1
|
Chen D, Xu S, Li S, Wang Q, Li H, He D, Chen Y, Xu H. The multi-organ landscape of B cells highlights dysregulated memory B cell responses in Crohn's disease. Natl Sci Rev 2025; 12:nwaf009. [PMID: 40160682 PMCID: PMC11951101 DOI: 10.1093/nsr/nwaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 04/02/2025] Open
Abstract
Crohn's disease (CD) is a prevalent type of inflammatory bowel disease (IBD) with dysregulated antibody responses. However, there is a lack of comprehensive analysis of B cell responses in CD. Here, we collected B cells from the small intestine, colon and blood of CD patients and control subjects. Through the coupled analysis of transcriptome and immunoglobulin (Ig) gene in individual cells, we characterized the cellular composition, transcriptome and Ig clonotype in different B cell subtypes. We observed shared disruptions in plasma cell (PC) responses between different IBD subtypes. We revealed heterogeneity in memory B cells (MBCs) and showed a positive correlation between gut resident-like MBCs and disease severity. Furthermore, our clonotype analysis demonstrated an increased direct differentiation of MBCs into PCs in CD patients. Overall, this study demonstrates significantly altered B cell responses associated with chronic inflammation during CD and highlights the potential role of mucosal MBCs in CD pathogenesis.
Collapse
Affiliation(s)
- Dianyu Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Song Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
2
|
Kappel-Latif S, Kotagiri P, Schlager L, Schuld G, Walterskirchen N, Schimek V, Sewell G, Binder C, Jobst J, Murthy S, Messner B, Dabsch S, Kaser A, Lyons PA, Bergmann M, Stift A, Oehler R, Unger LW. Altered B-Cell Expansion and Maturation in Draining Mesenteric Lymph Nodes of Inflamed Gut in Crohn's Disease. Cell Mol Gastroenterol Hepatol 2023; 17:662-666. [PMID: 38147955 PMCID: PMC10958343 DOI: 10.1016/j.jcmgh.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Sonja Kappel-Latif
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Prasanti Kotagiri
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Lukas Schlager
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Gabor Schuld
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Natalie Walterskirchen
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Schimek
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Gavin Sewell
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carina Binder
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Johanna Jobst
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Supriya Murthy
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefanie Dabsch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Arthur Kaser
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul A Lyons
- Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anton Stift
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas W Unger
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria; Jeffrey Cheah Biomedical Centre, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Association between ustekinumab therapy and changes in specific anti-microbial response, serum biomarkers, and microbiota composition in patients with IBD: A pilot study. PLoS One 2022; 17:e0277576. [PMID: 36584073 PMCID: PMC9803183 DOI: 10.1371/journal.pone.0277576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/29/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ustekinumab, is a new therapy for patients with IBD, especially for patients suffering from Crohn's disease (CD) who did not respond to anti-TNF treatment. To shed light on the longitudinal effect of ustekinumab on the immune system, we investigated the effect on skin and gut microbiota composition, specific immune response to commensals, and various serum biomarkers. METHODOLOGY/PRINCIPAL FINDINGS We recruited 11 patients with IBD who were monitored over 40 weeks of ustekinumab therapy and 39 healthy controls (HC). We found differences in the concentrations of serum levels of osteoprotegerin, TGF-β1, IL-33, and serum IgM antibodies against Lactobacillus plantarum between patients with IBD and HC. The levels of these biomarkers did not change in response to ustekinumab treatment or with disease improvement during the 40 weeks of observation. Additionally, we identified differences in stool abundance of uncultured Subdoligranulum, Faecalibacterium, and Bacteroides between patients with IBD and HC. CONCLUSION/SIGNIFICANCE In this preliminary study, we provide a unique overview of the longitudinal monitoring of fecal and skin microbial profiles as well as various serum biomarkers and humoral and cellular response to gut commensals in a small cohort of patients with IBD on ustekinumab therapy.
Collapse
|
4
|
Vujkovic-Cvijin I, Welles HC, Ha CWY, Huq L, Mistry S, Brenchley JM, Trinchieri G, Devkota S, Belkaid Y. The systemic anti-microbiota IgG repertoire can identify gut bacteria that translocate across gut barrier surfaces. Sci Transl Med 2022; 14:eabl3927. [PMID: 35976997 PMCID: PMC9741845 DOI: 10.1126/scitranslmed.abl3927] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unique gut microbiota compositions have been associated with inflammatory diseases, but identifying gut bacterial functions linked to immune activation in humans remains challenging. Translocation of pathogens from mucosal surfaces into peripheral tissues can elicit immune activation, although whether and which gut commensal bacteria translocate in inflammatory diseases is difficult to assess. We report that a subset of commensal gut microbiota constituents that translocate across the gut barrier in mice and humans are associated with heightened systemic immunoglobulin G (IgG) responses. We present a modified high-throughput, culture-independent approach to quantify systemic IgG against gut commensal bacteria in human serum samples without the need for paired stool samples. Using this approach, we highlight several commensal bacterial species that elicit elevated IgG responses in patients with inflammatory bowel disease (IBD) including taxa within the clades Collinsella, Bifidobacterium, Lachnospiraceae, and Ruminococcaceae. These and other taxa identified as translocating bacteria or targets of systemic immunity in IBD concomitantly exhibited heightened transcriptional activity and growth rates in IBD patient gut microbiomes. Our approach represents a complementary tool to illuminate interactions between the host and its gut microbiota and may provide an additional method to identify microbes linked to inflammatory disease.
Collapse
Affiliation(s)
- Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hugh C. Welles
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Connie W. Y. Ha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lutfi Huq
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
5
|
Castro-Dopico T, Colombel JF, Mehandru S. Targeting B cells for inflammatory bowel disease treatment: back to the future. Curr Opin Pharmacol 2020; 55:90-98. [PMID: 33166872 PMCID: PMC7894973 DOI: 10.1016/j.coph.2020.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
B cells are critical to immune homeostasis at mucosal surfaces including those of the gastrointestinal tract. B cell-related abnormalities, comprising of a lympho-plasmacytic infiltrate, as well as anti-microbial antibodies, are well reported in patients with inflammatory bowel disease (IBD). However, B cell-targeting is not part of the therapeutic armamentarium in IBD. Recently, driven by the identification of genetic associations between IgG Fc receptors and IBD susceptibility, there has been renewed interest in defining the immunobiology of B cells during mucosal inflammation. Functional studies have demonstrated mechanisms of IgG-mediated disease pathogenesis and deep mucosal immunophenotyping using single cell RNA sequencing has elaborated a significant remodelling of the B cell compartment in IBD. In light of these novel data, here we discuss potential strategies to target B cell immunity in IBD. Finally, we discuss potential risks and pitfalls of these approaches and emphasize on distinguishing between homeostatic and pathological B cell signatures, allowing for a data-based, prudent therapeutic approach.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Castro-Dopico T, Clatworthy MR. Mucosal IgG in inflammatory bowel disease - a question of (sub)class? Gut Microbes 2020; 12:1-9. [PMID: 31480888 PMCID: PMC7524157 DOI: 10.1080/19490976.2019.1651596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/01/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulins (Igs) form a cornerstone of mucosal immunity. In the gastrointestinal tract, secretory IgA and IgM bind to commensal microorganisms within the intestinal lumen to prevent them from breaching the intestinal epithelium - a process known as immune exclusion. In recent years, there has been renewed interest in the role of IgG in intestinal immunity, driven in part by a genetic association of an affinity-lowering variant of an IgG receptor, FcγRIIA, with protection from ulcerative colitis (UC), a subclass of inflammatory bowel disease (IBD). We recently demonstrated a role for IgG and Fcγ receptor signalling in driving pathogenic IL-1β production by colonic mononuclear phagocytes and the subsequent induction of a local type 17 response in UC. Here, we discuss the potential relevance of our observations to the other major subclass of IBD - Crohn's disease (CD) - where the genetic association with FCGR variants is less robust and consider how this may impact therapeutic interventions in these disease subsets.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
7
|
Kappler K, Lasanajak Y, Smith DF, Opitz L, Hennet T. Increased Antibody Response to Fucosylated Oligosaccharides and Fucose-Carrying Bacteroides Species in Crohn's Disease. Front Microbiol 2020; 11:1553. [PMID: 32765449 PMCID: PMC7381230 DOI: 10.3389/fmicb.2020.01553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease is associated with intestinal dysbiosis and with elevated antibody production toward microbial epitopes. The underlying processes linking the gut microbiota with inflammation are still unclear. Considering the constant induction of antibodies by gut microbial glycans, the aim of this study was to address whether the repertoire of carbohydrate-specific antibodies is altered in Crohn's disease or ulcerative colitis. IgG and IgM reactivities to oligosaccharides representative of mucosal glycans were tested in blood serum from 20 healthy control subjects, 17 ulcerative colitis patients, and 23 Crohn's disease patients using glycan arrays. An increased IgG and IgM reactivity toward fucosylated oligosaccharides was detected in Crohn's disease but not in ulcerative colitis. To address the antibody reactivity to the gut microbiota, IgG binding to members of a complex intestinal microbiota was measured and observed to be increased in sera of patients with Crohn's disease. Based on the elevated reactivity to fucosylated oligosaccharides, gut bacteria were tested for recognition by the fucose-binding Aleuria aurantia lectin. Bacteroides stercoris was detected in IgG- and lectin-positive fractions and reactivity of A. aurantia lectin was demonstrated for additional Bacteroides species. IgG reactivity to these Bacteroides species was significantly increased in inflammatory bowel disease patients, indicating that the increased reactivity to fucosylated oligosaccharides detected in Crohn's disease may be induced by fucose-carrying intestinal bacteria. Enhanced antibody response to fucosylated epitopes may have systemic effects by altering the binding of circulating antibodies to endogenous glycoproteins.
Collapse
Affiliation(s)
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - David F. Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Coufal S, Galanova N, Bajer L, Gajdarova Z, Schierova D, Jiraskova Zakostelska Z, Kostovcikova K, Jackova Z, Stehlikova Z, Drastich P, Tlaskalova-Hogenova H, Kverka M. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells 2019; 8:cells8070719. [PMID: 31337064 PMCID: PMC6678638 DOI: 10.3390/cells8070719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Crohn’s disease (CD), ulcerative colitis (UC) and inflammatory bowel disease (IBD) associated with primary sclerosing cholangitis (PSC-IBD), share three major pathogenetic mechanisms of inflammatory bowel disease (IBD)-gut dysbiosis, gut barrier failure and immune system dysregulation. While clinical differences among them are well known, the underlying mechanisms are less explored. To gain an insight into the IBD pathogenesis and to find a specific biomarker pattern for each of them, we used protein array, ELISA and flow cytometry to analyze serum biomarkers and specific anti-microbial B and T cell responses to the gut commensals. We found that decrease in matrix metalloproteinase (MMP)-9 and increase in MMP-14 are the strongest factors discriminating IBD patients from healthy subjects and that PSC-IBD patients have higher levels of Mannan-binding lectin, tissue inhibitor of metalloproteinases 1 (TIMP-1), CD14 and osteoprotegerin than patients with UC. Moreover, we found that low transforming growth factor-β1 (TGF-β1) is associated with disease relapse and low osteoprotegerin with anti-tumor necrosis factor-alpha (TNF-α) therapy. Patients with CD have significantly decreased antibody and increased T cell response mainly to genera Eubacterium, Faecalibacterium and Bacteroides. These results stress the importance of the gut barrier function and immune response to commensal bacteria and point at the specific differences in pathogenesis of PSC-IBD, UC and CD.
Collapse
Affiliation(s)
- Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Natalie Galanova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Zuzana Gajdarova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | | | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zuzana Stehlikova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
9
|
Henriksson G, Bredberg J, Wullt M, Lyrenäs E, Hindorf U, Ohlsson B, Grip O. Humoral response to Clostridium difficile in inflammatory bowel disease, including correlation with immunomodulatory treatment. JGH OPEN 2019; 3:154-158. [PMID: 31061891 PMCID: PMC6487827 DOI: 10.1002/jgh3.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/18/2023]
Abstract
Background and Aim An abnormal immune response to intestinal bacteria has been observed in Crohn's disease (CD). Clostridium difficile infection incidence and severity are increased in CD, but reports on the humoral response have provided conflicting results. We aimed to shed light on the possible role of C. difficile in CD pathogenesis by paying attention to the influence of immunomodulatory treatment on the humoral response. Methods A total of 71 consecutive outpatients with CD, 67 with ulcerative colitis (UC), and 121 healthy controls were analyzed for serum IgA and IgG to C. difficile toxins A and B. Results IgA levels were similar in all study groups. IgG to toxin A was increased similarly in CD and UC (P = 0.02 for both). In contrast, IgG to toxin B was elevated only in CD patients not receiving disease-modifying anti-inflammatory bowel disease drugs (DMAID) (n = 16) (P = 0.0001), while the CD medication subgroup (n = 47) had a level similar to healthy controls. The UC results were not influenced by DMAID treatment. Conclusion Our findings add support to the idea of a disturbed interaction between intestinal cells and the microbiota being part of the CD disease mechanism. An abnormal immune response to C. difficile toxin B may be a critical component of this interaction.
Collapse
Affiliation(s)
| | - Johan Bredberg
- Department of Education, Østfold University College Halden Norway
| | - Marlene Wullt
- Department of Clinical Sciences Malmö Lund University Malmö Sweden
| | - Ebbe Lyrenäs
- Department of Gastroenterology Central Hospital Kristianstad Kristianstad Sweden
| | - Ulf Hindorf
- Department of Gastroenterology Lund University Lund Sweden
| | - Björn Ohlsson
- Department of Surgery Blekinge Hospital Karlshamn Sweden
| | - Olof Grip
- Department of Clinical Sciences Malmö Lund University Malmö Sweden
| |
Collapse
|
10
|
Hel Z, Xu J, Denning WL, Helton ES, Huijbregts RPH, Heath SL, Overton ET, Christmann BS, Elson CO, Goepfert PA, Mestecky J. Dysregulation of Systemic and Mucosal Humoral Responses to Microbial and Food Antigens as a Factor Contributing to Microbial Translocation and Chronic Inflammation in HIV-1 Infection. PLoS Pathog 2017; 13:e1006087. [PMID: 28125732 PMCID: PMC5268400 DOI: 10.1371/journal.ppat.1006087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/23/2016] [Indexed: 01/25/2023] Open
Abstract
HIV-1 infection is associated with an early and profound depletion of mucosal memory CD4+ T cells, a population that plays an indispensable role in the regulation of isotype switching and transepithelial transport of antibodies. In this study, we addressed whether the depletion of CD4+ T cell in HIV-1-infected individuals results in altered humoral responses specific to antigens encountered at mucosal surfaces. Comprehensive protein microarray of systemic humoral responses to intestinal microbiota demonstrated reduced IgG responses to antigens derived from Proteobacteria and Firmicutes but not Bacteroidetes. Importantly, intestinal secretions of antiretroviral therapy-treated HIV-1-infected individuals exhibited a significant elevation of IgM levels and decreased IgA/IgM and IgG/IgM ratios of antibodies specific to a variety of microbial and food antigens. The presented findings indicate reduced competence of mucosal B cells for class switch recombination from IgM to other isotypes limiting their capacity to react to changing antigenic variety in the gut lumen. Decreased availability of microbiota-specific IgA and IgG may be an important factor contributing to the translocation of microbial antigens across the intestinal mucosal barrier and their systemic dissemination that drives chronic inflammation in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jun Xu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Warren L. Denning
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - E. Scott Helton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard P. H. Huijbregts
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - E. Turner Overton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Benjamin S. Christmann
- Department of Natural Science and Mathematics, Lee University, Cleveland, Tennessee, United States of America
| | - Charles O. Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Institute of Immunology and Microbiology, 1 School of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Abstract
Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy.
Collapse
Affiliation(s)
- Pajau Vangay
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tonya Ward
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dan Knights
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Buttó LF, Schaubeck M, Haller D. Mechanisms of Microbe-Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Front Immunol 2015; 6:555. [PMID: 26635787 PMCID: PMC4652232 DOI: 10.3389/fimmu.2015.00555] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) is a systemic chronic inflammatory condition mainly characterized by discontinuous transmural pathology of the gastrointestinal tract and frequent extraintestinal manifestations with intermittent episodes of remission and relapse. Genome-wide association studies identified a number of risk loci that, catalyzed by environmental triggers, result in the loss of tolerance toward commensal bacteria based on dysregulated innate effector functions and antimicrobial defense, leading to exacerbated adaptive immune responses responsible for chronic immune-mediated tissue damage. In this review, we discuss the inter-related role of changes in the intestinal microbiota, epithelial barrier integrity, and immune cell functions on the pathogenesis of CD, describing the current approaches available to investigate the molecular mechanisms underlying the disease. Substantial effort has been dedicated to define disease-associated changes in the intestinal microbiota (dysbiosis) and to link pathobionts to the etiology of inflammatory bowel diseases. A cogent definition of dysbiosis is lacking, as well as an agreement of whether pathobionts or complex shifts in the microbiota trigger inflammation in the host. Among the rarely available animal models, SAMP/Yit and TNFdeltaARE mice are the best known displaying a transmural CD-like phenotype. New hypothesis-driven mouse models, e.g., epithelial-specific Caspase8−/−, ATG16L1−/−, and XBP1−/− mice, validate pathway-focused function of specific CD-associated risk genes highlighting the role of Paneth cells in antimicrobial defense. To study the causal role of bacteria in initiating inflammation in the host, the use of germ-free mouse models is indispensable. Unraveling the interactions of genes, immune cells and microbes constitute a criterion for the development of safe, reliable, and effective treatment options for CD.
Collapse
Affiliation(s)
- Ludovica F Buttó
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| | - Monika Schaubeck
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| |
Collapse
|
13
|
Matricon J, Barnich N, Ardid D. Immunopathogenesis of inflammatory bowel disease. SELF NONSELF 2014; 1:299-309. [PMID: 21487504 DOI: 10.4161/self.1.4.13560] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of idiopathic, chronic and relapsing inflammatory conditions of the gastrointestinal tract. Familial and epidemiological studies have stressed the involvement of genetic factors and have also shown the critical role of environmental factors such as sanitation and hygiene in the development of IBD. However, the molecular mechanisms of intestinal inflammation in IBD have long remained unknown. In recent years, the study of susceptibility genes involved in the detection of bacterial components and in the regulation of the host immune response has shed light onto the potential role of intestinal pathogens and gut flora in IBD immunobiology. This review presents current knowledge on intestinal epithelial barrier alterations and on dysfunction of mucosal innate and acquired immune responses in IBD. The data support the etiological hypothesis which argues that pathogenic intestinal bacteria and/or infectious agents initiate and perpetuate the inflammation of the gut through disruption of tolerance towards the commensal microbiota in an individual with genetic vulnerability.
Collapse
Affiliation(s)
- Julien Matricon
- Clermont Université; Université d'Auvergne; Pharmacologie Fondamentale et Clinique de la Douleur; Laboratoire de Pharmacologie Médicale; Inserm U 766; Clermont-Ferrand, France
| | | | | |
Collapse
|
14
|
Frehn L, Jansen A, Bennek E, Mandic AD, Temizel I, Tischendorf S, Verdier J, Tacke F, Streetz K, Trautwein C, Sellge G. Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases. PLoS One 2014; 9:e106750. [PMID: 25215528 PMCID: PMC4162554 DOI: 10.1371/journal.pone.0106750] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined. Methods IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn's disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39). Results Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance. Summary In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients.
Collapse
Affiliation(s)
- Lisa Frehn
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Anke Jansen
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Eveline Bennek
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Ana D. Mandic
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Ilknur Temizel
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Stefanie Tischendorf
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Julien Verdier
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany
- * E-mail:
| |
Collapse
|
15
|
Hevia A, López P, Suárez A, Jacquot C, Urdaci MC, Margolles A, Sánchez B. Association of levels of antibodies from patients with inflammatory bowel disease with extracellular proteins of food and probiotic bacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:351204. [PMID: 24991549 PMCID: PMC4065772 DOI: 10.1155/2014/351204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by a chronic inflammation of the gastrointestinal tract mucosa and is related to an abnormal immune response to commensal bacteria. Our aim of the present work has been to explore the levels of antibodies (IgG and IgA) raised against extracellular proteins produced by LAB and its association with IBD. We analyzed, by Western-blot and ELISA, the presence of serum antibodies (IgA and IgG) developed against extracellular protein fractions produced by different food bacteria from the genera Bifidobacterium and Lactobacillus. We used a sera collection consisting of healthy individuals (HC, n = 50), Crohn's disease patients (CD, n = 37), and ulcerative colitis patients (UC, n = 15). Levels of IgA antibodies developed against a cell-wall hydrolase from Lactobacillus casei subsp. rhamnosus GG (CWH) were significantly higher in the IBD group (P < 0.002; n = 52). The specificity of our measurements was confirmed by measuring IgA antibodies developed against the CWH peptide 365-VNTSNQTAAVSAS-377. IBD patients appeared to have different immune response to food bacteria. This paper sets the basis for developing systems for early detection of IBD, based on the association of high levels of antibodies developed against extracellular proteins from food and probiotic bacteria.
Collapse
Affiliation(s)
- Arancha Hevia
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| | - Patricia López
- Department of Functional Biology, Immunology Area, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33006 Asturias, Spain
| | - Ana Suárez
- Department of Functional Biology, Immunology Area, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33006 Asturias, Spain
| | - Claudine Jacquot
- UMR 5248 CBMN CNRS-Université Bordeaux 1-ENITAB, Laboratoire de Microbiologie et Biochimie Appliquée, 1 Cours du Général de Gaulle, 33175 Gradignan Cedex, France
| | - María C. Urdaci
- UMR 5248 CBMN CNRS-Université Bordeaux 1-ENITAB, Laboratoire de Microbiologie et Biochimie Appliquée, 1 Cours du Général de Gaulle, 33175 Gradignan Cedex, France
| | - Abelardo Margolles
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| | - Borja Sánchez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| |
Collapse
|
16
|
von Rosenvinge EC, O'May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathog Dis 2013; 67:25-38. [PMID: 23620117 DOI: 10.1111/2049-632x.12020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
The majority of bacteria live not planktonically, but as residents of sessile biofilm communities. Such populations have been defined as 'matrix-enclosed microbial accretions, which adhere to both biological and nonbiological surfaces'. Bacterial formation of biofilm is implicated in many chronic disease states. Growth in this mode promotes survival by increasing community recalcitrance to clearance by host immune effectors and therapeutic antimicrobials. The human gastrointestinal (GI) tract encompasses a plethora of nutritional and physicochemical environments, many of which are ideal for biofilm formation and survival. However, little is known of the nature, function, and clinical relevance of these communities. This review summarizes current knowledge of the composition and association with health and disease of biofilm communities in the GI tract.
Collapse
Affiliation(s)
- Erik C von Rosenvinge
- Department of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
17
|
Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K, Velasco J, Strutton G, Tran A, Benham H, Rehaume L, Wilson RJ, Kikly K, Davies J, Pettit AR, Brown MA, McGuckin MA, Thomas R. β-glucan triggers spondylarthritis and Crohn's disease-like ileitis in SKG mice. ACTA ACUST UNITED AC 2012; 64:2211-22. [PMID: 22328069 DOI: 10.1002/art.34423] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohn's disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 β-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17-dependent inflammatory arthritis developed after dectin 1-mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-β-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process. METHODS SKG mice and control BALB/c mice were injected once with curdlan or mannan. Arthritis was scored weekly, and organs were assessed for pathologic features. Anti-IL-23 monoclonal antibodies were injected into curdlan-treated SKG mice. CD4+ T cells were transferred from curdlan-treated mice to SCID mice, and sera were analyzed for autoantibodies. RESULTS After systemic injection of curdlan, SKG mice developed enthesitis, wrist, ankle, and sacroiliac joint arthritis, dactylitis, plantar fasciitis, vertebral inflammation, ileitis resembling Crohn's disease, and unilateral uveitis. Mannan triggered spondylitis and arthritis. Arthritis and spondylitis were T cell- and IL-23-dependent and were transferable to SCID recipients with CD4+ T cells. SpA was associated with collagen- and proteoglycan-specific autoantibodies. CONCLUSION Our findings indicate that the SKG ZAP-70W163C mutation predisposes BALB/c mice to SpA, resulting from innate and adaptive autoimmunity, after systemic β-glucan or mannan exposure.
Collapse
Affiliation(s)
- Merja Ruutu
- University of Queensland and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sellin JH, Shah RR. The promise and pitfalls of serologic testing in inflammatory bowel disease. Gastroenterol Clin North Am 2012; 41:463-82. [PMID: 22500529 DOI: 10.1016/j.gtc.2012.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The role of IBD serologies is still evolving. However, as that evolution progresses, it will continue to provide important insights into the etiology of IBD and help define individualized treatment strategies for patients. The presence of multiple IBD antimicrobial antibodies and increased reactivity form a useful heuristic model to understand the evolution of CD. The role of ANCAs and autoantibodies in pathogenesis of UC is an area that requires further investigation. Although IBD serologies exhibit considerable diagnostic accuracy, it is unclear whether they will supplant simpler and more direct evaluations in making an initial diagnosis of UC or Crohn (Table 3). The utility of panels of IBD serologies to stratify and predict the course of CD has been an arena of fertile investigation. Developing individual treatment strategies based on the probability of developing complicated aggressive disease would be a significant advance in medical management of CD. However, if major clinical decisions are to be made based on these serologies, we will need more prospective critical studies from the time of diagnosis to define their clinical applicability and to demonstrate a true difference in outcomes.
Collapse
Affiliation(s)
- Joseph H Sellin
- Division of Gastroenterology, Baylor College of Medicine, 1709 Dryden, Houston, TX 77030, USA.
| | | |
Collapse
|
19
|
Papadakis KA. Predicting outcomes after restorative proctocolectomy for ulcerative colitis. Clin Gastroenterol Hepatol 2012; 10:447-9. [PMID: 22289871 DOI: 10.1016/j.cgh.2012.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/11/2012] [Accepted: 01/15/2012] [Indexed: 02/07/2023]
|
20
|
Chiodini RJ, Chamberlin WM, Sarosiek J, McCallum RW. Crohn's disease and the mycobacterioses: a quarter century later. Causation or simple association? Crit Rev Microbiol 2012; 38:52-93. [PMID: 22242906 DOI: 10.3109/1040841x.2011.638273] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been more than 25 years since Mycobacterium paratuberculosis was first proposed as an etiologic agent in Crohn's disease based on the isolation of this organism from several patients. Since that time, a great deal of information has been accumulated that clearly establishes an association between M. paratuberculosis and Crohn's disease. However, data are conflicting and difficult to interpret and the field has become divided into committed advocates and confirmed skeptics. This review is an attempt to provide a thorough and objective summary of current knowledge from both basic and clinical research from the views and interpretations of both the antagonists and proponents. The reader is left to draw his or her own conclusions related to the validity of the issues and claims made by the opposing views and data interpretations. Whether M. paratuberculosis is a causative agent in some cases or simply represents an incidental association remains a controversial topic, but current evidence suggests that the notion should not be so readily dismissed. Remaining questions that need to be addressed in defining the role of M. paratuberculosis in Crohn's disease and future implications are discussed.
Collapse
Affiliation(s)
- Rodrick J Chiodini
- Divisions of Infectious Diseases, Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, USA.
| | | | | | | |
Collapse
|
21
|
Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 2012; 3:mBio.00261-11. [PMID: 22233678 PMCID: PMC3252763 DOI: 10.1128/mbio.00261-11] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Gastrointestinal disturbances are commonly reported in children with autism and may be associated with compositional changes in intestinal bacteria. In a previous report, we surveyed intestinal microbiota in ileal and cecal biopsy samples from children with autism and gastrointestinal dysfunction (AUT-GI) and children with only gastrointestinal dysfunction (Control-GI). Our results demonstrated the presence of members of the family Alcaligenaceae in some AUT-GI children, while no Control-GI children had Alcaligenaceae sequences. Here we demonstrate that increased levels of Alcaligenaceae in intestinal biopsy samples from AUT-GI children result from the presence of high levels of members of the genus Sutterella. We also report the first Sutterella-specific PCR assays for detecting, quantitating, and genotyping Sutterella species in biological and environmental samples. Sutterella 16S rRNA gene sequences were found in 12 of 23 AUT-GI children but in none of 9 Control-GI children. Phylogenetic analysis revealed a predominance of either Sutterella wadsworthensis or Sutterella stercoricanis in 11 of the individual Sutterella-positive AUT-GI patients; in one AUT-GI patient, Sutterella sequences were obtained that could not be given a species-level classification based on the 16S rRNA gene sequences of known Sutterella isolates. Western immunoblots revealed plasma IgG or IgM antibody reactivity to Sutterella wadsworthensis antigens in 11 AUT-GI patients, 8 of whom were also PCR positive, indicating the presence of an immune response to Sutterella in some children. IMPORTANCE Autism spectrum disorders affect ~1% of the population. Many children with autism have gastrointestinal (GI) disturbances that can complicate clinical management and contribute to behavioral problems. Understanding the molecular and microbial underpinnings of these GI issues is of paramount importance for elucidating pathogenesis, rendering diagnosis, and administering informed treatment. Here we describe an association between high levels of intestinal, mucoepithelial-associated Sutterella species and GI disturbances in children with autism. These findings elevate this little-recognized bacterium to the forefront by demonstrating that Sutterella is a major component of the microbiota in over half of children with autism and gastrointestinal dysfunction (AUT-GI) and is absent in children with only gastrointestinal dysfunction (Control-GI) evaluated in this study. Furthermore, these findings bring into question the role Sutterella plays in the human microbiota in health and disease. With the Sutterella-specific molecular assays described here, some of these questions can begin to be addressed.
Collapse
|
22
|
Abstract
Gastrointestinal commensal microbes usually exist in mutualistic relationship with their mammalian host. This relationship exists even though the mammalian host immune system is equipped with exquisite sensors for microbial chemical structures which trigger powerful immune defense mechanisms. Such beneficial mutualism is specifically maintained at the gut mucosal interface by a variety of physical and bioactive barriers as well as specific immunregulatory mechanisms. In addition, there is a strict compartmentalization between systemic and gut mucosal immunity--at least in inbred mice--which focuses adaptive immunity to gut microbes specifically to the gut tissue and the gut lumen. Only in circumstances of increased gut microbial exposure due to elevated gut epithelial permeability, due to genetic deficiencies in local defense mechanisms, due to imbalances in local immune regulation or in case of gastrointestinal pathogenic bacterial infections this compartmentalization is broken and systemic immune responses to gut microbes are induced, which manifest for example as systemic antibody responses specific for gut microbial antigens. Here we briefly discuss the abundance of systemic antibody responses to commensal gut bacteria in healthy humans and how it is altered in situations with chronic enteropathies such as in inflammatory bowel disease and HIV-1 infection or infection with gut bacterial pathogens.
Collapse
|
23
|
Ktsoyan ZA, Beloborodova NV, Sedrakyan AM, Osipov GA, Khachatryan ZA, Kelly D, Manukyan GP, Arakelova KA, Hovhannisyan AI, Olenin AY, Arakelyan AA, Ghazaryan KA, Aminov RI. Profiles of Microbial Fatty Acids in the Human Metabolome are Disease-Specific. Front Microbiol 2011; 1:148. [PMID: 21687748 PMCID: PMC3109323 DOI: 10.3389/fmicb.2010.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 12/27/2010] [Indexed: 12/16/2022] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse and dense symbiotic microbiota, the composition of which is the result of host-microbe co-evolution and co-adaptation. This tight integration creates intense cross-talk and signaling between the host and microbiota at the cellular and metabolic levels. In many genetic or infectious diseases the balance between host and microbiota may be compromised resulting in erroneous communication. Consequently, the composition of the human metabolome, which includes the gut metabolome, may be different in health and disease states in terms of microbial products and metabolites entering systemic circulation. To test this hypothesis, we measured the level of hydroxy, branched, cyclopropyl and unsaturated fatty acids, aldehydes, and phenyl derivatives in blood of patients with a hereditary autoinflammatory disorder, familial Mediterranean fever (FMF), and in patients with peptic ulceration (PU) resulting from Helicobacter pylori infection. Discriminant function analysis of a data matrix consisting of 94 cases as statistical units (37 FMF patients, 14 PU patients, and 43 healthy controls) and the concentration of 35 microbial products in the blood as statistical variables revealed a high accuracy of the proposed model (all cases were correctly classified). This suggests that the profile of microbial products and metabolites in the human metabolome is specific for a given disease and may potentially serve as a biomarker for disease.
Collapse
Affiliation(s)
- Zhanna A Ktsoyan
- Institute of Molecular Biology, National Academy of Sciences of Republic of Armenia Yerevan, Republic of Armenia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Weersma RK, Crusius JBA, Roberts RL, Koeleman BPC, Palomino-Morales R, Wolfkamp S, Hollis-Moffatt JE, Festen EAM, Meisneris S, Heijmans R, Noble CL, Gearry RB, Barclay ML, Gómez-Garcia M, Lopez-Nevot MA, Nieto A, Rodrigo L, Radstake TRDJ, van Bodegraven AA, Wijmenga C, Merriman TR, Stokkers PCF, Peña AS, Martín J, Alizadeh BZ. Association of FcgR2a, but not FcgR3a, with inflammatory bowel diseases across three Caucasian populations. Inflamm Bowel Dis 2010; 16:2080-9. [PMID: 20848524 DOI: 10.1002/ibd.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The Fc receptors II and III (FcgR2a, and FcgR3a) play a crucial role in the regulation of the immune response. The FcgR2a*519GG and FcgR3a*559CC genotypes have been associated with several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, nephritis, and possibly to type I diabetes, and celiac disease. In a large multicenter, two-stage study of 6570 people, we tested whether the FcgR2a and FcgR3a genes were also involved in inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC). METHODS We genotyped the FcgR2a*A519G and FcgR3a*A559C functional variants in 4205 IBD patients in six well-phenotyped Caucasian IBD cohorts and 2365 ethnically matched controls recruited from the Netherlands, Spain, and New Zealand. RESULTS In the initial Dutch study we found a significant association of FcgR2a genotypes with IBD (P-genotype = 0.02); while the FcgR2a*519GG was more common in controls (23%) than in IBD patients (18%; odds ratio [OR] = 0.75; 95% confidence interval [CI] 0.61-0.92; P = 0.004). This association was corroborated by a combined analysis across all the study populations (Mantel-Haenszel [MH] OR = 0.84; 0.74-0.95; P = 0.005) in the next stage. The Fcgr2a*GG genotype was associated with both UC (MH-OR = 0.84; 0.72-0.97; P = 0.01) and CD (MH-OR = 0.84; 0.73-0.97; P = 0.01), suggesting that this genotype confers a protective effect against IBD. There was no association of FcgR3a*A559C genotypes with IBD, CD, or UC in any of the three studied populations. CONCLUSIONS The FcgR2a*519G functional variant was associated with IBD and reduced susceptibility to UC and to CD in Caucasians. There was no association between FcgR3a*5A559C and IBD, CD or UC.
Collapse
Affiliation(s)
- Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T, Rossmann P, Mrazek J, Kopecny J, Verdu EF, Tlaskalova-Hogenova H. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol 2010; 163:250-9. [PMID: 21087444 DOI: 10.1111/j.1365-2249.2010.04286.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Commensal bacteria have been shown to modulate the host mucosal immune system. Here, we report that oral treatment of BALB/c mice with components from the commensal, Parabacteroides distasonis, significantly reduces the severity of intestinal inflammation in murine models of acute and chronic colitis induced by dextran sulphate sodium (DSS). The membranous fraction of P. distasonis (mPd) prevented DSS-induced increases in several proinflammatory cytokines, increased mPd-specific serum antibodies and stabilized the intestinal microbial ecology. The anti-colitic effect of oral mPd was not observed in severe combined immunodeficient mice and probably involved induction of specific antibody responses and stabilization of the intestinal microbiota. Our results suggest that specific bacterial components derived from the commensal bacterium, P. distasonis, may be useful in the development of new therapeutic strategies for chronic inflammatory disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- M Kverka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kamat A, Ancuta P, Blumberg RS, Gabuzda D. Serological markers for inflammatory bowel disease in AIDS patients with evidence of microbial translocation. PLoS One 2010; 5:e15533. [PMID: 21125014 PMCID: PMC2981579 DOI: 10.1371/journal.pone.0015533] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/06/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Breakdown of the gut mucosal barrier during chronic HIV infection allows translocation of bacterial products such as lipopolysaccharides (LPS) from the gut into the circulation. Microbial translocation also occurs in inflammatory bowel disease (IBD). IBD serological markers are useful in the diagnosis of IBD and to differentiate between Crohn's disease (CD) and ulcerative colitis (UC). Here, we evaluate detection of IBD serological markers in HIV-infected patients with advanced disease and their relationship to HIV disease markers. METHODS IBD serological markers (ASCA, pANCA, anti-OmpC, and anti-CBir1) were measured by ELISA in plasma from AIDS patients (n = 26) with low CD4 counts (<300 cells/µl) and high plasma LPS levels, and results correlated with clinical data. For meta-analysis, relevant data were abstracted from 20 articles. RESULTS IBD serological markers were detected in approximately 65% of AIDS patients with evidence of microbial translocation. An antibody pattern consistent with IBD was detected in 46%; of these, 75% had a CD-like pattern. Meta-analysis of data from 20 published studies on IBD serological markers in CD, UC, and non-IBD control subjects indicated that IBD serological markers are detected more frequently in AIDS patients than in non-IBD disease controls and healthy controls, but less frequently than in CD patients. There was no association between IBD serological markers and HIV disease markers (plasma viral load and CD4 counts) in the study cohort. CONCLUSIONS IBD serological markers may provide a non-invasive approach to monitor HIV-related inflammatory gut disease. Further studies to investigate their clinical significance in HIV-infected individuals are warranted.
Collapse
Affiliation(s)
- Anupa Kamat
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Petronela Ancuta
- Departement de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM) Universite de Montreal and INSERM Unit 743, Montreal, Quebec, Canada
| | - Richard S. Blumberg
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010. [PMID: 21040540 DOI: 10.1186/1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, T1J 4B1, Lethbridge, AB, Canada.
| | | | | |
Collapse
|
28
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010; 2:14. [PMID: 21040540 PMCID: PMC2987776 DOI: 10.1186/1757-4749-2-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, T1J 4B1, Lethbridge, AB, Canada.
| | | | | |
Collapse
|
29
|
Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010; 105:2420-8. [PMID: 20648002 DOI: 10.1038/ajg.2010.281] [Citation(s) in RCA: 1013] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Mucosa-associated bacteria are increased in inflammatory bowel disease (IBD), which suggests the possibility of an increased source of digestible endogenous mucus substrate. We hypothesized that mucolytic bacteria are increased in IBD, providing increased substrate to sustain nonmucolytic mucosa-associated bacteria. METHODS Mucolytic bacteria were characterized by the ability to degrade human secretory mucin (MUC2) in pure and mixed anaerobic cultures. Real-time PCR was used to enumerate mucosa-associated mucolytic bacteria in 46 IBD and 20 control patients. Bacterial mucolytic activity was tested in vitro using purified human MUC2. RESULTS We confirm increased total mucosa-associated bacteria 16S rRNA gene in macroscopically and histologically normal intestinal epithelium of both Crohn's disease (CD) (mean 1.9-fold) and ulcerative colitis (UC) (mean 1.3-fold). We found a disproportionate increase in some mucolytic bacteria. Mean Ruminococcus gnavus were increased >4-fold and Ruminococcus torques ∼100-fold in macroscopically and histologically normal intestinal epithelium of both CD and UC. The most abundantly detected mucolytic bacterium in controls, Akkermansia muciniphila, was reduced many fold in CD and in UC. Coculture of A. muciniphila with MUC2 as the sole carbon source led to reduction in its abundance while it augmented growth of other bacteria. CONCLUSIONS Mucolytic bacteria are present in healthy humans, where they are an integral part of the mucosa-associated bacterial consortium. The disproportionate increase in R. gnavus and R. torques could explain increased total mucosa-associated bacteria in IBD.
Collapse
|
30
|
Lakhdari O, Cultrone A, Tap J, Gloux K, Bernard F, Ehrlich SD, Lefèvre F, Doré J, Blottière HM. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut. PLoS One 2010; 5. [PMID: 20927194 PMCID: PMC2948039 DOI: 10.1371/journal.pone.0013092] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM The human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs) and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota. METHODS A plasmid containing the secreted alkaline phosphatase (SEAP) gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn's disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition. RESULTS The two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB. CONCLUSIONS We have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal microbiota to study bacteria-driven NF-κB regulation. This opens a strategic path toward the identification of bacterial strains and molecular patterns presenting a potential therapeutic interest.
Collapse
|
31
|
Sánchez B, Urdaci MC, Margolles A. Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. MICROBIOLOGY-SGM 2010; 156:3232-3242. [PMID: 20864471 DOI: 10.1099/mic.0.044057-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the last few years, a substantial body of scientific evidence has accumulated suggesting that certain surface-associated and extracellular components produced by probiotic bacteria could be responsible for some of their mechanisms of action. These bacterial components would be able to directly interact with the host mucosal cells; they include exopolysaccharides, bacteriocins, lipoteichoic acids and surface-associated and extracellular proteins. Extracellular proteins include proteins that are actively transported to the bacterial surroundings through the cytoplasmic membrane, as well as those that are simply shed from the bacterial surface. Compared to the other bacterial components, the interactive ability of extracellular proteins/peptides has been less extensively studied. In this review, current findings supporting an interaction between extracellular proteins/peptides produced by probiotic bacteria (strains of the genera Bifidobacterium, Lactobacillus and Escherichia) and host mucosal cells are discussed. Research needs and future trends are also considered.
Collapse
Affiliation(s)
- Borja Sánchez
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - María C Urdaci
- Université de Bordeaux, UMR 5248 CNRS, UBX1-ENITAB, ENITAB, 1 cours du Général de Gaulle, 33175 Gradignan Cedex, France
| | - Abelardo Margolles
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
32
|
Abstract
Inflammatory bowel diseases (IBD) are idiopathic, chronic and relapsing inflammatory conditions of the gastrointestinal tract. New insights into the pathogenesis of IBD have been provided by three lines of research: (1) studying susceptibility genes involved in the detection of bacterial components and in the regulation of the host immune response, (2) highlighting the disruption of tolerance towards the commensal microbiota and (3) unravelling the critical role of environmental factors such as sanitation and hygiene. This review presents current etiological hypothesis of IBD which argue that pathogenic intestinal bacteria and/or infectious agents initiate and perpetuate the inflammation of the gut in an individual with genetic vulnerability leading to impaired epithelial barrier function and abnormal mucosal immune responses.
Collapse
Affiliation(s)
- Julien Matricon
- Inserm U766, Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de la douleur, Laboratoire de pharmacologie médicale, BP 10448, 63000 Clermont-Ferrand, France.
| |
Collapse
|
33
|
Kim JM. [Inflammatory bowel diseases and enteric microbiota]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2010; 55:4-18. [PMID: 20098062 DOI: 10.4166/kjg.2010.55.1.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intestinal mucosal layers are colonized by a complex microbiota that provides beneficial effects under normal physiological conditions, but is capable of contributing to chronic inflammatory disease such as inflammatory bowel disease (IBD) in susceptible individuals. Studies have shown that the enteric microbiota may drive the development of the gut immune system and can induce immune homeostasis as well as contribute to the development of IBD although the precise etiology is still unknown. Therefore, intestinal microbes seem to play a key role in the disease pathogenesis. Especially, dysbiosis, which is a shift in the composition of enteric microbiota to a nonphysiologic composition, is associated with one or more defects in mucosal immune functions, including microbe recognition, barrier function, intercellular communication, and anti-microbial effector mechanisms. This review focuses on the impact of enteric microbiota on the development and perpetuation of IBD. In addition, interactions with enteric bacteria and mucosal cells, including intestinal epithelial cells, dendritic cells, and T cells, to induce immune responses at mucosal surfaces have been discussed in the point of IBD pathogenesis. Further extension of the knowledge of enteric microbiota may lead to insights on the pathogenesis and new therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Jung Mogg Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Abstract
The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.
Collapse
Affiliation(s)
- David A Hill
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, 19104-4539, USA
| | | |
Collapse
|
35
|
Peterson DA, Jimenez Cardona RA. Specificity of the Adaptive Immune Response to the Gut Microbiota. Adv Immunol 2010; 107:71-107. [DOI: 10.1016/b978-0-12-381300-8.00003-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Hill DA, Artis D. Maintaining diplomatic relations between mammals and beneficial microbial communities. Sci Signal 2009; 2:pe77. [PMID: 19934432 DOI: 10.1126/scisignal.298pe77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first reports of diplomatic relations between human communities date back to the 14th century B.C.E. and the age of the Egyptian pharaohs. However, the evolution of analogous relations between mammals and mutualistic microbial communities is as old as multicellular organisms themselves. A fundamental issue surrounding the biology of these mutualistic relationships is how the immune system recognizes beneficial microbes and tolerates their colonization of barrier surfaces while simultaneously preventing their outgrowth and potentially lethal dissemination throughout the host. New evidence provides insight into the molecular mechanisms that orchestrate diplomacy between the mammalian immune system and bacterial communities in the gut.
Collapse
Affiliation(s)
- David A Hill
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
37
|
Reiff C, Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol 2009; 300:25-33. [PMID: 19800289 DOI: 10.1016/j.ijmm.2009.08.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel disease (IBD) and both diseases lead to high morbidity and health care costs. Complex interactions between the immune system, enteric commensal bacteria and host genotype are thought to underlie the development of IBD although the precise aetiology of this group of diseases is still unknown. The understanding of the composition and complexity of the normal gut microbiota has been greatly aided by the use of molecular methods and is likely to be further increased with the advent of metagenomics and metatranscriptomics approaches, which will allow an increasingly more holistic assessment of the microbiome with respect to both diversity and function of the commensal gut microbiota. Studies thus far have shown that the intestinal microbiota drives the development of the gut immune system and can induce immune homeostasis as well as contribute to the development of IBD. Probiotics which deliver some of the beneficial immunomodulatory effects of the commensal gut microbiota and induce immune homeostasis have been proposed as a suitable treatment for mild to moderate IBD. This review provides an overview over the current understanding of the commensal gut microbiota, its interactions with the mucosal immune system and its capacity to induce both gut homeostasis as well as dysregulation of the immune system. Bacterial-host events, including interactions with pattern recognition receptors (PRRs) expressed on epithelial cells and dendritic cells (DCs) and the resultant impact on immune responses at mucosal surfaces will be discussed.
Collapse
Affiliation(s)
- Caroline Reiff
- Department of Gut Immunology, Rowett Institute of Nutrition and Health, Greenburn Road, Bucksburn, AB21 9SB Aberdeen, UK
| | | |
Collapse
|
38
|
Schoepfer AM, Schaffer T, Mueller S, Flogerzi B, Vassella E, Seibold-Schmid B, Seibold F. Phenotypic associations of Crohn's disease with antibodies to flagellins A4-Fla2 and Fla-X, ASCA, p-ANCA, PAB, and NOD2 mutations in a Swiss Cohort. Inflamm Bowel Dis 2009; 15:1358-67. [PMID: 19253375 PMCID: PMC2732763 DOI: 10.1002/ibd.20892] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Distinct Crohn's disease (CD) phenotypes correlate with antibody reactivity to microbial antigens. We examined the association between antibody response to 2 new flagellins called A4-Fla2 and Fla-X, anti-Saccharomyces cerevisiae antibodies (ASCA), anti-neutrophil cytoplasmic antibodies (p-ANCA), anti-pancreas antibodies (PAB), NOD2 mutations (R702W, G908R, and L1007fsinsC), and clinical CD phenotypes (according to Vienna criteria). METHODS All the above-mentioned antibodies as well as NOD2 mutations were determined in 252 CD patients, 53 with ulcerative colitis (UC), and 43 healthy controls (HC) and correlated with clinical data. RESULTS A seroreactivity for A4-Fla2/Fla-X/ASCA/p-ANCA/PAB (in percent) was found in 59/57/62/12/22 of CD patients, 6/6/4/51/0 of UC patients, and 0/2/5/0/0 of healthy controls. CD behavior: 37% B1, 36% B2, and 27% B3. In multivariate logistic regression, antibodies to A4-Fla2, Fla-X, and ASCA were significantly associated with stricturing phenotype (P = 0.027, P = 0.041, P < 0.001), negative associations were found with inflammatory phenotype (P = 0.001, P = 0.005, P < 0.001). Antibodies to A4-Fla2, Fla-X, ASCA, and NOD2 mutations were significantly associated with small bowel disease (P = 0.013, P = 0.01, P < 0.001, P = 0.04), whereas ASCA was correlated with fistulizing disease (P = 0.007), and small bowel surgery (P = 0.009). Multiple antibody responses against microbial antigens were associated with stricturing (P < 0.001), fistulizing disease (P = 0.002), and small bowel surgery (P = 0.002). CONCLUSIONS Anti-flagellin antibodies and ASCA are strongly associated with complicated CD phenotypes. CD patients with serum reactivity against multiple microbes have the greatest frequency of strictures, perforations, and small bowel surgery. Further prospective longitudinal studies are needed to show that antibody-based risk stratification improves the clinical outcome of CD patients.
Collapse
Affiliation(s)
- Alain M. Schoepfer
- Department of Gastroenterology, Inselspital/Bern University Hospital, Switzerland
| | - Thomas Schaffer
- Department of Clinical Research, University of Bern, Switzerland
| | - Stefan Mueller
- Department of Clinical Research, University of Bern, Switzerland
| | | | - Erik Vassella
- Institute of Pathology, University of Bern, Switzerland
| | | | - Frank Seibold
- Department of Gastroenterology, Inselspital/Bern University Hospital, Switzerland
| |
Collapse
|
39
|
Baker K, Qiao SW, Kuo T, Kobayashi K, Yoshida M, Lencer WI, Blumberg RS. Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol 2009; 31:223-36. [PMID: 19495758 PMCID: PMC3898171 DOI: 10.1007/s00281-009-0160-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/14/2009] [Indexed: 02/06/2023]
Abstract
Careful regulation of the body's immunoglobulin-G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn) which, as a single receptor, is capable of regulating both of these molecules, has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a host of other functions that are equally as critical. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body. This shuttling allows for the movement not only of monomeric ligand but also of antigen/antibody complexes from one cell type to another in such a way as to facilitate the efficient initiation of immune responses towards opsonized pathogens. As such, FcRn continues to play the role of an immunological sensor throughout adult life, particularly in regions such as the gut which are exposed to a large number of infectious antigens. Increasing appreciation for the contributions of FcRn to both homeostatic and pathological states is generating an intense interest in the potential for therapeutic modulation of FcRn binding. A greater understanding of FcRn's pleiotropic roles is thus imperative for a variety of therapeutic purposes.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shuo-Wang Qiao
- Rikshospitalet University Hospital, 0027 Oslo, Norway, University of Oslo, 0027 Oslo, Norway
| | - Timothy Kuo
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kanna Kobayashi
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Masaru Yoshida
- Department of Gastroenterology & The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medecine, Hyogo, Japan
| | - Wayne I. Lencer
- Harvard Digestive Diseases Center, Boston, MA 02115, USA, GI Cell Biology, Division of Pediatric Gastroenterology and Nutrition, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA, Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
40
|
Vijay-Kumar M, Gewirtz AT. Role of flagellin in Crohn's disease: emblematic of the progress and enigmas in understanding inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:789-95. [PMID: 19107795 DOI: 10.1002/ibd.20734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated immune responses to the enteric microbiota have long been associated with inflammatory bowel disease (IBD), especially Crohn's disease. In recent years there has been considerable progress in identifying a number of the specific bacterial and host molecules whose interactions mediate these responses. However, deciphering the role of these interactions in the pathophysiology of IBD remains a difficult challenge, in part due to the very complex nature of the epithelial cell / microbial / immune cell interactions that play a central role in maintaining the gut's well-being. This article reviews such progress and discusses these challenges in the context of focusing on 1 particular protein, bacterial flagellin.
Collapse
Affiliation(s)
- Matam Vijay-Kumar
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
41
|
Adams R, McGuckin M, Florin T. Dietary antigens in Crohn's disease. Am J Gastroenterol 2009; 104:526; author reply 526-7. [PMID: 19174815 DOI: 10.1038/ajg.2008.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009; 15:100-13. [PMID: 18623167 DOI: 10.1002/ibd.20539] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The etiology of human inflammatory bowel diseases (IBDs) is believed to involve inappropriate host responses to the complex commensal microbial flora in the gut, although an altered commensal flora is not completely excluded. A multifunctional cellular and secreted barrier separates the microbial flora from host tissues. Altered function of this barrier remains a major largely unexplored pathway to IBD. Although there is evidence of barrier dysfunction in IBD, it remains unclear whether this is a primary contributor to disease or a consequence of mucosal inflammation. Recent evidence from animal models demonstrating that genetic defects restricted to the epithelium can initiate intestinal inflammation in the presence of normal underlying immunity has refocused attention on epithelial dysfunction in IBD. We review the components of the secreted and cellular barrier, their regulation, including interactions with underlying innate and adaptive immunity, evidence from animal models of the barrier's role in preventing intestinal inflammation, and evidence of barrier dysfunction in both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
43
|
Chen X, Feng BS, Zheng PY, Liao XQ, Chong J, Tang SG, Yang PC. Fc gamma receptor signaling in mast cells links microbial stimulation to mucosal immune inflammation in the intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1647-56. [PMID: 18974296 DOI: 10.2353/ajpath.2008.080487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbes and microbial products are closely associated with the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms behind this connection remain unclear. It has been previously reported that flagellin-specific antibodies are increased in IBD patient sera. As mastocytosis is one of the pathological features of IBD, we hypothesized that flagellin-specific immune responses might activate mast cells that then contribute to the initiation and maintenance of intestinal inflammation. Thirty-two colonic biopsy samples were collected from IBD patients. A flagellin/flagellin-specific IgG/Fc gamma receptor I complex was identified on biopsied mast cells using both immunohistochemistry and co-immunoprecipitation experiments; this complex was shown to co-localize on the surfaces of mast cells in the colonic mucosa of patients with IBD. In addition, an ex vivo study showed flagellin-IgG was able to bind to human mast cells. These cells were found to be sensitized to flagellin-specific IgG; re-exposure to flagellin induced the mast cells to release inflammatory mediators. An animal model of IBD was then used to examine flagellin-specific immune responses in the intestine. Mice could be sensitized to flagellin, and repeated challenges with flagellin induced an IBD-like T helper 1 pattern of intestinal inflammation that could be inhibited by pretreatment with anti-Fc gamma receptor I antibodies. Therefore, flagellin-specific immune responses activate mast cells in the intestine and play important roles in the pathogenesis of intestinal immune inflammation.
Collapse
Affiliation(s)
- Xiao Chen
- Brain Body Institute, McMaster University, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Manukyan GP, Ghazaryan KA, Ktsoyan ZA, Khachatryan ZA, Arakelova KA, Kelly D, Grant G, Aminov RI. Elevated systemic antibodies towards commensal gut microbiota in autoinflammatory condition. PLoS One 2008; 3:e3172. [PMID: 18779861 PMCID: PMC2525839 DOI: 10.1371/journal.pone.0003172] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/19/2008] [Indexed: 02/06/2023] Open
Abstract
Background Familial Mediterranean fever (FMF) is an autoinflammatory condition, which is characterized by acute, self-limiting episodes of fever and serositis and chronic subclinical inflammation in remission. Here we investigated the consequence of this condition on the level of systemic antibodies directed towards common intestinal bacteria. Methodology/Principal Findings The level of systemic antibodies towards the antigens of Bacteroides, Parabacteroides, Escherichia, Enteroccocus and Lactobaccilus was measured by ELISA in FMF patients at various stages of the disease and in healthy controls. The difference between remission and attack was not significant. IgG antibodies against the antigens of Bacteroides, Parabacteroides, Escherichia and Enteroccocus were significantly increased in FMF compared to control while IgA levels were not significantly affected. Western blot analyses demonstrated the IgG reactivity against multiple antigens of commensal bacteria in FMF. Serological expression cloning was performed to identify these antigens. No single dominant antigen was identified; the response was generalized and directed against a variety of proteins from Bacteroides, Parabacteroides, Escherichia, and other gut commensals. Conclusions/Significance This autoinflammatory syndrome is characterized by the increased systemic reactivity against commensal gut microbiota. This is probably the consequence of hypersensitivity of the inflammasome in FMF that triggers the inflammation and contributes to the excessive translocation of bacteria and bacterial antigens through the gut barrier.
Collapse
Affiliation(s)
- Gayane P. Manukyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Karine A. Ghazaryan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Zhanna A. Ktsoyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | | | - Karine A. Arakelova
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Denise Kelly
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - George Grant
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Rustam I. Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 2008; 3:e3064. [PMID: 18725973 PMCID: PMC2516932 DOI: 10.1371/journal.pone.0003064] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/03/2008] [Indexed: 02/07/2023] Open
Abstract
Background The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100), which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission. Methodology/Principal Findings A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host. Conclusions/Significance This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques). It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal microbiota in the human gut.
Collapse
|