1
|
Ibáñez I, McPherson MR, Upchurch RA, Zak DR. Mycorrhizal Fungi Influence on Mature Tree Growth: Stronger in High-Nitrogen Soils for an EMF-Associated Tree and in Low-Nitrogen Soils for Two AMF-Associated Trees. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70055. [PMID: 40342515 PMCID: PMC12059558 DOI: 10.1002/pei3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
The plant-mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)-associated tree species, Acer rubrum and A. saccharum, and one ectomycorrhizal fungi (EMF)-associated tree species, Quercus rubra, to assess how the mycorrhizal fungi-plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non-linear associations with tree growth; positive associations for the two AMF-associated trees were mostly under low N, whereas positive to neutral associations for the EMF-associated tree mainly took place at high N. Only A. rubrum exhibited greater tree growth with its tree soil-specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth.
Collapse
Affiliation(s)
- Inés Ibáñez
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan R. McPherson
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Rima A. Upchurch
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Donald R. Zak
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Dostálek T, Rydlová J, Kohout P, Kuťáková E, Kolaříková Z, Frouz J, Münzbergová Z. Beyond the rootzone: Unveiling soil property and biota gradients around plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175032. [PMID: 39059657 DOI: 10.1016/j.scitotenv.2024.175032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.
Collapse
Affiliation(s)
- Tomáš Dostálek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic.
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Institute of Microbiology, The Czech Academy of Science, Vídeňská 1043, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eliška Kuťáková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-907 36 Umeå, Sweden
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
3
|
Jiang Y, Wang M, Yan X, Liu M, Guo X. Exotic plants introduction changed soil nutrient cycle and symbiotic relationship with arbuscular mycorrhizal fungi in wetland ecological projects. FRONTIERS IN PLANT SCIENCE 2024; 15:1410009. [PMID: 39049854 PMCID: PMC11266298 DOI: 10.3389/fpls.2024.1410009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
In the process of applying exotic plants to wetland ecological restoration, insufficiently evaluated alien species may exhibit strong competitiveness and fecundity. Once introduced, they can displace native flora, disrupt the original ecological balance, diminish biodiversity, and even induce ecosystem dysfunction. Furthermore, exotic plants have the potential to alter soil microbial community structure, including the composition and activity of beneficial symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF), thereby impacting soil nutrient cycling and interplant nutrient competition. Here, we conducted three consecutive years of sampling experiments to investigate the succession of AMF communities associated with the invasive plant Spartina alterniflora along an initial introduction chronosequence, and to identify the key environmental factors influencing its response to S. alterniflora invasion. Our findings reveal that early-stage invasion by S. alterniflora alters the composition of soil AMF communities with unclassified_c__Glomeromycetes and Glomus-viscosum-VTX00063 consistently dominating. Additionally, as the duration of introduction increases, the diversity of rhizosphere soil AMF significantly decreases, while its evenness remains relatively stable. It's indicated that soil ω, AN, AK and N/P ratio were the main influencing factors of the integral AMF community. Notably, soil available phosphorus (AP) emerges as a positive influence on the important AMF taxa. The results confirm the mutual feedback effect between the invasion of the perennial herb S. alterniflora and AMF, in which specific AMF assist in nutrient absorption to promote S. alterniflora growth, potentially facilitating its rapid and successful invasion of new habitats. Given the likely differential effects of AMF communities on various plant species, our findings could contribute to anticipating future AMF-mediated effects during the introduction of alien plants.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohong Guo
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
4
|
Oliveira MCO, Ragonezi C, Valente S, de Freitas JGR, Pinheiro de Carvalho MAA. Microorganism community structure: A characterisation of agrosystems from Madeira Archipelago. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13227. [PMID: 38268303 PMCID: PMC10866076 DOI: 10.1111/1758-2229.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Microbial diversity profoundly influences soil ecosystem functions, making it vital to monitor community dynamics to comprehend its structure. Our study focused on six agrosystems in Madeira Archipelago, analysing bacteria, archaea, fungi and AMF through classical microbiology and molecular techniques. Despite distinct edaphoclimatic conditions and management practices, bacterial structures exhibited similarities, with Alphaproteobacteria at 18%-20%, Bacilli at 11%-18% and Clostridia at 9%-14%. The predominance of copiothrophic groups suggested that soil nutrient content was the driver of these communities. Regarding archaea, the communities changed among sites, and it was evident that agrosystems provided niches for methanogens. The Crenarchaeota varied between 15% and 29%, followed by two classes of Euryarchaeota, Methanomicrobia (17%-25%) and Methanococci (4%-32%). Fungal communities showed consistent composition at the class level but had differing diversity indices due to management practices and soil texture. Sordaryomycetes (21%-28%) and Agaricomycetes (15%-23%) were predominant. Conversely, AMF communities appeared to be also influenced by the agrosystem, with Glomus representing over 50% of the community in all agrosystems. These insights into microbial groups' susceptibilities to environmental conditions are crucial for maintaining healthy soil and predicting climate change effects on agrosystems' productivity, resilience and sustainability. Additionally, our findings enable the development of more robust prediction models for agricultural practices.
Collapse
Affiliation(s)
- Maria Cristina O. Oliveira
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
| | - Carla Ragonezi
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro – Institute for Innovation, Capacity Building and Sustainability of Agri‐Food ProductionUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Faculty of Life Sciences, Campus da PenteadaUniversity of MadeiraFunchalPortugal
| | - Sofia Valente
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
| | - José G. R. de Freitas
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
| | - Miguel A. A. Pinheiro de Carvalho
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro – Institute for Innovation, Capacity Building and Sustainability of Agri‐Food ProductionUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Faculty of Life Sciences, Campus da PenteadaUniversity of MadeiraFunchalPortugal
| |
Collapse
|
5
|
Sánchez-Matiz JJ, Díaz-Ariza LA. Glomeromycota associations with bamboos (Bambusoideae) worldwide, a qualitative systematic review of a promising symbiosis. PeerJ 2023; 11:e16151. [PMID: 38025720 PMCID: PMC10640841 DOI: 10.7717/peerj.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Around the world, bamboos are ecologically, economically, and culturally important plants, particularly in tropical regions of Asia, America, and Africa. The association of this plant group with arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota is still a poorly studied field, which limits understanding of the reported ecological and physiological benefits for the plant, fungus, soil, and ecosystems under this symbiosis relationship. Methods Through a qualitative systematic review following the PRISMA framework for the collection, synthesis, and reporting of evidence, this paper presents a compilation of the research conducted on the biology and ecology of the symbiotic relationship between Glomeromycota and Bambusoideae from around the world. This review is based on academic databases enriched with documents retrieved using different online databases and the Google Scholar search engine. Results The literature search yielded over 6,000 publications, from which 18 studies were included in the present review after a process of selection and validation. The information gathered from the publications included over 25 bamboo species and nine Glomeromycota genera from eight families, distributed across five countries on two continents. Conclusion This review presents the current state of knowledge regarding the symbiosis between Glomeromycota and Bambusoideae, while reflecting on the challenges and scarcity of research on this promising association found across the world.
Collapse
Affiliation(s)
- Juan José Sánchez-Matiz
- Grupo de Investigación en Agricultura Biológica, Laboratorio de Asociaciones Suelo Planta Microorganismo, Departamento de Biología/Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Lucia Ana Díaz-Ariza
- Grupo de Investigación en Agricultura Biológica, Laboratorio de Asociaciones Suelo Planta Microorganismo, Departamento de Biología/Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| |
Collapse
|
6
|
Betekhtina AA, Tukova DE, Veselkin DV. Root structure syndromes of four families of monocots in the Middle Urals. PLANT DIVERSITY 2023; 45:722-731. [PMID: 38197004 PMCID: PMC10772101 DOI: 10.1016/j.pld.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/11/2024]
Abstract
The present article tests the following general assumption: plant taxa with different specializations towards mycorrhizal interactions should have different root syndromes. Roots of 61 species common in boreal zone were studied: 16 species of Poaceae, 24 species of Cyperaceae, 14 species of Orchidaceae, and 7 species of Iridaceae. Using a fixed material of 5 individuals of each species, the following was determined: number of orders of branching roots; transverse dimensions of root, stele and cortex; number of primary xylem vessels and exodermis layers; length of root hairs; abundance of mycorrhiza. Species of each family had well-defined syndromes. Roots of Orchidaceae and Iridaceae were thick with a large stele and developed exodermis. Orchidaceae had no branching roots and had long root hairs. In Iridaceae, roots were branched, and root hairs were short. Roots of Poaceae and Cyperaceae were thin with a relatively thin stele. Root hairs were short in Poaceae and long in Cyperaceae. Our finding that root syndromes of four families of monocots differed is a new and unexpected discovery. The high specificity of root syndromes in Cyperaceae, Iridaceae, Poaceae, and Orchidaceae indicates that species of these families use different strategies to obtain water and soil nutrients.
Collapse
Affiliation(s)
- Anna A. Betekhtina
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia
| | - Daria E. Tukova
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia
| | - Denis V. Veselkin
- Ural Branch of the Russian Academy of Sciences, Institute of Plant and Animal Ecology, 8 Marta Street, Ekaterinburg 620144, Russia
| |
Collapse
|
7
|
Balami S, Vašutová M, Chaudhary VK, Cudlín P. How do root fungi of Alnus nepalensis and Schima wallichii recover during succession of abandoned land? MYCORRHIZA 2023; 33:321-332. [PMID: 37702798 PMCID: PMC10752848 DOI: 10.1007/s00572-023-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Alnus nepalensis and Schima wallichii are native tree species accompanying succession in abandoned agricultural land in the middle mountainous region of central Nepal. To understand how root fungi recover during spontaneous succession, we analyzed the diversity and composition of arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), and total fungi in tree fine roots from three land use types, short-term abandoned land (SA), long-term abandoned land (LA), and regenerated forest (RF) as a reference. Additionally, ECM morphotypes were examined. The results showed different speeds of succession in the studied fungal groups. While the change in the AM fungal community appears to be rapid and LA resembles the composition of RF, the total fungi in the abandoned land types are similar to each other but differed significantly from RF. Interestingly, the relative abundance of Archaeosporaceae followed a trend differing between the tree species (SA < LA in A. nepalensis, but SA > LA in S. wallichii). Unlike AM and total fungi, there was no significant difference in the ECM community of A. nepalensis between land use types, probably due to their low species diversity (9 ECM morphotypes, 31 ECM operational taxonomic units). However, Cortinarius sp. was significantly more abundant in RF than in the other land use types, whereas Alnicola, Tomentella, and Russula preferred young stages. Our results suggest that for both studied tree species the AM fungal succession could reach the stage of regenerated forest relatively fast. In the case of total fungi, because of hyperdiversity and composed of species specialized to a variety of environments and substrates, the transition was expected to be delayed in abandoned land where the vegetation was still developing and the ecosystem was not as complex as that found in mature forests.
Collapse
Affiliation(s)
- Sujan Balami
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, Ceské Budejovice, 37005, Czech Republic.
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| | - Martina Vašutová
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, Ceské Budejovice, 37005, Czech Republic
| | - Vijay Kumar Chaudhary
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, 44600, Nepal
| | - Pavel Cudlín
- Department of Ecosystem Function Analysis of the Landscape, Czech Academy of Sciences, Lipová 1789/9, Ceské Budejovice, 37005, Czech Republic
| |
Collapse
|
8
|
Veresoglou SD, Johnson D. Species-area relationships in microbial-mediated mutualisms. Trends Microbiol 2023; 31:1111-1117. [PMID: 37301688 DOI: 10.1016/j.tim.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbioses involving microorganisms prevail in nature and are key to regulating numerous ecosystem processes and in driving evolution. A major concern in understanding the ecology of symbioses involving microorganisms arises in the effectiveness of sampling strategies to capture the contrasting size of organisms involved. In many mutualisms, including mycorrhizas and gut systems, hosts interact simultaneously with multiple smaller sized mutualists, the identity of which determines success for the host. This complicates quantifying the diversity of mutualisms because sampling techniques fail to capture effectively the diversity of each partner. Here we propose the use of species-area relationships (SARs) to explicitly consider the spatial scale of microbial partners in symbioses, which we propose will improve our understanding of the ecology of mutualisms.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - David Johnson
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M139PT, UK
| |
Collapse
|
9
|
d’Entremont TW, Kivlin SN. Specificity in plant-mycorrhizal fungal relationships: prevalence, parameterization, and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1260286. [PMID: 37929168 PMCID: PMC10623146 DOI: 10.3389/fpls.2023.1260286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Species interactions exhibit varying degrees of specialization, ranging from generalist to specialist interactions. For many interactions (e.g., plant-microbiome) we lack standardized metrics of specialization, hindering our ability to apply comparative frameworks of specificity across niche axes and organismal groups. Here, we discuss the concept of plant host specificity of arbuscular mycorrhizal (AM) fungi and ectomycorrhizal (EM) fungi, including the predominant theories for their interactions: Passenger, Driver, and Habitat Hypotheses. We focus on five major areas of interest in advancing the field of plant-mycorrhizal fungal host specificity: phylogenetic specificity, host physiology specificity, functional specificity, habitat specificity, and mycorrhizal fungal-mediated plant rarity. Considering the need to elucidate foundational concepts of specificity in this globally important symbiosis, we propose standardized metrics and comparative studies to enhance our understanding. We also emphasize the importance of analyzing global mycorrhizal data holistically to draw meaningful conclusions and suggest a shift toward single-species analyses to unravel the complexities underlying these associations.
Collapse
Affiliation(s)
- Tyler W. d’Entremont
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| | | |
Collapse
|
10
|
Kato-Noguchi H. Invasive Mechanisms of One of the World's Worst Alien Plant Species Mimosa pigra and Its Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:1960. [PMID: 37653876 PMCID: PMC10221770 DOI: 10.3390/plants12101960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Mimosa pigra is native to Tropical America, and it has naturalized in many other countries especially in Australia, Eastern and Southern Africa and South Asia. The species is listed in the top 100 of the world's worst invasive alien species and is listed as Least Concern in the IUCN Red List of Threatened Species. M. pigra forms very large monospecific stands in a wet-dry tropical climate with conditions such as floodplains, riverbanks, grasslands, forests and agricultural fields. The stands expand quickly and threaten the native flora and fauna in the invasive ranges. Possible mechanisms of the invasion of the species have been investigated and accumulated in the literature. The characteristics of the life history such as the high reproduction and high growth rate, vigorous mutualism with rhizobia and arbuscular mycorrhizal fungi, very few natural enemies, and allelopathy, and certain secondary metabolites may contribute to the invasiveness and naturalization of M. pigra. Herbicide application, such as aerial spraying, foliar, cut-stump and soil treatments, is the primary control methods of M. pigra. The investigation of the natural enemies of M. pigra has been conducted in its native ranges since 1979, and biological control agents have been selected based on host specificity, rearing and availability. Mechanical control practices, such as hand weeding, bulldozing, chaining and fire, were also effective. However, the species often regrow from the remaining plant parts. Integration of multiple weed control practices may be more effective than any single practice. This is the first review article focusing on the invasive mechanism of M. pigra.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| |
Collapse
|
11
|
Burkle LA, Zabinski CA. Mycorrhizae influence plant vegetative and floral traits and intraspecific trait variation. AMERICAN JOURNAL OF BOTANY 2023; 110:e16099. [PMID: 36371729 DOI: 10.1002/ajb2.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Arbuscular mycorrhizal fungi (AMF) can strongly influence host plant vegetative growth, but less is known about AMF effects on other plant traits, the relative impacts of AMF on vegetative growth versus floral traits, or AMF-induced intraspecific variation in traits. METHODS In an experimental greenhouse study, we inoculated seven species of wildflowers with six species of AMF in a factorial design. We assessed how the AMF-forb combinations influenced plant survival, vegetative biomass, and floral traits and whether AMF effects on floral traits were similar in magnitude and direction to effects on vegetative biomass. For one forb species, we investigated intraspecific plant trait variation within and across AMF treatments. RESULTS AMF species varied from negative to positive in their effects on host plants. AMF often had inconsistent effects on vegetative biomass versus floral traits, and therefore, quantifying one or the other may provide a misleading representation of potential AMF effects. AMF treatments generated key variation in plant traits, especially floral traits, with potential consequences for plant-pollinator interactions. Given increased intraspecific trait variation in Linum lewisii plants across AMF species compared to uninoculated individuals or single AMF treatments, local AMF diversity and their host plant associations may scale up to influence community-wide patterns of trait variation and species interactions. CONCLUSIONS These results have implications for predicting how aboveground communities are affected by belowground communities. Including AMF effects on not just host plant biomass but also functional traits and trait variation will deepen our understanding of community structure and function, including pollination.
Collapse
Affiliation(s)
- Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Catherine A Zabinski
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
12
|
Guo Y, Bei Q, Dzomeku BM, Martin K, Rasche F. Genetic diversity and community composition of arbuscular mycorrhizal fungi associated with root and rhizosphere soil of the pioneer plant Pueraria phaseoloides. IMETA 2022; 1:e51. [PMID: 38867903 PMCID: PMC10989906 DOI: 10.1002/imt2.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 06/14/2024]
Abstract
The pioneering plant Pueraria phaseoloides had a strong modulation effect on arbuscular mycorrhizal fungi (AMF) communities. Irrespective of geographical location, community composition of AMF in rhizosphere soil differed from that of the root. Co-occurrence network analysis revealed two AMF keystone species in rhizosphere soil (Acaulospora) and roots (Rhizophagus) of P. phaseoloides.
Collapse
Affiliation(s)
- Yaqin Guo
- Department of Agronomy in the Tropics and Subtropics, Institute of Agricultural Sciences in the Tropics (Hans‐Ruthenberg‐Institute)University of HohenheimStuttgartGermany
| | - Qicheng Bei
- Department of Soil EcologyHelmholtz Center for Environmental Research ‐ UFZLeipzigGermany
| | | | - Konrad Martin
- Department of Agronomy in the Tropics and Subtropics, Institute of Agricultural Sciences in the Tropics (Hans‐Ruthenberg‐Institute)University of HohenheimStuttgartGermany
| | - Frank Rasche
- Department of Agronomy in the Tropics and Subtropics, Institute of Agricultural Sciences in the Tropics (Hans‐Ruthenberg‐Institute)University of HohenheimStuttgartGermany
| |
Collapse
|
13
|
Faggioli VS, Covacevich F, Grilli G, Lorenzon C, Aimetta B, Sagadin M, Langarica-Fuentes A, Cabello MN. Environmental response of arbuscular mycorrhizal fungi under soybean cultivation at a regional scale. MYCORRHIZA 2022; 32:425-438. [PMID: 36207539 DOI: 10.1007/s00572-022-01093-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Climate change, the shortage of fertilizers and reduced land for cultivation have drawn attention to the potential aid provided by soil-borne organisms. Arbuscular mycorrhizal fungi (AMF) offer a wide range of ecosystem benefits and hence, understanding the mechanisms that control AMF occurrence and maintenance is essential for resilient crop production. We conducted a survey of 123 soybean fields located across a 75,000-km2 area of Argentina to explore AMF community composition and to quantify the impact of soil, climate, and geographical distance on these key soil organisms. First, based upon morphological identification of spores, we compiled a list of the AMF species found in the studied area and identified Acaulospora scrobiculata and Glomus fuegianum as the most frequent species. G. fuegianum abundance was negatively correlated with precipitation seasonality and positively correlated with mean annual precipitation as well as mycorrhizal colonisation of soybean roots. Second, we observed that species richness was negatively correlated with soil P availability (Bray I), clay content and mean annual precipitation. Finally, based on partitioning variation analysis, we found that AMF exhibited spatial patterning at a broad scale. Therefore, we infer that geographical distance was positively associated with spore community composition heterogeneity across the region. Nevertheless, we highlight the importance of precipitation sensitivity of frequent species, overall AMF richness and community composition, revealing a crucial challenge to forthcoming agriculture considering an expected change in global climate patterns.
Collapse
Affiliation(s)
- Valeria Soledad Faggioli
- Instituto Nacional de Tecnología Agropecuaria, EEA Marcos Juárez, Ruta 12 km 36, 2580, Marcos Juárez, Córdoba, Argentina.
| | - Fernanda Covacevich
- Instituto de Investigaciones en Biodiversidad Y Biotecnología (CONICET)-Fundación Para Las Investigaciones Biológicas Aplicadas, Ruta 226 km 73.5, 7620, Balcarce, Argentina
| | - Gabriel Grilli
- FCEFyN (CONICET, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba), Vélez Sarsfield 1611, CC 495, Córdoba, Argentina
| | - Claudio Lorenzon
- Instituto Nacional de Tecnología Agropecuaria, EEA Marcos Juárez, Ruta 12 km 36, 2580, Marcos Juárez, Córdoba, Argentina
| | - Bethania Aimetta
- Instituto Nacional de Tecnología Agropecuaria, EEA Marcos Juárez, Ruta 12 km 36, 2580, Marcos Juárez, Córdoba, Argentina
| | - Monica Sagadin
- Centro de Investigación Agropecuaria (CIAP), Instituto Nacional de Tecnología Agropecuaria, Instituto de Fisiología Y Recursos Genéticos Vegetales (IFRGV), CONICET, Camino 60 Cuadras km, 51/2 C.P. 5119, Córdoba, Argentina
| | - Adrián Langarica-Fuentes
- Department of Geosciences, Eberhard-Karls-University Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Marta Noemí Cabello
- Instituto Spegazzini (Facultad de Ciencias Naturales Y Museo, UNLP), Comisión de Investigaciones Científicas de La Prov. de Buenos Aires (CICPBA), Av 53 # 477, 1900, La Plata, Argentina
| |
Collapse
|
14
|
Phenol and Polyaromatic Hydrocarbons Are Stronger Drivers Than Host Plant Species in Shaping the Arbuscular Mycorrhizal Fungal Component of the Mycorrhizosphere. Int J Mol Sci 2022; 23:ijms232012585. [PMID: 36293448 PMCID: PMC9604154 DOI: 10.3390/ijms232012585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Changes in soil microbial communities in response to hydrocarbon pollution are critical indicators of disturbed ecosystem conditions. A core component of these communities that is functionally adjusted to the life-history traits of the host and environmental factors consists of arbuscular mycorrhizal fungi (AMF). AMF communities associated with Poa trivialis and Phragmites australis growing at a phenol and polynuclear aromatic hydrocarbon (PAH)-contaminated site and at an uncontaminated site were compared based on LSU rDNA sequencing. Dissimilarities in species composition and community structures indicated soil pollution as the main factor negatively affecting the AMF diversity. The AMF communities at the contaminated site were dominated by fungal generalists (Rhizophagus, Funneliformis, Claroideoglomus, Paraglomus) with wide ecological tolerance. At the control site, the AMF communities were characterized by higher taxonomic and functional diversity than those exposed to the contamination. The host plant identity was the main driver distinguishing the two AMF metacommunities. The AMF communities at the uncontaminated site were represented by Polonospora, Paraglomus, Oehlia, Nanoglomus, Rhizoglomus, Dominikia, and Microdominikia. Polonosporaceae and Paraglomeraceae were particularly dominant in the Ph. australis mycorrhizosphere. The high abundance of early diverging AMF could be due to the use of primers able to detect lineages such as Paraglomeracae that have not been recognized by previously used 18S rDNA primers.
Collapse
|
15
|
Gomes SIF, Fortuna MA, Bascompte J, Merckx VSFT. Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants. THE NEW PHYTOLOGIST 2022; 235:2034-2045. [PMID: 35706373 PMCID: PMC9539982 DOI: 10.1111/nph.18310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
How mycoheterotrophic plants that obtain carbon and soil nutrients from fungi are integrated in the usually mutualistic arbuscular mycorrhizal networks is unknown. Here, we compare autotrophic and mycoheterotrophic plant associations with arbuscular mycorrhizal fungi and use network analysis to investigate interaction preferences in the tripartite network. We sequenced root tips from autotrophic and mycoheterotrophic plants to assemble the combined tripartite network between autotrophic plants, mycorrhizal fungi and mycoheterotrophic plants. We compared plant-fungi interactions between mutualistic and antagonist networks, and searched for a diamond-like module defined by a mycoheterotrophic and an autotrophic plant interacting with the same pair of fungi to investigate whether pairs of fungi simultaneously linked to plant species from each interaction type were overrepresented throughout the network. Mycoheterotrophic plants as a group interacted with a subset of the fungi detected in autotrophs but are indirectly linked to all autotrophic plants, and fungi with a high overlap in autotrophic partners tended to interact with a similar set of mycoheterotrophs. Moreover, pairs of fungi sharing the same mycoheterotrophic and autotrophic plant species are overrepresented in the network. We hypothesise that the maintenance of antagonistic interactions is maximised by targeting well linked mutualistic fungi, thereby minimising the risk of carbon supply shortages.
Collapse
Affiliation(s)
- Sofia I. F. Gomes
- Above‐Belowground Interactions Group, Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
- Naturalis Biodiversity CenterDarwinweg 22333 CRLeidenthe Netherlands
| | - Miguel A. Fortuna
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichCH‐8057ZurichSwitzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichCH‐8057ZurichSwitzerland
| | - Vincent S. F. T. Merckx
- Naturalis Biodiversity CenterDarwinweg 22333 CRLeidenthe Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
| |
Collapse
|
16
|
Goh D, Martin JGA, Banchini C, MacLean AM, Stefani F. RocTest: A standardized method to assess the performance of root organ cultures in the propagation of arbuscular mycorrhizal fungi. Front Microbiol 2022; 13:937912. [PMID: 35966663 PMCID: PMC9366734 DOI: 10.3389/fmicb.2022.937912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past three decades, root organ cultures (ROCs) have been the gold standard method for studying arbuscular mycorrhizal fungi (AMF) under in vitro conditions, and ROCs derived from various plant species have been used as hosts for AM monoxenic cultures. While there is compelling evidence that host identity can significantly modify AMF fitness, there is currently no standardized methodology to assess the performance of ROCs in the propagation of their fungal symbionts. We describe RocTest, a robust methodological approach that models the propagation of AMF in symbiosis with ROCs. The development of extraradical fungal structures and the pattern of sporulation are modeled using cumulative link mixed models and linear mixed models. We demonstrate functionality of RocTest by evaluating the performance of three species of ROCs (Daucus carota, Medicago truncatula, Nicotiana benthamiana) in the propagation of three species of AMF (Rhizophagus clarus, Rhizophagus irregularis, Glomus sp.). RocTest produces a simple graphical output to assess the performance of ROCs and shows that fungal propagation depends on the three-way interaction between ROC, AMF, and time. RocTest makes it possible to identify the best combination of host/AMF for fungal development and spore production, making it an important asset for germplasm collections and AMF research.
Collapse
Affiliation(s)
- Dane Goh
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Claudia Banchini
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | | | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| |
Collapse
|
17
|
Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM, Hannula SE, Hestrin R, Hoosein S, Kumar A, Mhretu G, Neuenkamp L, Soti P, Xie Y, Helgason T. What are mycorrhizal traits? Trends Ecol Evol 2022; 37:573-581. [PMID: 35504748 DOI: 10.1016/j.tree.2022.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022]
Abstract
Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological, and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.
Collapse
Affiliation(s)
- V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tanya E Cheeke
- School of Biological Sciences, Washington State University, Richland, WA 99354, USA
| | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110151, Colombia
| | - Jessica Duchicela
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Cameron Egan
- Department of Biology, Okanagan College, 1000 KLO Rd, Kelowna, BC, Canada V1Y 4X8
| | - Manju M Gupta
- Department of Biology, University of Delhi, Sri Aurobindo College, Delhi 110017, India
| | - S Emilia Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Shabana Hoosein
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | - Amit Kumar
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, 21335 Lüneburg, Germany
| | - Genet Mhretu
- Department of Biology, Mekelle University, Mekelle 231, Ethiopia
| | - Lena Neuenkamp
- University of Bern, Institute of Plant Sciences, Berne 3013, Switzerland; Department of Ecology and Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante 03009, Spain
| | - Pushpa Soti
- Biology Department, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077
| | | |
Collapse
|
18
|
Gritli T, Boubakri H, Essahibi A, Hsouna J, Ilahi H, Didier R, Mnasri B. Salt stress mitigation in Lathyrus cicera by combining different microbial inocula. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1191-1206. [PMID: 35910445 PMCID: PMC9334493 DOI: 10.1007/s12298-022-01205-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Arid and semi-arid areas are considered vulnerable to various environmental constraints which are further fortified by climate change. Salinity is one of the most serious abiotic factors affecting crop yield and soil fertility. Till now, no information is available on the effect of salinity on development and symbiotic nitrogen (N2) fixation in the legume species Lathyrus cicera. Here, we evaluated the effect of different microbial inocula including nitrogen-fixing Rhizobium laguerreae, arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, a complex mixed inoculum of AMF isolated from rhizospheric soil in "Al Aitha", and various plant growth-promoting bacteria (PGPB) including Bacillus subtilus, Bacillus simplex and Bacillus megaterium combined with Rhizobium, the AMF consortium, or R. irregularis on alleviating salt stress in this legume. A pot trial was conducted to evaluate the ability of different microbial inocula to mitigate adverse effects of salinity on L. cicera plants. The results showed that salinity (100 mM NaCl) significantly reduced L. cicera plant growth. However, inoculation with different inocula enhanced plant growth and markedly promoted various biochemical traits. Moreover, the combined use of PGPB and AMF was found to be the most effective treatment in mitigating deleterious effects of salinity stress on L. cicera. In addition, this co-inoculation upregulated the expression of two marker genes (LcHKT1 and LcNHX7) related to salinity tolerance. Our findings suggest that the AMF/PGPB formulation has a great potential to be used as a biofertilizer to improve L. cicera plant growth and productivity under saline conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01205-4.
Collapse
Affiliation(s)
- Takwa Gritli
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | | | - Jihed Hsouna
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Reinhardt Didier
- Department of Biology, Rte. Albert-Gockel 3, CH- 1700 Fribourg, Switzerland
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
19
|
Diversity of arbuscular mycorrhiza fungi in rhizosphere soil and roots in Vetiveria zizanioides plantation chronosequence in coal gangue heaps. Symbiosis 2022. [DOI: 10.1007/s13199-022-00829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Cowan JA, Gehring CA, Ilstedt U, Grady KC. Host identity and neighborhood trees affect belowground microbial communities in a tropical rainforest. Trop Ecol 2021. [DOI: 10.1007/s42965-021-00203-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Rangel LI, Hamilton O, de Jonge R, Bolton MD. Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:632-645. [PMID: 34510609 DOI: 10.1111/tpj.15490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fungal secondary metabolites (FSMs) are capable of manipulating plant community dynamics by inhibiting or facilitating the establishment of co-habitating organisms. Although production of FSMs is not crucial for survival of the producer, their absence can indirectly impair growth and/or niche competition of these fungi on the plant. The presence of FSMs with no obvious consequence on the fitness of the producer leaves questions regarding ecological impact. This review investigates how fungi employ FSMs as a platform to mediate fungal-fungal, fungal-bacterial and fungal-animal interactions associated with the plant community. We discuss how the biological function of FSMs may indirectly benefit the producer by altering the dynamics of surrounding organisms. We introduce several instances where FSMs influence antagonistic- or alliance-driven interactions. Part of our aim is to decipher the meaning of the FSM 'language' as it is widely noted to impact the surrounding community. Here, we highlight the contribution of FSMs to plant-associated interaction networks that affect the host either broadly or in ways that may have previously been unclear.
Collapse
Affiliation(s)
- Lorena I Rangel
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
| | - Olivia Hamilton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Ronnie de Jonge
- Department of Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Melvin D Bolton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
22
|
Liu S, Moora M, Vasar M, Zobel M, Öpik M, Koorem K. Arbuscular mycorrhizal fungi promote small-scale vegetation recovery in the forest understorey. Oecologia 2021; 197:685-697. [PMID: 34716490 DOI: 10.1007/s00442-021-05065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
Root-associating arbuscular mycorrhizal (AM) fungi foster vegetation recovery in degraded habitats. AM fungi increase nutrient availability for host plants; therefore, their importance is expected to be higher when nutrient availability is low. However, little is known about how small-scale variation in nutrient availability influences plant and AM fungal communities in a stable ecosystem. We conducted a 2-year field study in the understorey of a boreonemoral forest where we examined plant and AM fungal communities at microsites (15 cm diameter) with intact vegetation cover and at disturbed microsites where vegetation was cleared away and soil was sterilized to remove soil biota. We manipulated soil nutrient content (increased with fertilizer, unchanged, or decreased with sucrose addition) and fungal activity (natural or suppressed by fungicide addition) at these microsites. After two vegetation seasons, manipulations with nutrient content resulted in significant, although moderate, differences in the content of soil nutrients (e.g. in soil phosphorus). Suppression of fungal activity resulted in lower richness, abundance and phylogenetic diversity of AM fungal community, independently of microsite type and soil fertility level. Plant species richness and diversity decreased when fungal activity was suppressed at disturbed but not in intact microsites. The correlation between plant and AM fungal communities was not influenced by microsite type or soil fertility. We conclude that small-scale variation in soil fertility and habitat integrity does not influence the interactions between plants and AM fungi. The richness, but not composition, of AM fungal communities recovered fast after small-scale disturbance and supported the recovery of species-rich vegetation.
Collapse
Affiliation(s)
- Siqiao Liu
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kadri Koorem
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
23
|
Ferlian O, Goldmann K, Eisenhauer N, Tarkka MT, Buscot F, Heintz-Buschart A. Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient. ISME COMMUNICATIONS 2021; 1:40. [PMID: 37938639 PMCID: PMC9723774 DOI: 10.1038/s43705-021-00042-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 04/26/2023]
Abstract
Plant diversity and plant-related ecosystem functions have been important in biodiversity-ecosystem functioning studies. However, biotic interactions with mycorrhizal fungi have been understudied although they are crucial for plant-resource acquisition. Here, we investigated the effects of tree species richness and tree mycorrhizal type on arbuscular (AMF) and ectomycorrhizal fungal (EMF) communities. We aimed to understand how dissimilarities in taxa composition and beta-diversity are related to target trees and neighbours of the same or different mycorrhizal type. We sampled a tree diversity experiment with saplings (~7 years old), where tree species richness (monocultures, 2-species, and 4-species mixtures) and mycorrhizal type were manipulated. AMF and EMF richness significantly increased with increasing tree species richness. AMF richness of mixture plots resembled that of the sum of the respective monocultures, whereas EMF richness of mixture plots was lower compared to the sum of the respective monocultures. Specialisation scores revealed significantly more specialised AMF than EMF suggesting that, in contrast to previous studies, AMF were more specialised, whereas EMF were not. We further found that AMF communities were little driven by the surrounding trees, whereas EMF communities were. Our study revealed drivers of mycorrhizal fungal communities and further highlights the distinct strategies of AMF and EMF.
Collapse
Affiliation(s)
- Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany.
| | - Kezia Goldmann
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| |
Collapse
|
24
|
Leroy C, Maes AQ, Louisanna E, Schimann H, Séjalon-Delmas N. Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes. THE NEW PHYTOLOGIST 2021; 231:1195-1209. [PMID: 33605460 DOI: 10.1111/nph.17288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown. We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds. We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes. Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Céline Leroy
- AMAP, CIRAD, CNRS, INRAE, IRD, Univ Montpellier, Montpellier, 34000, France
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | | - Eliane Louisanna
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Heidy Schimann
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | |
Collapse
|
25
|
Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum. FEMS Microbiol Ecol 2021; 97:5957530. [PMID: 33155054 DOI: 10.1093/femsec/fiaa222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Mutualistic relationships of legume plants with, either bacteria (like rhizobia) or fungi (like arbuscular mycorrhizal fungi), have been investigated intensively, usually as bi-partite interactions. However, diverse symbiotic interactions take place simultaneously or sequentially under field conditions. Their collective, but not additive, contribution to plant growth and performance remains hard to predict, and appears to be furthermore affected by crop species and genotype, non-symbiotic microbial interactions and environmental variables. The challenge is: (i) to unravel the complex overlapping mechanisms that operate between the microbial symbionts as well as between them, their hosts and the rhizosphere (ii) to understand the dynamics of the respective mechanisms in evolutionary and ecological terms. The target for agriculture, food security and the environment, is to use this insight as a solid basis for developing new integrated technologies, practices and strategies for the efficient use of beneficial microbes in legumes and other plants. We review recent advances in our understanding of the symbiotic interactions in legumes roots brought about with the aid of molecular and bioinformatics tools. We go through single symbiont-host interactions, proceed to tripartite symbiont-host interactions, appraise interactions of symbiotic and associative microbiomes with plants in the root-rhizoplane-soil continuum of habitats and end up by examining attempts to validate community ecology principles in the legume-microbe-soil biosystem.
Collapse
Affiliation(s)
- Myrto Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| | - Daniela Tsikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Constantinos Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| |
Collapse
|
26
|
Zhang M, Shi Z, Yang M, Lu S, Cao L, Wang X. Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at Different Elevations in Mt. Taibai of Qinling Mountain. Front Microbiol 2021; 12:609386. [PMID: 33746912 PMCID: PMC7974767 DOI: 10.3389/fmicb.2021.609386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 01/20/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMFs) play a vital role in ecosystems, especially in ecosystem variability, diversity, and function. Understanding the AMF diversity, distribution, and their driver at different altitudinal gradients is a benefit for understanding the ecological function of AMF in mountain ecosystems. In this study, we explored the AMF molecular diversity and their distribution from 660 to 3,500 m a.s.l. in Mount Taibai of Qinling Mountains based on high-throughput sequencing technology. A total of 702 operational taxonomic units (OTUs) in 103 species of AMF are isolated from soil samples, which belong to 18 identified and 1 unidentified genus in 10 families. The fungi in the genus of Glomus is the most dominant, with the occurrence frequency of 100% and the relative abundance of 42.268% and 33.048% on the species and OTU level, respectively. The AMF colonization in root could be simulated by a cubic function with the change of altitudes with the peak and trough at a.s.l. 1,170 and 2,850 m, respectively. Further, AMF diversity indices including Sob, Shannon diversity, and Pielou evenness also showed the same cubic function change trends with increasing altitude at OTU and species levels. However, the average values of diversity indices at OTU level are always higher than these at the species level. Based on the OTU level, the highest and lowest values of Shannon and Pielou indices are observed at the altitudes of 1,400 and 2,800 m, respectively. The pattern of AMF community distribution in Mt. Taibai is driven by altitude with the characteristics of more abundance in the medium- to low-altitude than high-altitude areas. In general, abundant AMF molecular diversity and species exit in different elevations of Mt. Taibai, which indicate gradient changes with elevations.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Mei Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Shichuan Lu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Libing Cao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Xugang Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| |
Collapse
|
27
|
Neuenkamp L, Zobel M, Koorem K, Jairus T, Davison J, Öpik M, Vasar M, Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett 2020; 24:426-437. [PMID: 33319429 DOI: 10.1111/ele.13656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.
Collapse
Affiliation(s)
- Lena Neuenkamp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Teele Jairus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
28
|
Huang H, Guo J, Zhang Y. The Response of Arbuscular Mycorrhizal Fungal Communities to the Soil Environment of Underground Mining Subsidence Area in Northwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9157. [PMID: 33302449 PMCID: PMC7763152 DOI: 10.3390/ijerph17249157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
Fully mechanized mining technology applied over a very large working face is typically utilized for coal exploitation in Northwest China and triggered two types of land subsidence above the goaf edge and center. However, the effects of mining subsidence on arbuscular mycorrhizal fungal (AMF) communities are still unknown. Here, we investigated the soil physicochemical properties and the response of AMF communities to the soil environment at the margin and center of the subsidence area of the same working face. Our results showed the soil water content, nutrient content and enzyme activity were significantly decreased with land desertification at the margin of the subsidence area but were less affected at the subsidence center. Utilizing high-throughput sequence analysis, six Glomeromycotan genera were detected. The relative abundance of Glomus and Ambispora at the margin of the subsidence area decreased, while Paraglomus and Diversispora increased. The total OTU richness was significantly correlated with moisture. Redundancy analysis showed the main environmental factors driving the changes in AMF community structure were available nitrogen, available potassium and available phosphorus. All these results indicated land cracks need to be repaired in time at subsidence edge to prevent the decline of soil fertility.
Collapse
Affiliation(s)
| | | | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; (H.H.); (J.G.)
| |
Collapse
|
29
|
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng Y, Pillar VD, Sepp SK, Soudzilovaskaia NA, Tedersoo L, Vaessen S, Vahter T, Winck B, Öpik M. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. THE NEW PHYTOLOGIST 2020; 226:1117-1128. [PMID: 31943225 DOI: 10.1111/nph.16423] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
The benefits of the arbuscular mycorrhizal (AM) symbiosis between plants and fungi are modulated by the functional characteristics of both partners. However, it is unknown to what extent functionally distinct groups of plants naturally associate with different AM fungi. We reanalysed 14 high-throughput sequencing data sets describing AM fungal communities associating with plant individuals (2427) belonging to 297 species. We examined how root-associating AM fungal communities varied between plants with different growth forms, photosynthetic pathways, CSR (competitor, stress-tolerator, ruderal) strategies, mycorrhizal statuses and N-fixing statuses. AM fungal community composition differed in relation to all studied plant functional groups. Grasses, C4 and nonruderal plants were characterised by high AM fungal alpha diversity, while C4 , ruderal and obligately mycorrhizal plants were characterised by high beta diversity. The phylogenetic diversity of AM fungi, a potential surrogate for functional diversity, was higher among forbs than other plant growth forms. Putatively ruderal (previously cultured) AM fungi were disproportionately associated with forbs and ruderal plants. There was phylogenetic correlation among AM fungi in the degree of association with different plant growth forms and photosynthetic pathways. Associated AM fungal communities constitute an important component of plant ecological strategies. Functionally different plants associate with distinct AM fungal communities, linking mycorrhizal associations with functional diversity in ecosystems.
Collapse
Affiliation(s)
- John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - David García de León
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805, Spain
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
- College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - C Guillermo Bueno
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Milagros Barceló
- Environmental Biology Department, Institute of Environmental Sciences Leiden University, Einsteinweg 2, Leiden, 2333CC, the Netherlands
| | - Maret Gerz
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Daniela León
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Valerio D Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, 9500, Porto Alegre, 91501-970, Brazil
| | - Siim-Kaarel Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Nadejda A Soudzilovaskaia
- Environmental Biology Department, Institute of Environmental Sciences Leiden University, Einsteinweg 2, Leiden, 2333CC, the Netherlands
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, Vanemuise 46, Tartu, 51014, Estonia
| | - Stijn Vaessen
- Environmental Biology Department, Institute of Environmental Sciences Leiden University, Einsteinweg 2, Leiden, 2333CC, the Netherlands
| | - Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Bruna Winck
- Department of Ecology, Universidade Federal do Rio Grande do Sul, 9500, Porto Alegre, 91501-970, Brazil
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
30
|
Cheng K, Yu S. Neighboring trees regulate the root-associated pathogenic fungi on the host plant in a subtropical forest. Ecol Evol 2020; 10:3932-3943. [PMID: 32489621 PMCID: PMC7244890 DOI: 10.1002/ece3.6094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
Root-associated fungi and host-specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root-associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high-throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root-associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host-specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host-specific pathogens, as well as phytopathogens. Our work provides evidence that the root-associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.
Collapse
Affiliation(s)
- Keke Cheng
- Department of EcologySchool of Life Sciences/State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Shixiao Yu
- Department of EcologySchool of Life Sciences/State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
31
|
Jia Y, Shi Z, Chen Z, Walder F, Tian C, Feng G. Soil moisture threshold in controlling above- and belowground community stability in a temperate desert of Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134650. [PMID: 31731166 DOI: 10.1016/j.scitotenv.2019.134650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial ecosystems are composed of above- and belowground community, which have been researched separately for many years even though the two subsystems clearly interact with each other. And it is still less understood how the above- and belowground ecosystems co-response to the changing precipitation in this changing world. To understand the interdependence and co-responses of plant-arbuscular mycorrhizal (AM) fungi symbioses to this facet of climate change, we examined the plant and AM fungal diversity and abundance along both, a transect from east to west of the desert which exhibits an annual precipitation gradient and a topographical transect of a typical sand dune which exhibits a gradient of soil moisture but equal precipitation, in a temperate desert in Central Asia. The results showed that community structure and biomass of plants and AM fungi along both transects were positively correlated and related to either precipitation or soil moisture, strongly support the Habitat Hypothesis. We found a soil moisture threshold between 0.64% and 0.86%, below which the variability of plant coverage, plant species richness, spore density and Shannon-wiener diversity index of both plant and AM fungal communities increased sharply yielding in an average threshold of 0.73% for the stability of plant-AMF symbioses. Our results highlight that increasing precipitation contributes to above- and belowground, and particularly to the overall AM-symbiotic stability in a desert ecosystem. This emphasizes the susceptibility and the importance plant-AMF symbioses for ecosystem stability to climate changes across different scales.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Zhichao Chen
- Henan Polytechnic University, Jiaozuo 454003, China
| | - Florian Walder
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zurich 8046, Switzerland
| | - Changyan Tian
- Xinjiang Institute Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Wang Q, Bao Y, Nan J, Xu D. AM fungal diversity and its impact across three types of mid-temperate steppe in Inner Mongolia, China. MYCORRHIZA 2020; 30:97-108. [PMID: 31832763 DOI: 10.1007/s00572-019-00926-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungal diversity was measured in three different natural mid-temperate steppe types: the meadow steppe, typical steppe, and desert steppe. In these steppe soils, 24 AM fungal species from eight genera were identified, in which Glomus had the highest relative abundance. Funneliformis geosporus, Glomus microaggregatum, and Septoglomus constrictum had high relative abundance and were found widely across varying soil depth and steppe type. Meadow steppes had significantly higher AM fungal species richness compared to typical steppes and desert steppes, but there was no significant difference between typical steppes and desert steppes. AM fungal spore density, two Bradford-reactive soil protein (BRSP) fractions, and extraradical hyphal length densities (HLDs) were significantly different among the three steppe types. Alkaline phosphatase and acid phosphatase activity, urease activity, and soil bacterial and actinomycotic quantity were significantly related to the AM fungal spore density and species richness in these arid and semi-arid steppes. Therefore, steppe types could influence the distribution pattern of AM fungal diversity and the content of glomalin-related soil protein (GRSP).
Collapse
Affiliation(s)
- Qi Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
- School of Pharmaceutical Sciences, Baotou Medical College, Baotou, 014040, People's Republic of China
| | - Yuying Bao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China.
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Hohhot, 010070, People's Republic of China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, 010070, People's Republic of China.
| | - Ji Nan
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Daolong Xu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| |
Collapse
|
33
|
Environmental Filtering Drives Local Soil Fungal beta Diversity More than Dispersal Limitation in Six Forest Types along a Latitudinal Gradient in Eastern China. FORESTS 2019. [DOI: 10.3390/f10100863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biogeographic patterns of soil fungal diversity have been well documented in forest ecosystems, but the underlying mechanisms and processes that shape these patterns remain relatively unknown. This study took soil samples from 300 forest plots spanning six forest types along a latitudinal gradient in eastern China, which ranges from tropical rainforest to boreal forest ecosystems. A null-model analysis was used to compare the observed soil fungal beta diversity (β-diversity) with the β-diversity expected from random sampling of each local species pool. We also compared the relative importance of environmental and spatial variables on soil fungal β-diversity among forest types along the latitudinal gradient. Our results found that observed β-diversity was greater than expected β-diversity in all six forest types, which means that species tend to be more aggregated than expected. We determined that this species aggregation resulted from both environmental filtering and species dispersal limitations. Further, environmental variables had stronger influences on β-diversity than spatial dispersions. Additionally, the co-occurrence network showed that more species interactions occurred in the mid-latitude forests which lead to decreased soil fungal β-diversity and low interpretations of environmental and spatial variables. Study of these processes in different forest types along latitudinal gradients will provide important insights that local differences in the relative importance of different community assembly processes creates different gradients in global biodiversity.
Collapse
|
34
|
Do arbuscular mycorrhizal fungi play a role in the ability of rare plant species to colonize abandoned fields? FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Weber SE, Diez JM, Andrews LV, Goulden ML, Aronson EL, Allen MF. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Song J, Chen L, Chen F, Ye J. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecol Evol 2019; 9:8900-8910. [PMID: 31410288 PMCID: PMC6686299 DOI: 10.1002/ece3.5446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the importance of arbuscular mycorrhizal fungi (AMF) within deciduous forest ecosystems, we know little about how natural AMF communities are structured in the root zone of the endangered elm species Ulmus chenmoui. In this study, three U. chenmoui sampling sites, differing with respect to plant health, age, and growth status, were selected in Anhui Province, China. AMF biodiversity in the root zones of individual U. chenmoui trees was investigated using high-throughput sequencing. In total, 61 AMF operational taxonomic units were detected. Five genera, namely Glomus (62.82%), Paraglomus (17.82%), Rhizophagus (4.29%), Septoglomus (4.06%) and Funneliformis (2.35%), and 29 species of AMF were identified. Correlation analysis indicated that available soil phosphorus and potassium concentrations were the main edaphic factors influencing AMF community structure. There was a difference in AMF species richness among the three U. chenmoui stands. Our study showed that soil nutrient concentrations and plant health, age, and growth status can exert a selective effect on the composition of the AMF population in the soil in the root zones of U. chenmoui trees.
Collapse
Affiliation(s)
- Juan Song
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| | - Long Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| | - Fengmao Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| | - Jianren Ye
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Institute of Forest Protection, College of ForestryNanjing Forestry UniversityNanjingChina
| |
Collapse
|
37
|
Alguacil M, Díaz G, Torres P, Rodríguez-Caballero G, Roldán A. Host identity and functional traits determine the community composition of the arbuscular mycorrhizal fungi in facultative epiphytic plant species. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Ali A, Ghani MI, Ding H, Fan Y, Cheng Z, Iqbal M. Co-Amended Synergistic Interactions between Arbuscular Mycorrhizal Fungi and the Organic Substrate-Induced Cucumber Yield and Fruit Quality Associated with the Regulation of the AM-Fungal Community Structure under Anthropogenic Cultivated Soil. Int J Mol Sci 2019; 20:ijms20071539. [PMID: 30934751 PMCID: PMC6479614 DOI: 10.3390/ijms20071539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/16/2022] Open
Abstract
Monotonous cucumber double-cropping systems under plastic greenhouse vegetable cultivation (PGVC) previously intensified by long-term anthropogenic activities and manipulative treatments leads to a crop productivity reduction and soil biota disturbances. In this study, the role of the indigenous arbuscular mycorrhizal strain (AM: Glomus versiforme L.) and organic substrate (GS: Garlic stalk) application were assessed for plant microbe interaction and crop productivity feedback in a greenhouse (2016⁻2018) under a cultivated Anthrosol characterized as a replanted degraded soil. We found that repetitively adding AM inocula with organic substrates (GS) improved the cucumber growth and physiology. The useful trait of AM symbiosis with C-amended organic substrates preferentially manifested as increased root colonization, hyphal density proliferation, AM sporulation, root activity, and suppressed Fusarium incidence. The post AM development further prevailed the synergistic interaction, and the co-inoculation effect resulted in an increase in fruit nutrition uptake, seasonal cucumber yield and fruit quality attributes. Illumina MiSeq analysis of the 18S rRNA gene amplicons revealed that the dominant AM genera that are particularly enriched with the Glomus taxon may be important ecological drivers associated with plant productivity and fruit quality characteristics. These results suggest that the AM-organic substrate association might be a pragmatic option for use as an economic and efficient biological resource and as a newly-sustainable plant microbe mediator to enhance the regional ecosystem services and plant productivity of the anthropogenic PGVC of this region.
Collapse
Affiliation(s)
- Ahmad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | | | - Haiyan Ding
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yang Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Iqbal
- Department of Soil Science & SWC, PMAS-Arid Agriculture University, Rawalpindi-46300, Pakistan.
| |
Collapse
|
39
|
Zeng H, Zhong W, Tan F, Shu Y, Feng Y, Wang J. The Influence of Bt Maize Cultivation on Communities of Arbuscular Mycorrhizal Fungi Revealed by MiSeq Sequencing. Front Microbiol 2019; 9:3275. [PMID: 30687266 PMCID: PMC6334669 DOI: 10.3389/fmicb.2018.03275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
The cultivation of transgenic Bacillus thuringiensis (Bt) has received worldwide attention since Bt crops were first released. Its ecological risks on arbuscular mycorrhizal fungi (AMF) have been widely studied. In this study, after cultivation for five seasons, the AMF diversity and community composition of two Bt maize varieties, 5422Bt1 (event Bt11) and 5422CBCL (event MO10), which both express Cry1Ab protein, and their isoline non-Bt maize 5422, as well as Bt straw after cultivation had been returned to subsequent conventional maize variety, were analyzed using Illumina MiSeq sequencing. A total of 263 OTUs (operational taxonomic units) from 511,847 sequenced affiliated with the AMF which belonged to Mucoromycota phylum Glomeromycotina subphylum were obtained. No significant difference was detected in the AMF diversity and richness (Shannon, Simpson, ACE, and Chao 1 indices) and community composition in rhizosphere soils and roots between Bt and non-Bt treatment revealed by NMDS (non-metric multidimensional scaling) and NPMANOVA (non-parametric multivariate analysis). Moreover, Glomus was the most dominant genus in all samples. Although there was no significant difference in the AMF community in roots and rhizosphere soils between the Bt and non-Bt maize treatments, total phosphorus (TP), total nitrogen (TN), organic carbon (OC), and pH were driving factors affecting the AMF community, and their composition varied between rhizosphere soils and roots during the maturity period of the fifth season. Compared to our previous study, the results were identical. In conclusion, no significant difference was observed between the Bt and non-Bt treatments, and the Illumina MiSeq method had higher throughput and higher quality read cover, which gave us comprehensive insight into AMF communities in agro-ecosystems.
Collapse
Affiliation(s)
- Huilan Zeng
- Department of Horticulture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Wang Zhong
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Fengxiao Tan
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yinghua Shu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yuanjiao Feng
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jianwu Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Sepp S, Davison J, Jairus T, Vasar M, Moora M, Zobel M, Öpik M. Non‐random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Mol Ecol 2018; 28:365-378. [DOI: 10.1111/mec.14924] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | - John Davison
- Department of Botany University of Tartu Tartu Estonia
| | - Teele Jairus
- Department of Botany University of Tartu Tartu Estonia
| | - Martti Vasar
- Department of Botany University of Tartu Tartu Estonia
| | - Mari Moora
- Department of Botany University of Tartu Tartu Estonia
| | - Martin Zobel
- Department of Botany University of Tartu Tartu Estonia
| | - Maarja Öpik
- Department of Botany University of Tartu Tartu Estonia
| |
Collapse
|
41
|
Rasmussen PU, Hugerth LW, Blanchet FG, Andersson AF, Lindahl BD, Tack AJM. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. THE NEW PHYTOLOGIST 2018; 220:1248-1261. [PMID: 29573431 PMCID: PMC6282561 DOI: 10.1111/nph.15088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/11/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity.
Collapse
Affiliation(s)
- Pil U. Rasmussen
- Department of EcologyEnvironment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Luisa W. Hugerth
- School of BiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyPO Box 1031SE‐171 21SolnaSweden
- Centre for Translational Microbiome ResearchDepartment of Molecular, Tumor and Cell BiologyScience for Life LaboratoryKarolinska Institutet171 65SolnaSweden
| | - F. Guillaume Blanchet
- Département de BiologieFaculté des SciencesUniversité de Sherbrooke2500 Boulevard UniversitéSherbrookeQCJ1K 2R1Canada
| | - Anders F. Andersson
- School of BiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyPO Box 1031SE‐171 21SolnaSweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesBox 7014SE‐750 07UppsalaSweden
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
42
|
Sudová R, Kohout P, Kolaříková Z, Rydlová J, Voříšková J, Suda J, Španiel S, Müller-Schärer H, Mráz P. Sympatric diploid and tetraploid cytotypes of Centaurea stoebe s.l. do not differ in arbuscular mycorrhizal communities and mycorrhizal growth response. AMERICAN JOURNAL OF BOTANY 2018; 105:1995-2007. [PMID: 30552673 DOI: 10.1002/ajb2.1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Genome duplication is associated with multiple changes at different levels, including interactions with pollinators and herbivores. Yet little is known whether polyploidy may also shape belowground interactions. METHODS To elucidate potential ploidy-specific interactions with arbuscular mycorrhizal fungi (AMF), we compared mycorrhizal colonization and assembly of AMF communities in roots of diploid and tetraploid Centaurea stoebe s.l. (Asteraceae) co-occurring in a Central European population. In a follow-up greenhouse experiment, we tested inter-cytotype differences in mycorrhizal growth response by combining ploidy, substrate, and inoculation with native AMF in a full-factorial design. KEY RESULTS All sampled plants were highly colonized by AMF, with the Glomeraceae predominating. AMF-community composition revealed by 454-pyrosequencing reflected the spatial distribution of the hosts, but not their ploidy level or soil characteristics. In the greenhouse experiment, the tetraploids produced more shoot biomass than the diploids did when grown in a more fertile substrate, while no inter-cytotype differences were found in a less fertile substrate. AMF inoculation significantly reduced plant growth and improved P uptake, but its effects did not differ between the cytotypes. CONCLUSIONS The results do not support our hypotheses that the cytotype structure in a mixed-ploidy population of C. stoebe is mirrored in AMF-community composition and that ploidy-specific fungal communities contribute to cytotype co-existence. Causes and implications of the observed negative growth response to AMF are discussed.
Collapse
Affiliation(s)
- Radka Sudová
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, CZ-128 44, Prague, Czech Republic
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Ecology Department, Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jan Suda
- Institute of Botany, The Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Stanislav Španiel
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovakia
| | - Heinz Müller-Schärer
- Department of Biology, Ecology and Evolution, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Patrik Mráz
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
43
|
Powell JR, Rillig MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. THE NEW PHYTOLOGIST 2018; 220:1059-1075. [PMID: 29603232 DOI: 10.1111/nph.15119] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 1059 I. Introduction: pathways of influence and pervasiveness of effects 1060 II. AM fungal richness effects on ecosystem functions 1062 III. Other dimensions of biodiversity 1062 IV. Back to basics - primary axes of niche differentiation by AM fungi 1066 V. Functional diversity of AM fungi - a role for biological stoichiometry? 1067 VI. Past, novel and future ecosystems 1068 VII. Opportunities and the way forward 1071 Acknowledgements 1072 References 1072 SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research.
Collapse
Affiliation(s)
- Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, D-14195, Berlin, Germany
| |
Collapse
|
44
|
Van Geel M, Jacquemyn H, Plue J, Saar L, Kasari L, Peeters G, van Acker K, Honnay O, Ceulemans T. Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. THE NEW PHYTOLOGIST 2018; 220:1262-1272. [PMID: 29243832 DOI: 10.1111/nph.14947] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 05/11/2023]
Abstract
Although it is well known that arbuscular mycorrhizal fungi (AMF) play a key role in the functioning of natural ecosystems, the underlying drivers determining the composition of AMF communities remain unclear. In this study, we established 138 sampling plots at 46 grassland sites, consisting of 26 acidic grasslands and 20 calcareous grasslands spread across eight European countries, to assess the relative importance of abiotic and biotic filtering in driving AMF community composition and structure in both the grassland soils and in the roots of 13 grassland plant species. Soil AMF communities differed significantly between acidic and calcareous grasslands. In root AMF communities, most variance was attributable to soil variables while very little variation was explained by host plant identity. Root AMF communities in host plant species occurring in only one grassland type closely resembled the soil AMF communities of that grassland type and the root AMF communities of other host plant species occurring in the same grassland type. The observed AMF-host plants networks were not modular but nested. Our results indicate that abiotic conditions, rather than biotic filtering through host plant specificity, are the most important drivers in shaping AMF communities in European seminatural grasslands.
Collapse
Affiliation(s)
- Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Jan Plue
- Biogeography and Geomatics, Department of Physical Geography, Stockholm University, Stockholm, 114 18, Sweden
| | - Liina Saar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Liis Kasari
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Gerrit Peeters
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Kasper van Acker
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| |
Collapse
|
45
|
Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI. Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proc Biol Sci 2018; 285:20181600. [PMID: 30305437 PMCID: PMC6191707 DOI: 10.1098/rspb.2018.1600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 01/12/2023] Open
Abstract
Arbuscular mycorrhizas are widespread in land plants including liverworts, some of the closest living relatives of the first plants to colonize land 500 million years ago (MYA). Previous investigations reported near-exclusive colonization of liverworts by the most recently evolved arbuscular mycorrhizal fungi, the Glomeraceae, indicating a recent acquisition from flowering plants at odds with the widely held notion that arbuscular mycorrhizal-like associations in liverworts represent the ancestral symbiotic condition in land plants. We performed an analysis of symbiotic fungi in 674 globally collected liverworts using molecular phylogenetics and electron microscopy. Here, we show every order of arbuscular mycorrhizal fungi colonizes early-diverging liverworts, with non-Glomeraceae being at least 10 times more common than in flowering plants. Arbuscular mycorrhizal fungi in liverworts and other ancient plant lineages (hornworts, lycopods, and ferns) were delimited into 58 taxa and 36 singletons, of which at least 43 are novel and specific to liverworts. The discovery that early plant lineages are colonized by early-diverging fungi supports the hypothesis that arbuscular mycorrhizas are an ancestral symbiosis for all land plants.
Collapse
Affiliation(s)
- William R Rimington
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Life Sciences Department, Algae, Fungi and Plants Division, Natural History Museum, London SW7 5BD, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Silvia Pressel
- Life Sciences Department, Algae, Fungi and Plants Division, Natural History Museum, London SW7 5BD, UK
| | - Jeffrey G Duckett
- Life Sciences Department, Algae, Fungi and Plants Division, Natural History Museum, London SW7 5BD, UK
| | - Katie J Field
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Read
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| |
Collapse
|
46
|
Racocetra crispa (Glomeromycotina) delimited by integrative evidence based on morphology, long continuous nuclear rDNA sequencing and phylogeny. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Ellouze W, Hamel C, Singh AK, Mishra V, DePauw RM, Knox RE. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies. Can J Microbiol 2018; 64:527-536. [PMID: 29633625 DOI: 10.1139/cjm-2017-0637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the variation in how wheat genotypes shape their arbuscular mycorrhizal (AM) fungal communities in a prairie environment is foundational to breeding for enhanced AM fungi-wheat interactions. The AM fungal communities associated with 32 durum wheat genotypes were described by pyrosequencing of amplicons. The experiment was set up at two locations in the Canadian prairies. The intensively managed site was highly dominated by Funneliformis. Genotype influenced the AM fungal community in the rhizosphere soil, but there was no evidence of a differential genotype effect on the AM fungal community of durum wheat roots. The influence of durum wheat genotype on the AM fungal community of the soil was less important at the intensively managed site. Certain durum wheat genotypes, such as Strongfield, Plenty, and CDC Verona, were associated with high abundance of Paraglomus, and Dominikia was undetected in the rhizosphere of the recent cultivars Enterprise, Eurostar, Commander, and Brigade. Genetic variation in the association of durum wheat with AM fungi suggests the possibility of increasing the sustainability of cropping systems through the use of durum wheat genotypes that select highly effective AM fungal taxa residing in the agricultural soils of the Canadian prairies.
Collapse
Affiliation(s)
- Walid Ellouze
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada.,b Crop Diversification Centre South, Alberta Agriculture and Forestry, 301 Horticultural Station Road East, Brooks, AB T1R 1E6, Canada
| | - Chantal Hamel
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| | - Asheesh K Singh
- c Department of Agronomy, Iowa State University, 1501 Agronomy Hall, Ames, IA 50011-1010, USA
| | - Vachaspati Mishra
- b Crop Diversification Centre South, Alberta Agriculture and Forestry, 301 Horticultural Station Road East, Brooks, AB T1R 1E6, Canada
| | - Ron M DePauw
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada.,d Advancing Wheat Technology, 870 Field Drive, Swift Current, SK S9H 4N5, Canada
| | - Ron E Knox
- a Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| |
Collapse
|
48
|
Tylianakis JM, Martínez-García LB, Richardson SJ, Peltzer DA, Dickie IA. Symmetric assembly and disassembly processes in an ecological network. Ecol Lett 2018; 21:896-904. [PMID: 29611321 DOI: 10.1111/ele.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/24/2018] [Accepted: 03/02/2018] [Indexed: 02/03/2023]
Abstract
The processes whereby ecological networks emerge, persist and decay throughout ecosystem development are largely unknown. Here we study networks of plant and arbuscular mycorrhizal fungal (AMF) communities along a 120 000 year soil chronosequence, as they undergo assembly (progression) and then disassembly (retrogression). We found that network assembly and disassembly were symmetrical, self-reinforcing processes that together were capable of generating key attributes of network architecture. Plant and AMF species that had short indirect paths to others in the community (i.e. high centrality), rather than many direct interaction partners (i.e. high degree), were best able to attract new interaction partners and, in the case of AMF species, also to retain existing interactions with plants during retrogression. We then show using simulations that these non-random patterns of attachment and detachment promote nestedness of the network. These results have implications for predicting extinction sequences, identifying focal points for invasions and suggesting trajectories for restoration.
Collapse
Affiliation(s)
- Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.,Bio-protection Research Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Laura B Martínez-García
- Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand.,Department of Soil Quality, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, The Netherlands
| | | | | | - Ian A Dickie
- Bio-protection Research Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
49
|
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. MICROBIOME 2018; 6:58. [PMID: 29587885 PMCID: PMC5870681 DOI: 10.1186/s40168-018-0445-0] [Citation(s) in RCA: 581] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/13/2018] [Indexed: 05/09/2023]
Abstract
Since the colonization of land by ancestral plant lineages 450 million years ago, plants and their associated microbes have been interacting with each other, forming an assemblage of species that is often referred to as a "holobiont." Selective pressure acting on holobiont components has likely shaped plant-associated microbial communities and selected for host-adapted microorganisms that impact plant fitness. However, the high microbial densities detected on plant tissues, together with the fast generation time of microbes and their more ancient origin compared to their host, suggest that microbe-microbe interactions are also important selective forces sculpting complex microbial assemblages in the phyllosphere, rhizosphere, and plant endosphere compartments. Reductionist approaches conducted under laboratory conditions have been critical to decipher the strategies used by specific microbes to cooperate and compete within or outside plant tissues. Nonetheless, our understanding of these microbial interactions in shaping more complex plant-associated microbial communities, along with their relevance for host health in a more natural context, remains sparse. Using examples obtained from reductionist and community-level approaches, we discuss the fundamental role of microbe-microbe interactions (prokaryotes and micro-eukaryotes) for microbial community structure and plant health. We provide a conceptual framework illustrating that interactions among microbiota members are critical for the establishment and the maintenance of host-microbial homeostasis.
Collapse
Affiliation(s)
- M Amine Hassani
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Paloma Durán
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
50
|
Liu X, Burslem DFRP, Taylor JD, Taylor AFS, Khoo E, Majalap-Lee N, Helgason T, Johnson D. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol Lett 2018. [DOI: 10.1111/ele.12939] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xubing Liu
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
- Department of Ecology; School of Life Sciences; Sun Yat-sen University; Guangzhou 510275 China
| | - David F. R. P. Burslem
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
| | - Joe D. Taylor
- Department of Biology; University of York; Heslington York YO10 5DD UK
- School of Environment and Life Sciences; University of Salford; The Crescent Salford M5 4WT UK
| | - Andy F. S. Taylor
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
- The James Hutton Institute; Craigiebuckler, Aberdeen AB15 8QH UK
| | - Eyen Khoo
- Forest Research Centre; Sabah Forestry Department; Sandakan 90715 Malaysia
| | - Noreen Majalap-Lee
- Forest Research Centre; Sabah Forestry Department; Sandakan 90715 Malaysia
| | - Thorunn Helgason
- Department of Biology; University of York; Heslington York YO10 5DD UK
| | - David Johnson
- School of Earth and Environmental Sciences; The University of Manchester; Manchester M13 9PT UK
| |
Collapse
|