1
|
Abdel-Raheem SM, Khodier SM, Almathen F, Hanafy AST, Abbas SM, Al-Shami SA, Al-Sultan SI, Alfifi A, El-Tarabili RM. Dissemination, virulence characteristic, antibiotic resistance determinants of emerging linezolid and vancomycin-resistant Enterococcus spp. in fish and crustacean. Int J Food Microbiol 2024; 418:110711. [PMID: 38677237 DOI: 10.1016/j.ijfoodmicro.2024.110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Enterococci are emerging nosocomial pathogens. Their widespread distribution causes them to be food contaminants. Furthermore, Enterococci can colonize various ecological niches and diffuse into the food chain via contaminated animals and foods because of their remarkable tolerance to unfavorable environmental circumstances. Due to their potential dissemination to humans, antimicrobial-resistant Enterococci in fish are a worldwide health issue. This study characterized AMR, ARGs, VAGs, gelatinase activity, and biofilm formation in Enterococcus spp. recovered from fish and seafood and evaluated potential correlations. 54 Enterococcus spp. strains(32.73 %)were isolated from 165 samples (75 Oreochromis niloticus, 30 Argyrosomus regius, and 60 Shrimp), comprising 30 Enterococcus faecalis (55.6 %) and 24 Enterococcus faecium (44.4 %) with total 32.73 % (54/165), The maximum prevalence rate of Enterococcus spp. was observed in Nile tilapia (34/54; 63 %), followed by shrimp (14/54; 25.9 %) and Argyrosomus regius (6/54; 11.1 %). The maximum prevalence rate of E. faecalis was observed in Nile tilapia (22/30; 73.3 %), followed by shrimp (8/30; 26.7 %) with significant differences. The prevalence rate of E. faecium was observed in Nile tilapia (12/24; 50 %), followed by shrimp (6/24,25 %). E. faecium is only isolated from Argyrosomus regius (6/24,25 %). Isolates exhibited high resistance against both tetracycline (90.7 %) and erythromycin(88.9 %), followed by gentamycin (77.8 %), ciprofloxacin (74.1 %), levofloxacin (72.2 %), penicillin (44.4 %), vancomycin (37 %), and linezolid (20.4 %). 50 strains (92.6 %) exhibited resistance to more than two antibiotics, 5 strains (10 %) were XDR, and the remaining 45 strains (90 %) were classified as MDR. 92.6 % of the isolates had MARindices >0.2, indicating they originated in settings with a high risk of contamination. Additionally, ten ARGs were identified, with tet(M) 92.6 %, followed by erm(B) (88.9 %), aac(6')-Ie-aph(2″)-Ia(77.8 %), tet(K) (75.9 %), gyrA (74.1 %), blaZ (48.1 %), vanA (37 %), vanB (31.5 %), optrA (20.4 %), and catA(3.7 %). Biofilm formation and gelatinase activity were observed in 85.2 %, and 61.1 % of the isolates, respectively. A total of 11 VAGs were detected, with gelE as the most prevalent (83.3 %) followed by agg(79.6 %), pil (74.1 %), both sprE and asa1 (72.2 %), hyl (70.4 %), eps(68.5 %), EF3314 (57.4 %), ace (50 %), and cylA (35.2 %) with no detection of cylB. In conclusion, the emergence of linezolid-resistant -vancomycin-resistant enterococci recovered from Egyptian fish and shrimp, suggests that fish and seafood might participate a fundamental part in the emergence of antimicrobial resistance among humans.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt.
| | - Sherin M Khodier
- Central lab for marine fish diagnosing and treatment and measuring fish and water quality, Marine Aquaculture Development (MADEӀӀ), Egypt
| | - Faisal Almathen
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia.
| | - Al-Shaimaa T Hanafy
- Department of Bacteriology, Animal Health Research Institute, Portsaid laboratory Branch, Egypt
| | - Sarah M Abbas
- Department of Bacteriology, Animal Health Research Institute, Portsaid laboratory Branch, Egypt
| | - Salah Abdulaziz Al-Shami
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia.
| | - Saad Ibrahim Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia.
| | - Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia.
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
2
|
Chen W, Wang Q, Wu H, Xia P, Tian R, Li R, Xia L. Molecular epidemiology, phenotypic and genomic characterization of antibiotic-resistant enterococcal isolates from diverse farm animals in Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168683. [PMID: 37996027 DOI: 10.1016/j.scitotenv.2023.168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Multidrug-resistant (MDR) bacteria in farm environments can be transferred to humans through the food chain and occupational exposure. Enterococcus infections caused by linezolid resistant enterococci (LRE) are becoming more challenging to treat as their resistance to antibiotics intensifies. Therefore, this study investigated the molecular epidemiology, phenotypic and genomic characterization of enterococci in seven species of farm animals (sheep, chicken, swine, camel, cattle, equine, pigeon) anal swab from Xinjiang, China by agar dilution method, polymerase chain reaction (PCR), whole-genome sequencing (WGS) and bioinformatics analysis. A total of 771 samples were collected, 599 (78 %) were contaminated with Enterococcus spp., among which Enterococcus faecalis (350/599) was dominant. Antimicrobial susceptibility testing showed that high resistance was observed in rifampicin (80 %), tetracycline (71 %), doxycycline (71 %), and erythromycin (69 %). The results of PCR showed the highest prevalent antibiotic resistance genes (ARGs) were aac(6')-aph(2″) (85 %), followed by tet(M) (73 %), erm(B) (62 %), and aph(3')-IIIa (61 %). Besides, 29 optrA-carrying E. faecalis isolates belonging to 13 STs (including 3 new alleles) were detected, with ST714 (31 %, 9/29) being the dominant ST type. The phylogenetic tree showed that optrA-carrying E. faecalis prevalent in the intensive swine farm is mainly caused by clonal transmission. Notably, optrA gene in Enterococcus spp. isolate from camel was first characterized here. WGS of E. faecalis F109 isolate from camel confirmed the colocalization of optrA with other five ARGs in the same plasmid (pAFL-109F). The optrA-harboring genetic context is IS1216E-fexA-optrA-erm(A)-IS1216E. This study highlights the prevalence of MDR Enterococcus (≥88 %) and four ARGs (≥75 %) in swine (intensive farming), cattle (commercial farming), and chickens (backyard farming) are high and also highlights that optrA-carrying E. faecalis of farm animals incur a transmission risk to humans through environment, food consumption and others. Therefore, antibiotic-resistant bacteria (ARB) monitoring and effective control measures should be strengthened and implemented in diverse animals.
Collapse
Affiliation(s)
- Wanzhao Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huimin Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Panpan Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Rui Tian
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
3
|
AL Rubaye M, Janice J, Bjørnholt JV, Kacelnik O, Haldorsen BC, Nygaard RM, Hegstad J, Sundsfjord A, Hegstad K. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb Genom 2023; 9:001160. [PMID: 38112685 PMCID: PMC10763505 DOI: 10.1099/mgen.0.001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.
Collapse
Affiliation(s)
- Mushtaq AL Rubaye
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørg C. Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Randi M. Nygaard
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - the Norwegian VRE study group
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Cho S, McMillan EA, Barrett JB, Hiott LM, Woodley TA, House SL, Frye JG, Jackson CR. Distribution and Transfer of Plasmid Replicon Families among Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium from Poultry. Microorganisms 2022; 10:microorganisms10061244. [PMID: 35744761 PMCID: PMC9228330 DOI: 10.3390/microorganisms10061244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The presence and transfer of plasmids from commensal bacteria to more pathogenic bacteria may contribute to the dissemination of antimicrobial resistance. However, the prevalence of plasmids from commensal bacteria, such as the enterococci, in food animals remains largely unknown. In this study, the diversity and prevalence of plasmid families from multidrug-resistant (MDR; resistance to three or more antimicrobials) enterococci from poultry carcasses were determined. Plasmid-positive MDR enterococci were also tested for the ability to transfer plasmids to other enterococci using conjugation. MDR Enterococcus faecalis (n = 98) and Enterococcus faecium (n = 696) that were isolated from poultry carcass rinsates between 2004 and 2011 were tested for the presence of 21 plasmid replicon (rep) families using multiplex PCR. Approximately 48% of E. faecalis (47/98) and 16% of E. faecium (110/696) were positive for at least one rep-family. Fourteen rep-families were detected overall, and ten rep-families were shared between E. faecalis and E. faecium. The rep7 and rep17 families were unique to E. faecalis, while the rep5 and rep8 families were unique to E. faecium. The rep9 family was predominant in both E. faecalis and E. faecium for all the years tested. The greatest number of rep-families detected was in 2005 (n = 10), and the least was in 2009 (n = 1). Eight rep-families were transferred from E. faecalis donors to the E. faecalis JH2-2 recipient using conjugation. Results from this study showed that E. faecalis and E. faecium from poultry carcasses contain numerous and diverse rep-families that are capable of conjugal transfer.
Collapse
Affiliation(s)
- Sohyun Cho
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Elizabeth A. McMillan
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Sandra L. House
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
- Correspondence: ; Tel.: +1-(706)-546-3604; Fax: +1-(706)-546-3616
| |
Collapse
|
5
|
Werner KA, Schneider D, Poehlein A, Diederich N, Feyen L, Axtmann K, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Front Microbiol 2022; 13:826071. [PMID: 35432262 PMCID: PMC9009411 DOI: 10.3389/fmicb.2022.826071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLSB group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.
Collapse
Affiliation(s)
- Katharina A. Werner
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Nina Diederich
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lara Feyen
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Katharina Axtmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—Umweltforschungszentrum Leipzig (UFZ), Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
- *Correspondence: Elisabeth Grohmann,
| |
Collapse
|
6
|
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics (Basel) 2022; 11:antibiotics11030380. [PMID: 35326843 PMCID: PMC8944505 DOI: 10.3390/antibiotics11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1–2, rep3, rep5–6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.
Collapse
|
7
|
Chen YH, Lin SY, Lin YT, Tseng SP, Chang CC, Yu SY, Hung WW, Jao YT, Lin CY, Chen YH, Hung WC. Emergence of aac(6')-Ie-aph(2'')-Ia-positive enterococci with non-high-level gentamicin resistance mediated by IS1216V: adaptation to decreased aminoglycoside usage in Taiwan. J Antimicrob Chemother 2021; 76:1689-1697. [PMID: 33822062 DOI: 10.1093/jac/dkab071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To explore the mechanisms mediating the different levels of gentamicin resistance in enterococci. METHODS Susceptibility testing with gentamicin and PCR of resistance determinants were performed in 149 enterococcal isolates. Genetic relatedness was characterized by MLST and PFGE analysis. Sequences of the aac(6')-Ie-aph(2'')-Ia gene and its surrounding environment were determined by Illumina sequencing. Stability assays of gentamicin resistance were carried out to evaluate the probability of loss of the high-level gentamicin resistance (HLGR) phenotype. RESULTS A total of 17 (11.4%) aac(6')-Ie-aph(2'')-Ia-positive enterococcal isolates (2 Enterococcus faecalis and 15 Enterococcus faecium) with non-HLGR phenotype were found. MLST analysis revealed that the 2 E. faecalis belonged to ST116 and ST618, while all the 15 E. faecium belonged to clonal complex 17. Sequence analysis demonstrated that IS1216V was inserted into the 5'-end of aac(6')-Ie-aph(2'')-Ia, leading to loss of HLGR phenotype. Three IS1216V insertion types were found, and type II and III were frequently found in E. faecium. Interestingly, a total of 38 aac(6')-Ie-aph(2'')-Ia-positive E. faecium with HLGR phenotype also had type II or type III IS1216V insertion. Sequencing of the aac(6')-Ie-aph(2'')-Ia-positive HLGR E. faecium E37 revealed that an intact aac(6')-Ie-aph(2'')-Ia was located adjacent to IS1216V-disrupted aac(6')-Ie-aph(2'')-Ia. In a non-antibiotic environment, E37 tended to lose HLGR phenotype with a probability of 1.57 × 10-4, which was largely attributed to homologous recombination between the intact and disrupted aac(6')-Ie-aph(2'')-Ia. CONCLUSIONS This is first study to elucidate that the E. faecium is capable of changing its HLGR phenotype, which may contribute to adaptation to hospital environments with decreased usage of gentamicin.
Collapse
Affiliation(s)
- You-Han Chen
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Chia Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Song-Yih Yu
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Wen Hung
- Division of Endocrine and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Jao
- Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Khodabandeh M, Mohammadi M, Abdolsalehi MR, Hasannejad-Bibalan M, Gholami M, Alvandimanesh A, Pournajaf A, Rajabnia R. High-Level Aminoglycoside Resistance in Enterococcus Faecalis and Enterococcus Faecium; as a Serious Threat in Hospitals. Infect Disord Drug Targets 2020; 20:223-228. [PMID: 30499420 DOI: 10.2174/1871526519666181130095954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
AIMS AND OBJECTIVES The present work aimed to evaluate the frequency of aminoglycoside- modifying enzymes encoding genes in the E. faecalis and E. faecium and their antibiotic resistance profile. METHODS A total of 305 different clinical samples were subjected for identification and antibiotic susceptibility test. The high-level aminoglycoside resistance was identified by MIC and Kirby Bauer disc diffusion method. The prevalence of aac (6')-Ie-aph (2'')-Ia, aph (3')-IIIa and ant (4')- Ia genes was determined by multiplex- PCR. In total, 100 enterococci strains were isolated. The prevalence of E. faecalis and E. faecium isolates was 78% and 22%, respectively. RESULTS All isolates were susceptible to linezolid. So, all E. faecalis were susceptible to vancomycin but, 36.4% of E. faecium were resistant to it. The prevalence of multiple drug resistance strains was 100% and 67.9% of E. faecium and E. faecalis, respectively. High-level-gentamicin and streptomycin resistant rates were as follows; 26.9% and 73.1% of E. faecalis and 77.3% and 90.1% of E. faecium. Conclucion: The results of the current study showed a high frequency of aac (6')-Ie-aph (2'')-Ia genes among enterococcal isolates. A high rate of resistance to antimicrobials in Enterococcus is obviously problematic, and a novel policy is needed to decrease resistance in these microorganisms.
Collapse
Affiliation(s)
- Mahmoud Khodabandeh
- Department of Infectious Diseases, Pediatric's Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mohammadi
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Reza Abdolsalehi
- Department of Infectious Diseases, Pediatric's Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Alvandimanesh
- Department of pathology, Shafa hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abazar Pournajaf
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ramazan Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Discovery of New Antibacterial Accramycins from a Genetic Variant of the Soil Bacterium, Streptomyces sp. MA37. Biomolecules 2020; 10:biom10101464. [PMID: 33092156 PMCID: PMC7590149 DOI: 10.3390/biom10101464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 12/29/2022] Open
Abstract
Continued mining of natural products from the strain Streptomyces sp. MA37 in our laboratory led to the discovery of a minor specialized metabolite (SM) called accramycin A. Owing to its low yield (0.2 mg/L) in the wild type strain, we investigated the roles of regulatory genes in the corresponding biosynthetic gene cluster (acc BGC) through gene inactivation with the aim of improving the titer of this compound. One of the resulting mutants (∆accJ) dramatically upregulated the production of accramycin A 1 by 330-fold (66 mg/L). Furthermore, ten new metabolites, accramycins B-K 2-11, were discovered, together with two known compounds, naphthacemycin B112 and fasamycin C 13 from the mutant extract. This suggested that accJ, annotated as multiple antibiotic resistance regulator (MarR), is a negative regulator gene in the accramycin biosynthesis. Compounds 1-13 inhibited the Gram-positive pathogens (Staphylococcus aureus, Enterococcus faecalis) and clinical isolates Enterococcus faecium (K59-68 and K60-39) and Staphylococcus haemolyticus with minimal inhibitory concentration (MIC) values in the range of 1.5-12.5 µg/mL. Remarkably, compounds 1-13 displayed superior activity against K60-39 (MIC = 3.1-6.3 µg/mL) compared to ampicillin (MIC = 25 µg/mL), and offered promising potential for the development of accramycin-based antibiotics that target multidrug-resistant Enterococcus clinical isolates. Our results highlight the importance of identifying the roles of regulatory genes in natural product discovery.
Collapse
|
10
|
Antimicrobial Resistance Gene Detection and Plasmid Typing Among Multidrug Resistant Enterococci Isolated from Freshwater Environment. Microorganisms 2020; 8:microorganisms8091338. [PMID: 32887339 PMCID: PMC7563215 DOI: 10.3390/microorganisms8091338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, mechanisms of antimicrobial resistance (AR) as well as the abundance and diversity of plasmids were determined among multidrug resistant (MDR) enterococci from surface water in GA, USA. A total of 51 enterococci isolates were screened for the presence of 27 AR genes conferring resistance to ciprofloxacin, erythromycin, tylosin, kanamycin, streptomycin, lincomycin, Quinupristin/Dalfopristin (Q/D), and tetracycline. A plasmid classification system based on replication genes was used to detect 19 defined Gram-positive plasmid replicon families. Twelve genes were identified as conferring resistance to erythromycin and tylosin (erm(B) and erm(C)), kanamycin (aph(3′)-IIIa), streptomycin (ant(6)-Ia), lincomycin (lnu(B)), Q/D (vat(E)), ciprofloxacin (qnrE. faecalis), and tetracycline (tet(K), tet(L), tet(M), tet(O) and tet(S)). Twelve different rep-families were identified in two-thirds of the isolates. While AR genes commonly found in human and animals were detected in this study among environmental enterococci, resistance genes could not be determined for many of the isolates, which indicates that diverse AR mechanisms exist among enterococci, and the understanding of AR mechanisms for environmental enterococci is limited. Diverse rep-families were identified among the enterococci recovered from the aquatic environment, and these rep-families appear to be quite different from those recovered from other sources. This work expands knowledge of AR gene reservoirs and enterococcal plasmids across a wider range of environments.
Collapse
|
11
|
Juhas M, Widlake E, Teo J, Huseby DL, Tyrrell JM, Polikanov YS, Ercan O, Petersson A, Cao S, Aboklaish AF, Rominski A, Crich D, Böttger EC, Walsh TR, Hughes D, Hobbie SN. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J Antimicrob Chemother 2020; 74:944-952. [PMID: 30629184 PMCID: PMC6419615 DOI: 10.1093/jac/dky546] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/17/2018] [Accepted: 11/29/2018] [Indexed: 02/01/2023] Open
Abstract
Objectives Widespread antimicrobial resistance often limits the availability of therapeutic options to only a few last-resort drugs that are themselves challenged by emerging resistance and adverse side effects. Apramycin, an aminoglycoside antibiotic, has a unique chemical structure that evades almost all resistance mechanisms including the RNA methyltransferases frequently encountered in carbapenemase-producing clinical isolates. This study evaluates the in vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii, and provides a rationale for its superior antibacterial activity in the presence of aminoglycoside resistance determinants. Methods A thorough antibacterial assessment of apramycin with 1232 clinical isolates from Europe, Asia, Africa and South America was performed by standard CLSI broth microdilution testing. WGS and susceptibility testing with an engineered panel of aminoglycoside resistance-conferring determinants were used to provide a mechanistic rationale for the breadth of apramycin activity. Results MIC distributions and MIC90 values demonstrated broad antibacterial activity of apramycin against Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Morganella morganii, Citrobacter freundii, Providencia spp., Proteus mirabilis, Serratia marcescens and A. baumannii. Genotypic analysis revealed the variety of aminoglycoside-modifying enzymes and rRNA methyltransferases that rendered a remarkable proportion of clinical isolates resistant to standard-of-care aminoglycosides, but not to apramycin. Screening a panel of engineered strains each with a single well-defined resistance mechanism further demonstrated a lack of cross-resistance to gentamicin, amikacin, tobramycin and plazomicin. Conclusions Its superior breadth of activity renders apramycin a promising drug candidate for the treatment of systemic Gram-negative infections that are resistant to treatment with other aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Mario Juhas
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, Zürich, Switzerland
| | - Emma Widlake
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore, Singapore
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Jonathan M Tyrrell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Yury S Polikanov
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, MBRB 4170, Chicago, IL, USA
| | - Onur Ercan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Anna Petersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Ali F Aboklaish
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anna Rominski
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, USA
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, Zürich, Switzerland
| | - Timothy R Walsh
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, Zürich, Switzerland
| |
Collapse
|
12
|
Noh EB, Kim YB, Seo KW, Son SH, Ha JS, Lee YJ. Antimicrobial resistance monitoring of commensal Enterococcus faecalis in broiler breeders. Poult Sci 2020; 99:2675-2683. [PMID: 32359604 PMCID: PMC7597544 DOI: 10.1016/j.psj.2020.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis (E. faecalis) has rapidly acquired resistance to multiple antimicrobials, and the antimicrobial resistance of E. faecalis from broiler breeders has been implicated in its vertical transmission to their offspring. The objective of this study was to investigate the antimicrobial resistance and genetic diversity of commensal E. faecalis isolated from the broiler breeder farms. Among a total of 229 E. faecalis isolates from 9 broiler breeder farms, the highest resistance rate was observed in tetracycline (78.2%), followed by doxycycline (58.1%) and erythromycin (43.7%), and the prevalence of antimicrobial resistance showed significant differences among the 9 broiler breeder farms (P < 0.05). The tetM gene (77.1%) and ermB gene (85.0%) were detected at the highest levels in 179 TE-and 100 E-resistant isolates, respectively. Twenty-four high-level gentamicin-resistant isolates carried aac(6″)Ie-aph(2″)-la gene, and 9 high-level ciprofloxacin-resistant isolates showed point mutations in both gyrA and parC genes. All high-level gentamicin-resistant or high-level ciprofloxacin-resistant isolates showed one of the two different virulence gene patterns, ace-asa1-efaA-gelE complex or ace-efaA-gelE complex. These results indicate that constant epidemiological monitoring at the breeder level is required to prevent the pyramidal transmission of antimicrobial-resistant E. faecalis.
Collapse
Affiliation(s)
- Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State 39762, USA
| | - Se Hyun Son
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Su Ha
- Samhwa GPS Breeding Agri. Inc., Hongseong 32291, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Saffari F, Darehkordi H, Ahmadrajabi R. Clonal dissemination of high-level gentamicin-resistant isolates of Enterococcus faecalis within a university hospital in southeastern Iran. Wien Med Wochenschr 2020; 171:18-23. [PMID: 31993873 DOI: 10.1007/s10354-019-00716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Combination of a cell wall-active antibiotic with an aminoglycoside confers a synergistic effect in the treatment of some severe enterococcal infections. Unfortunately, with the emergence of enterococci with high-level resistance to aminoglycosides, particularly to gentamicin, the efficacy of the synergistic combinations has decreased. In this study, high-level gentamicin-resistant (HLGR) isolates of enterococci and the diversity of the genes encoding aminoglycoside-modifying enzymes (AMEs) as well as putative clonal dissemination of HLGR isolates were investigated in a university hospital in southeastern Iran. METHODS The minimum inhibitory concentration of gentamicin was determined and HLGR isolates were investigated for AME genes. Genetic similarity between isolates was analyzed using repetitive extragenic palindromic (rep)-Polymerase Chain Reaction (PCR) assay. RESULTS Of 150 Enterococcus isolates, 62 isolates including Enterococcus faecalis (n = 46) and E. faecium (n = 16) were identified as HLGR. The most prevalent AME genes in both species were as follows: aph(3')-IIIa (n = 44), aac(6')-Ie-aph(2')-Ia (n = 36), and ant(4')-Ia (n = 15). The rep-PCR analysis showed clonality among E. faecalis isolates, so that 27 isolates were grouped in seven clusters representing similarity greater than 95%. CONCLUSIONS No link between AME determinants and clusters was found. Clonal spread of HLGR isolates of E. faecalis was found within our hospital. More rigorous recommendations are required to avoid dissemination of such resistant microorganisms in the hospital setting.
Collapse
Affiliation(s)
- Fereshteh Saffari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, end of 22-Bahman Street, Kerman, Iran
| | - Hosein Darehkordi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, end of 22-Bahman Street, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, end of 22-Bahman Street, Kerman, Iran.
| |
Collapse
|
14
|
Kim YB, Seo KW, Shim JB, Son SH, Noh EB, Lee YJ. Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. Poult Sci 2020; 98:5892-5899. [PMID: 31180127 DOI: 10.3382/ps/pez288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) are ubiquitous intestinal bacteria in humans and animals that can easily acquire antimicrobial resistance, which allows them to have roles as antimicrobial resistance indicators. In addition, layer parent stock produces thousands of eggs for the production of commercial laying hens and can transfer a variety of viral and bacterial agents to chicks. The objective of this study was to determine the prevalence and characteristics of antimicrobial-resistant E. faecalis and E. faecium isolated in the layer parent stock level of the egg-layer operating system in South Korea. A total of 129 E. faecalis and 166 E. faecium isolates from 74 flocks of 30 layer parent stock were tested for resistance in this study. The prevalence of doxycycline- (51.9%), erythromycin- (53.5%), high-level gentamicin- (13.2%), high-level kanamycin- (31.0%), high-level streptomycin- (30.2%), and tetracycline- (64.3%) resistant E. faecalis isolates were higher than those for E. faecium isolates (P < 0.05). The ermB gene was detected in 66 (95.7%) erythromycin-resistant E. faecalis isolates, which was higher than that of 32 (71.7%) erythromycin-resistant E. faecium isolates. Twenty-one high-level gentamicin-resistant Enterococcus spp. (17 E. faecalis and 4 E. faecium) carried at least one aminoglycoside-modifying enzyme gene, aac(6')Ie-aph(2')-Ia or ant(6)-Ia. Fourteen isolates that harbored both aac(6')Ie-aph(2')-Ia and ant(6)-Ia exhibited pattern A with IS256 at both ends. Ten high-level ciprofloxacin-resistant Enterococcus spp. (8 E. faecalis and 2 E. faecium) showed amino acid changes from serine to isoleucine at codons 83 in gyrA, and 80 in parC. Also, the virulence genes ace, asa1, efaA, and gelE were detected in this study. To the best of our knowledge, this is the first study to examine the prevalence and characteristics of antimicrobial-resistant E. faecalis and E. faecium isolates in the layer parent stock. Our findings support the need for a surveillance program to monitor the emergence of antimicrobial-resistant E. faecalis and E. faecium in layer operating system.
Collapse
Affiliation(s)
- Yeong Bin Kim
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Bo Shim
- Korean Poultry TS Co., Ltd., Incheon 17415, Republic of Korea
| | - Se Hyun Son
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Sattari-Maraji A, Jabalameli F, Node Farahani N, Beigverdi R, Emaneini M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol 2019; 19:156. [PMID: 31286887 PMCID: PMC6615243 DOI: 10.1186/s12866-019-1539-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Enterococcus species continues to be an important cause of hospital-acquired infection worldwide. This study was designed to determine the antibiotic resistance profiles, virulence genes and molecular characteristics of Enterococcus faecium strains isolated from an Iranian children hospital in a four-years period. RESULTS A total 189 Enterococcus strains, comprising 108 (57%) E. faecium, 67 (35%) E. faecalis and 14 (7%) isolates of other spp. were isolated during the collection period. More than 92% of E. faecium isolates were resistant to ampicillin (92.5%), ciprofloxacin (96%), erythromycin (100%) and clindamycin (96%). A high frequency of resistance to clindamycin (100%), erythromycin (98.5%) and ciprofloxacin (80.5%) was observed among E. faecalis isolates, while resistance to ampicillin (7%) was less frequent. The prevalence of vanA gene among vancomycin resistant E. faecium and vancomycin resistant E. faecalis was 95 and 50%, respectively. The analysis of 108 E. faecium isolates revealed 34 variable number tandem repeat (VNTR) patterns and 27 Multi Locus VNTR Analysis (MLVA) types (MTs). CONCLUSIONS The results show a shift from E. faecalis to E. faecium as the dominant enterococcal species among patients at the children Hospital. Our data revealed that the majority of E. faecium isolates (66%) belonged to three common MTs and these types were isolated from different wards in children hospital.
Collapse
Affiliation(s)
- Azin Sattari-Maraji
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Narges Node Farahani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
16
|
Chajęcka-Wierzchowska W, Zadernowska A, Zarzecka U, Zakrzewski A, Gajewska J. Enterococci from ready-to-eat food - horizontal gene transfer of antibiotic resistance genes and genotypic characterization by PCR melting profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1172-1179. [PMID: 30047163 DOI: 10.1002/jsfa.9285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the possibility of the horizontal transfer of genes encoding resistance to aminoglycosides (aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(4')-Ia and ant(6')-Ia), tetracyclines (tetM, tetL, tetK, tetO and tetW), and macrolides (ermA, ermB, ermC, msrC, mefAB) in Enterococcus strains isolated from ready-to-eat dishes purchased in bars and restaurants in Olsztyn, Poland. RESULTS It was found that 74% of tested strains were able to conjugal transfer at least one of the antibiotic resistance genes. Transfer of resistance to tetracyclines in strains was observed with a frequency ranging from 1.3 × 10-6 to 8.7 × 10-7 transconjugants/donor. The int gene and the tetM gene were transferred simultaneously, which indicated that a transposon of the Tn916/Tn1545 also participated in the conjugation process. The frequency of transferring genes of resistance to macrolides ranged from 3.2 × 10-6 to 2.4 × 10-8 transconjugants/donor. The ermB gene was transferred the most frequently. The frequency of acquisition of genes encoding aminoglycosides in strains isolated from food ranged from 1.7 × 10-6 to 3,2 × 10-8 transconjugants/donor. Transfer of the aac(6')-Ie-aph(2″) gene was the most frequent. In all reactions, the clonal character of transconjugants and recipients was confirmed by the polymerase chain reaction melting profile (PCR MP) method, which is an alternative to the pulsed field gel electrophoresis (PFGE) method. CONCLUSION The findings of this study indicate that Enterococcus isolated from ready-to-eat food is able to horizontally transfer genes encoding various antibiotic resistance mechanisms. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Arkadiusz Zakrzewski
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Gajewska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
17
|
Sparo M, Delpech G, García Allende N. Impact on Public Health of the Spread of High-Level Resistance to Gentamicin and Vancomycin in Enterococci. Front Microbiol 2018; 9:3073. [PMID: 30619158 PMCID: PMC6305282 DOI: 10.3389/fmicb.2018.03073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance has turned into a global public health issue. Enterococci are intrinsically resistant to many antimicrobials groups. These bacteria colonize dairy and meat products and integrate the autochthonous microbiota of mammal's gastrointestinal tract. Over the last decades, detection of vanA genotype in Enterococcus faecium from animals and from food of animal origin has been reported. Vancomycin-resistant E. faecium has become a prevalent nosocomial pathogen. Hospitalized patients are frequently treated with broad-spectrum antimicrobials and this leads to an increase in the presence of VanA or VanB vancomycin-resistant enterococci in patients' gastrointestinal tract and the risk of invasive infections. In humans, E. faecium is the main reservoir of VanA and VanB phenotypes. Acquisition of high-level aminoglycoside resistance is a significant therapeutic problem for patients with severe infections because it negates the synergistic effect between aminoglycosides and a cell-wall-active agent. The aac(6')-Ie-aph (2″)-Ia gene is widely spread in E. faecalis and has been detected in strains of human origin and in the food of animal origin. Enzyme AAC(6')-Ie-APH(2″)-Ia confers resistance to available aminoglycosides, except to streptomycin. Due to the fast dissemination of this genetic determinant, the impact of its horizontal transferability among enterococcal species from different origin has been considered. The extensive use of antibiotics in food-producing animals contributes to an increase in drug-resistant animal bacteria that can be transmitted to humans. Innovation is needed for the development of new antibacterial drugs and for the design of combination therapies with conventional antibiotics. Nowadays, semi-purified bacteriocins and probiotics are becoming an attractive alternative to the antibiotic in animal production. Therefore, a better understanding of a complex and relevant issue for Public Health such as high-level vancomycin and gentamicin resistance in enterococci and their impact is needed. Hence, it is necessary to consider the spread of vanA E. faecium and high-level gentamicin resistant E. faecalis strains of different origin in the environment, and also highlight the potential horizontal transferability of these resistance determinants to other bacteria.
Collapse
Affiliation(s)
- Mónica Sparo
- Clinical Department, Medicine School, National University of Central Buenos Aires, Tandil, Argentina
| | - Gaston Delpech
- Clinical Department, Medicine School, National University of Central Buenos Aires, Tandil, Argentina
| | | |
Collapse
|
18
|
Abstract
Enterococcus faecium has a highly variable genome prone to recombination and horizontal gene transfer. Here, we have identified a novel genetic island with an insertion locus and mobilization genes similar to those of staphylococcus cassette chromosome elements SCCmec This novel element termed the enterococcus cassette chromosome (ECC) element was located in the 3' region of rlmH and encoded large serine recombinases ccrAB similar to SCCmec Horizontal transfer of an ECC element termed ECC::cat containing a knock-in cat chloramphenicol resistance determinant occurred in the presence of a conjugative rep pLG1 plasmid. We determined the ECC::cat insertion site in the 3' region of rlmH in the E. faecium recipient by long-read sequencing. ECC::cat also mobilized by homologous recombination through sequence identity between flanking insertion sequence (IS) elements in ECC::cat and the conjugative plasmid. The ccrABEnt genes were found in 69 of 516 E. faecium genomes in GenBank. Full-length ECC elements were retrieved from 32 of these genomes. ECCs were flanked by attR and attL sites of approximately 50 bp. The attECC sequences were found by PCR and sequencing of circularized ECCs in three strains. The genes in ECCs contained an amalgam of common and rare E. faecium genes. Taken together, our data imply that ECC elements act as hot spots for genetic exchange and contribute to the large variation of accessory genes found in E. faecium IMPORTANCE Enterococcus faecium is a bacterium found in a great variety of environments, ranging from the clinic as a nosocomial pathogen to natural habitats such as mammalian intestines, water, and soil. They are known to exchange genetic material through horizontal gene transfer and recombination, leading to great variability of accessory genes and aiding environmental adaptation. Identifying mobile genetic elements causing sequence variation is important to understand how genetic content variation occurs. Here, a novel genetic island, the enterococcus cassette chromosome, is shown to contain a wealth of genes, which may aid E. faecium in adapting to new environments. The transmission mechanism involves the only two conserved genes within ECC, ccrAB Ent, large serine recombinases that insert ECC into the host genome similarly to SCC elements found in staphylococci.
Collapse
|
19
|
Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. J Proteomics 2018; 187:28-38. [DOI: 10.1016/j.jprot.2018.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
|
20
|
Cho SY, Park YJ, Cho H, Park DJ, Yu JK, Oak HC, Lee DG. Comparison of Enterococcus faecium Bacteremic Isolates from Hematologic and Non-hematologic Patients: Differences in Antimicrobial Resistance and Molecular Characteristics. Ann Lab Med 2018; 38:226-234. [PMID: 29401557 PMCID: PMC5820067 DOI: 10.3343/alm.2018.38.3.226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Background Enterococcus faecium, especially vancomycin-resistant E. faecium (VREfm), is a major concern for patients with hematologic diseases. Exposure to antibiotics including fluoroquinolone, which is used as a routine prophylaxis for patients with hematologic (MH) diseases, has been reported to be a risk factor for infection with vancomycin-resistant eneterocci. We compared the characteristics of E. faecium isolates according to their vancomycin susceptibility and patient group (MH vs non-MH patients). Methods A total of 120 E. faecium bacteremic isolates (84 from MH and 36 from non-MH patients) were collected consecutively, and their characteristics (susceptibility, multilocus sequence type [MLST], Tn1546 type, and the presence of virulence genes and plasmids) were determined. Results Among the vancomycin-susceptible E. faecium (VSEfm) isolates, resistance to ampicillin (97.6% vs 61.1%) and high-level gentamicin (71.4% vs 38.9%) was significantly higher in isolates from MH patients than in those from non-MH patients. Notably, hyl, esp, and pEF1071 were present only in isolates with ampicillin resistance. Among the VREfm isolates, ST230 (33.3%) and ST17 (26.2%) were predominant in MH patients, while ST17 (61.1%) was predominant in non-MH patients. Plasmid pLG1 was more prevalent in E. faecium isolates from MH patients than in those from non-MH patients, regardless of vancomycin resistance. Transposon analysis revealed five types across all VREfm isolates. Conclusions The antimicrobial resistance profiles and molecular characteristics of E. faecium isolates differed according to the underlying diseases of patients within the same hospital. We hypothesize that the prophylactic use of fluoroquinolone might have an effect on these differences.
Collapse
Affiliation(s)
- Sung Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon Joon Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hanwool Cho
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Jin Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Kyung Yu
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hayeon Caitlyn Oak
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Massachusetts, United States of America
| | - Dong Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
21
|
Sadowy E, Gawryszewska I, Kuch A, Żabicka D, Hryniewicz W. The changing epidemiology of VanB Enterococcus faecium in Poland. Eur J Clin Microbiol Infect Dis 2018; 37:927-936. [PMID: 29442195 PMCID: PMC5916999 DOI: 10.1007/s10096-018-3209-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
Increasing prevalence of VanB Enterococcus faecium in Polish hospitals reported to National Reference Centre for Susceptibility Testing (NRCST) prompted us to investigate the basis of this phenomenon. Two-hundred seventy-eight E. faecium isolates of VanB phenotype from the period 1999 to 2010 obtained by NRCST were investigated by multilocus sequence typing (MLST) and multilocus VNTR analysis (MLVA). Localization, transferability, and partial structure of the vanB-carrying Tn1549 transposon were studied by hybridization, PCR mapping, sequencing, and conjugation. VanB isolates almost exclusively represented hospital-associated E. faecium, with a significant shift from representatives of 17/18 lineage to 78 lineage after 2005. The vanB determinant, initially located mostly on transferable plasmids of the pRUM-, pLG1-, and pRE25-replicon types, later on was found almost exclusively on the host chromosome. Fifteen different plasmid and chromosomal insertion sites were identified, typically associated with single transposon coupling sequences, mostly not observed before. Our study demonstrates the significant change in the epidemiology of VanB-E. faecium in Poland, associated with the introduction and spread of the lineage 78 of the hospital-adapted E. faecium. These data point to the importance of the lineage 78 for the spread of vancomycin-resistance, determined by the vanB gene cluster, resulting in an increasing VRE prevalence in hospitals. This study also supports the scenario, in which representatives of the hospital-associated E. faecium independently acquire the vanB determinant de novo and spread within and among hospitals, concomitantly undergoing differentiation.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Iwona Gawryszewska
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
22
|
Ngo HX, Garneau-Tsodikova S. Flipping the Switch "On" for Aminoglycoside-Resistance Enzymes: The Mechanism Is Finally Revealed! Structure 2017; 24:1011-3. [PMID: 27387794 DOI: 10.1016/j.str.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a recent issue of Structure, Caldwell et al. (2016) determined crystal structures of APH(2″)-Ia in complex with various combinations of aminoglycosides and nucleosides, which compellingly revealed that the catalytic activity of this resistance enzyme is regulated by a conformational change of the triphosphate of GTP, a mechanism previously unknown for antibiotic kinases.
Collapse
Affiliation(s)
- Huy X Ngo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
23
|
High-level Gentamicin Resistance and Detection of aac (6’)Ie-aph (2”)Ia Gene in Enterococci Isolated from Pediatric Hospital in Northwest of Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2017. [DOI: 10.5812/archcid.62921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Walker AS, Phan H, Sheppard AE. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Front Microbiol 2017; 8:182. [PMID: 28232822 PMCID: PMC5299020 DOI: 10.3389/fmicb.2017.00182] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of 'accessory genes,' such as antibiotic resistance genes, as well as 'backbone' loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made.
Collapse
Affiliation(s)
- Alex Orlek
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
| | - Muna F. Anjum
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
- Department of Bacteriology, Animal and Plant Health AgencyAddlestone, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health EnglandLondon, UK
| | - Matthew J. Ellington
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health EnglandLondon, UK
| | - Tim Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health EnglandLondon, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Hang Phan
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| | - Anna E. Sheppard
- Nuffield Department of Medicine, John Radcliffe Hospital, University of OxfordOxford, UK
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of OxfordOxford, UK
| |
Collapse
|
25
|
Mirhoseini SH, Nikaeen M, Khanahmad H, Hassanzadeh A. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran. Adv Biomed Res 2016; 5:143. [PMID: 27656612 PMCID: PMC5025915 DOI: 10.4103/2277-9175.187399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/06/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. MATERIALS AND METHODS A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. RESULTS The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). CONCLUSION Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.
Collapse
Affiliation(s)
- Seyed Hamed Mirhoseini
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hassanzadeh
- Department of Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L, Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G, Sadowy E, Hammerum AM, Garcia-Migura L, Willems RJ, Baquero F, Coque TM. Multilevel population genetic analysis ofvanAandvanB Enterococcus faeciumcausing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother 2016; 71:3351-3366. [DOI: 10.1093/jac/dkw312] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/11/2016] [Accepted: 07/05/2016] [Indexed: 01/17/2023] Open
|
27
|
A Silenced vanA Gene Cluster on a Transferable Plasmid Caused an Outbreak of Vancomycin-Variable Enterococci. Antimicrob Agents Chemother 2016; 60:4119-27. [PMID: 27139479 PMCID: PMC4914660 DOI: 10.1128/aac.00286-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022] Open
Abstract
We report an outbreak of vancomycin-variable vanA(+) enterococci (VVE) able to escape phenotypic detection by current guidelines and demonstrate the molecular mechanisms for in vivo switching into vancomycin resistance and horizontal spread of the vanA cluster. Forty-eight vanA(+) Enterococcus faecium isolates and one Enterococcus faecalis isolate were analyzed for clonality with pulsed-field gel electrophoresis (PFGE), and their vanA gene cluster compositions were assessed by PCR and whole-genome sequencing of six isolates. The susceptible VVE strains were cultivated in brain heart infusion broth containing vancomycin at 8 μg/ml for in vitro development of resistant VVE. The transcription profiles of susceptible VVE and their resistant revertants were assessed using quantitative reverse transcription-PCR. Plasmid content was analyzed with S1 nuclease PFGE and hybridizations. Conjugative transfer of vanA was assessed by filter mating. The only genetic difference between the vanA clusters of susceptible and resistant VVE was an ISL3-family element upstream of vanHAX, which silenced vanHAX gene transcription in susceptible VVE. Furthermore, the VVE had an insertion of IS1542 between orf2 and vanR that attenuated the expression of vanHAX Growth of susceptible VVE occurred after 24 to 72 h of exposure to vancomycin due to excision of the ISL3-family element. The vanA gene cluster was located on a transferable broad-host-range plasmid also detected in outbreak isolates with different pulsotypes, including one E. faecalis isolate. Horizontally transferable silenced vanA able to escape detection and revert into resistance during vancomycin therapy represents a new challenge in the clinic. Genotypic testing of invasive vancomycin-susceptible enterococci by vanA-PCR is advised.
Collapse
|
28
|
Caldwell SJ, Huang Y, Berghuis AM. Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia. Structure 2016; 24:935-45. [PMID: 27161980 DOI: 10.1016/j.str.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Abstract
APH(2″)-Ia is a widely disseminated resistance factor frequently found in clinical isolates of Staphylococcus aureus and pathogenic enterococci, where it is constitutively expressed. APH(2″)-Ia confers high-level resistance to gentamicin and related aminoglycosides through phosphorylation of the antibiotic using guanosine triphosphate (GTP) as phosphate donor. We have determined crystal structures of the APH(2″)-Ia in complex with GTP analogs, guanosine diphosphate, and aminoglycosides. These structures collectively demonstrate that aminoglycoside binding to the GTP-bound kinase drives conformational changes that bring distant regions of the protein into contact. These changes in turn drive a switch of the triphosphate cofactor from an inactive, stabilized conformation to a catalytically competent active conformation. This switch has not been previously reported for antibiotic kinases or for the structurally related eukaryotic protein kinases. This catalytic triphosphate switch presents a means by which the enzyme can curtail wasteful hydrolysis of GTP in the absence of aminoglycosides, providing an evolutionary advantage to this enzyme.
Collapse
Affiliation(s)
- Shane J Caldwell
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yue Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
29
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
30
|
Khani M, Fatollahzade M, Pajavand H, Bakhtiari S, Abiri R. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6')-aph(2") Gene: A Therapeutic Problem in Kermanshah, Iran. Jundishapur J Microbiol 2016; 9:e28923. [PMID: 27217920 PMCID: PMC4870677 DOI: 10.5812/jjm.28923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022] Open
Abstract
Background: Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. Objectives: This study was designed to identify the prevalence of, and to compare, the aac(6’)-aph(2”) and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. Patients and Methods: One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6’)-aph(2”) and aph(3”)-IIIa were analyzed with multiplex PCR. Results: The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6’)-aph(2”). The prevalence of aph(3”)-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Conclusions: Remarkably increased incidence of aac(6’)-aph(2”) among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary.
Collapse
Affiliation(s)
- Mitra Khani
- Department of General Practitioner Training, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Mahdie Fatollahzade
- Department of General Practitioner Training, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Hamid Pajavand
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Somaye Bakhtiari
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Ramin Abiri
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding author: Ramin Abiri, Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. Tel: +98-9122773648, Fax: +98-4276477, E-mail:
| |
Collapse
|
31
|
The Interplay between Different Stability Systems Contributes to Faithful Segregation: Streptococcus pyogenes pSM19035 as a Model. Microbiol Spectr 2016; 2:PLAS-0007-2013. [PMID: 26104212 DOI: 10.1128/microbiolspec.plas-0007-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Streptococcus pyogenes pSM19035 low-copy-number θ-replicating plasmid encodes five segregation (seg) loci that contribute to plasmid maintenance. These loci map outside of the minimal replicon. The segA locus comprises β2 recombinase and two six sites, and segC includes segA and also the γ topoisomerase and two ssiA sites. Recombinase β2 plays a role both in maximizing random segregation by resolving plasmid dimers (segA) and in catalyzing inversion between two inversely oriented six sites. segA, in concert with segC, facilitates replication fork pausing at ssiA sites and overcomes the accumulation of "toxic" replication intermediates. The segB1 locus encodes ω, ε, and ζ genes. The short-lived ε2 antitoxin and the long-lived ζ toxin form an inactive ζε2ζ complex. Free ζ toxin halts cell proliferation upon decay of the ε2 antitoxin and enhances survival. If ε2 expression is not recovered, by loss of the plasmid, the toxin raises lethality. The segB2 locus comprises δ and ω genes and six parS sites. Proteins δ2 and ω2, by forming complexes with parS and chromosomal DNA, pair the plasmid copies at the nucleoid, leading to the formation of a dynamic δ2 gradient that separates the plasmids to ensure roughly equal distribution to daughter cells at cell division. The segD locus, which comprises ω2 (or ω2 plus ω22) and parS sites, coordinates expression of genes that control copy number, better-than-random segregation, faithful partition, and antibiotic resistance. The interplay of the seg loci and with the rep locus facilitates almost absolute plasmid stability.
Collapse
|
32
|
Abat C, Raoult D, Rolain JM. Low Level of Resistance in Enterococci Isolated in Four Hospitals, Marseille, France. Microb Drug Resist 2015; 22:218-22. [PMID: 26247097 DOI: 10.1089/mdr.2015.0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enterococci are gram-positive cocci responsible for various infections worldwide, and their prevalence of antibiotic resistance greatly varies worldwide. This study investigates the prevalence of resistance to antibiotics in enterococci from patients admitted in the four university hospitals of Marseille between January 2013 and September 2014. Two thousand nine hundred seventy-six patients-bacteria couples were identified (2,507 Enterococcus faecalis and 469 Enterococcus faecium) in the four university hospitals of Marseille. 1.3%, 8.9%, 1.4%, and 0% of E. faecalis strains were resistant to amoxicillin, gentamicin, teicoplanin, and vancomycin, respectively, and 83.9%, 49.2%, 1.3%, and 0.2% of E. faecium strains were resistant to amoxicillin, gentamicin, teicoplanin, and vancomycin, respectively. Resistance to aminoglycosides and vancomycin in strains isolated from blood cultures was significantly lower than that of most European countries included in the 2012 European Antimicrobial Resistance Surveillance Network report. Our low percentage of antibiotic resistance in enterococci is likely due to a low level of E. faecium infections, underlining the need to implement surveillance systems, especially to monitor the E. faecalis/E. faecium ratio evolution in blood cultures and others.
Collapse
Affiliation(s)
- Cédric Abat
- URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université , Marseille, France
| | - Didier Raoult
- URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université , Marseille, France
| | - Jean-Marc Rolain
- URMITE UM 63 CNRS 7278 IRD 198 INSERM U1905, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université , Marseille, France
| |
Collapse
|
33
|
Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282. [PMID: 25885771 PMCID: PMC4438569 DOI: 10.1186/s12864-015-1407-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. RESULTS The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. CONCLUSIONS The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lars Bogø Jensen
- Division of Food Microbiologyt, National Food Institute, Danish Technical University, Copenhagen V, Denmark.
| | - Arnfinn Sundsfjord
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Kristin Hegstad
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
34
|
Sivertsen A, Billström H, Melefors Ö, Liljequist BO, Wisell KT, Ullberg M, Özenci V, Sundsfjord A, Hegstad K. A multicentre hospital outbreak in Sweden caused by introduction of a vanB2 transposon into a stably maintained pRUM-plasmid in an Enterococcus faecium ST192 clone. PLoS One 2014; 9:e103274. [PMID: 25153894 PMCID: PMC4143159 DOI: 10.1371/journal.pone.0103274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
The clonal dissemination of VanB-type vancomycin-resistant Enterococcus faecium (VREfm) strains in three Swedish hospitals between 2007 and 2011 prompted further analysis to reveal the possible origin and molecular characteristics of the outbreak strain. A representative subset of VREfm isolates (n = 18) and vancomycin-susceptible E. faecium (VSEfm, n = 2) reflecting the spread in time and location was approached by an array of methods including: selective whole genome sequencing (WGS; n = 3), multi locus sequence typing (MLST), antimicrobial susceptibility testing, virulence gene profiling, identification of mobile genetic elements conferring glycopeptide resistance and their ability to support glycopeptide resistance transfer. In addition, a single VREfm strain with an unrelated PFGE pattern collected prior to the outbreak was examined by WGS. MLST revealed a predominance of ST192, belonging to a hospital adapted high-risk lineage harbouring several known virulence determinants (n≥10). The VREfm outbreak strain was resistant to ampicillin, gentamicin, ciprofloxacin and vancomycin, and susceptible to teicoplanin. Consistently, a vanB2-subtype as part of Tn1549/Tn5382 with a unique genetic signature was identified in the VREfm outbreak strains. Moreover, Southern blot hybridisation analyses of PFGE separated S1 nuclease-restricted total DNAs and filter mating experiments showed that vanB2-Tn1549/Tn5382 was located in a 70-kb sized rep17/pRUM plasmid readily transferable between E. faecium. This plasmid contained an axe-txe toxin-antitoxin module associated with stable maintenance. The two clonally related VSEfm harboured a 40 kb rep17/pRUM plasmid absent of the 30 kb vanB2-Tn1549/Tn5382 gene complex. Otherwise, these two isolates were similar to the VREfm outbreak strain in virulence- and resistance profile. In conclusion, our observations support that the origin of the multicentre outbreak was caused by an introduction of vanB2-Tn1549/Tn5382 into a rep17/pRUM plasmid harboured in a pre-existing high-risk E. faecium ST192 clone. The subsequent dissemination of VREfm to other centres was primarily caused by clonal spread rather than plasmid transfer to pre-existing high-risk clones.
Collapse
Affiliation(s)
- Audun Sivertsen
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Hanna Billström
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | - Öjar Melefors
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | | | - Karin Tegmark Wisell
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | - Måns Ullberg
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
35
|
Sadowy E, Luczkiewicz A. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiol 2014; 14:66. [PMID: 24629030 PMCID: PMC4004213 DOI: 10.1186/1471-2180-14-66] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/27/2014] [Indexed: 12/28/2022] Open
Abstract
Background Enterococci, ubiquitous colonizers of humans and other animals, play an increasingly important role in health-care associated infections (HAIs). It is believed that the recent evolution of two clinically relevant species, Enterococcus faecalis and Enterococcus faecium occurred in a big part in a hospital environment, leading to formation of high-risk enterococcal clonal complexes (HiRECCs), which combine multidrug resistance with increased pathogenicity and epidemicity. The aim of this study was to establish the species composition in wastewater, its marine recipient as well as a river estuary and to investigate the antimicrobial susceptibility of collected isolates. Molecular methods were additionally applied to test the presence of HiRRECC-related E. faecium. Results Two wastewater treatment plants (WWTPs), their marine outfalls and Vistula river that influence significantly the quality of waters in Gulf of Gdansk were sampled to investigate the presence of Enterococcus spp. Four-hundred-twenty-eight isolates were obtained, including E. faecium (244 isolates, 57.0%), E. hirae (113 isolates, 26.4%) and E. faecalis (63 isolates, 14.7%); other species (E. gallinarum/casseliflavus, E. durans and E. avium) accounted for 1.9%. Antimicrobial susceptibility testing revealed the presence of isolates resistant to erythromycin, tetracycline, amipicillin, fluoroquinolones and aminoglycosides (high-level resistance), especially among E. faecium, where such isolates were usually characterized by multilocus sequence types associated with nosocomial lineages 17, 18 and 78 of this species representing HiRECC, formerly called CC17. These isolates not only carried several resistance determinants but were also enriched in genes encoding pathogenicity factors (Esp, pili) and genes associated with mobile genetic elements (MGE), a feature also typical for nosocomial HiRECC. Conclusions Our data show that WWTPs constitute an important source of enterococcal strains carrying antimicrobial resistance determinants, often associated with the presence of MGE, for the recipient water environment, thus increasing a pool of such genes for other organisms. The presence of HiRECCs in wastewaters and marine/river environment may indicate that adaptations gained in hospitals may be also beneficial for survival of such clones in other settings. There is an obvious need to monitor the release and spread of such strains in order to elucidate better ways to curb their dissemination.
Collapse
Affiliation(s)
| | - Aneta Luczkiewicz
- Gdansk University of Technology, ul, G, Narutowicza 11/12, Gdansk 80-952, Poland.
| |
Collapse
|
36
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
37
|
Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. mBio 2013; 4:e00840-13. [PMID: 24255122 PMCID: PMC3870246 DOI: 10.1128/mbio.00840-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this work, we show that Clostridium difficile phage ϕC2 transduces erm(B), which confers erythromycin resistance, from a donor to a recipient strain at a frequency of 10−6 per PFU. The transductants were lysogenic for ϕC2 and contained the erm(B) gene in a novel transposon, Tn6215. This element is 13,008 bp in length and contains 17 putative open reading frames (ORFs). It could also be transferred at a lower frequency by filter mating. Clostridium difficile is a major human pathogen that causes diarrhea that can be persistent and difficult to resolve using antibiotics. C. difficile is potentially zoonotic and has been detected in animals, food, and environmental samples. C. difficile genomes contain large portions of horizontally acquired genetic elements. The conjugative elements have been reasonably well studied, but transduction has not yet been demonstrated. Here, we show for the first time transduction as a mechanism for the transfer of a novel genetic element in C. difficile. Transduction may also be a useful tool for the genetic manipulation of C. difficile.
Collapse
|
38
|
Wardal E, Gawryszewska I, Hryniewicz W, Sadowy E. Abundance and diversity of plasmid-associated genes among clinical isolates of Enterococcus faecalis. Plasmid 2013; 70:329-42. [PMID: 23906674 DOI: 10.1016/j.plasmid.2013.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 11/18/2022]
Abstract
Enterococcus faecalis, a normal compound of the human intestinal microbiome, plays an important role in hospital-acquired infections. Plasmids make a significant contribution to the acquisition of the novel traits such as antimicrobial resistance and virulence by this pathogen. The study investigated the plasmid content and the diversity of plasmid-associated genes in a group of 152 hospital isolates of E. faecalis. The majority of plasmids visualized by pulsed-field gel electrophoresis of S1 nuclease-digested DNA fell into the range of 50-100 kb. PCR-based screening allowed detection of genes of the rep1(pIP501), rep2(pRE25), rep4(pMBB1), rep6(pS86), rep7(pT181), rep8(pAM373), rep9(pAD1/pTEF2/pCF10), rep10(pIM13) and rep13(pC194) families in 29 different combinations. The par and ω-ε-ζ plasmid stabilization systems were ubiquitous (45 isolates, 29.6% and 88 isolates, 57.9%, respectively), while the axe-txe system was not found. The asa1 gene homologues encoding aggregation substance characteristic for the pAD1 and related group of pheromone-responsive plasmids were present in 106 isolates. A variety of sequence variants, including novel ones, of genes associated with pheromone-responsive plasmids, such as rep8(pAM373), rep9(pAD1/pTEF2/pCF10), par, and asa1 were observed. In conclusion, there is a big and only partially characterized pool of diverse plasmids in clinical E. faecalis.
Collapse
Affiliation(s)
- Ewa Wardal
- National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland.
| | | | | | | |
Collapse
|
39
|
Song X, Sun J, Mikalsen T, Roberts AP, Sundsfjord A. Characterisation of the plasmidome within Enterococcus faecalis isolated from marginal periodontitis patients in Norway. PLoS One 2013; 8:e62248. [PMID: 23646122 PMCID: PMC3639998 DOI: 10.1371/journal.pone.0062248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to identify and characterize plasmids in a national collection of oral Enterococcus faecalis (n = 106) isolated from patients with marginal periodontitis. Plasmid replicon typing was performed by multiplex-PCR and sequencing with specific primers for 18 rep-families and 1 unique sequence. Additional plasmid analysis by S1-PFGE was performed for comparison. Totally 120 plasmid replicon amplicons of seven rep-families were identified in 93 E. faecalis strains, e.g. rep9 (prototype pCF10), rep6 (prototype pS86), rep2 (prototype pRE25/pEF1), and rep8 (prototype pAM373). Rep9 was the most predominant rep-family being detected in 81 (76.4%) strains. Forty of these strains were tetracycline resistant and three were erythromycin resistant. Rep6 was the second predominant rep-family being detected in 22 (20.8%) strains. Rep2 was detected in eight (7.5%) strains. All rep2-positive strains were resistant to tetracycline and/or erythromycin and six of them contained Tn916/Tn1545 genes. The rep-positive E. faecalis exhibited divergence in multilocus sequence types (STs). There was a significant correlation between rep9 and ST21, while multiple rep-families appeared in ST40. Totally 145 plasmid bands were identified in 95 E. faecalis strains by S1-PFGE, 59 strains carrying one plasmid, 27 carrying two, five carrying three, three carrying four, and one strain carrying five plasmids. Plasmid sizes varied between 5-150 kbp. There was a significant correlation between the number of plasmids identified by PCR rep-typing and by S1-PFGE. The results indicate that the majority of E. faecalis of marginal periodontitis are likely to be a reservoir for diverse mobile genetic elements and associated antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Jinglu Sun
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Theresa Mikalsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Adam P. Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Microbiology and Infection Control, Reference Centre for Detection of Antimicrobial Resistance (K-res), University Hospital of Northern Norway, Tromsø, Norway
| |
Collapse
|
40
|
High abundance and diversity of antimicrobial resistance determinants among early vancomycin-resistant Enterococcus faecium in Poland. Eur J Clin Microbiol Infect Dis 2013; 32:1193-203. [PMID: 23558365 DOI: 10.1007/s10096-013-1868-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/15/2013] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to investigate the clonal structure, antimicrobial resistance phenotypes and their determinants among early vancomycin-resistant Enterococcus faecium (VREm) isolates in Poland. Two hundred and eighty-one VREm isolates collected between 1997 and 2005 were studied. VREm isolates were characterised by multilocus sequence typing (MLST). The presence of antimicrobial resistance determinants, transposon-specific genes, IS16 and esp Efm was checked by polymerase chain reaction (PCR). Ciprofloxacin and ampicillin resistance determinants were investigated by sequencing. Two hundred and twenty-two (79 %) and 59 (21 %) VREm isolates were vanA- and vanB-positive, respectively. Among 135 representative isolates, MLST yielded 33 different sequence types (STs), of which 29 were characteristic of hospital-associated E. faecium; 128 (94.8 %) and 123 (91.1 %) isolates harboured the IS16 and esp Efm genes, and all 135 isolates were resistant to ciprofloxacin and ampicillin. Resistance to tetracycline (71.1 % isolates) was mostly associated with tetM (75.0 %) and the concomitant presence of the Tn916 integrase gene. High-level resistance to streptomycin (93.3 % of isolates) and high-level resistance to gentamicin (94.1 % of isolates) were due to ant(6')-Ia and aac(6')-Ie-aph(2″) genes, respectively, the latter of which is known to be located on various Tn4001-type transposons. Fifteen combinations of mutations in the quinolone-determining regions of GyrA and ParC were identified, including changes not previously reported, such as S83F and A84P in GyrA. Twenty-three variants of the penicillin-binding protein PBP5 occurred in the studied group, and novel insertions at amino acid positions 433 and 568 were identified. This analysis revealed the predominance of hospital-associated strains of E. faecium, carrying an abundant and divergent range of resistance determinants among early VREm isolates in Poland.
Collapse
|
41
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|