1
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
3
|
Basso JTR, Ankrah NYD, Tuttle MJ, Grossman AS, Sandaa RA, Buchan A. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. THE ISME JOURNAL 2020; 14:1688-1700. [PMID: 32242083 PMCID: PMC7305329 DOI: 10.1038/s41396-020-0637-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
Abstract
Temperate phages engage in long-term associations with their hosts that may lead to mutually beneficial interactions, of which the full extent is presently unknown. Here, we describe an environmentally relevant model system with a single host, a species of the Roseobacter clade of marine bacteria, and two genetically similar phages (ɸ-A and ɸ-D). Superinfection of a ɸ-D lysogenized strain (CB-D) with ɸ-A particles resulted in a lytic infection, prophage induction, and conversion of a subset of the host population, leading to isolation of a newly ɸ-A lysogenized strain (CB-A). Phenotypic differences, predicted to result from divergent lysogenic-lytic switch mechanisms, are evident between these lysogens, with CB-A displaying a higher incidence of spontaneous induction. Doubling times of CB-D and CB-A in liquid culture are 75 and 100 min, respectively. As cell cultures enter stationary phase, CB-A viable counts are half of CB-D. Consistent with prior evidence that cell lysis enhances biofilm formation, CB-A produces twice as much biofilm biomass as CB-D. As strains are susceptible to infection by the opposing phage type, co-culture competitions were performed to test fitness effects. When grown planktonically, CB-A outcompeted CB-D three to one. Yet, during biofilm growth, CB-D outcompeted CB-A three to one. These results suggest that genetically similar phages can have divergent influence on the competitiveness of their shared hosts in distinct environmental niches, possibly due to a complex form of phage-mediated allelopathy. These findings have implications for enhanced understanding of the eco-evolutionary dynamics of host-phage interactions that are pervasive in all ecosystems.
Collapse
Affiliation(s)
- Jonelle T R Basso
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Nana Y D Ankrah
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
- Department of Entomology, Cornell University, 5136 Comstock Hall, Ithaca, NY, 14853, USA
| | - Matthew J Tuttle
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Alex S Grossman
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, PO 7803, N-5020, Bergen, Norway
| | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Abstract
Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Tara Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Tara Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| | - Federico M Ibarbalz
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| |
Collapse
|
5
|
Abstract
Viruses infect all kingdoms of marine life from bacteria to whales. Viruses in the world's oceans play important roles in the mortality of phytoplankton, and as drivers of evolution and biogeochemical cycling. They shape host population abundance and distribution and can lead to the termination of algal blooms. As discoveries about this huge reservoir of genetic and biological diversity grow, our understanding of the major influences viruses exert in the global marine environment continues to expand. This chapter discusses the key discoveries that have been made to date about marine viruses and the current direction of this field of research.
Collapse
Affiliation(s)
- Karen D Weynberg
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Moniruzzaman M, Wurch LL, Alexander H, Dyhrman ST, Gobler CJ, Wilhelm SW. Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat Commun 2017; 8:16054. [PMID: 28656958 PMCID: PMC5493757 DOI: 10.1038/ncomms16054] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/16/2017] [Indexed: 01/12/2023] Open
Abstract
Establishing virus–host relationships has historically relied on culture-dependent approaches. Here we report on the use of marine metatranscriptomics to probe virus–host relationships. Statistical co-occurrence analyses of dsDNA, ssRNA and dsRNA viral markers of polyadenylation-selected RNA sequences from microbial communities dominated by Aureococcus anophagefferens (Quantuck Bay, NY), and diatoms (Narragansett Bay, RI) show active infections by diverse giant viruses (NCLDVs) associated with algal and nonalgal hosts. Ongoing infections of A. anophagefferens by a known Mimiviridae (AaV) occur during bloom peak and decline. Bloom decline is also accompanied by increased activity of viruses other than AaV, including (+) ssRNA viruses. In Narragansett Bay, increased temporal resolution reveals active NCLDVs with both ‘boom-and-bust’ and ‘steady-state infection’-like ecologies that include known as well as novel virus–host interactions. Our approach offers a method for screening active viral infections and develops links between viruses and their potential hosts in situ. Our observations further demonstrate that previously unknown virus–host relationships in marine systems are abundant. Viruses are partners in ecosystem ecology, yet their study has been primarily limited to laboratory models virus-host or derived from metagenomics. Here, Moniruzzaman et al. use metatranscriptomics to resolve interactions between giant viruses and single-celled eukaryotic hosts.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Louie L Wurch
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Harriet Alexander
- Department of Earth and Environmental Science and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Science and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
7
|
Nissimov JI, Pagarete A, Ma F, Cody S, Dunigan DD, Kimmance SA, Allen MJ. Coccolithoviruses: A Review of Cross-Kingdom Genomic Thievery and Metabolic Thuggery. Viruses 2017; 9:v9030052. [PMID: 28335474 PMCID: PMC5371807 DOI: 10.3390/v9030052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022] Open
Abstract
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - António Pagarete
- Department of Biology, University of Bergen, Bergen, 7803, Norway.
| | - Fangrui Ma
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Sean Cody
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
8
|
Taylor AR, Brownlee C, Wheeler G. Coccolithophore Cell Biology: Chalking Up Progress. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:283-310. [PMID: 27814031 DOI: 10.1146/annurev-marine-122414-034032] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coccolithophores occupy a special position within the marine phytoplankton because of their production of intricate calcite scales, or coccoliths. Coccolithophores are major contributors to global ocean calcification and long-term carbon fluxes. The intracellular production of coccoliths requires modifications to cellular ultrastructure and metabolism that are surveyed here. In addition to calcification, which appears to have evolved with a diverse range of functions, several other remarkable features that likely underpin the ecological and evolutionary success of coccolithophores have recently been uncovered. These include complex and varied life cycle strategies related to abiotic and biotic interactions as well as a range of novel metabolic pathways and nutritional strategies. Together with knowledge of coccolithophore genetic and physiological variability, these findings are beginning to shed new light on species diversity, distribution, and ecological adaptation. Further advances in genetics and functional characterization at the cellular level will likely to lead to a rapid increase in this understanding.
Collapse
Affiliation(s)
- Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403;
| | - Colin Brownlee
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom; ,
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, United Kingdom
| | - Glen Wheeler
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom; ,
| |
Collapse
|
9
|
Ziv C, Malitsky S, Othman A, Ben-Dor S, Wei Y, Zheng S, Aharoni A, Hornemann T, Vardi A. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc Natl Acad Sci U S A 2016; 113:E1907-16. [PMID: 26984500 PMCID: PMC4822627 DOI: 10.1073/pnas.1523168113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine viruses are the most abundant biological entities in the oceans shaping community structure and nutrient cycling. The interaction between the bloom-forming alga Emiliania huxleyi and its specific large dsDNA virus (EhV) is a major factor determining the fate of carbon in the ocean, thus serving as a key host-pathogen model system. The EhV genome encodes for a set of genes involved in the de novo sphingolipid biosynthesis, not reported in any viral genome to date. We combined detailed lipidomic and biochemical analyses to characterize the functional role of this virus-encoded pathway during lytic viral infection. We identified a major metabolic shift, mediated by differential substrate specificity of virus-encoded serine palmitoyltransferase, a key enzyme of sphingolipid biosynthesis. Consequently, unique viral glycosphingolipids, composed of unusual hydroxylated C17 sphingoid bases (t17:0) were highly enriched in the infected cells, and their synthesis was found to be essential for viral assembly. These findings uncover the biochemical bases of the virus-induced metabolic rewiring of the host sphingolipid biosynthesis during the chemical "arms race" in the ocean.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Shifra Ben-Dor
- Biological Services Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yu Wei
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Shuning Zheng
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
10
|
Pagarete A, Kusonmano K, Petersen K, Kimmance SA, Martínez Martínez J, Wilson WH, Hehemann JH, Allen MJ, Sandaa RA. Dip in the gene pool: metagenomic survey of natural coccolithovirus communities. Virology 2014; 466-467:129-37. [PMID: 24947907 DOI: 10.1016/j.virol.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
Abstract
Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.
Collapse
Affiliation(s)
| | | | - Kjell Petersen
- Computational Biology Unit, University of Bergen, Norway
| | | | | | - William H Wilson
- Plymouth Marine Laboratory, Plymouth, UK; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jan-Hendrik Hehemann
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
11
|
Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S, Aharoni A, Weinstock E, Tzfadia O, Ben-Dor S, Feldmesser E, Pohnert G, Vardi A. Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of Emiliania huxleyi, a Bloom-Forming Alga in the Ocean. THE PLANT CELL 2014; 26:2689-2707. [PMID: 24920329 PMCID: PMC4114960 DOI: 10.1105/tpc.114.125641] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 05/21/2023]
Abstract
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical "arms race" in the ocean.
Collapse
Affiliation(s)
- Shilo Rosenwasser
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michaela A Mausz
- Institute of Inorganic and Analytical Chemistry/Bioorganic Analytics, Friedrich Schiller University Jena, 07743 Jena, Germany Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Daniella Schatz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Sheyn
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Weinstock
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Tzfadia
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry/Bioorganic Analytics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Assaf Vardi
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Rowe JM, Jeanniard A, Gurnon JR, Xia Y, Dunigan DD, Van Etten JL, Blanc G. Global analysis of Chlorella variabilis NC64A mRNA profiles during the early phase of Paramecium bursaria chlorella virus-1 infection. PLoS One 2014; 9:e90988. [PMID: 24608695 PMCID: PMC3946773 DOI: 10.1371/journal.pone.0090988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels. The population of genes with significant transcriptional changes gradually increased until stabilizing at 40 minutes post infection. Functional categories including cytoplasmic ribosomal proteins, jasmonic acid biosynthesis and anaphase promoting complex/cyclosomes had a significant excess in upregulated genes, whereas spliceosomal snRNP complexes and the shikimate pathway had significantly more down-regulated genes, suggesting that these pathways were activated or shut-down in response to the virus infection. Lastly, we examined the expression of C. varibilis RNA polymerase subunits, as PBCV-1 transcription depends on host RNA polymerases. Two subunits were up-regulated, RPB10 and RPC34, suggesting that they may function to support virus transcription. These results highlight genes and pathways, as well as overall trends, for further refinement of our understanding of the changes that take place during the early stages of viral infection.
Collapse
Affiliation(s)
- Janet M. Rowe
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Adrien Jeanniard
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- Laboratoire Information Structurale and Génomique UMR7256 CNRS, Aix-Marseille Université, Marseille, France
| | - James R. Gurnon
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yuannan Xia
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Guillaume Blanc
- Laboratoire Information Structurale and Génomique UMR7256 CNRS, Aix-Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
13
|
Ankrah NYD, May AL, Middleton JL, Jones DR, Hadden MK, Gooding JR, LeCleir GR, Wilhelm SW, Campagna SR, Buchan A. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME JOURNAL 2013; 8:1089-100. [PMID: 24304672 DOI: 10.1038/ismej.2013.216] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Abstract
Viruses contribute to the mortality of marine microbes, consequentially altering biological species composition and system biogeochemistry. Although it is well established that host cells provide metabolic resources for virus replication, the extent to which infection reshapes host metabolism at a global level and the effect of this alteration on the cellular material released following viral lysis is less understood. To address this knowledge gap, the growth dynamics, metabolism and extracellular lysate of roseophage-infected Sulfitobacter sp. 2047 was studied using a variety of techniques, including liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics. Quantitative estimates of the total amount of carbon and nitrogen sequestered into particulate biomass indicate that phage infection redirects ∼75% of nutrients into virions. Intracellular concentrations for 82 metabolites were measured at seven time points over the infection cycle. By the end of this period, 71% of the detected metabolites were significantly elevated in infected populations, and stable isotope-based flux measurements showed that these cells had elevated metabolic activity. In contrast to simple hypothetical models that assume that extracellular compounds increase because of lysis, a profile of metabolites from infected cultures showed that >70% of the 56 quantified compounds had decreased concentrations in the lysate relative to uninfected controls, suggesting that these small, labile nutrients were being utilized by surviving cells. These results indicate that virus-infected cells are physiologically distinct from their uninfected counterparts, which has implications for microbial community ecology and biogeochemistry.
Collapse
Affiliation(s)
- Nana Yaw D Ankrah
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Amanda L May
- Department of Chemistry, University of TN, Knoxville, TN, USA
| | | | - Daniel R Jones
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Mary K Hadden
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Gary R LeCleir
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
14
|
Nissimov JI, Jones M, Napier JA, Munn CB, Kimmance SA, Allen MJ. Functional inferences of environmental coccolithovirus biodiversity. Virol Sin 2013; 28:291-302. [PMID: 24006045 DOI: 10.1007/s12250-013-3362-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022] Open
Abstract
The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a major cause of coccolithophore bloom termination and have been studied in laboratory, mesocosm and open ocean studies. However, little is known about the dynamic interactions between the host and its viruses, and less is known about the natural diversity and role of functionally important genes within natural coccolithovirus communities. Here, we investigate the temporal and spatial distribution of coccolithoviruses by the use of molecular fingerprinting techniques PCR, DGGE and genomic sequencing. The natural biodiversity of the virus genes encoding the major capsid protein (MCP) and serine palmitoyltransferase (SPT) were analysed in samples obtained from the Atlantic Meridional Transect (AMT), the North Sea and the L4 site in the Western Channel Observatory. We discovered nine new coccolithovirus genotypes across the AMT and L4 site, with the majority of MCP sequences observed at the deep chlorophyll maximum layer of the sampled sites on the transect. We also found four new SPT gene variations in the North Sea and at L4. Their translated fragments and the full protein sequence of SPT from laboratory strains EhV-86 and EhV-99B1 were modelled and revealed that the theoretical fold differs among strains. Variation identified in the structural distance between the two domains of the SPT protein may have an impact on the catalytic capabilities of its active site. In summary, the combined use of 'standard' markers (i.e. MCP), in combination with metabolically relevant markers (i.e. SPT) are useful in the study of the phylogeny and functional biodiversity of coccolithoviruses, and can provide an interesting intracellular insight into the evolution of these viruses and their ability to infect and replicate within their algal hosts.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | | | | | | | | | | |
Collapse
|
15
|
Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L, Poulain J, Ferrera I, Sarmento H, Villar E, Lima-Mendez G, Faust K, Sunagawa S, Claverie JM, Moreau H, Desdevises Y, Bork P, Raes J, de Vargas C, Karsenti E, Kandels-Lewis S, Jaillon O, Not F, Pesant S, Wincker P, Ogata H. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME JOURNAL 2013; 7:1678-95. [PMID: 23575371 PMCID: PMC3749498 DOI: 10.1038/ismej.2013.59] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/17/2022]
Abstract
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.
Collapse
Affiliation(s)
- Pascal Hingamp
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 2012; 22:867-907. [PMID: 22989289 DOI: 10.1111/mec.12000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023]
Abstract
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms.
Collapse
Affiliation(s)
- Susana M Coelho
- UPMC-Université Paris 06, Station Biologique de Roscoff, Roscoff, France.
| | | | | | | | | |
Collapse
|
17
|
Frada MJ, Bidle KD, Probert I, de Vargas C. In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environ Microbiol 2012; 14:1558-69. [DOI: 10.1111/j.1462-2920.2012.02745.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|