1
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
2
|
Liu Z, Yuan Y, Wang L, Cao H, Wang C, Zhao X, Wang L, Liu M. Establishment and characterization of a new class of adenylate cyclases (class VII ACs) in plants. Heliyon 2023; 9:e18612. [PMID: 37593644 PMCID: PMC10427991 DOI: 10.1016/j.heliyon.2023.e18612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Adenylate cyclase is the key enzyme in the synthesis of cAMP. Now, more and more plant genes which possessing AC function are being identified, but the classification of plant ACs has not yet been systematically studied and the relationship of plant ACs with other existing six classes ACs in animals and microorganisms is still unclear. In this study, we found that 7 of the 15 reported plant ACs with conserved CYTH-like_AC_Ⅳ-like domain were clustered into a group with high confidence (Group Ⅳ), while the other plant ACs were clustered into other three groups with no common domain. In addition, we also found that the Group Ⅳ plant ACs were grouped into an independent and specific class (Class VII), separated from the existing six classes of ACs. The Group Ⅳ plant ACs, compared to the existing six classes of ACs, own unique CYTH-like_AC_Ⅳ-like conserved domain and EXEXK signature motif, characteristic protein tertiary structures, specific subcellular localization and catalytic conditions. In view of the above, we regarded the Group Ⅳ plant ACs as the seventh class of AC (VII AC). This study does the systematic classification of plant ACs which could lay a foundation for further identification and study of the biological functions of the plant-specific VII ACs.
Collapse
Affiliation(s)
- Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei, 071001, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Haonan Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Chenyu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei, 071001, China
| |
Collapse
|
3
|
A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus. Appl Environ Microbiol 2023; 89:e0187422. [PMID: 36602323 PMCID: PMC9888186 DOI: 10.1128/aem.01874-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.
Collapse
|
4
|
Zhang Y, Agrebi R, Bellows LE, Collet JF, Kaever V, Gründling A. Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria. J Biol Chem 2017; 292:313-327. [PMID: 27881678 PMCID: PMC5217690 DOI: 10.1074/jbc.m116.758896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
The nucleotide signaling molecule 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3',5'-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3',5'-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen and identified the essential Staphylococcus aureus tRNA m1G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life as a tight 3',5'-cAMP-binding protein. TrmD enzymes are known to use S-adenosyl-l-methionine (AdoMet) as substrate; we have shown that 3',5'-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2',3'-cAMP but not 3',5'-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3',5'-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis, and biochemical analyses revealed that the highly conserved Tyr-86 residue in E. coli TrmD is essential to discriminate between 3',5'-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3',5'-cAMP. Altogether this further indicates that S. aureus does not produce 3',5'-cAMP, which would otherwise competitively inhibit an essential enzyme.
Collapse
Affiliation(s)
- Yong Zhang
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rym Agrebi
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium, and
| | - Lauren E Bellows
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium, and
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angelika Gründling
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
5
|
Abstract
All cells must adapt to changing conditions, and many use cyclic AMP (cAMP) as a second messenger to sense and respond to fluctuations in their environment. cAMP is made by adenylyl cyclases (ACs), and mycobacteria have an unusually large number of biochemically distinct ACs. cAMP is important for gene regulation in mycobacteria, and the ability to secrete cAMP into host macrophages during infection contributes to Mycobacterium tuberculosis pathogenesis. This article discusses the many roles of cAMP in mycobacteria and reviews what is known about the factors that contribute to production, destruction, and utilization of this important signal molecule. Special emphasis is placed on cAMP signaling in M. tuberculosis complex bacteria and its importance to M. tuberculosis during host infection.
Collapse
|
6
|
Linder JU. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module. PLoS One 2015; 10:e0141843. [PMID: 26512893 PMCID: PMC4626032 DOI: 10.1371/journal.pone.0141843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1-10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain.
Collapse
|
7
|
Swieżawska B, Jaworski K, Pawełek A, Grzegorzewska W, Szewczuk P, Szmidt-Jaworska A. Molecular cloning and characterization of a novel adenylyl cyclase gene, HpAC1, involved in stress signaling in Hippeastrum x hybridum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:41-52. [PMID: 24721550 DOI: 10.1016/j.plaphy.2014.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/08/2014] [Indexed: 05/09/2023]
Abstract
Adenylyl cyclases (ACs) are enzymes that generate cyclic AMP, which is involved in different physiological and developmental processes in a number of organisms. Here, we report the cloning and characterization of a new plant adenylyl cyclases (AC) gene, designated HpAC1, from Hippeastrum x hybridum. This gene encodes a protein of 206 amino acids with a calculated molecular mass of 23 kD and an isoelectric point of 5.07. The predicted amino acid sequence contains all the typical features of and shows high identity with putative plant ACs. The purified, recombinant HpAC1 is able to convert ATP to cAMP. The complementation test that was performed to analyze the ability of HpAC1 to compensate for the AC deficiency in the Escherichia coli SP850 strain revealed that HpAC1 functions as an adenylyl cyclase and produces cyclic AMP. Moreover, it was shown that the transcript level of HpAC1 and cyclic AMP concentration changed during certain stress conditions. Both mechanical damage and Phoma narcissi infection lead to two sharp increases in HpAC1 mRNA levels during a 72-h test cycle. Changes in intracellular cAMP level were also observed. These results may indicate the participation of a cAMP-dependent pathway both in rapid and systemic reactions induced after disruption of symplast and apoplast continuity.
Collapse
Affiliation(s)
- Brygida Swieżawska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Krzysztof Jaworski
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Agnieszka Pawełek
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Weronika Grzegorzewska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Piotr Szewczuk
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Adriana Szmidt-Jaworska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| |
Collapse
|
8
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
9
|
Marden JN, Dong Q, Roychowdhury S, Berleman JE, Bauer CE. Cyclic GMP controls Rhodospirillum centenum cyst development. Mol Microbiol 2011; 79:600-15. [PMID: 21214648 DOI: 10.1111/j.1365-2958.2010.07513.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenylyl cyclases are widely distributed across all kingdoms whereas guanylyl cyclases are generally thought to be restricted to eukaryotes. Here we report that the α-proteobacterium Rhodospirillum centenum secretes cGMP when developing cysts and that a guanylyl cyclase deletion strain fails to synthesize cGMP and is defective in cyst formation. The R. centenum cyclase was purified and shown to effectively synthesize cGMP from GTP in vitro, demonstrating that it is a functional guanylyl cyclase. A homologue of the Escherichia coli cAMP receptor protein (CRP) is linked to the guanylyl cyclase and when deleted is deficient in cyst development. Isothermal calorimetry (ITC) and differential scanning fluorimetry (DSF) analyses demonstrate that the recombinant CRP homologue preferentially binds to, and is stabilized by cGMP, but not cAMP. This study thus provides evidence that cGMP has a crucial role in regulating prokaryotic development. The involvement of cGMP in regulating bacterial development has broader implications as several plant-interacting bacteria contain a similar cyclase coupled by the observation that Azospirillum brasilense also synthesizes cGMP when inducing cysts.
Collapse
Affiliation(s)
- Jeremiah N Marden
- Indiana University, Bloomington, IN 47405, USA University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
10
|
Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism. J Mol Biol 2011; 405:787-803. [DOI: 10.1016/j.jmb.2010.11.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 01/18/2023]
|
11
|
Shenoy AR, Sivakumar K, Krupa A, Srinivasan N, Visweswariah SS. A survey of nucleotide cyclases in actinobacteria: unique domain organization and expansion of the class III cyclase family in Mycobacterium tuberculosis. Comp Funct Genomics 2010; 5:17-38. [PMID: 18629044 PMCID: PMC2447327 DOI: 10.1002/cfg.349] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/13/2003] [Accepted: 10/21/2003] [Indexed: 11/14/2022] Open
Abstract
Cyclic nucleotides are well-known second messengers involved in the regulation of
important metabolic pathways or virulence factors. There are six different classes
of nucleotide cyclases that can accomplish the task of generating cAMP, and four
of these are restricted to the prokaryotes. The role of cAMP has been implicated in
the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains
important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis
and Corynebacterium, and industrial organisms from the genus Streptomyces.
We have analysed the actinobacterial genome sequences found in current databases
for the presence of different classes of nucleotide cyclases, and find that only class
III cyclases are present in these organisms. Importantly, prominent members such as
M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded
in their genomes, some of which display interesting domain fusions seen for the
first time. In addition, a pseudogene corresponding to a cyclase from M. avium has
been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The
Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase
each, both of which have corresponding orthologues in M. tuberculosis. A clustering
of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like,
fungi-like and other bacteria-like class III cyclase sequences within this phylum,
suggesting that these proteins may have significant roles to play in this important
group of organisms.
Collapse
Affiliation(s)
- Avinash R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Class I adenylate cyclases are found in gamma- and delta-proteobacteria. They play central roles in processes such as catabolite repression in Escherichia coli or development of full virulence in pathogens such as Yersinia enterocolitica and Vibrio vulnificus. The catalytic domain (residues 2-446) of the adenylate cyclase of E. coli was overexpressed and purified. It displayed a V(max) of 665 nmol of cAMP x mg(-1) x min(-1) and a K(m) of 270 microM. Titration of the metal cofactor Mg(2+) against the substrate ATP showed a requirement for free metal ions in addition to the MgATP complex, suggesting a two-metal-ion mechanism as is known for class II and class III adenylate cyclases. Twelve residues which are essential for catalysis were identified by mutagenesis of a total of 20 polar residues conserved in all class I adenylate cyclases. Five essential residues (Ser(103), Ser(113), Asp(114), Asp(116) and Trp(118)) were part of a region which is found in all members of the large DNA polymerase beta-like nucleotidyltransferase superfamily. Alignment of the E. coli adenylate cyclase with the crystal structure of a distant member of the superfamily, archaeal tRNA CCA-adding enzyme, suggested that Asp(114) and Asp(116) are the metal-cofactor-ion-binding residues. The S103A mutant had a 17-fold higher K(m) than wild-type, demonstrating its important role in substrate binding. In comparison with the tRNA CCA-adding enzyme, Ser(103) of the E. coli adenylate cyclase apparently binds the gamma-phosphate group of ATP. Consistent with this function, the S103A mutation caused a marked reduction of discrimination between ATP- and ADP- or AMP-derived inhibitors.
Collapse
|
13
|
Wu J, Bai J, Bao Q, Zhao F. Lineage-specific domain fusion in the evolution of purine nucleotide cyclases in cyanobacteria. J Mol Evol 2008; 67:85-94. [PMID: 18551331 DOI: 10.1007/s00239-008-9127-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
Abstract
Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.
Collapse
Affiliation(s)
- Jinyu Wu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou 325000, China
| | | | | | | |
Collapse
|
14
|
Lu J, Bao Q, Wu J, Wang H, Li D, Xi Y, Wang S, Yu S, Qu J. CSCDB: the cAMP and cGMP signaling components database. Genomics 2008; 92:60-4. [PMID: 18472393 DOI: 10.1016/j.ygeno.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 03/10/2008] [Accepted: 03/21/2008] [Indexed: 11/17/2022]
Abstract
Adenylate cyclases, guanylate cyclases, cyclic nucleotide phosphodiesterases, and cyclic nucleotide-binding proteins constitute the core of cAMP and cGMP signaling components. Using a combination of BLAST and profile search methods, we found that cyclic nucleotide-binding proteins exhibited diverse domain architectures. In addition to the domain architectures involved in the characterized functional groups, a cyclic nucleotide-binding domain was also fused to various domains involved in pyridine nucleotide-disulfide oxidoreductase, acetyltransferase, thioredoxin reductase, glutaminase, rhodanese, ferredoxin, and diguanylate cyclase, implying the versatile functions of cyclic nucleotide-binding proteins. We constructed the CSCDB database to accumulate the components of cAMP and cGMP signaling pathways in the complete genomes. User-friendly interfaces were created for easier browsing, searching, and downloading the data. Besides harboring the sequence itself, each entry provided detailed annotation information, such as sequence features, chromosomal localization, functional domains, transmembrane region, and sequence similarity against several major databases. Currently, CSCDB contains 4234 entries covering 466 organisms, including 35 eukaryotes, 382 bacteria, and 29 archaea. CSCDB can be freely accessible on the web at http://cscdb.com.cn.
Collapse
Affiliation(s)
- Jianxin Lu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou 325003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abdel Motaal A, Tews I, Schultz JE, Linder JU. Fatty acid regulation of adenylyl cyclase Rv2212 from Mycobacterium tuberculosis H37Rv. FEBS J 2006; 273:4219-28. [PMID: 16925585 DOI: 10.1111/j.1742-4658.2006.05420.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adenylyl cyclase Rv2212 from Mycobacterium tuberculosis has a domain composition identical to the pH-sensing isoform Rv1264, an N-terminal regulatory domain and a C-terminal catalytic domain. The maximal velocity of Rv2212 was the highest of all 10 mycobacterial cyclases investigated to date (3.9 micromol cAMP.mg(-1).min(-1)), whereas ATP substrate affinity was low (SC(50) = 2.1 mm ATP). Guanylyl cyclase side activity was absent. The activities and kinetics of the holoenzyme and of the catalytic domain alone were similar, i.e. in distinct contrast to the Rv1264 adenylyl cyclase, in which the N-terminal domain is autoinhibitory. Unsaturated fatty acids strongly stimulated Rv2212 activity by increasing substrate affinity. In addition, fatty acids greatly enhanced the pH sensitivity of the holoenzyme, thus converting Rv2212 to a pH sensor adenylyl cyclase. Fatty acid binding to Rv2212 was modelled by homology to a recent structure of the N-terminal domain of Rv1264, in which a fatty acid-binding pocket is defined. Rv2212 appears to integrate three cellular parameters: ATP concentration, presence of unsaturated fatty acids, and pH. These regulatory properties open the possibility that novel modes of cAMP-mediated signal transduction exist in the pathogen.
Collapse
Affiliation(s)
- Amira Abdel Motaal
- Abteilung Pharmazeutische Biochemie, Fakultät für Chemie und Pharmazie, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
16
|
Gallagher DT, Smith NN, Kim SK, Heroux A, Robinson H, Reddy PT. Structure of the class IV adenylyl cyclase reveals a novel fold. J Mol Biol 2006; 362:114-22. [PMID: 16905149 DOI: 10.1016/j.jmb.2006.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/29/2006] [Accepted: 07/04/2006] [Indexed: 01/05/2023]
Abstract
The crystal structure of the class IV adenylyl cyclase (AC) from Yersinia pestis (Yp) is reported at 1.9 A resolution. The class IV AC fold is distinct from the previously described folds for class II and class III ACs. The dimeric AC-IV folds into an antiparallel eight-stranded barrel whose connectivity has been seen in only three previous structures: yeast RNA triphosphatase and two proteins of unknown function from Pyrococcus furiosus and Vibrio parahaemolyticus. Eight highly conserved ionic residues E10, E12, K14, R63, K76, K111, D126, and E136 lie in the barrel core and form the likely binding sites for substrate and divalent cations. A phosphate ion is observed bound to R63, K76, K111, and R113 near the center of the conserved cluster. Unlike the AC-II and AC-III active sites that utilize two-Asp motifs for cation binding, the AC-IV active site is relatively enriched in glutamate and features an ExE motif as its most conserved element. Homologs of Y. pestis AC-IV, including human thiamine triphosphatase, span the three kingdoms of life and delineate an ancient family of phosphonucleotide processing enzymes.
Collapse
Affiliation(s)
- D Travis Gallagher
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006; 362:623-39. [PMID: 16934836 PMCID: PMC3662476 DOI: 10.1016/j.jmb.2006.07.045] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 01/05/2023]
Abstract
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.
Collapse
Affiliation(s)
- Margarita Kamenetsky
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Sabine Middelhaufe
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
| | - Erin M. Bank
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Lonny R. Levin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
- Corresponding authors: ;
| | - Jochen Buck
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Clemens Steegborn
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
- Corresponding authors: ;
| |
Collapse
|
18
|
Smith N, Kim SK, Reddy PT, Gallagher DT. Crystallization of the class IV adenylyl cyclase from Yersinia pestis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:200-4. [PMID: 16511301 PMCID: PMC2197185 DOI: 10.1107/s1744309106002855] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/23/2006] [Indexed: 01/01/2023]
Abstract
The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 A, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 A, alpha = 88.7, beta = 82.5, gamma = 65.5 degrees. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P2(1)2(1)2(1). These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 A, diffract to 3 A and probably have two dimers per asymmetric unit and VM = 3.0 A3 Da(-1). Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination.
Collapse
Affiliation(s)
- Natasha Smith
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
| | - Sook-Kyung Kim
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
| | - Prasad T. Reddy
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
| | - D. Travis Gallagher
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
- Correspondence e-mail:
| |
Collapse
|
19
|
Sinha SC, Sprang SR. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. Rev Physiol Biochem Pharmacol 2006; 157:105-40. [PMID: 17236651 DOI: 10.1007/112_0603] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclic 3',5'-guanylyl and adenylyl nucleotides function as second messengers in eukaryotic signal transduction pathways and as sensory transducers in prokaryotes. The nucleotidyl cyclases (NCs) that catalyze the synthesis of these molecules comprise several evolutionarily distinct groups, of which class III is the largest. The domain structures of prokaryotic and eukaryotic class III NCs are diverse, including a variety of regulatory and transmembrane modules. Yet all members of this family contain one or two catalytic domains, characterized by an evolutionarily ancient topological motif (betaalphaalphabetabetaalphabeta) that is preserved in several other enzymes that catalyze the nucleophilic attack of a 3'-hydroxyl upon a 5' nucleotide phosphate. Two dyad-related catalytic domains compose one catalytic unit, with the catalytic sites formed at the domain interface. The catalytic domains of mononucleotidyl cyclases (MNCs) and diguanylate cyclases (DGCs) are called cyclase homology domains (CHDs) and GGDEF domains, respectively. Prokaryotic NCs usually contain only one catalytic domain and are catalytically active as intermolecular homodimers. The different modes of dimerization in class III NCs probably evolved concurrently with their mode of binding substrate. The catalytic mechanism of GGDEF domain homodimers is not completely understood, but they are expected to have a single active site with each subunit contributing equivalent determinants to bind one GTP molecule or half a c-diGMP molecule. CHD dimers have two potential dyad-related active sites, with both CHDs contributing determinants to each site. Homodimeric class III MNCs have two equivalent catalytic sites, although such enzymes may show half-of-sites reactivity. Eukaryotic class III MNCs often contain two divergent CHDs, with only one catalytically competent site. All CHDs appear to use a common catalytic mechanism, which requires the participation of two magnesium or manganese ions for binding polyphosphate groups and nucleophile activation. In contrast, mechanisms for purine recognition and specificity are more diverse. Class III NCs are subject to regulation by small molecule effectors, endogenous domains, or exogenous protein partners. Many of these regulators act by altering the interface of the catalytic domains and therefore the integrity of the catalytic site(s). This review focuses on both conserved and divergent mechanisms of class III NC function and regulation.
Collapse
Affiliation(s)
- S C Sinha
- University of Texas Southwestern Medical Center, Division of Infectious Diseases, Department of Internal Medicine, 5323 Harry Hines Blvd., Dallas 75390-9113, USA.
| | | |
Collapse
|
20
|
Guo YL, Kurz U, Schultz A, Linder JU, Dittrich D, Keller C, Ehlers S, Sander P, Schultz JE. Interaction of Rv1625c, a mycobacterial class IIIa adenylyl cyclase, with a mammalian congener. Mol Microbiol 2005; 57:667-77. [PMID: 16045612 DOI: 10.1111/j.1365-2958.2005.04675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The adenylyl cyclase Rv1625c from Mycobacterium tuberculosis codes for a protein with six transmembrane spans and a catalytic domain, i.e. it corresponds to one half of the pseudoheterodimeric mammalian adenylyl cyclases (ACs). Rv1625c is active as a homodimer. We investigated the role of the Rv1625c membrane domain and demonstrate that it efficiently dimerizes the protein resulting in a 7.5-fold drop in K(m) for ATP. Next, we generated a duplicated Rv1625c AC dimer by a head-to-tail concatenation. This produced an AC with a domain order exactly as the mammalian pseudoheterodimers. It displayed positive cooperativity and a 60% increase of v(max) compared with the Rv1625c monomer. Further, we probed the compatibility of mycobacterial and mammalian membrane domains. The second membrane anchor in the Rv1625c concatamer was replaced with membrane domain I or II of rabbit type V AC. The mycobacterial and either mammalian membrane domains are compatible with each other and both recombinant proteins are active. A M. tuberculosis Rv1625c knockout strain was assayed in a mouse infection model. In vitro growth characteristics and in vivo organ infection and mortality were unaltered in the knockout strain indicating that AC Rv1625c alone is not a virulence factor.
Collapse
Affiliation(s)
- Ying Lan Guo
- Abt. Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Morgenstelle 8, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Castro LI, Hermsen C, Schultz JE, Linder JU. Adenylyl cyclase Rv0386 from Mycobacterium tuberculosis H37Rv uses a novel mode for substrate selection. FEBS J 2005; 272:3085-92. [PMID: 15955067 DOI: 10.1111/j.1742-4658.2005.04722.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class III adenylyl cyclases usually possess six highly conserved catalytic residues. Deviations in these canonical amino acids are observed in several putative adenylyl cyclase genes as apparent in several bacterial genomes. This suggests that a variety of catalytic mechanisms may actually exist. The gene Rv0386 from Mycobacterium tuberculosis codes for an adenylyl cyclase catalytic domain fused to an AAA-ATPase and a helix-turn-helix DNA-binding domain. In Rv0386, the standard substrate, adenine-defining lysine-aspartate couple is replaced by glutamine-asparagine. The recombinant adenylyl cyclase domain was active with a V(max) of 8 nmol cAMP.mg(-1).min(-1). Unusual for adenylyl cyclases, Rv0386 displayed 20% guanylyl cyclase side-activity with GTP as a substrate. Mutation of the glutamine-asparagine pair either to alanine residues or to the canonical lysine-aspartate consensus abolished activity. This argues for a novel mechanism of substrate selection which depends on two non-canonical residues. Data from individual and coordinated point mutations suggest a model for purine definition based on an amide switch related to that previously identified in cyclic nucleotide phosphodiesterases.
Collapse
Affiliation(s)
- Lucila I Castro
- Abteilung Pharmazeutische Biochemie, Fakultät für Chemie und Pharmazie, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
22
|
Sinha SC, Wetterer M, Sprang SR, Schultz JE, Linder JU. Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J 2005; 24:663-73. [PMID: 15678099 PMCID: PMC549627 DOI: 10.1038/sj.emboj.7600573] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 01/10/2005] [Indexed: 01/09/2023] Open
Abstract
Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.
Collapse
Affiliation(s)
- Sangita C Sinha
- Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Martina Wetterer
- Abteilung Pharmazeutiche Biochemie, Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| | - Stephen R Sprang
- Howard Hughes Medical Institute and Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim E Schultz
- Abteilung Pharmazeutiche Biochemie, Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| | - Jürgen U Linder
- Abteilung Pharmazeutiche Biochemie, Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Abstract
Cells respond to signals of both environmental and biological origin. Responses are often receptor mediated and result in the synthesis of so-called second messengers that then provide a link between extracellular signals and downstream events, including changes in gene expression. Cyclic nucleotides (cAMP and cGMP) are among the most widely studied of this class of molecule. Research on their function and mode of action has been a paradigm for signal transduction systems and has shaped our understanding of this important area of biology. Cyclic nucleotides have diverse regulatory roles in both unicellular and multicellular organisms, highlighting the utility and success of this system of molecular communication. This review will examine the structural diversity of microbial adenylyl and guanylyl cyclases, the enzymes that synthesize cAMP and cGMP respectively. We will address the relationship of structure to biological function and speculate on the complex origin of these crucial regulatory molecules. A review is timely because the explosion of data from the various genome projects is providing new and exciting insights into protein function and evolution.
Collapse
Affiliation(s)
- David A Baker
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
24
|
Abstract
cAMP serves as a second messenger in virtually all organisms. The most wide-spread class of cAMP-generating enzymes are the class III adenylyl cyclases. Most class III adenylyl cyclases are multi-domain proteins. The catalytic domains exclusively work as dimers, catalysis proceeds at the dimer interface, so that both monomers provide catalytic residues to each catalytic center. Inspection of amino acid sequence profiles suggests a division of the class III adenylyl cyclases in to four subclasses, class IIIa-IIId. Genome projects and postgenomic analysis have provided novel aspects in terms of catalysis and regulation. Alterations in the canonical catalytic residues occur in all four subclasses suggesting a plasticity of the catalytic mechanisms. The vast variety of additional, probably regulatory modules found in class III adenylyl cyclases obviously reflects a large collection of regulatory inputs the catalytic domains have adapted to. The large versatility of class III adenylyl cyclase catalytic domains remains a major scientific challenge.
Collapse
Affiliation(s)
- Jürgen U Linder
- Fakultät fur Chemie und Pharmazie, Abteilung Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Morgenstelle 8, D-72076, Tübingen, Germany.
| | | |
Collapse
|
25
|
Cann MJ, Hammer A, Zhou J, Kanacher T. A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J Biol Chem 2003; 278:35033-8. [PMID: 12829712 DOI: 10.1074/jbc.m303025200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis by which organisms detect and respond to fluctuations in inorganic carbon is not known. The cyaB1 gene of the cyanobacterium Anabaena sp. PCC7120 codes for a multidomain protein with a C-terminal class III adenylyl cyclase catalyst that was specifically stimulated by bicarbonate ion (EC50 9.6 mm). Bicarbonate lowered substrate affinity but increased reaction velocity. A point mutation in the active site (Lys-646) reduced activity by 95% and was refractory to bicarbonate activation. We propose that Lys-646 specifically coordinates bicarbonate in the active site in conjunction with an aspartate to threonine polymorphism (Thr-721) conserved in class III adenylyl cyclases from diverse eukaryotes and prokaryotes. Using recombinant proteins we demonstrated that adenylyl cyclases that contain the active site threonine (cyaB of Stigmatella aurantiaca and Rv1319c of Mycobacterium tuberculosis) are bicarbonate-responsive, whereas adenylyl cyclases with a corresponding aspartate (Rv1264 of Mycobacterium) are bicarbonate-insensitive. Large numbers of class III adenylyl cyclases may therefore be activated by bicarbonate. This represents a novel mechanism by which diverse organisms can detect bicarbonate ion.
Collapse
Affiliation(s)
- Martin J Cann
- Department of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 3LE, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Téllez-Sosa J, Soberón N, Vega-Segura A, Torres-Márquez ME, Cevallos MA. The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J Bacteriol 2002; 184:3560-8. [PMID: 12057950 PMCID: PMC135151 DOI: 10.1128/jb.184.13.3560-3568.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Accepted: 04/07/2002] [Indexed: 11/20/2022] Open
Abstract
Adenylate cyclases (ACs) catalyze the formation of 3',5'-cyclic AMP (cAMP) from ATP. A novel AC-encoding gene, cyaC, was isolated from Rhizobium etli by phenotypic complementation of an Escherichia coli cya mutant. The functionality of the cyaC gene was corroborated by its ability to restore cAMP accumulation in an E. coli cya mutant. Further, overexpression of a malE::cyaC fusion protein allowed the detection of significant AC activity levels in cell extracts of an E. coli cya mutant. CyaC is unrelated to any known AC or to any other protein exhibiting a currently known function. Thus, CyaC represents the first member of a novel class of ACs (class VI). Hypothetical genes of unknown function similar to cyaC have been identified in the genomes of the related bacterial species Mesorhizobium loti, Sinorhizobium meliloti, and Agrobacterium tumefaciens. The cyaC gene is cotranscribed with a gene similar to ohr of Xanthomonas campestris and is expressed only in the presence of organic hydroperoxides. The physiological performance of an R. etli cyaC mutant was indistinguishable from that of the wild-type parent strain both under free-living conditions and during symbiosis.
Collapse
Affiliation(s)
- Juan Téllez-Sosa
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos
| | | | | | | | | |
Collapse
|
27
|
Shenoy AR, Srinivasan N, Visweswariah SS. The ascent of nucleotide cyclases: conservation and evolution of a theme. J Biosci 2002; 27:85-91. [PMID: 11937677 DOI: 10.1007/bf02703763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Avinash R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
28
|
Roelofs J, Meima M, Schaap P, Van Haastert PJ. The Dictyostelium homologue of mammalian soluble adenylyl cyclase encodes a guanylyl cyclase. EMBO J 2001; 20:4341-8. [PMID: 11500361 PMCID: PMC125260 DOI: 10.1093/emboj/20.16.4341] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Revised: 06/08/2001] [Accepted: 06/20/2001] [Indexed: 11/12/2022] Open
Abstract
A new Dictyostelium discoideum cyclase gene was identified that encodes a protein (sGC) with 35% similarity to mammalian soluble adenylyl cyclase (sAC). Gene disruption of sGC has no effect on adenylyl cyclase activity and results in a >10-fold reduction in guanylyl cyclase activity. The scg- null mutants show reduced chemotactic sensitivity and aggregate poorly under stringent conditions. With Mn(2+)/GTP as substrate, most of the sGC activity is soluble, but with the more physiological Mg(2+)/GTP the activity is detected in membranes and stimulated by GTPgammaS. Unexpectedly, orthologues of sGC and sAC are present in bacteria and vertebrates, but absent from Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
| | - Marcel Meima
- GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and
Department of Biochemistry, University of Dundee, Dundee DD1 5EH, UK Corresponding authors e-mail or
J.Roelofs and M.Meima contributed equally to this work
| | - Pauline Schaap
- GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and
Department of Biochemistry, University of Dundee, Dundee DD1 5EH, UK Corresponding authors e-mail or
J.Roelofs and M.Meima contributed equally to this work
| | - Peter J.M. Van Haastert
- GBB, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and
Department of Biochemistry, University of Dundee, Dundee DD1 5EH, UK Corresponding authors e-mail or
J.Roelofs and M.Meima contributed equally to this work
| |
Collapse
|
29
|
Ochoa De Alda JA, Ajlani G, Houmard J. Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J Bacteriol 2000; 182:3839-42. [PMID: 10851002 PMCID: PMC94558 DOI: 10.1128/jb.182.13.3839-3842.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechocystis strain PCC 6803 exhibits similar levels of cyclic AMP (cAMP) and cyclic GMP (cGMP). A thorough analysis of its genome showed that Cya2 (Sll0646) has all the sequence determinants required in terms of activity and purine specificity for being a guanylyl cyclase. Insertional mutagenesis of cya2 caused a marked reduction in cGMP content without altering the cAMP content. Thus, Cya2 represents the first example of a prokaryotic guanylyl cyclase.
Collapse
Affiliation(s)
- J A Ochoa De Alda
- Dynamique des Membranes Végétales, Complexes Protéines-Pigments, CNRS UMR8543, Ecole Normale Supérieure, 75230 Paris Cedex 05, France.
| | | | | |
Collapse
|
30
|
McCue LA, McDonough KA, Lawrence CE. Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 2000; 10:204-19. [PMID: 10673278 DOI: 10.1101/gr.10.2.204] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have analyzed the cyclic nucleotide (cNMP)-binding protein and nucleotide cyclase superfamilies using Bayesian computational methods of protein family identification and classification. In addition to the known cNMP-binding proteins (cNMP-dependent kinases, cNMP-gated channels, cAMP-guanine nucleotide exchange factors, and bacterial cAMP-dependent transcription factors), new functional groups of cNMP-binding proteins were identified, including putative ABC-transporter subunits, translocases, and esterases. Classification of the nucleotide cyclases revealed subtle differences in sequence conservation of the active site that distinguish the five classes of cyclases: the multicellular eukaryotic adenylyl cyclases, the eukaryotic receptor-type guanylyl cyclases, the eukaryotic soluble guanylyl cyclases, the unicellular eukaryotic and prokaryotic adenylyl cyclases, and the putative prokaryotic guanylyl cyclases. Phylogenetic distribution of the cNMP-binding proteins and cyclases was analyzed, with particular attention to the 22 complete archaeal and eubacterial genome sequences. Mycobacterium tuberculosis H37Rv and Synechocystis PCC6803 were each found to encode several more putative cNMP-binding proteins than other prokaryotes; many of these proteins are of unknown function. M. tuberculosis also encodes several more putative nucleotide cyclases than other prokaryotic species.
Collapse
Affiliation(s)
- L A McCue
- The Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany, New York 12201-0509 USA
| | | | | |
Collapse
|