viruses, to the elimination of the viral genome through cellular defence mechanisms or the integration of the viral genome with the host as a chromosomal or extrachromosomal element. Here, we revisit this canonical view, inspired by recent experimental findings in which the majority of target host cells can be induced into a dormant state when exposed to either active or deactivated viruses, even when viruses are present at low relative titre. We propose that both the qualitative phenomena and the quantitative timescales of dormancy induction are consistent with the hypothesis that cellular physiology can be altered by contact on the surface of host cells rather than strictly by infection In order to test this hypothesis, we develop and study a biophysical model of contact-mediated dynamics involving virus particles and target cells. We show how virus particles can catalyse cellular transformations among many cells, even if they ultimately infect only one (or none). We also find that population-scale dormancy is robust to variation in the representation of model dynamics, including cell growth, death and recovery.
Collapse
Affiliation(s)
- Hayriye Gulbudak
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
37
|
Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci 2016. [PMID: 26224708 DOI: 10.1098/rspb.2015.1270] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection, and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Guillaume Lafforgue
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | - Francois Gatchitch
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | | | - Sylvain Moineau
- GREB and Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Québec, Canada G1V 0A6 Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Faculté des sciences et de génie, Université Laval, Québec, Canada G1V 0A6
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| |
Collapse
|
38
|
Krysiak-Baltyn K, Martin GJO, Stickland AD, Scales PJ, Gras SL. Computational models of populations of bacteria and lytic phage. Crit Rev Microbiol 2016; 42:942-68. [PMID: 26828960 DOI: 10.3109/1040841x.2015.1114466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of phages to control and reduce numbers of unwanted bacteria can be traced back to the early 1900s, when phages were explored as a tool to treat infections before the wide scale use of antibiotics. Recently, phage therapy has received renewed interest as a method to treat multiresistant bacteria. Phages are also widely used in the food industry to prevent the growth of certain bacteria in foods, and are currently being explored as a tool for use in bioremediation and wastewater treatment. Despite the large body of biological research on phages, relatively little attention has been given to computational modeling of the population dynamics of phage and bacterial interactions. The earliest model was described by Campbell in the 1960s. Subsequent modifications to this model include partial or complete resistance, multiple phage binding sites, and spatial heterogeneity. This review provides a general introduction to modeling of the population dynamics of bacteria and phage. The review introduces the basic model and relevant concepts and evaluates more complex variations of the basic model published to date, including a model of disease epidemics caused by infectious bacteria. Finally, the shortcomings and potential ways to improve the models are discussed.
Collapse
Affiliation(s)
- Konrad Krysiak-Baltyn
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Gregory J O Martin
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Anthony D Stickland
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Peter J Scales
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| | - Sally L Gras
- a Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville , Australia
| |
Collapse
|
39
|
Klimenko AI, Matushkin YG, Kolchanov NA, Lashin SA. Bacteriophages affect evolution of bacterial communities in spatially distributed habitats: a simulation study. BMC Microbiol 2016; 16 Suppl 1:10. [PMID: 26823184 PMCID: PMC4895265 DOI: 10.1186/s12866-015-0620-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Bacteriophages are known to be one of the driving forces of bacterial evolution. Besides promoting horizontal transfer of genes between cells, they may induce directional selection of cells (for instance, according to more or less resistance to phage infection). Switching between lysogenic and lytic pathways results in various types of (co)evolution in host-phage systems. Spatial (more generally, ecological) organization of the living environment is another factor affecting evolution. In this study, we have simulated and analyzed a series of computer models of microbial communities evolving in spatially distributed environments under the pressure of phage infection. Results We modeled evolving microbial communities living in spatially distributed flowing environments. Non-specific nutrient supplied in the only spatial direction, resulting in its non-uniform distribution in environment. We varied the time and the location of initial phage infestation of cells as well as switched chemotaxis on and off. Simulations were performed with the Haploid evolutionary constructor software (http://evol-constructor.bionet.nsc.ru/). Conclusion Simulations have shown that the spatial location of initial phage invasion may lead to different evolutionary scenarios. Phage infection decreases the speciation rate by more than one order as far as intensified selection blocks the origin of novel viable populations/species, which could carve out potential ecological niches. The dependence of speciation rate on the invasion node location varied on the time of invasion. Speciation rate was found to be lower when the phage invaded fully formed community of sedentary cells (at middle and late times) at the species-rich regions. This is especially noticeable in the case of late-time invasion. Our simulation study has shown that phage infection affects evolution of microbial community slowing down speciation and stabilizing the system as a whole. This influencing varied in its efficiency depending on spatially-ecological factors as well as community state at the moment of phage invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0620-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Igorevna Klimenko
- Institute of Cytology and Genetics SB RAS, Lavrentiev Avenue 10, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia.
| | | | - Nikolay Alexandrovich Kolchanov
- Institute of Cytology and Genetics SB RAS, Lavrentiev Avenue 10, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia.
| | - Sergey Alexandrovich Lashin
- Institute of Cytology and Genetics SB RAS, Lavrentiev Avenue 10, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russia.
| |
Collapse
|
40
|
Kumar MS, Plotkin JB, Hannenhalli S. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution. PLoS Comput Biol 2015; 11:e1004603. [PMID: 26544847 PMCID: PMC4636164 DOI: 10.1371/journal.pcbi.1004603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. To counteract viral infections, bacteria and archaea have evolved a variety of defense systems. These can broadly be classified into either restriction or suicide mechanisms. The former enforces nicks in the invading DNA making it unusable for production of further infectious particles; the latter, by contrast, induces cell death whereby an infected cell activates specific host suicidal pathways that are otherwise strongly repressed, thus inhibiting further infection. Examples of the former class include restriction-modification (R-M) and the recently discovered CRISPR systems, while the latter class includes a variety of toxin/anti-toxin systems. CRISPRs, in contrast to R-Ms, adapt to target viral genomes by updating the database of target sites they recognize. The adverse side effect of such a mechanism, however, is that CRISPRs can target the host genome itself resulting in undesirable cell death (autoimmunity). The recent discovery of infection-induced activation of CRISPR systems suggests that these negative side effects may be limited to periods of infection. This led us to hypothesize that such regulatory control—similar to abortive infection mechanisms—can be advantageous by limiting viral spread through suicide of infected cells. To test this hypothesis, we mathematically model CRISPR induced prokaryote-phage coevolutionary dynamics in the presence of infection-regulated CRISPR activity. Our results indicate that, except in limited growth rates, regulated CRISPRs exploit both autoimmunity and target restriction and can therefore be considered a hybrid class that leverages both restriction and suicide mechanisms to limit phage infection.
Collapse
Affiliation(s)
- M. Senthil Kumar
- Graduate Program in Bioinformatics, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| |
Collapse
|
41
|
Abstract
We investigated the interaction between Sulfolobus spindle-shaped virus (SSV9) and its native archaeal host Sulfolobus islandicus. We show that upon exposure to SSV9, S. islandicus strain RJW002 has a significant growth delay where the majority of cells are dormant (viable but not growing) for 24 to 48 hours postinfection (hpi) compared to the growth of controls without virus. We demonstrate that in this system, dormancy (i) is induced by both active and inactive virus particles at a low multiplicity of infection (MOI), (ii) is reversible in strains with active CRISPR-Cas immunity that prevents the establishment of productive infections, and (iii) results in dramatic and rapid host death if virus persists in the culture even at low levels. Our results add a new dimension to evolutionary models of virus-host interactions, showing that the mere presence of a virus induces host cell stasis and death independent of infection. This novel, highly sensitive, and risky bet-hedging antiviral response must be integrated into models of virus-host interactions in this system so that the true ecological impact of viruses can be predicted and understood. Viruses of microbes play key roles in microbial ecology; however, our understanding of viral impact on host physiology is based on a few model bacteria that represent a small fraction of the life history strategies employed by hosts or viruses across the three domains that encompass the microbial world. We have demonstrated that rare and even inactive viruses induce dormancy in the model archaeon S. islandicus. Similar virus-induced dormancy strategies in other microbial systems may help to explain several confounding observations in other systems, including the surprising abundance of dormant cell types found in many microbial environments, the difficulty of culturing microorganisms in the laboratory, and the paradoxical virus-to-host abundances that do not match model predictions. A more accurate grasp of virus-host interactions will expand our understanding of the impact of viruses in microbial ecology.
Collapse
|
42
|
Morange M. What history tells us XXXVI. Reverse transcriptase and Lamarckian scenarios of evolution. J Biosci 2015; 40:3-6. [DOI: 10.1007/s12038-015-9504-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Koonin EV, Wolf YI. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. MOLECULAR BIOSYSTEMS 2015; 11:20-7. [PMID: 25238531 PMCID: PMC5875448 DOI: 10.1039/c4mb00438h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas is an adaptive immunity system in prokaryotes that functions via a unique mechanism which involves incorporation of foreign DNA fragments into CRISPR arrays and subsequent utilization of transcripts of these inserts (known as spacers) as guide RNAs to cleave the cognate selfish element genome. Multiple attempts have been undertaken to explore the coevolution of viruses and microbial hosts carrying CRISPR-Cas using mathematical models that employ either systems of differential equations or an agent-based approach, or combinations thereof. Analysis of these models reveals highly complex co-evolutionary dynamics that ensues from the combination of the heritability of the CRISPR-mediated adaptive immunity with the existence of different degrees of immunity depending on the number of cognate spacers and the cost of carrying a CRISPR-Cas locus. Depending on the details of the models, a variety of testable, sometimes conflicting predictions have been made on the dependence of the degree of immunity and the benefit of maintaining CRISPR-Cas on the abundance and diversity of hosts and viruses. Some of these predictions have already been directly validated experimentally. In particular, both the reality of the virus-host arms race, with viruses escaping resistance and hosts reacquiring it through the capture of new spacers, and the fitness cost of CRISPR-Cas due to the curtailment of beneficial HGT have been reproduced in the laboratory. However, to test the predictions of the models more specifically, detailed studies of coevolving populations of microbes and viruses both in nature and in the laboratory are essential. Such analyses are expected to yield disagreements with the predictions of the current, oversimplified models and to trigger a new round of theoretical developments.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
44
|
Abstract
Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| |
Collapse
|
45
|
Evolutionary causes and consequences of diversified CRISPR immune profiles in natural populations. Biochem Soc Trans 2014; 41:1431-6. [PMID: 24256233 DOI: 10.1042/bst20130243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Host-pathogen co-evolution is a significant force which shapes the ecology and evolution of all types of organisms, and such interactions are driven by resistance and immunity mechanisms of the host. Diversity of resistance and immunity can affect the co-evolutionary trajectory of both host and pathogen. The microbial CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is one host immunity mechanism which offers a tractable model for examining the dynamics of diversity in an immune system. In the present article, we review CRISPR variation observed in a variety of natural populations, examine the forces which can push CRISPRs towards high or low diversity, and investigate the consequences of various levels of diversity on microbial populations.
Collapse
|
46
|
Hargreaves KR, Flores CO, Lawley TD, Clokie MRJ. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen. mBio 2014; 5:e01045-13. [PMID: 25161187 PMCID: PMC4173771 DOI: 10.1128/mbio.01045-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 07/01/2014] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. IMPORTANCE Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an extra level of complexity in this predator-prey microbial system. Our results demonstrate that the impact of phage infection in this system is widespread and that the CRISPR/Cas system is likely to be an important aspect of the evolutionary dynamics in C. difficile.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department of Infection, Inflammation and Immunity, University of Leicester, Leicester, United Kingdom
| | - Cesar O Flores
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Trevor D Lawley
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Martha R J Clokie
- Department of Infection, Inflammation and Immunity, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
47
|
Childs LM, England WE, Young MJ, Weitz JS, Whitaker RJ. CRISPR-induced distributed immunity in microbial populations. PLoS One 2014; 9:e101710. [PMID: 25000306 PMCID: PMC4084950 DOI: 10.1371/journal.pone.0101710] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities.
Collapse
Affiliation(s)
- Lauren M. Childs
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Whitney E. England
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mark J. Young
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Montana, United States of America
| | - Joshua S. Weitz
- School of Biology and School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail: (JSW); (RJW)
| | - Rachel J. Whitaker
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (JSW); (RJW)
| |
Collapse
|
48
|
Berezovskaya FS, Wolf YI, Koonin EV, Karev GP. Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biol Direct 2014; 9:13. [PMID: 24986220 PMCID: PMC4096434 DOI: 10.1186/1745-6150-9-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The CRISPR-Cas systems of adaptive antivirus immunity are present in most archaea and many bacteria, and provide resistance to specific viruses or plasmids by inserting fragments of foreign DNA into the host genome and then utilizing transcripts of these spacers to inactivate the cognate foreign genome. The recent development of powerful genome engineering tools on the basis of CRISPR-Cas has sharply increased the interest in the diversity and evolution of these systems. Comparative genomic data indicate that during evolution of prokaryotes CRISPR-Cas loci are lost and acquired via horizontal gene transfer at high rates. Mathematical modeling and initial experimental studies of CRISPR-carrying microbes and viruses reveal complex coevolutionary dynamics. RESULTS We performed a bifurcation analysis of models of coevolution of viruses and microbial host that possess CRISPR-Cas hereditary adaptive immunity systems. The analyzed Malthusian and logistic models display complex, and in particular, quasi-chaotic oscillation regimes that have not been previously observed experimentally or in agent-based models of the CRISPR-mediated immunity. The key factors for the appearance of the quasi-chaotic oscillations are the non-linear dependence of the host immunity on the virus load and the partitioning of the hosts into the immune and susceptible populations, so that the system consists of three components. CONCLUSIONS Bifurcation analysis of CRISPR-host coevolution model predicts complex regimes including quasi-chaotic oscillations. The quasi-chaotic regimes of virus-host coevolution are likely to be biologically relevant given the evolutionary instability of the CRISPR-Cas loci revealed by comparative genomics. The results of this analysis might have implications beyond the CRISPR-Cas systems, i.e. could describe the behavior of any adaptive immunity system with a heritable component, be it genetic or epigenetic. These predictions are experimentally testable. REVIEWERS' REPORTS This manuscript was reviewed by Sandor Pongor, Sergei Maslov and Marek Kimmel. For the complete reports, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Georgy P Karev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
49
|
Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 2014; 54:234-44. [PMID: 24766887 DOI: 10.1016/j.molcel.2014.03.011] [Citation(s) in RCA: 556] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
50
|
Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 2014; 11:113-34. [DOI: 10.1016/j.plrev.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022]
|