1
|
Liu Y, Zhang Y, Kang C, Tian D, Lu H, Xu B, Xia Y, Kashiwagi A, Westermann M, Hoischen C, Xu J, Yomo T. Comparative genomics hints at dispensability of multiple essential genes in two Escherichia coli L-form strains. Biosci Rep 2023; 43:BSR20231227. [PMID: 37819245 PMCID: PMC10600066 DOI: 10.1042/bsr20231227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the critical role of bacterial cell walls in maintaining cell shapes, certain environmental stressors can induce the transition of many bacterial species into a wall-deficient state called L-form. Long-term induced Escherichia coli L-forms lose their rod shape and usually hold significant mutations that affect cell division and growth. Besides this, the genetic background of L-form bacteria is still poorly understood. In the present study, the genomes of two stable L-form strains of E. coli (NC-7 and LWF+) were sequenced and their gene mutation status was determined and compared with their parental strains. Comparative genomic analysis between two L-forms reveals both unique adaptions and common mutated genes, many of which belong to essential gene categories not involved in cell wall biosynthesis, indicating that L-form genetic adaptation impacts crucial metabolic pathways. Missense variants from L-forms and Lenski's long-term evolution experiment (LTEE) were analyzed in parallel using an optimized DeepSequence pipeline to investigate predicted mutation effects (α) on protein functions. We report that the two L-form strains analyzed display a frequency of 6-10% (0% for LTEE) in mutated essential genes where the missense variants have substantial impact on protein functions (α<0.5). This indicates the emergence of different survival strategies in L-forms through changes in essential genes during adaptions to cell wall deficiency. Collectively, our results shed light on the detailed genetic background of two E. coli L-forms and pave the way for further investigations of the gene functions in L-form bacterial models.
Collapse
Affiliation(s)
- Yunfei Liu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Yueyue Zhang
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Chen Kang
- School of Software Engineering, East China Normal University, Shanghai 200062, PR China
| | - Di Tian
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Martin Westermann
- Center for Electron Microscopy, Medical Faculty, Friedrich–Schiller–University Jena, Ziegelmühlenweg 1, D-07743 Jena, Germany
| | - Christian Hoischen
- CF Imaging, Leibniz Institute On Aging, Fritz–Lipmann–Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| |
Collapse
|
2
|
Willdigg JR, Patel Y, Helmann JD. A Decrease in Fatty Acid Synthesis Rescues Cells with Limited Peptidoglycan Synthesis Capacity. mBio 2023; 14:e0047523. [PMID: 37017514 PMCID: PMC10128001 DOI: 10.1128/mbio.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Proper synthesis and maintenance of a multilayered cell envelope are critical for bacterial fitness. However, whether mechanisms exist to coordinate synthesis of the membrane and peptidoglycan layers is unclear. In Bacillus subtilis, synthesis of peptidoglycan (PG) during cell elongation is mediated by an elongasome complex acting in concert with class A penicillin-binding proteins (aPBPs). We previously described mutant strains limited in their capacity for PG synthesis due to a loss of aPBPs and an inability to compensate by upregulation of elongasome function. Growth of these PG-limited cells can be restored by suppressor mutations predicted to decrease membrane synthesis. One suppressor mutation leads to an altered function repressor, FapR*, that functions as a super-repressor and leads to decreased transcription of fatty acid synthesis (FAS) genes. Consistent with fatty acid limitation mitigating cell wall synthesis defects, inhibition of FAS by cerulenin also restored growth of PG-limited cells. Moreover, cerulenin can counteract the inhibitory effect of β-lactams in some strains. These results imply that limiting PG synthesis results in impaired growth, in part, due to an imbalance of PG and cell membrane synthesis and that B. subtilis lacks a robust physiological mechanism to reduce membrane synthesis when PG synthesis is impaired. IMPORTANCE Understanding how a bacterium coordinates cell envelope synthesis is essential to fully appreciate how bacteria grow, divide, and resist cell envelope stresses, such as β-lactam antibiotics. Balanced synthesis of the peptidoglycan cell wall and the cell membrane is critical for cells to maintain shape and turgor pressure and to resist external cell envelope threats. Using Bacillus subtilis, we show that cells deficient in peptidoglycan synthesis can be rescued by compensatory mutations that decrease the synthesis of fatty acids. Further, we show that inhibiting fatty acid synthesis with cerulenin is sufficient to restore growth of cells deficient in peptidoglycan synthesis. Understanding the coordination of cell wall and membrane synthesis may provide insights relevant to antimicrobial treatment.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Lazenby JJ, Li ES, Whitchurch CB. Cell wall deficiency - an alternate bacterial lifestyle? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35925044 DOI: 10.1099/mic.0.001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof. In doing so, we will present evidence that not all CWD variants are alike and that, at least in some cases, CWD variants arise through an adaptive lifestyle switch that enables them to live and thrive without a cell wall, often to avoid antimicrobial activity. Finally, the implications of CWD bacteria in recurring infections, tolerance to antibiotic therapy and antimicrobial resistance will be examined to illustrate the importance of greater understanding of the CWD bacteria in human health and disease.
Collapse
Affiliation(s)
- James J Lazenby
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Erica S Li
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Cynthia B Whitchurch
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TK, UK
| |
Collapse
|
4
|
Shitut S, Bergman GÖ, Kros A, Rozen DE, Claessen D. Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms 2020; 8:microorganisms8121897. [PMID: 33265975 PMCID: PMC7760116 DOI: 10.3390/microorganisms8121897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/10/2023] Open
Abstract
Filamentous actinobacteria are widely used as microbial cell factories to produce valuable secondary metabolites, including the vast majority of clinically relevant antimicrobial compounds. Secondary metabolites are typically encoded by large biosynthetic gene clusters, which allow for a modular approach to generating diverse compounds through recombination. Protoplast fusion is a popular method for whole genome recombination that uses fusion of cells that are transiently wall-deficient. This process has been applied for both inter- and intraspecies recombination. An important limiting step in obtaining diverse recombinants from fused protoplasts is regeneration of the cell wall, because this forces the chromosomes from different parental lines to segregate, thereby preventing further recombination. Recently, several labs have gained insight into wall-deficient bacteria that have the ability to proliferate without their cell wall, known as L-forms. Unlike protoplasts, L-forms can stably maintain multiple chromosomes over many division cycles. Fusion of such L-forms would potentially allow cells to express genes from both parental genomes while also extending the time for recombination, both of which can contribute to an increased chemical diversity. Here, we present a perspective on how L-form fusion has the potential to become a platform for novel compound discovery and may thus help to overcome the antibiotic discovery void.
Collapse
Affiliation(s)
- Shraddha Shitut
- Origins Centre, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Correspondence: (S.S.); (D.C.)
| | - Güniz Özer Bergman
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Daniel E. Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
| | - Dennis Claessen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (G.Ö.B.); (D.E.R.)
- Correspondence: (S.S.); (D.C.)
| |
Collapse
|
5
|
Budding and Division of Giant Vesicles Linked to Phospholipid Production. Sci Rep 2019; 9:165. [PMID: 30655551 PMCID: PMC6336860 DOI: 10.1038/s41598-018-36183-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The self-reproduction of supramolecular assemblies based on the synthesis and self-assembly of building blocks is a critical step towards the construction of chemical systems with autonomous, adaptive, and propagation properties. In this report, we demonstrate that giant vesicles can grow and produce daughter vesicles by synthesizing and incorporating phospholipids in situ from ad-hoc precursors. Our model involves acyl chain elongation via copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition reaction and the ensuing production of synthetic phospholipids to induce budding and division. In addition, the growth and budding of giant vesicles were compatible with the encapsulation and transfer of macromolecules as large as lambda phage DNA to the buds. This chemical system provides a useful model towards the implementation of cell-like compartments capable of propagation and transport of biological materials.
Collapse
|
6
|
Errington J, Mickiewicz K, Kawai Y, Wu LJ. L-form bacteria, chronic diseases and the origins of life. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0494. [PMID: 27672147 PMCID: PMC5052740 DOI: 10.1098/rstb.2015.0494] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
The peptidoglycan cell wall is widely conserved across the bacterial domain, suggesting that it appeared early in the evolution of bacteria. It is normally essential but under certain conditions wall-deficient or ‘L-form’ bacteria can be isolated. In Bacillus subtilis this normally requires two genetic changes. The first, exemplified by mutations shutting down wall precursor synthesis, works by increasing membrane synthesis. This promotes the unusual form of proliferation used by L-forms, involving a range of relatively disorganized membrane blebbing or vesiculation events. The secondary class of mutations probably work by relieving oxidative stress that L-forms may incur due to their unbalanced metabolism. Repression or inhibition of cell wall precursor synthesis can stimulate the L-form transition in a wide range of bacteria, of both Gram-positive and -negative lineages. L-forms are completely resistant to most antibiotics working specifically on cell wall synthesis, such as penicillins and cephalosporins, consistent with the many reports of their involvement in various chronic diseases. They are potentially important in biotechnology, because lack of a wall can be advantageous in a range of production or strain improvement applications. Finally, L-forms provide an interesting model system for studying early steps in the evolution of cellular life. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE24AX, UK
| | - Katarzyna Mickiewicz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE24AX, UK
| | - Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE24AX, UK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE24AX, UK
| |
Collapse
|
7
|
Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nat Commun 2016; 7:13631. [PMID: 27876798 PMCID: PMC5123018 DOI: 10.1038/ncomms13631] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
L-forms are cell wall-deficient bacteria that divide through unusual mechanisms, involving dynamic perturbations of the cellular shape and generation of vesicles, independently of the cell-division protein FtsZ. Here we describe FtsZ-independent mechanisms, involving internal and external vesicles, by which Listeria monocytogenesL-forms proliferate. Using micromanipulation of single cells and vesicles, we show that small vesicles are formed by invagination within larger intracellular vesicles, receive cytoplasmic content, and represent viable progeny. In addition, the L-forms can reproduce by pearling, that is, generation of extracellular vesicles that remain transiently linked to their mother cell via elastic membranous tubes. Using photobleaching and fluorescence recovery, we demonstrate cytoplasmic continuity and transfer through these membranous tubes. Our findings indicate that L-forms' polyploidy and extended interconnectivity through membranous tubes contribute to the generation of viable progeny independently of dedicated division machinery, and further support L-forms as models for studies of potential multiplication mechanisms of hypothetical primitive cells. L-forms are cell wall-deficient bacteria that divide through unusual mechanisms, potentially resembling those of primitive cells. Here the authors describe how Listeria monocytogenesL-forms proliferate by generation of internal and external vesicles.
Collapse
|
8
|
Studer P, Borisova M, Schneider A, Ayala JA, Mayer C, Schuppler M, Loessner MJ, Briers Y. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis. PLoS One 2016; 11:e0154925. [PMID: 27149671 PMCID: PMC4858229 DOI: 10.1371/journal.pone.0154925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 01/16/2023] Open
Abstract
L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.
Collapse
Affiliation(s)
- Patrick Studer
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marina Borisova
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Alexander Schneider
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Juan A. Ayala
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christoph Mayer
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Markus Schuppler
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yves Briers
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
9
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
10
|
Viale E, Martinez-Sañudo I, Brown JM, Simonato M, Girolami V, Squartini A, Bressan A, Faccoli M, Mazzon L. Pattern of association between endemic Hawaiian fruit flies (Diptera, Tephritidae) and their symbiotic bacteria: Evidence of cospeciation events and proposal of "Candidatus Stammerula trupaneae". Mol Phylogenet Evol 2015; 90:67-79. [PMID: 25959751 DOI: 10.1016/j.ympev.2015.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/18/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022]
Abstract
Several insect lineages have evolved mutualistic association with symbiotic bacteria. This is the case of some species of mealybugs, whiteflies, weevils, tsetse flies, cockroaches, termites, carpenter ants, aphids and fruit flies. Some species of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harbour co-evolved vertically transmitted, bacterial symbionts in their midgut, known as "Candidatus Stammerula spp.". The 25 described endemic species of Hawaiian tephritids, plus at least three undescribed species, are taxonomically distributed among three genera: the cosmopolitan genus Trupanea (21 described spp.), the endemic genus Phaeogramma (2 spp.) and the Nearctic genus Neotephritis (2 spp.). We examined the presence of symbiotic bacteria in the endemic tephritids of the Hawaiian Islands, which represent a spectacular example of adaptive radiation, and tested the concordant evolution between host and symbiont phylogenies. We detected through PCR assays the presence of specific symbiotic bacteria, designated as "Candidatus Stammerula trupaneae", from 35 individuals of 15 species. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. We also explored the character reconstruction of three host traits, as island location, host lineage, and host tissue attacked, based on the symbiont phylogenies under the hypothesis of cospeciation.
Collapse
Affiliation(s)
- E Viale
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - I Martinez-Sañudo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - J M Brown
- Department of Biology, Grinnell College, Grinnell, IA 50012, USA.
| | - M Simonato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - V Girolami
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - A Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - A Bressan
- Bayer Crop Science LP, R&D Trait Research, 3500 Paramount Parkway, Morrisville, NC 27560, USA.
| | - M Faccoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - L Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
11
|
Han J, Shi W, Xu X, Wang S, Zhang S, He L, Sun X, Zhang Y. Conditions and mutations affecting Staphylococcus aureus L-form formation. Microbiology (Reading) 2015; 161:57-66. [DOI: 10.1099/mic.0.082354-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jian Han
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lili He
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Xudong Sun
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China
| | - Ying Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Han J, He L, Shi W, Xu X, Wang S, Zhang S, Zhang Y. Glycerol uptake is important for L-form formation and persistence in Staphylococcus aureus. PLoS One 2014; 9:e108325. [PMID: 25251561 PMCID: PMC4177120 DOI: 10.1371/journal.pone.0108325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/18/2014] [Indexed: 12/02/2022] Open
Abstract
S. aureus is a significant human pathogen and has previously been shown to form cell wall deficient forms or L-forms in vitro and in vivo during infection. Despite many previous studies on S. aureus L-forms, the mechanisms of L-form formation in this organism remain unknown. Here we established the L-form model in S. aureus and constructed a transposon mutant library to identify genes involved in L-form formation. Screening of the library for mutants defective in L-form formation identified glpF involved in glycerol uptake being important for L-form formation in S. aureus. Consistent with this observation, glpF was found to be highly expressed in L-form S. aureus but hardly expressed in normal walled form. In addition, glpF mutant was found to be defective in antibiotic persistence. The defect in L-form formation and antibiotic persistence of the glpF mutant could be complemented by the wild type glpF gene. These findings provide new insight into the mechanisms of L-form formation and persistence in S. aureus and may have implications for development of new drugs targeting persisters for improved treatment.
Collapse
Affiliation(s)
- Jian Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lili He
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Mercier R, Kawai Y, Errington J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 2013; 152:997-1007. [PMID: 23452849 DOI: 10.1016/j.cell.2013.01.043] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/12/2012] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The peptidoglycan cell wall is a hallmark of the bacterial subkingdom. Surprisingly, many modern bacteria retain the ability to switch into a wall-free state called the L-form. L-form proliferation is remarkable in being independent of the normally essential FtsZ-based division machinery and in occurring by membrane blebbing and tubulation. We show that mutations leading to excess membrane synthesis are sufficient to drive L-form division in Bacillus subtilis. Artificially increasing the cell surface area to volume ratio in wild-type protoplasts generates similar shape changes and cell division. Our findings show that simple biophysical processes could have supported efficient cell proliferation during the evolution of early cells and provide an extant biological model for studying this problem.
Collapse
Affiliation(s)
- Romain Mercier
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | | | | |
Collapse
|
14
|
Briers Y, Walde P, Schuppler M, Loessner MJ. How did bacterial ancestors reproduce? Lessons from L-form cells and giant lipid vesicles. Bioessays 2012; 34:1078-84. [DOI: 10.1002/bies.201200080] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 2012; 7:e38514. [PMID: 22701656 PMCID: PMC3368840 DOI: 10.1371/journal.pone.0038514] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.
Collapse
|
16
|
Domínguez-Cuevas P, Mercier R, Leaver M, Kawai Y, Errington J. The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplast to escape from the cell wall sacculus. Mol Microbiol 2011; 83:52-66. [PMID: 22122227 DOI: 10.1111/j.1365-2958.2011.07920.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L-forms are variants of common bacteria that can grow and proliferate without a cell wall. Little is known about their molecular cell biology but they undergo a remarkable mode of proliferation that is independent of the normally essential FtsZ-dependent division machinery. We have isolated a strain of Bacillus subtilis that can quickly and quantitatively convert from the walled to the L-form state. Analysis of the transition process identified an unexpected 'escape' step needed for L-form emergence from the rod. Mutations in two different genes, walR and sepF, contribute to the high frequency of escape: walR, a transcriptional regulator involved in cell wall homeostasis; and sepF, required for accurate and efficient cell division. Time-lapse imaging shows that the mutations act by facilitating the release of the L-form from its walled parent cell but that they act in different ways. The walR mutation renders the activity of the protein partially constitutive, inappropriately upregulating the activity of autolytic enzymes that weaken the cell wall. The sepF mutation probably works by perturbing the formation of a properly constructed division septum, generating a mechanical breach in the wall. The new strain provides a powerful experimental system for studying the genetics and cell biology of L-forms.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
17
|
Norris V, Zemirline A, Amar P, Audinot JN, Ballet P, Ben-Jacob E, Bernot G, Beslon G, Cabin A, Fanchon E, Giavitto JL, Glade N, Greussay P, Grondin Y, Foster JA, Hutzler G, Jost J, Kepes F, Michel O, Molina F, Signorini J, Stano P, Thierry AR. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory Biosci 2011; 130:211-28. [PMID: 21384168 PMCID: PMC3163788 DOI: 10.1007/s12064-010-0118-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 12/15/2010] [Indexed: 10/29/2022]
Abstract
The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.
Collapse
Affiliation(s)
- Vic Norris
- Epigenomics Project, Genopole Campus 1, Bât. Genavenir 6, 5 rue Henri Desbruères, 91030, Évry Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Markova N, Slavchev G, Michailova L, Jourdanova M. Survival of Escherichia coli under lethal heat stress by L-form conversion. Int J Biol Sci 2010; 6:303-15. [PMID: 20582223 PMCID: PMC2892294 DOI: 10.7150/ijbs.6.303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 06/06/2010] [Indexed: 11/22/2022] Open
Abstract
Transition of bacteria to cell wall deficient L-forms in response to stress factors has been assumed as a potential mechanism for survival of microbes under unfavorable conditions. In this article, we provide evidence of paradoxal survival through L-form conversion of E. coli high cell density population after lethal treatments (boiling or autoclaving). Light and transmission electron microscopy demonstrated conversion from classical rod to polymorphic L-form shape morphology and atypical growths of E. coli. Microcrystal formations observed at this stage were interpreted as being closely linked to the processes of L-form conversion and probably involved in the general phenomenon of protection against lethal environment. Identity of the morphologically modified L-forms as E. coli was verified by species specific DNA-based test. Our study might contribute to a better understanding of the L-form phenomenon and its importance for bacterial survival, as well as provoke reexamination of the traditional view of killing strategies against bacteria.
Collapse
Affiliation(s)
- Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 26, 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
19
|
Martin HH. L-forms and the unusual formation of progeny in cell wall-less bacteria: recognizing the old roots of new science. Arch Microbiol 2010; 192:235-6. [PMID: 20058000 DOI: 10.1007/s00203-009-0540-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/26/2009] [Indexed: 11/28/2022]
|
20
|
Kenanov D, Kaleta C, Petzold A, Hoischen C, Diekmann S, Siddiqui RA, Schuster S. Theoretical study of lipid biosynthesis in wild-type Escherichia coli and in a protoplast-type L-form using elementary flux mode analysis. FEBS J 2010; 277:1023-34. [DOI: 10.1111/j.1742-4658.2009.07546.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Glover WA, Yang Y, Zhang Y. Insights into the molecular basis of L-form formation and survival in Escherichia coli. PLoS One 2009; 4:e7316. [PMID: 19806199 PMCID: PMC2752164 DOI: 10.1371/journal.pone.0007316] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/02/2009] [Indexed: 11/30/2022] Open
Abstract
L-forms have been shown to occur among many species of bacteria and are suspected to be involved in persistent infections. Since their discovery in 1935, numerous studies characterizing L-form morphology, growth, and pathogenic potential have been conducted. However, the molecular mechanisms underlying the formation and survival of L-forms remain unknown. Using unstable L-form colonies of Escherichia coli as a model, we performed genome-wide transcriptome analysis and screened a deletion mutant library to study the molecular mechanisms involved in formation and survival of L-forms. Microarray analysis of L-form versus classical colonies revealed many up-regulated genes of unknown function as well as multiple over-expressed stress pathways shared in common with persister cells and biofilms. Mutant screens identified three groups of mutants which displayed varying degrees of defects in L-form colony formation. Group 1 mutants, which showed the strongest defect in L-form colony formation, belonged to pathways involved in cell envelope stress, DNA repair, iron homeostasis, outer membrane biogenesis, and drug efflux/ABC transporters. Four (Group 1) mutants, rcsB, a positive response regulator of colanic acid capsule synthesis, ruvA, a recombinational junction binding protein, fur, a ferric uptake regulator and smpA a small membrane lipoprotein were selected for complementation. Complementation of the mutants using a high-copy overexpression vector failed, while utilization of a low-copy inducible vector successfully restored L-form formation. This work represents the first systematic genetic evaluation of genes and pathways involved in the formation and survival of unstable L-form bacteria. Our findings provide new insights into the molecular mechanisms underlying L-form formation and survival and have implications for understanding the emergence of antibiotic resistance, bacterial persistence and latent infections and designing novel drugs and vaccines.
Collapse
Affiliation(s)
- William A. Glover
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yanqin Yang
- Bioinformatics Core, The Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Allan E, Hoischen C, Gumpert J. Chapter 1 Bacterial L‐Forms. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:1-39. [DOI: 10.1016/s0065-2164(09)01201-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Abstract
DivIB, also known as FtsQ in gram-negative organisms, is a division protein that is conserved in most eubacteria. DivIB is localized at the division site and forms a complex with two other division proteins, FtsL and DivIC/FtsB. The precise function of these three bitopic membrane proteins, which are central to the division process, remains unknown. We report here the characterization of a divIB deletion mutant of Streptococcus pneumoniae, which is a coccus that divides with parallel planes. Unlike its homologue FtsQ in Escherichia coli, pneumococcal DivIB is not required for growth in rich medium, but the Delta divIB mutant forms chains of diplococci and a small fraction of enlarged cells with defective septa. However, the deletion mutant does not grow in a chemically defined medium. In the absence of DivIB and protein synthesis, the partner FtsL is rapidly degraded, whereas other division proteins are not affected, pointing to a role of DivIB in stabilizing FtsL. This is further supported by the finding that an additional copy of ftsL restores growth of the Delta divIB mutant in defined medium. Functional mapping of the three distinct alpha, beta, and gamma domains of the extracellular region of DivIB revealed that a complete beta domain is required to fully rescue the deletion mutant. DivIB with a truncated beta domain reverts only the chaining phenotype, indicating that DivIB has distinct roles early and late in the division process. Most importantly, the deletion of divIB increases the susceptibility to beta-lactams, more evidently in a resistant strain, suggesting a function in cell wall synthesis.
Collapse
|
24
|
Den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 2008; 32:321-44. [DOI: 10.1111/j.1574-6976.2007.00090.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA.
| |
Collapse
|
26
|
Joseleau-Petit D, Liébart JC, Ayala JA, D'Ari R. Unstable Escherichia coli L forms revisited: growth requires peptidoglycan synthesis. J Bacteriol 2007; 189:6512-20. [PMID: 17586646 PMCID: PMC2045188 DOI: 10.1128/jb.00273-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growing bacterial L forms are reputed to lack peptidoglycan, although cell division is normally inseparable from septal peptidoglycan synthesis. To explore which cell division functions L forms use, we established a protocol for quantitatively converting a culture of a wild-type Escherichia coli K-12 strain overnight to a growing L-form-like state by use of the beta-lactam cefsulodin, a specific inhibitor of penicillin-binding proteins (PBPs) 1A and 1B. In rich hypertonic medium containing cefsulodin, all cells are spherical and osmosensitive, like classical L forms. Surprisingly, however, mutant studies showed that colony formation requires d-glutamate, diaminopimelate, and MurA activity, all of which are specific to peptidoglycan synthesis. High-performance liquid chromatography analysis confirmed that these L-form-like cells contain peptidoglycan, with 7% of the normal amount. Moreover, the beta-lactam piperacillin, a specific inhibitor of the cell division protein PBP 3, rapidly blocks the cell division of these L-form-like cells. Similarly, penicillin-induced L-form-like cells, which grow only within the agar layers of rich hypertonic plates, also require d-glutamate, diaminopimelate, and MurA activity. These results strongly suggest that cefsulodin- and penicillin-induced L-form-like cells of E. coli-and possibly all L forms-have residual peptidoglycan synthesis which is essential for their growth, probably being required for cell division.
Collapse
|
27
|
Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PAJ. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 2007; 63:1008-25. [PMID: 17233825 PMCID: PMC4428343 DOI: 10.1111/j.1365-2958.2006.05571.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fission of bacterial cells involves the co-ordinated invagination of the envelope layers. Invagination of the cytoplasmic membrane (IM) and peptidoglycan (PG) layer is likely driven by the septal ring organelle. Invagination of the outer membrane (OM) in Gram-negative species is thought to occur passively via its tethering to the underlying PG layer with generally distributed PG-binding OM (lipo)proteins. The Tol-Pal system is energized by proton motive force and is well conserved in Gram-negative bacteria. It consists of five proteins that can connect the OM to both the PG and IM layers via protein-PG and protein-protein interactions. Although the system is needed to maintain full OM integrity, and for class A colicins and filamentous phages to enter cells, its precise role has remained unclear. We show that all five components accumulate at constriction sites in Escherichia coli and that mutants lacking an intact system suffer delayed OM invagination and contain large OM blebs at constriction sites and cell poles. We propose that Tol-Pal constitutes a dynamic subcomplex of the division apparatus in Gram-negative bacteria that consumes energy to establish transient trans-envelope connections at/near the septal ring to draw the OM onto the invaginating PG and IM layers during constriction.
Collapse
Affiliation(s)
- Matthew A. Gerding
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yasuyuki Ogata
- Radioisotope Center, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nicole D. Pecora
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hironori Niki
- Radioisotope Center, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Piet A. J. de Boer
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- For correspondence. ; Tel. (+1) 216 368 1697; Fax (+1) 216 368 3055
| |
Collapse
|