1
|
Paltenghi C, van Leeuwen J. Genetic suppression interactions are highly conserved across genetically diverse yeast isolates. G3 (BETHESDA, MD.) 2025; 15:jkaf047. [PMID: 40037589 PMCID: PMC12060245 DOI: 10.1093/g3journal/jkaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Genetic suppression occurs when the phenotypic defects caused by a deleterious mutation are rescued by another mutation. Suppression interactions are of particular interest for genetic diseases, as they identify ways to reduce disease severity, thereby potentially highlighting avenues for therapeutic intervention. To what extent suppression interactions are influenced by the genetic background in which they operate remains largely unknown. However, a high degree of suppression conservation would be crucial for developing therapeutic strategies that target suppressors. To gain an understanding of the effect of the genetic context on suppression, we isolated spontaneous suppressor mutations of temperature-sensitive alleles of SEC17, TAO3, and GLN1 in 3 genetically diverse natural isolates of the budding yeast Saccharomyces cerevisiae. After identifying and validating the genomic variants responsible for suppression, we introduced the suppressors in all 3 genetic backgrounds, as well as in a laboratory strain, to assess their specificity. Ten out of 11 tested suppression interactions were conserved in the 4 yeast strains, although the extent to which a suppressor could rescue the temperature-sensitive mutant varied across genetic backgrounds. These results suggest that suppression mechanisms are highly conserved across genetic contexts, a finding that is potentially reassuring for the development of therapeutics that mimic genetic suppressors.
Collapse
Affiliation(s)
- Claire Paltenghi
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
2
|
Buzby C, Plavskin Y, Sartori FMO, Tong Q, Vail JK, Siegal ML. Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast. Genetics 2025; 229:iyaf026. [PMID: 39989051 PMCID: PMC12005261 DOI: 10.1093/genetics/iyaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025] Open
Abstract
The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis (BSA), wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use BSA to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here, we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find 7 loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the 7 interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation-in this case, chromosome VIII, which contains the large-effect QTL mapping to CUP1-increases power to detect the contributions of other loci to trait differences.
Collapse
Affiliation(s)
- Cassandra Buzby
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Yevgeniy Plavskin
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Federica M O Sartori
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Qiange Tong
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Janessa K Vail
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- New York Presbyterian Queens Medical Group, Bayside, NY 11361, USA
| | - Mark L Siegal
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Yeager R, Heasley LR, Baker N, Shrivastava V, Woodman J, McMurray MA. Wild yeast isolation by middle-school students reveals features of populations residing on North American oaks. G3 (BETHESDA, MD.) 2025; 15:jkae270. [PMID: 39570886 PMCID: PMC11708222 DOI: 10.1093/g3journal/jkae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle-school students in Denver, CO, USA, to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. In contrast, we isolated the "dairy yeast," Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state. The outreach activity partnered middle-school, high-school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Collapse
Affiliation(s)
- Randi Yeager
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nolan Baker
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vatsal Shrivastava
- CU Science Discovery STEM Research Experience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie Woodman
- Department of Biology, Colorado Christian University, Lakewood, CO 80226, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Buzby C, Plavskin Y, Sartori FM, Tong Q, Vail JK, Siegal ML. Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620582. [PMID: 39605464 PMCID: PMC11601411 DOI: 10.1101/2024.10.28.620582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis, wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use bulk segregant analysis to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find seven loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the seven interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation - in this case chromosome VIII, which contains the large-effect QTL mapping to CUP1 - increases power to detect the contributions of other loci to trait differences.
Collapse
Affiliation(s)
- Cassandra Buzby
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Yevgeniy Plavskin
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Federica M.O. Sartori
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Current affiliation: Department of Oncological Sciences, Mount Sinai, New York, NY, USA
| | - Qiange Tong
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Janessa K. Vail
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mark L. Siegal
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
5
|
Raffoux X, Falque M. CAYSS: Package for Automatic Cytometry Analysis of Yeast Spore Segregation. Yeast 2024; 41:681-690. [PMID: 39844477 PMCID: PMC11826985 DOI: 10.1002/yea.3988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes. Applying this to yeast spores by flow cytometry has already been proved to be highly efficient, but manual analyses of distributions of signal intensities is time-consuming and produces nonperfectly reproducible results. Such analyses are required to identify events corresponding to spores and to assign each of them to a genotypic class depending on their fluorescence intensity. The CAYSS package automatically reproduces the manual process that we've been developing to analyze yeast recombination for years, including Maximum-Likelihood estimation of fluorescence extinction (Raffoux et al. 2018a). When comparing the results of manual versus CAYSS automatic analyses of the same cytometry data, recombination rates and interference were on average very similar, with less than 3% differences on average and strong correlations (R2 > 0.9). In conclusion, as compared to manual analysis, CAYSS allows to save a lot of human time and produces totally reproducible results.
Collapse
Affiliation(s)
- Xavier Raffoux
- INRAE, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Matthieu Falque
- INRAE, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
6
|
Pinto J, Tavakolian N, Li CB, Stelkens R. The relationship between cell density and cell count differs among Saccharomyces yeast species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001215. [PMID: 38863984 PMCID: PMC11165304 DOI: 10.17912/micropub.biology.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There is a recent push to develop wild and non-domesticated Saccharomyces yeast strains into useful model systems for research in ecology and evolution. Yet, the variation between species and strains in important population parameters remains largely undescribed. Here, we investigated the relationship between two commonly used measures in microbiology to estimate growth rate - cell density and cell count - in 23 strains across all eight Saccharomyces species . We found that the slope of this relationship significantly differs among species and a given optical density (OD) does not translate into the same number of cells across species. We provide a cell number calculator based on our OD measurements for each strain used in this study. Surprisingly, we found a slightly positive relationship between cell size and the slope of the cell density-cell count relationship. Our results show that the strain- and species-specificity of the cell density and cell count relationship should be taken into account, for instance when running competition experiments requiring equal starting population sizes or when estimating the fitness of strains with different genetic backgrounds in experimental evolution studies.
Collapse
Affiliation(s)
- Javier Pinto
- Zoology Department, Stockholm University, Stockholm, Sweden
| | - Nik Tavakolian
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Rike Stelkens
- Zoology Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Hannon-Hatfield JA, Chen J, Bergman CM, Garfinkel DJ. Evolution of a Restriction Factor by Domestication of a Yeast Retrotransposon. Mol Biol Evol 2024; 41:msae050. [PMID: 38442736 PMCID: PMC10951436 DOI: 10.1093/molbev/msae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Transposable elements drive genome evolution in all branches of life. Transposable element insertions are often deleterious to their hosts and necessitate evolution of control mechanisms to limit their spread. The long terminal repeat retrotransposon Ty1 prime (Ty1'), a subfamily of the Ty1 family, is present in many Saccharomyces cerevisiae strains, but little is known about what controls its copy number. Here, we provide evidence that a novel gene from an exapted Ty1' sequence, domesticated restriction of Ty1' relic 2 (DRT2), encodes a restriction factor that inhibits Ty1' movement. DRT2 arose through domestication of a Ty1' GAG gene and contains the C-terminal domain of capsid, which in the related Ty1 canonical subfamily functions as a self-encoded restriction factor. Bioinformatic analysis reveals the widespread nature of DRT2, its evolutionary history, and pronounced structural variation at the Ty1' relic 2 locus. Ty1' retromobility analyses demonstrate DRT2 restriction factor functionality, and northern blot and RNA-seq analysis indicate that DRT2 is transcribed in multiple strains. Velocity cosedimentation profiles indicate an association between Drt2 and Ty1' virus-like particles or assembly complexes. Chimeric Ty1' elements containing DRT2 retain retromobility, suggesting an ancestral role of productive Gag C-terminal domain of capsid functionality is present in the sequence. Unlike Ty1 canonical, Ty1' retromobility increases with copy number, suggesting that C-terminal domain of capsid-based restriction is not limited to the Ty1 canonical subfamily self-encoded restriction factor and drove the endogenization of DRT2. The discovery of an exapted Ty1' restriction factor provides insight into the evolution of the Ty1 family, evolutionary hot-spots, and host-transposable element interactions.
Collapse
Affiliation(s)
- J Adam Hannon-Hatfield
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Casey M Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Hung PH, Liao CW, Ko FH, Tsai HK, Leu JY. Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains. iScience 2023; 26:106635. [PMID: 37138775 PMCID: PMC10149407 DOI: 10.1016/j.isci.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Enhanced phenotypic diversity increases a population's likelihood of surviving catastrophic conditions. Hsp90, an essential molecular chaperone and a central network hub in eukaryotes, has been observed to suppress or enhance the effects of genetic variation on phenotypic diversity in response to environmental cues. Because many Hsp90-interacting genes are involved in signaling transduction pathways and transcriptional regulation, we tested how common Hsp90-dependent differential gene expression is in natural populations. Many genes exhibited Hsp90-dependent strain-specific differential expression in five diverse yeast strains. We further identified transcription factors (TFs) potentially contributing to variable expression. We found that on Hsp90 inhibition or environmental stress, activities or abundances of Hsp90-dependent TFs varied among strains, resulting in differential strain-specific expression of their target genes, which consequently led to phenotypic diversity. We provide evidence that individual strains can readily display specific Hsp90-dependent gene expression, suggesting that the evolutionary impacts of Hsp90 are widespread in nature.
Collapse
Affiliation(s)
- Po-Hsiang Hung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-Hsuan Ko
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| |
Collapse
|
9
|
Barrere J, Nanda P, Murray AW. Alternating selection for dispersal and multicellularity favors regulated life cycles. Curr Biol 2023; 33:1809-1817.e3. [PMID: 37019107 PMCID: PMC10175205 DOI: 10.1016/j.cub.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The evolution of complex multicellularity opened paths to increased morphological diversity and organizational novelty. This transition involved three processes: cells remained attached to one another to form groups, cells within these groups differentiated to perform different tasks, and the groups evolved new reproductive strategies.1,2,3,4,5 Recent experiments identified selective pressures and mutations that can drive the emergence of simple multicellularity and cell differentiation,6,7,8,9,10,11 but the evolution of life cycles, particularly how simple multicellular forms reproduce, has been understudied. The selective pressure and mechanisms that produced a regular alternation between single cells and multicellular collectives are still unclear.12 To probe the factors regulating simple multicellular life cycles, we examined a collection of wild isolates of the budding yeast S. cerevisiae.12,13 We found that all these strains can exist as multicellular clusters, a phenotype that is controlled by the mating-type locus and strongly influenced by the nutritional environment. Inspired by this variation, we engineered inducible dispersal in a multicellular laboratory strain and demonstrated that a regulated life cycle has an advantage over constitutively single-celled or constitutively multicellular life cycles when the environment alternates between favoring intercellular cooperation (a low sucrose concentration) and dispersal (a patchy environment generated by emulsion). Our results suggest that the separation of mother and daughter cells is under selection in wild isolates and is regulated by their genetic composition and the environments they encounter and that alternating patterns of resource availability may have played a role in the evolution of life cycles.
Collapse
Affiliation(s)
- Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Piyush Nanda
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Nguyen THM, Tinz-Burdick A, Lenhardt M, Geertz M, Ramirez F, Schwartz M, Toledano M, Bonney B, Gaebler B, Liu W, Wolters JF, Chiu K, Fiumera AC, Fiumera HL. Mapping mitonuclear epistasis using a novel recombinant yeast population. PLoS Genet 2023; 19:e1010401. [PMID: 36989278 PMCID: PMC10085025 DOI: 10.1371/journal.pgen.1010401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic variation in mitochondrial and nuclear genomes can perturb mitonuclear interactions and lead to phenotypic differences between individuals and populations. Despite their importance to most complex traits, it has been difficult to identify the interacting mitonuclear loci. Here, we present a novel advanced intercrossed population of Saccharomyces cerevisiae yeasts, called the Mitonuclear Recombinant Collection (MNRC), designed explicitly for detecting mitonuclear loci contributing to complex traits. For validation, we focused on mapping genes that contribute to the spontaneous loss of mitochondrial DNA (mtDNA) that leads to the petite phenotype in yeast. We found that rates of petite formation in natural populations are variable and influenced by genetic variation in nuclear DNA, mtDNA and mitonuclear interactions. We mapped nuclear and mitonuclear alleles contributing to mtDNA stability using the MNRC by integrating a term for mitonuclear epistasis into a genome-wide association model. We found that the associated mitonuclear loci play roles in mitotic growth most likely responding to retrograde signals from mitochondria, while the associated nuclear loci with main effects are involved in genome replication. We observed a positive correlation between growth rates and petite frequencies, suggesting a fitness tradeoff between mitotic growth and mtDNA stability. We also found that mtDNA stability was correlated with a mobile mitochondrial GC-cluster that is present in certain populations of yeast and that selection for nuclear alleles that stabilize mtDNA may be rapidly occurring. The MNRC provides a powerful tool for identifying mitonuclear interacting loci that will help us to better understand genotype-phenotype relationships and coevolutionary trajectories.
Collapse
Affiliation(s)
- Tuc H M Nguyen
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Department of Biological Sciences, New York University, New York, New York, United States of America
| | - Austen Tinz-Burdick
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Meghan Lenhardt
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Margaret Geertz
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Franchesca Ramirez
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Mark Schwartz
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Michael Toledano
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Brooke Bonney
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Benjamin Gaebler
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Weiwei Liu
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - John F Wolters
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Kenneth Chiu
- Department of Computer Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| |
Collapse
|
11
|
Linder RA, Zabanavar B, Majumder A, Hoang HCS, Delgado VG, Tran R, La VT, Leemans SW, Long AD. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes. Mol Biol Evol 2022; 39:msac248. [PMID: 36366952 PMCID: PMC9728589 DOI: 10.1093/molbev/msac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Behzad Zabanavar
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Hannah Chiao-Shyan Hoang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vanessa Genesaret Delgado
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Ryan Tran
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vy Thoai La
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Simon William Leemans
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| |
Collapse
|
12
|
Olguín V, Durán A, Las Heras M, Rubilar JC, Cubillos FA, Olguín P, Klein AD. Genetic Background Matters: Population-Based Studies in Model Organisms for Translational Research. Int J Mol Sci 2022; 23:7570. [PMID: 35886916 PMCID: PMC9316598 DOI: 10.3390/ijms23147570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
We are all similar but a bit different. These differences are partially due to variations in our genomes and are related to the heterogeneity of symptoms and responses to treatments that patients exhibit. Most animal studies are performed in one single strain with one manipulation. However, due to the lack of variability, therapies are not always reproducible when treatments are translated to humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly, and yeast panels with insightful applications for translational research.
Collapse
Affiliation(s)
- Valeria Olguín
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Francisco A. Cubillos
- Departamento de Biología, Santiago, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
- Millennium Institute for Integrative Biology (iBio), Santiago 7500565, Chile
| | - Patricio Olguín
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Andrés D. Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| |
Collapse
|
13
|
Varela C, Borneman AR. Molecular approaches improving our understanding of Brettanomyces physiology. FEMS Yeast Res 2022; 22:6585649. [PMID: 35561744 DOI: 10.1093/femsyr/foac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces species and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
14
|
Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. THE ISME JOURNAL 2022; 16:1442-1452. [PMID: 35066567 PMCID: PMC9039033 DOI: 10.1038/s41396-022-01191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Species loss within a microbial community can increase resource availability and spur adaptive evolution. Environmental shifts that cause species loss or fluctuations in community composition are expected to become more common, so it is important to understand the evolutionary forces that shape the stability and function of the emergent community. Here we study experimental cultures of a simple, ecologically stable community of Saccharomyces cerevisiae and Lactobacillus plantarum, in order to understand how the presence or absence of a species impacts coexistence over evolutionary timescales. We found that evolution in coculture led to drastically altered evolutionary outcomes for L. plantarum, but not S. cerevisiae. Both monoculture- and co-culture-evolved L. plantarum evolved dozens of mutations over 925 generations of evolution, but only L. plantarum that had evolved in isolation from S. cerevisiae lost the capacity to coexist with S. cerevisiae. We find that the evolutionary loss of ecological stability corresponds with fitness differences between monoculture-evolved L. plantarum and S. cerevisiae and genetic changes that repeatedly evolve across the replicate populations of L. plantarum. This work shows how coevolution within a community can prevent destabilising evolution in individual species, thereby preserving ecological diversity and stability, despite rapid adaptation.
Collapse
|
15
|
A Saccharomyces eubayanus haploid resource for research studies. Sci Rep 2022; 12:5976. [PMID: 35396494 PMCID: PMC8993842 DOI: 10.1038/s41598-022-10048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.
Collapse
|
16
|
Arras SDM, Hibbard TR, Mitsugi-McHattie L, Woods MA, Johnson CE, Munkacsi A, Denmat SHL, Ganley ARD. Creeping yeast: a simple, cheap, and robust protocol for the identification of mating type in Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:6550023. [PMID: 35298616 PMCID: PMC9202641 DOI: 10.1093/femsyr/foac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces cerevisiae is an exceptional genetic system, with genetic crosses facilitated by its ability to be maintained in haploid and diploid forms. Such crosses are straightforward if the mating type/ploidy of the strains is known. Several techniques can determine mating type (or ploidy), but all have limitations. Here, we validate a simple, cheap and robust method to identify S. cerevisiae mating types. When cells of opposite mating type are mixed in liquid media, they ‘creep’ up the culture vessel sides, a phenotype that can be easily detected visually. In contrast, mixtures of the same mating type or with a diploid simply settle out. The phenotype is observable for several days under a range of routine growth conditions and with different media/strains. Microscopy suggests that cell aggregation during mating is responsible for the phenotype. Yeast knockout collection analysis identified 107 genes required for the creeping phenotype, with these being enriched for mating-specific genes. Surprisingly, the RIM101 signaling pathway was strongly represented. We propose that RIM101 signaling regulates aggregation as part of a wider, previously unrecognized role in mating. The simplicity and robustness of this method make it ideal for routine verification of S. cerevisiae mating type, with future studies required to verify its molecular basis.
Collapse
Affiliation(s)
- Samantha D M Arras
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Taylor R Hibbard
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | - Matthew A Woods
- Digital Life Institute, University of Auckland 0632, New Zealand
| | - Charlotte E Johnson
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Andrew Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand.,Digital Life Institute, University of Auckland 0632, New Zealand.,Institute of Natural and Mathematical Sciences, Massey University, Auckland 0632, New Zealand
| |
Collapse
|
17
|
Tutaj H, Pirog A, Tomala K, Korona R. Genome-scale patterns in the loss of heterozygosity incidence in Saccharomyces cerevisiae. Genetics 2022; 221:6536968. [PMID: 35212738 PMCID: PMC9071580 DOI: 10.1093/genetics/iyac032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Former studies have established that loss of heterozygosity can be a key driver of sequence evolution in unicellular eukaryotes and tissues of metazoans. However, little is known about whether the distribution of loss of heterozygosity events is largely random or forms discernible patterns across genomes. To initiate our experiments, we introduced selectable markers to both arms of all chromosomes of the budding yeast. Subsequent extensive assays, repeated over several genetic backgrounds and environments, provided a wealth of information on the genetic and environmental determinants of loss of heterozygosity. Three findings stand out. First, the number of loss of heterozygosity events per unit time was more than 25 times higher for growing than starving cells. Second, loss of heterozygosity was most frequent when regions of homology around a recombination site were identical, about a half-% sequence divergence was sufficient to reduce its incidence. Finally, the density of loss of heterozygosity events was highly dependent on the genome's physical architecture. It was several-fold higher on short chromosomal arms than on long ones. Comparably large differences were seen within a single arm where regions close to a centromere were visibly less affected than regions close, though usually not strictly adjacent, to a telomere. We suggest that the observed uneven distribution of loss of heterozygosity events could have been caused not only by an uneven density of initial DNA damages. Location-depended differences in the mode of DNA repair, or its effect on fitness, were likely to operate as well.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland,Corresponding author: Institute of Environmental Sciences, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland.
| |
Collapse
|
18
|
Mozzachiodi S, Tattini L, Llored A, Irizar A, Škofljanc N, D'Angiolo M, De Chiara M, Barré BP, Yue JX, Lutazi A, Loeillet S, Laureau R, Marsit S, Stenberg S, Albaud B, Persson K, Legras JL, Dequin S, Warringer J, Nicolas A, Liti G. Aborting meiosis allows recombination in sterile diploid yeast hybrids. Nat Commun 2021; 12:6564. [PMID: 34772931 PMCID: PMC8589840 DOI: 10.1038/s41467-021-26883-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Hybrids between diverged lineages contain novel genetic combinations but an impaired meiosis often makes them evolutionary dead ends. Here, we explore to what extent an aborted meiosis followed by a return-to-growth (RTG) promotes recombination across a panel of 20 Saccharomyces cerevisiae and S. paradoxus diploid hybrids with different genomic structures and levels of sterility. Genome analyses of 275 clones reveal that RTG promotes recombination and generates extensive regions of loss-of-heterozygosity in sterile hybrids with either a defective meiosis or a heavily rearranged karyotype, whereas RTG recombination is reduced by high sequence divergence between parental subgenomes. The RTG recombination preferentially arises in regions with low local heterozygosity and near meiotic recombination hotspots. The loss-of-heterozygosity has a profound impact on sexual and asexual fitness, and enables genetic mapping of phenotypic differences in sterile lineages where linkage analysis would fail. We propose that RTG gives sterile yeast hybrids access to a natural route for genome recombination and adaptation.
Collapse
Grants
- This work was supported by Agence Nationale de la Recherche (ANR-11-LABX-0028-01, ANR-13-BSV6-0006-01, ANR-15-IDEX-01, ANR-16-CE12-0019 and ANR-18-CE12-0004), Fondation pour la Recherche Médicale (FRM EQU202003010413), CEFIPRA, Cancéropôle PACA (AAP Equipment 2018), Meiogenix and the Swedish Research Council (2014-6547, 2014-4605 and 2018-03638). S.Mo. is funded by the convention CIFRE 2016/0582 between Meiogenix and ANRT. The Institut Curie NGS platform is supported by ANR-10-EQPX-03 (Equipex), ANR-10-INBS-09-08 (France Génomique Consortium), ITMO-CANCER and SiRIC INCA-DGOS (4654 program).
Collapse
Affiliation(s)
- Simone Mozzachiodi
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- Meiogenix, 38, rue Servan, Paris, 75011, France
| | | | - Agnes Llored
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Neža Škofljanc
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | | | | | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Angela Lutazi
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Sophie Loeillet
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris, 75005, France
| | - Raphaelle Laureau
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris, 75005, France
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Medical Center, New York, NY, USA
| | - Souhir Marsit
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris, 75005, France
- SPO, Université Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Benoit Albaud
- Institut Curie, ICGEX NGS Platform, Paris, 75005, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Luc Legras
- SPO, Université Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Sylvie Dequin
- SPO, Université Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Alain Nicolas
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- Meiogenix, 38, rue Servan, Paris, 75011, France
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris, 75005, France
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| |
Collapse
|
19
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
20
|
Phillips MA, Kutch IC, McHugh KM, Taggard SK, Burke MK. Crossing design shapes patterns of genetic variation in synthetic recombinant populations of Saccharomyces cerevisiae. Sci Rep 2021; 11:19551. [PMID: 34599243 PMCID: PMC8486856 DOI: 10.1038/s41598-021-99026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
"Synthetic recombinant" populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Ian C Kutch
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kaitlin M McHugh
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Savannah K Taggard
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
21
|
Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. Proc Natl Acad Sci U S A 2021; 118:2101242118. [PMID: 34518218 PMCID: PMC8463882 DOI: 10.1073/pnas.2101242118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear-mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type-dependent and -independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.
Collapse
|
22
|
Garcia DM, Campbell EA, Jakobson CM, Tsuchiya M, Shaw EA, DiNardo AL, Kaeberlein M, Jarosz DF. A prion accelerates proliferation at the expense of lifespan. eLife 2021; 10:e60917. [PMID: 34545808 PMCID: PMC8455135 DOI: 10.7554/elife.60917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation-such as mutations or chemicals that interfere with growth regulatory pathways-can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.
Collapse
Affiliation(s)
- David M Garcia
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Edgar A Campbell
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Christopher M Jakobson
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | - Ethan A Shaw
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Acadia L DiNardo
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
23
|
Abstract
Saccharomyces cerevisiae rewires its transcriptional output to survive stressful environments, such as nitrogen scarcity under fermentative conditions. Although divergence in nitrogen metabolism among natural yeast populations has been reported, the impact of regulatory genetic variants modulating gene expression and nitrogen consumption remains to be investigated. Here, we employed an F1 hybrid from two contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis factors involved in the divergence of gene expression regulation in response to nitrogen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of chromatin accessibility, transcription factor binding, and gene expression through ATAC-seq (assay for transposase accessible chromatin) and RNA-seq (transcriptome sequencing). We observed large variability in allele-specific expression and accessibility between the two genetic backgrounds, with a third of these differences specific to a deficient nitrogen environment. Furthermore, we discovered events of allelic bias in gene expression correlating with allelic bias in transcription factor binding solely under nitrogen scarcity, where the majority of these transcription factors orchestrates the nitrogen catabolite repression regulatory pathway and demonstrates a cis × environment-specific response. Our approach allowed us to find cis variants modulating gene expression, chromatin accessibility, and allelic differences in transcription factor binding in response to low nitrogen culture conditions. IMPORTANCE Historically, coding variants were prioritized when searching for causal mechanisms driving adaptation of natural populations to stressful environments. However, the recent focus on noncoding variants demonstrated their ubiquitous role in adaptation. Here, we performed genome-wide regulatory variation profiles between two divergent yeast strains when facing nitrogen nutritional stress. The open chromatin availability of several regulatory regions changes in response to nitrogen scarcity. Importantly, we describe regulatory events that deviate between strains. Our results demonstrate a widespread variation in gene expression regulation between naturally occurring populations in response to stressful environments.
Collapse
|
24
|
Tung S, Bakerlee CW, Phillips AM, Nguyen Ba AN, Desai MM. The genetic basis of differential autodiploidization in evolving yeast populations. G3 GENES|GENOMES|GENETICS 2021; 11:6291244. [PMID: 34849811 PMCID: PMC8496219 DOI: 10.1093/g3journal/jkab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Spontaneous whole-genome duplication, or autodiploidization, is a common route to adaptation in experimental evolution of haploid budding yeast populations. The rate at which autodiploids fix in these populations appears to vary across strain backgrounds, but the genetic basis of these differences remains poorly characterized. Here, we show that the frequency of autodiploidization differs dramatically between two closely related laboratory strains of Saccharomyces cerevisiae, BY4741 and W303. To investigate the genetic basis of this difference, we crossed these strains to generate hundreds of unique F1 segregants and tested the tendency of each segregant to autodiplodize across hundreds of generations of laboratory evolution. We find that variants in the SSD1 gene are the primary genetic determinant of differences in autodiploidization. We then used multiple laboratory and wild strains of S. cerevisiae to show that clonal populations of strains with a functional copy of SSD1 autodiploidize more frequently in evolution experiments, while knocking out this gene or replacing it with the W303 allele reduces autodiploidization propensity across all genetic backgrounds tested. These results suggest a potential strategy for modifying rates of spontaneous whole-genome duplications in laboratory evolution experiments in haploid budding yeast. They may also have relevance to other settings in which eukaryotic genome stability plays an important role, such as biomanufacturing and the treatment of pathogenic fungal diseases and cancers.
Collapse
Affiliation(s)
- Sudipta Tung
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- The Lakshmi Mittal And Family South Asia Institute, Harvard University, Cambridge, MA 02138, USA
| | - Christopher W Bakerlee
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Parts L, Batté A, Lopes M, Yuen MW, Laver M, San Luis B, Yue J, Pons C, Eray E, Aloy P, Liti G, van Leeuwen J. Natural variants suppress mutations in hundreds of essential genes. Mol Syst Biol 2021; 17:e10138. [PMID: 34042294 PMCID: PMC8156963 DOI: 10.15252/msb.202010138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
The consequence of a mutation can be influenced by the context in which it operates. For example, loss of gene function may be tolerated in one genetic background, and lethal in another. The extent to which mutant phenotypes are malleable, the architecture of modifiers and the identities of causal genes remain largely unknown. Here, we measure the fitness effects of ~ 1,100 temperature-sensitive alleles of yeast essential genes in the context of variation from ten different natural genetic backgrounds and map the modifiers for 19 combinations. Altogether, fitness defects for 149 of the 580 tested genes (26%) could be suppressed by genetic variation in at least one yeast strain. Suppression was generally driven by gain-of-function of a single, strong modifier gene, and involved both genes encoding complex or pathway partners suppressing specific temperature-sensitive alleles, as well as general modifiers altering the effect of many alleles. The emerging frequency of suppression and range of possible mechanisms suggest that a substantial fraction of monogenic diseases could be managed by modulating other gene products.
Collapse
Affiliation(s)
- Leopold Parts
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUK
- Department of Computer ScienceUniversity of TartuTartuEstonia
| | - Amandine Batté
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Maykel Lopes
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Michael W Yuen
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Meredith Laver
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Bryan‐Joseph San Luis
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Jia‐Xing Yue
- University of Côte d’AzurCNRSINSERMIRCANNiceFrance
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelonaSpain
| | - Elise Eray
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Gianni Liti
- University of Côte d’AzurCNRSINSERMIRCANNiceFrance
| | | |
Collapse
|
26
|
Zhang W, Kang J, Wang C, Ping W, Ge J. Effects of pyruvate decarboxylase ( pdc1, pdc5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains. Prep Biochem Biotechnol 2021; 52:62-69. [PMID: 33881948 DOI: 10.1080/10826068.2021.1910958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces cerevisiae has good reproductive ability in both haploid and diploid forms, a pyruvate decarboxylase plays an important role in S. cerevisiae cell metabolism. In this study, pdc1 and pdc5 double knockout strains of S. cerevisiae H14-02 (MATa type) and S. cerevisiae H5-02 (MATα type) were obtained by the Cre/loxP technique. The effects of the deletion of pdc1 and pdc5 on the metabolites of the two haploid S. cerevisiae strains were consistent. In S. cerevisiae H14-02, the ethanol conversion decreased by 30.19%, the conversion of glycerol increased by 40.005%, the concentration of acetic acid decreased by 43.54%, the concentration of acetoin increased by 12.79 times, and the activity of pyruvate decarboxylase decreased by 40.91% compared to those in the original H14 strain. The original S. cerevisiae haploid strain H14 produced a small amount of acetoin but produced very little 2,3-butanediol. However, S. cerevisiae H14-02 produced 1.420 ± 0.063 g/L 2,3-BD. This study not only provides strain selection for obtaining haploid strains with a high yield of 2,3-BD but also lays a foundation for haploid S. cerevisiae to be used as a new tool for genetic research and breeding programs.
Collapse
Affiliation(s)
- Wen Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Changli Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
27
|
Fredericks LR, Lee MD, Crabtree AM, Boyer JM, Kizer EA, Taggart NT, Roslund CR, Hunter SS, Kennedy CB, Willmore CG, Tebbe NM, Harris JS, Brocke SN, Rowley PA. The Species-Specific Acquisition and Diversification of a K1-like Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. PLoS Genet 2021; 17:e1009341. [PMID: 33539346 PMCID: PMC7888664 DOI: 10.1371/journal.pgen.1009341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/17/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M. Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Emily A. Kizer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan T. Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- iBEST Genomics Core, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney B. Kennedy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cody G. Willmore
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nova M. Tebbe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jade S. Harris
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sarah N. Brocke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
28
|
Burke MK, McHugh KM, Kutch IC. Heat Shock Improves Random Spore Analysis in Diverse Strains of Saccharomyces cerevisiae. Front Genet 2020; 11:597482. [PMID: 33362858 PMCID: PMC7759604 DOI: 10.3389/fgene.2020.597482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/26/2020] [Indexed: 01/28/2023] Open
Abstract
Random spore analysis (RSA) is a classic method in yeast genetics that allows high-throughput purification of recombinant haploid spores following specific crosses. RSA typically involves a number of steps to induce sporulation, purge vegetative cells that fail to sporulate, and disrupt the ascus walls of sporulated cells to release haploid spores. These steps generally require expensive chemicals and/or enzymes that kill diploid cells but have few effects on spores. In the fission yeast Schizosaccharomcyes pombe, heat shock has been reported as an effective addition to RSA protocols, but to our knowledge heat shock has not been used for this purpose in the budding yeast Saccharomyces cerevisiae. Here, we evaluate the effects of heat shock on vegetative and sporulated cultures of four diverse yeast strains: a European wine strain (DBVPG6765), a Japanese sake strain (Y12), a West African palm wine strain (DBVPG6044) and a North American strain isolated from the soil beneath an oak tree (YPS128). We characterize this phenotype under multiple combinations of temperature and incubation time, and find specific conditions that lead to the exclusion of vegetative cells and an enrichment in spores, which differ by strain. We also collected genome sequence data from a recombinant population that experienced multiple rounds of RSA, including one round with a heat shock treatment. These data suggest that when incorporated into an RSA protocol, heat shock leads to increased genetic diversity among the cells that survive and mate. Ultimately, our work provides evidence that short heat treatments can improve existing RSA protocols, though in a strain-specific manner. This result informs applications of high-throughput RSA protocols, such as QTL mapping and experimental evolution research.
Collapse
Affiliation(s)
- Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Kaitlin M McHugh
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Ian C Kutch
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
29
|
Marek A, Opalek M, Kałdon A, Mickowska B, Wloch-Salamon D. Hypersensitive SSY1 mutations negatively influence transition to quiescence in yeast Saccharomyces cerevisiae. Yeast 2020; 38:102-116. [PMID: 33179371 DOI: 10.1002/yea.3536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023] Open
Abstract
Most cells spend the majority of their life in the non-proliferating, quiescent state. Transition to this state is crucial for microorganisms to survive long starvation periods and restart divisions afterwards. Experimental evolution allowed us to identify several mutation in genes that are presumably important for such transition in yeast cells. Most of these candidate genes belong to the SPS amino acid sensing pathway or to the SIR complex. We assembled these mutations on the ancestral strain background. Analysis of the quiescent/non-quiescent cell ratio of the starved yeast populations confirmed the crucial role of SSY1, the primary receptor component of the SPS sensor, in transition to the Q state. The evolved SSY1 mutations increased yeast sensitivity to amino acid presence in the environment. This resulted in decreased quiescent cell fraction and a 5.14% increase of the total amino acid content in the starved populations. We discuss external amino acid sensing via the SPS pathway as one of the mechanisms influencing transition to quiescence.
Collapse
Affiliation(s)
- Agnieszka Marek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kałdon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Barbara Mickowska
- Faculty of Food Technology, Malopolska Centre of Food Monitoring, University of Agriculture in Krakow, Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
30
|
Nguyen THM, Sondhi S, Ziesel A, Paliwal S, Fiumera HL. Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae. BMC Evol Biol 2020; 20:128. [PMID: 32977769 PMCID: PMC7517635 DOI: 10.1186/s12862-020-01685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial function requires numerous genetic interactions between mitochondrial- and nuclear- encoded genes. While selection for optimal mitonuclear interactions should result in coevolution between both genomes, evidence for mitonuclear coadaptation is challenging to document. Genetic models where mitonuclear interactions can be explored are needed. RESULTS We systematically exchanged mtDNAs between 15 Saccharomyces cerevisiae isolates from a variety of ecological niches to create 225 unique mitochondrial-nuclear genotypes. Analysis of phenotypic profiles confirmed that environmentally-sensitive interactions between mitochondrial and nuclear genotype contributed to growth differences. Exchanges of mtDNAs between strains of the same or different clades were just as likely to demonstrate mitonuclear epistasis although epistatic effect sizes increased with genetic distances. Strains with their original mtDNAs were more fit than strains with synthetic mitonuclear combinations when grown in media that resembled isolation habitats. CONCLUSIONS This study shows that natural variation in mitonuclear interactions contributes to fitness landscapes. Multiple examples of coadapted mitochondrial-nuclear genotypes suggest that selection for mitonuclear interactions may play a role in helping yeasts adapt to novel environments and promote coevolution.
Collapse
Affiliation(s)
- Tuc H M Nguyen
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Sargunvir Sondhi
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Andrew Ziesel
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
31
|
Kessi-Pérez EI, Ponce B, Li J, Molinet J, Baeza C, Figueroa D, Bastías C, Gaete M, Liti G, Díaz-Barrera A, Salinas F, Martínez C. Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Front Microbiol 2020; 11:1204. [PMID: 32612585 PMCID: PMC7307137 DOI: 10.3389/fmicb.2020.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alcoholic fermentation is fundamentally an adaptation process, in which the yeast Saccharomyces cerevisiae outperforms its competitors and takes over the fermentation process itself. Although wine yeast strains appear to be adapted to the stressful conditions of alcoholic fermentation, nitrogen limitations in grape must cause stuck or slow fermentations, generating significant economic losses for the wine industry. One way to discover the genetic bases that promote yeast adaptation to nitrogen-deficient environments are selection experiments, where a yeast population undergoes selection under conditions of nitrogen restriction for a number of generations, to then identify by sequencing the molecular characteristics that promote this adaptation. In this work, we carried out selection experiments in bioreactors imitating wine fermentation under nitrogen-limited fermentation conditions (SM60), using the heterogeneous SGRP-4X yeast population, to then sequence the transcriptome and the genome of the population at different time points of the selection process. The transcriptomic results showed an overexpression of genes from the NA strain (North American/YPS128), a wild, non-domesticated isolate. In addition, genome sequencing and allele frequency results allowed several QTLs to be mapped for adaptation to nitrogen-limited fermentation. Finally, we validated the ECM38 allele of NA strain as responsible for higher growth efficiency under nitrogen-limited conditions. Taken together, our results revealed a complex pattern of molecular signatures favouring adaptation of the yeast population to nitrogen-limited fermentations, including differential gene expression, allele frequency changes and loss of the mitochondrial genome. Finally, the results suggest that wild alleles from a non-domesticated isolate (NA) may have a relevant role in the adaptation to the assayed fermentation conditions, with the consequent potential of these alleles for the genetic improvement of wine yeast strains.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jing Li
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Baeza
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - David Figueroa
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Camila Bastías
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Marco Gaete
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
32
|
Linder RA, Majumder A, Chakraborty M, Long A. Two Synthetic 18-Way Outcrossed Populations of Diploid Budding Yeast with Utility for Complex Trait Dissection. Genetics 2020; 215:323-342. [PMID: 32241804 PMCID: PMC7268983 DOI: 10.1534/genetics.120.303202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced-generation multiparent populations (MPPs) are a valuable tool for dissecting complex traits, having more power than genome-wide association studies to detect rare variants and higher resolution than F2 linkage mapping. To extend the advantages of MPPs in budding yeast, we describe the creation and characterization of two outbred MPPs derived from 18 genetically diverse founding strains. We carried out de novo assemblies of the genomes of the 18 founder strains, such that virtually all variation segregating between these strains is known, and represented those assemblies as Santa Cruz Genome Browser tracks. We discovered complex patterns of structural variation segregating among the founders, including a large deletion within the vacuolar ATPase VMA1, several different deletions within the osmosensor MSB2, a series of deletions and insertions at PRM7 and the adjacent BSC1, as well as copy number variation at the dehydrogenase ALD2 Resequenced haploid recombinant clones from the two MPPs have a median unrecombined block size of 66 kb, demonstrating that the population is highly recombined. We pool-sequenced the two MPPs to 3270× and 2226× coverage and demonstrated that we can accurately estimate local haplotype frequencies using pooled data. We further downsampled the pool-sequenced data to ∼20-40× and showed that local haplotype frequency estimates remained accurate, with median error rates 0.8 and 0.6% at 20× and 40×, respectively. Haplotypes frequencies are estimated much more accurately than SNP frequencies obtained directly from the same data. Deep sequencing of the two populations revealed that 10 or more founders are present at a detectable frequency for > 98% of the genome, validating the utility of this resource for the exploration of the role of standing variation in the architecture of complex traits.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California 92697-2525
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California 92697-2525
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California 92697-2525
| | - Anthony Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, California 92697-2525
| |
Collapse
|
33
|
Molinet J, Salinas F, Guillamón JM, Martínez C. GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 2020; 11:519. [PMID: 32523604 PMCID: PMC7261904 DOI: 10.3389/fgene.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
The TORC1 pathway coordinates cell growth in response to nitrogen availability present in the medium, regulating genes related to nitrogen transport and metabolism. Therefore, the adaptation of Saccharomyces cerevisiae to changes in nitrogen availability implies variations in the activity of this signaling pathway. In this sense, variations in nitrogen detection and signaling pathway are one of the main causes of differences in nitrogen assimilation during alcoholic fermentation. Previously, we demonstrated that allelic variants in the GTR1 gene underlying differences in ammonium and amino acids consumption between Wine/European (WE) and West African (WA) strains impact the expression of nitrogen transporters. The GTR1 gene encodes a GTPase that participates in the EGO complex responsible for TORC1 activation in response to amino acids availability. In this work, we assessed the role of the GTR1 gene on nitrogen consumption under fermentation conditions, using a high sugar concentration medium with nitrogen limitation and in the context of the WE and WA genetic backgrounds. The gtr1Δ mutant presented a reduced TORC1 activity and increased expression levels of nitrogen transporters, which in turn favored ammonium consumption, but decreased amino acid assimilation. Furthermore, to identify the SNPs responsible for differences in nitrogen consumption during alcoholic fermentation, we studied the polymorphisms present in the GTR1 gene. We carried out swapping experiments for the promoter and coding regions of GTR1 between the WE and WA strains. We observed that polymorphisms in the coding region of the WA GTR1 gene are relevant for TORC1 activity. Altogether, our results highlight the role of the GTR1 gene on nitrogen consumption in S. cerevisiae under fermentation conditions.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Manuel Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
34
|
Hovhannisyan H, Saus E, Ksiezopolska E, Hinks Roberts AJ, Louis EJ, Gabaldón T. Integrative Omics Analysis Reveals a Limited Transcriptional Shock After Yeast Interspecies Hybridization. Front Genet 2020; 11:404. [PMID: 32457798 PMCID: PMC7221068 DOI: 10.3389/fgene.2020.00404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
The formation of interspecific hybrids results in the coexistence of two diverged genomes within the same nucleus. It has been hypothesized that negative epistatic interactions and regulatory interferences between the two sub-genomes may elicit a so-called genomic shock involving, among other alterations, broad transcriptional changes. To assess the magnitude of this shock in hybrid yeasts, we investigated the transcriptomic differences between a newly formed Saccharomyces cerevisiae × Saccharomyces uvarum diploid hybrid and its diploid parentals, which diverged ∼20 mya. RNA sequencing (RNA-Seq) based allele-specific expression (ASE) analysis indicated that gene expression changes in the hybrid genome are limited, with only ∼1-2% of genes significantly altering their expression with respect to a non-hybrid context. In comparison, a thermal shock altered six times more genes. Furthermore, differences in the expression between orthologous genes in the two parental species tended to be diminished for the corresponding homeologous genes in the hybrid. Finally, and consistent with the RNA-Seq results, we show a limited impact of hybridization on chromatin accessibility patterns, as assessed with assay for transposase-accessible chromatin using sequencing (ATAC-Seq). Overall, our results suggest a limited genomic shock in a newly formed yeast hybrid, which may explain the high frequency of successful hybridization in these organisms.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Health and Life Sciences. Universitat Pompeu Fabra, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Health and Life Sciences. Universitat Pompeu Fabra, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Health and Life Sciences. Universitat Pompeu Fabra, Barcelona, Spain
| | - Alex J. Hinks Roberts
- Centre for Genetic Architecture of Complex Traits, University of Leicester, Leicester, United Kingdom
| | - Edward J. Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, Leicester, United Kingdom
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Health and Life Sciences. Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
35
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
36
|
Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination. PLoS Genet 2020; 16:e1008632. [PMID: 32084126 PMCID: PMC7055915 DOI: 10.1371/journal.pgen.1008632] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Transposable elements constitute a large fraction of most eukaryotic genomes. Insertion of mobile DNA sequences typically has deleterious effects on host fitness, and thus diverse mechanisms have evolved to control mobile element proliferation. Mobility of the Ty1 retrotransposon in Saccharomyces yeasts is regulated by copy number control (CNC) mediated by a self-encoded restriction factor derived from the Ty1 gag capsid gene that inhibits virus-like particle function. Here, we survey a panel of wild and human-associated strains of S. cerevisiae and S. paradoxus to investigate how genomic Ty1 content influences variation in Ty1 mobility. We observe high levels of mobility for a tester element with a gag sequence from the canonical Ty1 subfamily in permissive strains that either lack full-length Ty1 elements or only contain full-length copies of the Ty1' subfamily that have a divergent gag sequence. In contrast, low levels of canonical Ty1 mobility are observed in restrictive strains carrying full-length Ty1 elements containing a canonical gag sequence. Phylogenomic analysis of full-length Ty1 elements revealed that Ty1' is the ancestral subfamily present in wild strains of S. cerevisiae, and that canonical Ty1 in S. cerevisiae is a derived subfamily that acquired gag from S. paradoxus by horizontal transfer and recombination. Our results provide evidence that variation in the ability of S. cerevisiae and S. paradoxus strains to repress canonical Ty1 transposition via CNC is regulated by the genomic content of different Ty1 subfamilies, and that self-encoded forms of transposon control can spread across species boundaries by horizontal transfer.
Collapse
|
37
|
Evaluation of Saccharomyces cerevisiae Wine Yeast Competitive Fitness in Enologically Relevant Environments by Barcode Sequencing. G3-GENES GENOMES GENETICS 2020; 10:591-603. [PMID: 31792006 PMCID: PMC7003103 DOI: 10.1534/g3.119.400743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When a wine yeast is inoculated into grape juice the potential variation in juice composition that confronts it is huge. Assessing the performance characteristics of the many commercially available wine yeasts in the many possible grape juice compositions is a daunting task. To this end we have developed a barcoded Saccharomyces cerevisiae wine yeast collection to facilitate the task of performance assessment that will contribute to a broader understanding of genotype-phenotype relations. Barcode sequencing of mixed populations is used to monitor strain abundance in different grape juices and grape juice-like environments. Choice of DNA extraction method is shown to affect strain-specific barcode count in this highly related set of S. cerevisiae strains; however, the analytical approach is shown to be robust toward strain dependent variation in DNA extraction efficiency. Of the 38 unique compositional variables assessed, resistance to copper and SO2 are found to be dominant discriminatory factors in wine yeast performance. Finally, a comparison of competitive fitness profile with performance in single inoculum fermentations reveal strain dependent correspondence of yeast performance using these two different approaches.
Collapse
|
38
|
Nitrogen Preferences during Alcoholic Fermentation of Different Non- Saccharomyces Yeasts of Oenological Interest. Microorganisms 2020; 8:microorganisms8020157. [PMID: 31979188 PMCID: PMC7074775 DOI: 10.3390/microorganisms8020157] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Non-Saccharomyces yeasts have long been considered spoilage microorganisms. Currently, oenological interest in those species is increasing, mostly due to their positive contribution to wine quality. In this work, the fermentative capacity and nitrogen consumption of several non-Saccharomyces wine yeast (Torulaspora delbrueckii, Lachancea thermotolerans, Starmerella bacillaris, Hanseniaspora uvarum, and Metschnikowia pulcherrima) were analyzed. For this purpose, synthetic must with three different nitrogen compositions was used: a mixture of amino acids and ammonium, only organic or inorganic nitrogen. The fermentation kinetics, nitrogen consumption, and yeast growth were measured over time. Our results showed that the good fermentative strains, T. delbrueckii and L. thermotolerans, had high similarities with Saccharomyces cerevisiae in terms of growth, fermentation profile, and nitrogen assimilation preferences, although L. thermotolerans presented an impaired behavior when only amino acids or ammonia were used, being strain-specific. M. pulcherrima was the non-Saccharomyces strain least affected by the nitrogen composition of the medium. The other two poor fermentative strains, H. uvarum and S. bacillaris, behaved similarly regarding amino acid uptake, which occurred earlier than that of the good fermentative species in the absence of ammonia. The results obtained in single non-Saccharomyces fermentations highlighted the importance of controlling nitrogen requirements of the wine yeasts, mainly in sequential fermentations, in order to manage a proper nitrogen supplementation, when needed.
Collapse
|
39
|
Villalobos-Cid M, Salinas F, Kessi-Pérez EI, De Chiara M, Liti G, Inostroza-Ponta M, Martínez C. Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae. Microorganisms 2019; 8:E32. [PMID: 31877949 PMCID: PMC7022669 DOI: 10.3390/microorganisms8010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Massive sequencing projects executed in Saccharomyces cerevisiae have revealed in detail its population structure. The recent "1002 yeast genomes project" has become the most complete catalogue of yeast genetic diversity and a powerful resource to analyse the evolutionary history of genes affecting specific phenotypes. In this work, we selected 22 nitrogen associated genes and analysed the sequence information from the 1011 strains of the "1002 yeast genomes project". We constructed a total evidence (TE) phylogenetic tree using concatenated information, which showed a 27% topology similarity with the reference (REF) tree of the "1002 yeast genomes project". We also generated individual phylogenetic trees for each gene and compared their topologies, identifying genes with similar topologies (suggesting a shared evolutionary history). Furthermore, we pruned the constructed phylogenetic trees to compare the REF tree topology versus the TE tree and the individual genes trees, considering each phylogenetic cluster/subcluster within the population, observing genes with cluster/subcluster topologies of high similarity to the REF tree. Finally, we used the pruned versions of the phylogenetic trees to compare four strains considered as representatives of S. cerevisiae clean lineages, observing for 15 genes that its cluster topologies match 100% the REF tree, supporting that these strains represent main lineages of yeast population. Altogether, our results showed the potential of tree topologies comparison for exploring the evolutionary history of a specific group of genes.
Collapse
Affiliation(s)
- Manuel Villalobos-Cid
- Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia 5110566, Chile
| | - Eduardo I. Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | | | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Mario Inostroza-Ponta
- Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
40
|
Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae. Mol Cell 2019; 77:266-278.e6. [PMID: 31757756 DOI: 10.1016/j.molcel.2019.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Theory and experiments suggest that organisms would benefit from pre-adaptation to future stressors based on reproducible environmental fluctuations experienced by their ancestors, but the mechanisms driving pre-adaptation remain enigmatic. We report that the [SMAUG+] prion allows yeast to anticipate nutrient repletion after periods of starvation, providing a strong selective advantage. By transforming the landscape of post-transcriptional gene expression, [SMAUG+] regulates the decision between two broad growth and survival strategies: mitotic proliferation or meiotic differentiation into a stress-resistant state. [SMAUG+] is common in laboratory yeast strains, where standard propagation practice produces regular cycles of nutrient scarcity followed by repletion. Distinct [SMAUG+] variants are also widespread in wild yeast isolates from multiple niches, establishing that prion polymorphs can be utilized in natural populations. Our data provide a striking example of how protein-based epigenetic switches, hidden in plain sight, can establish a transgenerational memory that integrates adaptive prediction into developmental decisions.
Collapse
|
41
|
Busby BP, Niktab E, Roberts CA, Sheridan JP, Coorey NV, Senanayake DS, Connor LM, Munkacsi AB, Atkinson PH. Genetic interaction networks mediate individual statin drug response in Saccharomyces cerevisiae. NPJ Syst Biol Appl 2019; 5:35. [PMID: 31602312 PMCID: PMC6776536 DOI: 10.1038/s41540-019-0112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/20/2019] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic genetic interaction networks (GINs) are extensively described in the Saccharomyces cerevisiae S288C model using deletion libraries, yet being limited to this one genetic background, not informative to individual drug response. Here we created deletion libraries in three additional genetic backgrounds. Statin response was probed with five queries against four genetic backgrounds. The 20 resultant GINs representing drug-gene and gene-gene interactions were not conserved by functional enrichment, hierarchical clustering, and topology-based community partitioning. An unfolded protein response (UPR) community exhibited genetic background variation including different betweenness genes that were network bottlenecks, and we experimentally validated this UPR community via measurements of the UPR that were differentially activated and regulated in statin-resistant strains relative to the statin-sensitive S288C background. These network analyses by topology and function provide insight into the complexity of drug response influenced by genetic background.
Collapse
Affiliation(s)
- Bede P. Busby
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Eliatan Niktab
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Christina A. Roberts
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeffrey P. Sheridan
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Namal V. Coorey
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Dinindu S. Senanayake
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M. Connor
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Andrew B. Munkacsi
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Paul H. Atkinson
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
42
|
Metzger BPH, Wittkopp PJ. Compensatory trans-regulatory alleles minimizing variation in TDH3 expression are common within Saccharomyces cerevisiae. Evol Lett 2019; 3:448-461. [PMID: 31636938 PMCID: PMC6791293 DOI: 10.1002/evl3.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/06/2022] Open
Abstract
Heritable variation in gene expression is common within species. Much of this variation is due to genetic differences outside of the gene with altered expression and is trans-acting. This trans-regulatory variation is often polygenic, with individual variants typically having small effects, making the genetic architecture and evolution of trans-regulatory variation challenging to study. Consequently, key questions about trans-regulatory variation remain, including the variability of trans-regulatory variation within a species, how selection affects trans-regulatory variation, and how trans-regulatory variants are distributed throughout the genome and within a species. To address these questions, we isolated and measured trans-regulatory differences affecting TDH3 promoter activity among 56 strains of Saccharomyces cerevisiae, finding that trans-regulatory backgrounds varied approximately twofold in their effects on TDH3 promoter activity. Comparing this variation to neutral models of trans-regulatory evolution based on empirical measures of mutational effects revealed that despite this variability in the effects of trans-regulatory backgrounds, stabilizing selection has constrained trans-regulatory differences within this species. Using a powerful quantitative trait locus mapping method, we identified ∼100 trans-acting expression quantitative trait locus in each of three crosses to a common reference strain, indicating that regulatory variation is more polygenic than previous studies have suggested. Loci altering expression were located throughout the genome, and many loci were strain specific. This distribution and prevalence of alleles is consistent with recent theories about the genetic architecture of complex traits. In all mapping experiments, the nonreference strain alleles increased and decreased TDH3 promoter activity with similar frequencies, suggesting that stabilizing selection maintained many trans-acting variants with opposing effects. This variation may provide the raw material for compensatory evolution and larger scale regulatory rewiring observed in developmental systems drift among species.
Collapse
Affiliation(s)
- Brian P H Metzger
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109.,Department of Ecology and Evolution University of Chicago Chicago Illinois 60637
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109.,Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor Michigan 48109
| |
Collapse
|
43
|
Davison SA, den Haan R, van Zyl WH. Identification of superior cellulase secretion phenotypes in haploids derived from natural Saccharomyces cerevisiae isolates. FEMS Yeast Res 2019; 19:5154912. [PMID: 30388213 DOI: 10.1093/femsyr/foy117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 01/11/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is considered an important host for consolidated bioprocessing and the production of high titres of recombinant cellulases is required for efficient hydrolysis of lignocellulosic substrates to fermentable sugars. Since recombinant protein secretion profiles vary highly among different strain backgrounds, careful selection of robust strains with optimal secretion profiles is of crucial importance. Here, we construct and screen sets of haploid derivatives, derived from natural strain isolates YI13, FINI and YI59, for improved general cellulase secretion. This report details a novel approach that combines secretion profiles of strains and phenotypic responses to stresses known to influence the secretion pathway for the development of a phenotypic screen to isolate strains with improved secretory capacities. A clear distinction was observed between the YI13 haploid derivatives and industrial and laboratory counterparts, Ethanol Red and S288c, respectively. By using sub-lethal concentrations of the secretion stressor tunicamycin and cell wall stressor Congo Red, YI13 haploid derivative strains demonstrated tolerance profiles related to their heterologous secretion profiles. Our results demonstrated that a new screening technique combined with a targeted mating approach could produce a pool of novel strains capable of high cellulase secretion.
Collapse
Affiliation(s)
- Steffi A Davison
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Willem Heber van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
44
|
Molinet J, Cubillos FA, Salinas F, Liti G, Martínez C. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 2019; 14:e0220515. [PMID: 31348805 PMCID: PMC6660096 DOI: 10.1371/journal.pone.0220515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), INSERM, University of Côte d’Azur, Nice, France
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
45
|
Oporto CI, Villarroel CA, Tapia SM, García V, Cubillos FA. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces Cerevisiae. Toxins (Basel) 2019; 11:toxins11070400. [PMID: 31295862 PMCID: PMC6669508 DOI: 10.3390/toxins11070400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is a mycotoxin produced by a suite of fungi species. Patulin is toxic to humans and is a sporadic contaminant in products that were made from fungi-infected fruits. The baker yeast Saccharomyces cerevisiae (S. cerevisiae) has been shown to decrease patulin levels likely by converting it to the less harmful E-ascladiol, yet this capacity is dependent on the strain utilized. In this study we show that four representative strains of different S. cerevisiae lineages differ in their ability to tolerate and decrease patulin levels in solution, demonstrating that some strains are better suitable for patulin biocontrol. Indeed, we tested the biocontrol capacities of the best patulin-reducer strain (WE) in contaminated apple juice and demonstrated their potential role as an efficient natural biocontrol solution. To investigate the mechanisms behind the differences between strains, we explored transcriptomic changes of the top (WE strain) and worst (WA strain) patulin-biocontroller strains after being exposed to this toxin. Large and significant gene expression differences were found between these two strains, the majority of which represented genes associated with protein biosynthesis, cell wall composition and redox homeostasis. Interestingly, the WE isolate exhibited an overrepresentation of up-regulated genes involved in membrane components, suggesting an active role of the membrane towards patulin detoxification. In contrast, WA upregulated genes were associated with RNA metabolism and ribosome biogenesis, suggesting a patulin impact upon transcription and translation activity. These results suggest that different genotypes of S. cerevisiae encounter different stresses from patulin toxicity and that different rates of detoxification of this toxin might be related with the plasma membrane composition. Altogether, our data demonstrates the different molecular mechanisms in S. cerevisiae strains withstanding patulin exposure and opens new avenues for the selection of new patulin biocontroller strains.
Collapse
Affiliation(s)
- Christian I Oporto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile.
| |
Collapse
|
46
|
Li J, Vázquez-García I, Persson K, González A, Yue JX, Barré B, Hall MN, Long A, Warringer J, Mustonen V, Liti G. Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales. Mol Biol Evol 2019; 36:691-708. [PMID: 30657986 DOI: 10.1093/molbev/msz006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.
Collapse
Affiliation(s)
- Jing Li
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Ignacio Vázquez-García
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Statistics, Columbia University, New York, NY
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Benjamin Barré
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | | | - Anthony Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gianni Liti
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| |
Collapse
|
47
|
Abstract
Meiotic recombination comprises crossovers and noncrossovers. Recombination, crossover in particular, shuffles mutations and impacts both the level of genetic polymorphism and the speed of adaptation. In many species, the recombination rate varies across the genome with hot and cold spots. The hotspot paradox hypothesis asserts that recombination hotspots are evolutionarily unstable due to self-destruction. However, the genomic landscape of double-strand breaks (DSBs), which initiate recombination, is evolutionarily conserved among divergent yeast species, casting doubt on the hotspot paradox hypothesis. Nonetheless, because only a subset of DSBs are associated with crossovers, the evolutionary conservation of the crossover landscape could differ from that of DSBs. Here, we investigate this possibility by generating a high-resolution recombination map of the budding yeast Saccharomyces paradoxus through whole-genome sequencing of 50 meiotic tetrads and by comparing this recombination map with that of S. cerevisiae. We observe a 40% lower recombination rate in S. paradoxus than in S. cerevisiae. Compared with the DSB landscape, the crossover landscape is even more conserved. Further analyses indicate that the elevated conservation of the crossover landscape is explained by a near-subtelomeric crossover preference in both yeasts, which we find to be attributable at least in part to crossover interference. We conclude that the yeast crossover landscape is highly conserved and that the evolutionary conservation of this landscape can differ from that of the DSB landscape.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Ranomics Inc., Toronto, ON, Canada
| | - Calum J Maclean
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Ranomics Inc., Toronto, ON, Canada
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
48
|
Štafa A, Žunar B, Pranklin A, Zandona A, Svetec-Miklenić M, Šantek B, Svetec IK. Novel Approach in the Construction of
Bioethanol-Producing Saccharomyces cerevisiae Hybrids §. Food Technol Biotechnol 2019; 57:5-16. [PMID: 31316272 PMCID: PMC6600304 DOI: 10.17113/ftb.57.01.19.5685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of Saccharomyces cerevisiae by crossing two natural S. cerevisiae isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus Opuntia megacantha resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of YAP1 gene increased their survival. Furthermore, although originating from the same parental strains, hybrids displayed different fermentative potential in a CO2 production test, suggesting genetic variability that could be used for further selection of desirable traits. Therefore, our results suggest that the construction of intraspecies hybrids coupled with the use of genetic engineering techniques is a promising approach for improvement or development of new biotechnologically relevant strains of S. cerevisiae. Moreover, it was found that the success of gene targeting (gene targeting fidelity) in natural S. cerevisiae isolates (YIIc17_E5α and UWOPS87-2421α) was strikingly lower than in laboratory strains and the most frequent off-targeting event was targeted chromosome duplication.
Collapse
Affiliation(s)
- Anamarija Štafa
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Bojan Žunar
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Andrea Pranklin
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Antonio Zandona
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Marina Svetec-Miklenić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Božidar Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Kačićeva 28, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Biochemical Engineering, Laboratory for Biology and Microbial Genetics, Kršnjavoga 25, 10000 Zagreb, Croatia
| |
Collapse
|
49
|
Bleuven C, Dubé AK, Nguyen GQ, Gagnon‐Arsenault I, Martin H, Landry CR. A collection of barcoded natural isolates of Saccharomyces paradoxus to study microbial evolutionary ecology. Microbiologyopen 2018; 8:e00773. [PMID: 30569485 PMCID: PMC6612553 DOI: 10.1002/mbo3.773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023] Open
Abstract
While the use of barcoded collections of laboratory microorganisms and the development of barcode-based cell tracking are rapidly developing in genetics and genomics research, tools to track natural populations are still lacking. The yeast Saccharomyces paradoxus is an emergent microbial model in ecology and evolution. More than five allopatric and sympatric lineages have been identified and hundreds of strains have been isolated for this species, allowing to assess the impact of natural diversity on complex traits. We constructed a collection of 550 barcoded and traceable strains of S. paradoxus, including all three North American lineages SpB, SpC, and SpC*. These strains are diploid, many have their genome fully sequenced and are barcoded with a unique 20 bp sequence that allows their identification and quantification. This yeast collection is functional for competitive experiments in pools as the barcodes allow to measure each lineage's and individual strains' fitness in common conditions. We used this tool to demonstrate that in the tested conditions, there are extensive genotype-by-environment interactions for fitness among S. paradoxus strains, which reveals complex evolutionary potential in variable environments. This barcoded collection provides a valuable resource for ecological genomics studies that will allow gaining a better understanding of S. paradoxus evolution and fitness-related traits.
Collapse
Affiliation(s)
- Clara Bleuven
- Département de BiologieUniversité LavalQuébecQuébecCanada,Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada,Big Data Research CenterUniversité LavalQuébecQuébecCanada,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and ApplicationsQuébecQuébecCanada
| | - Alexandre K. Dubé
- Département de BiologieUniversité LavalQuébecQuébecCanada,Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada,Big Data Research CenterUniversité LavalQuébecQuébecCanada,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and ApplicationsQuébecQuébecCanada,Département de Biochimiede Microbiologie et de Bio‐informatique, Université LavalQuébecQuébecCanada
| | - Guillaume Q. Nguyen
- Département de BiologieUniversité LavalQuébecQuébecCanada,Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada,Big Data Research CenterUniversité LavalQuébecQuébecCanada,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and ApplicationsQuébecQuébecCanada,Département des Sciences des aliments, Institut sur la nutrition et les aliments fonctionnels (INAF)Université LavalQuébecQuébecCanada
| | - Isabelle Gagnon‐Arsenault
- Département de BiologieUniversité LavalQuébecQuébecCanada,Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada,Big Data Research CenterUniversité LavalQuébecQuébecCanada,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and ApplicationsQuébecQuébecCanada,Département de Biochimiede Microbiologie et de Bio‐informatique, Université LavalQuébecQuébecCanada
| | - Hélène Martin
- Département de BiologieUniversité LavalQuébecQuébecCanada,Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada,Big Data Research CenterUniversité LavalQuébecQuébecCanada,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and ApplicationsQuébecQuébecCanada,Département de Biochimiede Microbiologie et de Bio‐informatique, Université LavalQuébecQuébecCanada
| | - Christian R. Landry
- Département de BiologieUniversité LavalQuébecQuébecCanada,Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada,Big Data Research CenterUniversité LavalQuébecQuébecCanada,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and ApplicationsQuébecQuébecCanada,Département de Biochimiede Microbiologie et de Bio‐informatique, Université LavalQuébecQuébecCanada
| |
Collapse
|
50
|
Cerulus B, Jariani A, Perez-Samper G, Vermeersch L, Pietsch JMJ, Crane MM, New AM, Gallone B, Roncoroni M, Dzialo MC, Govers SK, Hendrickx JO, Galle E, Coomans M, Berden P, Verbandt S, Swain PS, Verstrepen KJ. Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources. eLife 2018; 7:e39234. [PMID: 30299256 PMCID: PMC6211830 DOI: 10.7554/elife.39234] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/05/2018] [Indexed: 01/24/2023] Open
Abstract
Cells constantly adapt to environmental fluctuations. These physiological changes require time and therefore cause a lag phase during which the cells do not function optimally. Interestingly, past exposure to an environmental condition can shorten the time needed to adapt when the condition re-occurs, even in daughter cells that never directly encountered the initial condition. Here, we use the molecular toolbox of Saccharomyces cerevisiae to systematically unravel the molecular mechanism underlying such history-dependent behavior in transitions between glucose and maltose. In contrast to previous hypotheses, the behavior does not depend on persistence of proteins involved in metabolism of a specific sugar. Instead, presence of glucose induces a gradual decline in the cells' ability to activate respiration, which is needed to metabolize alternative carbon sources. These results reveal how trans-generational transitions in central carbon metabolism generate history-dependent behavior in yeast, and provide a mechanistic framework for similar phenomena in other cell types.
Collapse
Affiliation(s)
- Bram Cerulus
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Abbas Jariani
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Gemma Perez-Samper
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Lieselotte Vermeersch
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Julian MJ Pietsch
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Matthew M Crane
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of PathologyUniversity of WashingtonWashingtonUnited States
| | - Aaron M New
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Brigida Gallone
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Miguel Roncoroni
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Maria C Dzialo
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Sander K Govers
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Jhana O Hendrickx
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Eva Galle
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Maarten Coomans
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Pieter Berden
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Sara Verbandt
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Peter S Swain
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Kevin J Verstrepen
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| |
Collapse
|