1
|
Kawahara M, Cody TT, Yanong RPE, Henderson E, Yazdi Z, Soto E. Francisella sciaenopsi sp. nov. isolated from diseased red drum Sciaenops ocellatus in Florida, USA. DISEASES OF AQUATIC ORGANISMS 2024; 159:79-89. [PMID: 39145474 DOI: 10.3354/dao03803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Piscine francisellosis is one of the most important bacterial diseases affecting various fish species worldwide. Francisella orientalis, F. noatunensis, and F. salimarina (F. marina) have been reported as etiological agents of disease in fish. A Francisella sp. was isolated from several diseased red drum Sciaenops ocellatus experiencing morbidity in Florida, USA, in 2008. In this study, molecular and phenotypic characterization of the recovered isolate was conducted. Phenotypically, the isolate showed a biochemical reaction profile distinct from that of F. orientalis and F. salimarina. Although the 16S rRNA sequence of this isolate shared 99.61% identity to the type strain of F. philomiragia O#319LT, whole genome analysis (average nucleotide identity <95%; digital DNA-DNA hybridization <70%) and a multilocus sequence analysis of 8 concatenated housekeeping genes in comparison with other Francisella spp. indicated that this isolate was a novel Francisella species, more closely related to F. orientalis. Immersion, intracoelomic injection, and co-habitation challenges using a Nile tilapia Oreochromis niloticus fingerling model of infection were done to investigate virulence in a piscine model. Variably pigmented granulomas and pigmented macrophage aggregates were observed in the kidneys and spleens of the challenged fish, but no mortality was recorded during the 15 d challenge period, suggesting that this novel Francisella sp. might be an opportunistic pathogen of fish. Based on the phenotypic and genotypic differences from other Francisella spp. observed in this study, we propose the name Francisella sciaenopsi sp. nov. for this novel isolate.
Collapse
Affiliation(s)
- Miku Kawahara
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Theresa T Cody
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida 33701, USA
| | - Roy P E Yanong
- Tropical Aquaculture Laboratory, Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida 33570, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Lab, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408, USA
| | - Zeinab Yazdi
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
2
|
Pulkkinen K, Taskinen J. Nutrient enrichment increases virulence in an opportunistic environmental pathogen, with greater effect at low bacterial doses. FEMS Microbiol Ecol 2024; 100:fiae013. [PMID: 38305097 PMCID: PMC10959552 DOI: 10.1093/femsec/fiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
Eutrophication of aquatic ecosystems is associated with an increased risk of pathogen infection via increased pathogen growth and host exposure via increased pathogen doses. Here, we studied the effect of nutrients on the virulence of an opportunistic bacterial pathogen of fish, Flavobacterium columnare, in challenge experiments with rainbow trout fingerlings. We hypothesized that removing all nutrients by washing the bacteria would reduce virulence as compared to unwashed bacteria, but adding nutrients to the tank water would increase the virulence of the bacterium. Nutrient addition and increase in bacterial dose increased virulence for both unwashed and washed bacteria. For unwashed bacteria, the addition of nutrients reduced the survival probability of fish challenged with low bacterial doses more than for fish challenged with higher bacterial doses, suggesting activation of bacterial virulence factors. Washing and centrifugation reduced viable bacterial counts, and the addition of washed bacteria alone did not lead to fish mortality. However, a small addition of nutrient medium, 0.05% of the total water volume, added separately to the fish container, restored the virulence of the washed bacteria. Our results show that human-induced eutrophication could trigger epidemics of aquatic pathogens at the limits of their survival and affect their ecology and evolution by altering the dynamics between strains that differ in their growth characteristics.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental Science, P.O. Box 35 (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, P.O. Box 35 (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
Schaudinn C, Rydzewski K, Meister B, Grunow R, Heuner K. Francisella tularensis subsp. holarctica wild-type is able to colonize natural aquatic ex vivo biofilms. Front Microbiol 2023; 14:1113412. [PMID: 36860486 PMCID: PMC9969146 DOI: 10.3389/fmicb.2023.1113412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Biofilms are a matrix-associated lifestyle of microbial communities, often enabling survivability and persistence of such bacteria. The objective of this study was to investigate the survival of the wild-type strain A-271 of Francisella tularensis subsp. holarctica (Fth) in a natural aquatic ex vivo biofilm. To that purpose, we allowed Fth A-271 to produce its own biofilm on solid surfaces but also to colonize naturally formed biofilms from aquatic habitats, which were infected with Francisella in the laboratory. The survival rates of the bacteria in biofilms were compared to those of planktonic bacteria as a function of the employed culture condition. It could be shown by light- and electron microscopy that Fth is able to form a complex, matrix-associated biofilm. The biofilm form of Francisella showed longer cultivability on agar plates in natural water when compared to planktonic (free-living) bacteria. Be it as a part of the existing ex vivo biofilm or free-floating above as planktonic bacteria, more than 80% of Francisella were not only able to survive under these conditions for 28 days, but even managed to establish microcolonies and areas with their own exclusive biofilm architecture within the ex vivo biofilm. Here, we can demonstrate for the first time that a Francisella tularensis wild-type strain (Type B) is able to successfully colonize an aquatic multi-species ex vivo biofilm. It is worthwhile to speculate that Fth might become more persistent in the environment when it forms its own biofilm or integrates in an existing one. Multi-species biofilms have been shown to be more resistant against stress compared to single-species biofilms. This may have an important impact on the long-term survival of Francisella in aquatic habitats and infection cycles in nature.
Collapse
Affiliation(s)
- Christoph Schaudinn
- Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Kerstin Rydzewski
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany,Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Beate Meister
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany,Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany,*Correspondence: Klaus Heuner, ✉
| |
Collapse
|
4
|
Monitoring the Starvation–Survival Response of Edwardsiella piscicida and E. tarda in Freshwater Microcosms, at Various Temperatures. Microorganisms 2022; 10:microorganisms10051043. [PMID: 35630485 PMCID: PMC9145210 DOI: 10.3390/microorganisms10051043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Edwardsiella piscicida is an important fish pathogen responsible for economic losses in global aquaculture, and E. tarda is also a human zoonotic pathogen. In this study, the survival of E. piscicida and E. tarda strains kept in filtered and sterilized lake water microcosms was investigated during a 20-week period at 7 °C, 15 °C and 25 °C, as well as its pathogenicity retention during a starvation period. E. tarda V43.2 stayed culturable for 6 weeks at 7 °C, 9 weeks at 25 °C and 12 weeks at 15 °C. Both E. piscicida strains (V12.1 and V57.2) stayed culturable even longer, for at least 12 weeks at 7 °C, 15 °C and 25 °C under the same starvation conditions. After Edwardsiella cells entered into the VBNC state, some became shorter and ”rounded up,” but others aggregated and retained a short rod shape. Aggregates of Edwardsiella cells were common throughout the VBNC period, and a well-formed biofilm was observed for all tested strains at the end of the experiment. The growth capacity of VBNC cells was restored by cultivating microcosm water samples in LB broth at 28 °C. Resuscitated E. piscicida cells were as virulent for the European eel as the controls. Natural waters can be a reservoir for Edwardsiella, and its underestimation in environmental samples poses a risk to public health and aquaculture.
Collapse
|
5
|
García-Hernández J, Hernández M, Moreno Y. Combination of Direct Viable Count and Fluorescent In Situ Hybridization (DVC-FISH) as a Potential Method for Identifying Viable Vibrio parahaemolyticus in Oysters and Mussels. Foods 2021; 10:1502. [PMID: 34209577 PMCID: PMC8303443 DOI: 10.3390/foods10071502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism.
Collapse
Affiliation(s)
- Jorge García-Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Manuel Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Yolanda Moreno
- Research Institute of Water and Environmental Ingeneering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
6
|
Azaki M, Uda A, Tian D, Nakazato K, Hotta A, Kawai Y, Ishijima K, Kuroda Y, Maeda K, Morikawa S. Effective methods for the inactivation of Francisella tularensis. PLoS One 2019; 14:e0225177. [PMID: 31725770 PMCID: PMC6855423 DOI: 10.1371/journal.pone.0225177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Francisella tularensis (F. tularensis) is highly pathogenic to humans and must be handled under biosafety level 3 conditions. Samples used for the diagnosis and experimental analysis must be completely inactivated, although methods for the inactivation of F. tularensis are limited. In this study, effective methods for the inactivation of F. tularensis SCHU P9 and five other strains were determined by comparisons of colony-forming units between treated and control samples. The results showed that F. tularensis SCHU P9 was denatured by heat treatment (94°C for 3 min and 56°C for 30 min), filtration with a 0.22 μm filter, and the use of various solutions (i.e. >70% ethanol, methanol, acetone, and 4% paraformaldehyde). F. tularensis SCHU P9 remained viable after treatment with 50% ethanol for 1 min, filtration with a 0.45 μm filter, and treatments with detergents (i.e. 1% lithium dodecyl sulfate buffer, 1% Triton X-100 and 1% Nonidet P-40) at 4°C for 24 h. Additionally, F. tularensis SCHU P9 suspended in fetal bovine serum in plastic tubes was highly resistant to ultraviolet radiation compared to suspensions in water and chemically defined medium. The methods for inactivation of F. tularensis SCHU P9 was applicable to the other five strains of F. tularensis. The data presented in this study could be useful for the establishment of guidelines and standard operating procedures (SOP) to inactivate the contaminated samples in not only F. tularensis but also other bacteria.
Collapse
Affiliation(s)
- Mika Azaki
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- * E-mail:
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Katsuyoshi Nakazato
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
| | - Yasuhiro Kawai
- Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
| |
Collapse
|
7
|
Vargas-Lagos C, Martínez D, Oyarzún R, Avendaño-Herrera R, Yáñez AJ, Pontigo JP, Vargas-Chacoff L. High doses of Francisella noatunensis induces an immune response in Eleginops maclovinus. FISH & SHELLFISH IMMUNOLOGY 2019; 90:1-11. [PMID: 31015063 DOI: 10.1016/j.fsi.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/μL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.
Collapse
Affiliation(s)
- C Vargas-Lagos
- Programa de Magíster en Ciencias, Mención Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Avendaño-Herrera
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña Del Mar, Chile
| | - A J Yáñez
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
8
|
Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg Microbes Infect 2019; 8:1027-1042. [PMID: 31287787 PMCID: PMC6691783 DOI: 10.1080/22221751.2019.1638734] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Francisella tularensis is a Gram-negative, intracellular bacterium causing the zoonosis tularemia. This highly infectious microorganism is considered a potential biological threat agent. Humans are usually infected through direct contact with the animal reservoir and tick bites. However, tularemia cases also occur after contact with a contaminated hydro-telluric environment. Water-borne tularemia outbreaks and sporadic cases have occurred worldwide in the last decades, with specific clinical and epidemiological traits. These infections represent a major public health and military challenge. Human contaminations have occurred through consumption or use of F. tularensis-contaminated water, and various aquatic activities such as swimming, canyoning and fishing. In addition, in Sweden and Finland, mosquitoes are primary vectors of tularemia due to infection of mosquito larvae in contaminated aquatic environments. The mechanisms of F. tularensis survival in water may include the formation of biofilms, interactions with free-living amoebae, and the transition to a 'viable but nonculturable' state, but the relative contribution of these possible mechanisms remains unknown. Many new aquatic species of Francisella have been characterized in recent years. F. tularensis likely shares with these species an ability of long-term survival in the aquatic environment, which has to be considered in terms of tularemia surveillance and control.
Collapse
Affiliation(s)
- Aurélie Hennebique
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| |
Collapse
|
9
|
Ruiz P, Poblete-Morales M, Irgang R, Toranzo AE, Avendaño-Herrera R. Survival behaviour and virulence of the fish pathogen Vibrio ordalii in seawater microcosms. DISEASES OF AQUATIC ORGANISMS 2016; 120:27-38. [PMID: 27304868 DOI: 10.3354/dao03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vibrio ordalii, the causative agent of atypical vibriosis, is a Gram-negative, motile, rod-shaped bacterium that severely affects the salmonid aquaculture industry. V. ordalii has been biochemically, antigenically and genetically characterized. However, studies on the survival behaviour of this bacterium in aquatic environments are scarce, and there is no information regarding its disease transmission and infectious abilities outside of the fish host or regarding water as a possible reservoir. The present study investigated the survival behaviour of V. ordalii Vo-LM-06 and Vo-LM-18 in sterile and non-sterile seawater microcosms. After a year in sterile seawater without nutrients, 1% of both V. ordalii strains survived (~10(3) colony-forming units ml(-1)), and long-term maintenance did not affect bacterial biochemical or genetic properties. Additionally, V. ordalii maintained for 60 d in sterile seawater remained infective in rainbow trout Oncorhynchus mykiss. However, after 2 d of natural seawater exposure, this bacterium became non-culturable, indicating that autochthonous microbiota may play an important role in survival. Recuperation assays that added fresh medium to non-sterile microcosms did not favour V. ordalii recovery on solid media. Our results contribute towards a better understanding of V. ordalii survival behaviour in seawater ecosystems.
Collapse
Affiliation(s)
- Pamela Ruiz
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, 2520000 Viña del Mar, Chile
| | | | | | | | | |
Collapse
|
10
|
Soto E, Halliday-Simmonds I, Francis S, Kearney MT, Hansen JD. Biofilm formation of Francisella noatunensis subsp. orientalis. Vet Microbiol 2015; 181:313-7. [PMID: 26507830 DOI: 10.1016/j.vetmic.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC) and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon(®), bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in the iglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA 95616, USA; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies.
| | - Iona Halliday-Simmonds
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Stewart Francis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Michael T Kearney
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
11
|
Brudal E, Lampe EO, Reubsaet L, Roos N, Hegna IK, Thrane IM, Koppang EO, Winther-Larsen HC. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2015; 42:50-57. [PMID: 25449706 DOI: 10.1016/j.fsi.2014.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Infection of fish with the facultative intracellular bacterium Francisella noatunensis remains an unresolved problem for aquaculture industry worldwide as it is difficult to vaccinate against without using live attenuated vaccines. Outer membrane vesicles (OMVs) are biological structures shed by Gram-negative bacteria in response to various environmental stimuli. OMVs have successfully been used to vaccinate against both intracellular and extracellular pathogens, due to an ability to stimulate innate, cell-mediated and humoral immune responses. We show by using atomic force and electron microscopy that the fish pathogenic bacterium F. noatunensis subspecies noatunensis (F.n.n.) shed OMVs both in vitro into culture medium and in vivo in a zebrafish infection model. The main protein constituents of the OMV are IglC, PdpD and PdpA, all known Francisella virulence factors, in addition to the outer membrane protein FopA and the chaperonin GroEL, as analyzed by mass spectrometry. The vesicles, when used as a vaccine, reduced proliferation of the bacterium and protected zebrafish when subsequently challenged with a high dose of F.n.n. without causing adverse effects for the host. Also granulomatous responses were reduced in F.n.n.-challenged zebrafish after OMV vaccination. Taken together, the data support the possible use of OMVs as vaccines against francisellosis in fish.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway; Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Elisabeth O Lampe
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida Marie Thrane
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Erling O Koppang
- Section for Anatomy and Pathology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway
| | - Hanne C Winther-Larsen
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
12
|
Xiao XL, Tian C, Yu YG, Wu H. Detection of viable but nonculturable Escherichia coli O157:H7 using propidium monoazide treatments and qPCR. Can J Microbiol 2013; 59:157-63. [DOI: 10.1139/cjm-2012-0577] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli O157:H7 can enter into a viable but nonculturable (VBNC) state under stress conditions. The aims of the present study were to examine the influences of environmental factors on the survivability and culturability of E. coli O157:H7 and to develop an approach for accurate detection of VBNC E. coli O157:H7. The E. coli O157:H7 strain ATCC 6589 was inoculated into 3 induction microcosm models: (i) Luria–Bertani broth, (ii) sterilized tap water, and (iii) sterilized physiological saline solution. Our results showed that low temperature and nutritional starvation significantly impacted on the survivability of E. coli O157:H7 cells and that the in-vitro-induced VBNC cells were capable of resuscitating under normal temperature and appropriate nutrients. We tested the effectiveness of an approach combining propidium monoazide (PMA) treatment with real-time polymerase chain reaction (PMA–qPCR) for accurate quantification of total, viable, dead, and VBNC cells under different induction microcosm models. Our results indicated different threshold cycle (Ct) values for PMA-treated cells and untreated cells (ΔCt = 4.97, 4.29, and 3.30 for Luria–Bertani broth, sterilized tap water, and sterilized physiological saline solution, respectively). We determined the quantification limit of this PMA–qPCR approach to be 1 × 102 cells·mL–1, providing sufficient sensitivity for detection of VBNC E. coli O157:H7 cells to no less than 100 cells·mL–1. This study clearly demonstrated the feasibility and effectiveness of using PMA–qPCR to accurately quantify E. coli O157:H7 in a VBNC state.
Collapse
Affiliation(s)
- Xing-long Xiao
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| | - Cong Tian
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| | - Yi-gang Yu
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| | - Hui Wu
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| |
Collapse
|
13
|
Duodu S, Larsson P, Sjödin A, Soto E, Forsman M, Colquhoun DJ. Real-time PCR assays targeting unique DNA sequences of fish-pathogenic Francisella noatunensis subspecies noatunensis and orientalis. DISEASES OF AQUATIC ORGANISMS 2012; 101:225-234. [PMID: 23324419 DOI: 10.3354/dao02514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Specific identification and differentiation of the 2 subspecies of the fish pathogen Francisella noatunensis, namely, F. noatunensis subsp. noatunensis and F. noatunensis subsp. orientalis, remains a major diagnostic challenge. Following whole-genome sequencing and analysis of representatives of all major subclades of the genus Francisella, specific genomic regions were identified for each of the subspecies of this fish pathogen. Two specific real-time quantitative PCR assays, directed at hypothetical genes within these regions were developed. Specificity was confirmed by lack of signal and cross-reactivity with the closest relative, F. philomiragia, and other common bacterial fish pathogens. Both assays, used either as monoplex or multiplex, have a limit of detection of 10 genome equivalents. The quantitative sensitivity of the assays was not affected by the presence of kidney tissues or DNA from Atlantic cod Gadus morhua or tilapia Oreochromis sp.
Collapse
Affiliation(s)
- Samuel Duodu
- Section for Bacteriology, Norwegian Veterinary Institute, PO Box 750, Sentrum, 0106 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
14
|
Moreno Y, Sánchez-Contreras J, Montes RM, García-Hernández J, Ballesteros L, Ferrús MA. Detection and enumeration of viable Listeria monocytogenes cells from ready-to-eat and processed vegetable foods by culture and DVC-FISH. Food Control 2012; 27:374-379. [DOI: 10.1016/j.foodcont.2012.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Duodu S, Larsson P, Sjödin A, Forsman M, Colquhoun DJ. The distribution of Francisella-like bacteria associated with coastal waters in Norway. MICROBIAL ECOLOGY 2012; 64:370-7. [PMID: 22370877 DOI: 10.1007/s00248-012-0023-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/03/2012] [Indexed: 05/17/2023]
Abstract
We report the diversity and distribution of Francisella species in Norwegian coastal and fresh waters following a nationwide survey in which water and sediment samples were collected from locations spanning almost the entire Norwegian coastline. In total, samples were obtained from 149 and 64 seawater and freshwater sites, respectively. DNA extracts from these environmental samples were initially screened by polymerase chain reaction (PCR) using Francisella genus-specific 16S rDNA primers. Positive samples were then amplified with genus-specific primers targeting Francisella succinate dehydrogenase A gene and Francisella philomiragia group-specific sequences for the SAICAR synthetase/phosphoribosylamine-glycine ligase gene. Francisella-related bacteria were identified in approximately 30% of seawater sampled sites, mainly in southern Norway, although a single positive sample was identified in the far north of the country. No PCR positives were identified from the freshwater sources. Sequences related to recognised species, both pathogenic and environmental, were identified, with the majority closely associated with F. philomiragia. However, a number of identified sequences probably represent previously undescribed species. Our data provide evidence of a significant background of Francisella spp. in geographical areas associated with outbreaks of fish francisellosis in Norway.
Collapse
Affiliation(s)
- Samuel Duodu
- Section for Bacteriology, Norwegian Veterinary Institute, Ullevaalsveien 68, P.O. Box 750, Sentrum, 0106, Oslo, Norway.
| | | | | | | | | |
Collapse
|
16
|
Wangen IH, Karlsbakk E, Einen ACB, Ottem KF, Nylund A, Mortensen S. Fate of Francisella noatunensis, a pathogen of Atlantic cod Gadus morhua, in blue mussels Mytilus edulis. DISEASES OF AQUATIC ORGANISMS 2012; 98:63-72. [PMID: 22422130 DOI: 10.3354/dao02427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Francisellosis, caused by the bacterium Francisella noatunensis, is one of the most severe diseases affecting farmed cod, and has caused great economic loss for the cod farming industry in Norway. We studied the fate of F. noatunensis in the marine environment, focusing on the role of blue mussels. In experimental challenges, waterborne F. noatunensis was rapidly filtered by the blue mussel and transported to the digestive diverticulae. The bacteria passed through the entire digestive system. Intraperitoneal injection of cod with suspensions prepared from faeces collected from challenged mussels resulted in the development of francisellosis in the recipients, demonstrating that some bacteria were alive and infective when shed in mussel faeces. Bacterial clearance from the mussels was relatively fast, and no evidence was found, suggesting that the bacterium is capable of persisting or multiplying in the mussel tissues. A cohabitation experiment with cod and mussels previously exposed to F. noatunensis did not lead to infection in cod. A direct transmission from contaminated mussels to cod was thus not demonstrated; however, faeces particles with infective bacteria may play a role in the transmission of the bacterium in marine food chains.
Collapse
|
17
|
Soto E, Revan F. Culturability and persistence of Francisella noatunensis subsp. orientalis (syn. Francisella asiatica) in sea- and freshwater microcosms. MICROBIAL ECOLOGY 2012; 63:398-404. [PMID: 21881943 DOI: 10.1007/s00248-011-9932-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
Francisella noatunensis subsp. orientalis (syn. Francisella asiatica), the causative agent of franciselliosis in warm-water fish, is a Gram-negative facultative intracellular bacterium. Although it has been characterized as one of the most pathogenic bacteria in fish, the water conditions that allow for its survival and infectious capacities outside the fish host are not known. Data obtained in this project indicate that both temperature and salinity are important factors in the culturability and persistence of F. noatunensis subsp. orientalis in both sea- and freshwater microcosms. These results indicate that culturable F. noatunensis subsp. orientalis persist for longer periods of time and at higher numbers in seawater, and its persistence is inversely related to water temperature. Moreover, the pathogenic properties of the bacteria suspended in water microcosms appear to decrease after only 24 h and become non-infective after 2 days in the absence of the fish host.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Pathobiology, School of Veterinary Medicine, Basseterre, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts, West Indies.
| | | |
Collapse
|
18
|
Moreno Y, Ballesteros L, García-Hernández J, Santiago P, González A, Ferrús MA. Specific detection of viable Listeria monocytogenes in Spanish wastewater treatment plants by Fluorescent In Situ Hybridization and PCR. WATER RESEARCH 2011; 45:4634-4640. [PMID: 21762946 DOI: 10.1016/j.watres.2011.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 05/31/2023]
Abstract
Listeria monocytogenes detection in wastewater can be difficult because of the large amount of background microbiota and the presence of viable but non-culturable forms in this environment. The aim of this study was to evaluate a Fluorescent In Situ Hybridization (FISH) assay combined with Direct Viable Count (DVC) method for detecting viable L. monocytogenes in wastewater samples, as an alternative to conventional culture methods. 16S rRNA sequence data were used to design a specific oligonucleotide probe. In order to assess the suitability of the method, the assays were performed on naturally (n=87) and artificially (n=14) contaminated samples and results were compared to those obtained with the isolation of cells on selective media and with a PCR method. The detection limit of FISH and PCR assays was 10(4) cells/mL without enrichment and 10 cells/mL after enrichment. A total of 47 samples, including 3 samples from effluent sites, yielded FISH positive results for L. monocytogenes. Using DVC-FISH technique, the presence of viable L. monocytogenes cells was detected in 23 out of these 47 FISH positive wastewater samples. PCR and culture methods yielded 27 and 23 positive results, respectively. According to these results, FISH technique has the potential to be used as a sensitive method for the detection and enumeration of L. monocytogenes in environmental wastewater samples.
Collapse
Affiliation(s)
- Yolanda Moreno
- Departamento de Biotecnología, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Mahajan UV, Gravgaard J, Turnbull M, Jacobs DB, McNealy TL. Larval exposure to Francisella tularensis LVS affects fitness of the mosquito Culex quinquefasciatus. FEMS Microbiol Ecol 2011; 78:520-30. [PMID: 22066999 DOI: 10.1111/j.1574-6941.2011.01182.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/24/2011] [Accepted: 08/01/2011] [Indexed: 12/30/2022] Open
Abstract
Francisella tularensis is an environmental bacterium capable of infecting a wide spectrum of species from mammals and birds to reptiles. It has been demonstrated that F. tularensis can invade and survive within protozoa, but an association with aquatic insects has not been thoroughly investigated. We examined the interaction of F. tularensis LVS biofilms and Culex quinquefasciatus larvae to determine the effects on larvae and adults. Our results demonstrate that F. tularensis LVS can form and persist as biofilms in natural water and that the mosquito larvae of C. quinquefasciatus readily feed on biofilm and planktonic forms of F. tularensis LVS. Larvae raised in both bacteria-only cultures suffered significant delays in pupation. Adults resulting from larvae continuously exposed to the bacteria had significantly reduced wing lengths in males and fecundity of both sexes. The bacteria may be exerting these effects through localization and persistence within the midgut and Malpighian tubule cells of the larvae. The study of oral acquisition of pathogens by insect larvae can significantly contribute to the study of environmental persistence of pathogens. We show that oral uptake of F. tularensis LVS by C. quinquefasciatus larvae results in not only larval effects but also has effects on adult mosquitoes. These effects are important in understanding both the ecology of tularemia as well as bacterial interactions with aquatic invertebrates.
Collapse
Affiliation(s)
- Uma V Mahajan
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | | | | | | |
Collapse
|
20
|
Colquhoun DJ, Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet Res 2011; 42:47. [PMID: 21385413 PMCID: PMC3060124 DOI: 10.1186/1297-9716-42-47] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 03/08/2011] [Indexed: 01/08/2023] Open
Abstract
Over the last 10 years or so, infections caused by bacteria belonging to a particular branch of the genus Francisella have become increasingly recognised in farmed fish and molluscs worldwide. While the increasing incidence of diagnoses may in part be due to the development and widespread availability of molecular detection techniques, the domestication of new organisms has undoubtedly instigated emergence of clinical disease in some species. Francisellosis in fish develops in a similar fashion independent of host species and is commonly characterised by the presence of multi-organ granuloma and high morbidity, with varying associated mortality levels. A number of fish species are affected including Atlantic cod, Gadus morhua; tilapia, Oreochromis sp.; Atlantic salmon, Salmo salar; hybrid striped bass, Morone chrysops × M. saxatilis and three-lined grunt, Parapristipoma trilinineatum. The disease is highly infectious and often prevalent in affected stocks. Most, if not all strains isolated from teleost fish belong to either F. noatunensis subsp. orientalis in warm water fish species or Francisella noatunensis subsp. noatunensis in coldwater fish species. The disease is quite readily diagnosed following histological examination and identification of the aetiological bacterium by culture on cysteine rich media or PCR. The available evidence may indicate a degree of host specificity for the various Francisella strains, although this area requires further study. No effective vaccine is currently available. Investigation of the virulence mechanisms and host response shows similarity to those known from Francisella tularensis infection in mammals. However, no evidence exists for zoonotic potential amongst the fish pathogenic Francisella.
Collapse
Affiliation(s)
- Duncan J Colquhoun
- Section for Fish health, National Veterinary Institute, Postbox 750 sentrum, 0106 Oslo, Norway.
| | | |
Collapse
|