1
|
Bhattarai K, Majer T, Haussmann M, Schollmeyer D, Kramer M, Oni FE, Höfte M, Voget R, Gütschow M, Ruetalo N, Schindler M, Straetener J, Wannenwetsch T, Brötz-Oesterhelt H, Karongo R, Masberg B, Lämmerhofer M, Hennessy RC, Muletz-Wolz CR, Gross H. Salamandamide Lipodipeptides Are Biosynthetic Intermediate Shunt Products of the Nonamodular Nonribosomal Peptide Assembly Lines of the Viscosin Family. JOURNAL OF NATURAL PRODUCTS 2025; 88:1012-1022. [PMID: 40232844 PMCID: PMC12038845 DOI: 10.1021/acs.jnatprod.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Chemical investigation of a salamander-mucus-associated Pseudomonas tolaasii strain led to the isolation and chemical characterization of salamandamide A, a new lipo-dipeptide, along with known lipopeptides of the pseudodesmin and tolaasin class. Genome mining revealed that no specific gene cluster codes for the biosynthesis of salamandamide A. Stereochemical analyses and mutagenesis experiments linked the biosynthesis of the lipo-dipeptide salamandamide A to the NRPS gene cluster of the lipo-nonapeptide pseudodesmin. Further chemical investigations showed that this finding appears to be a broader concept and that all nonamodular NRPS gene clusters of the viscosin family were capable to produce, beside the expected lipo-nonapeptide, the corresponding lipo-dipeptide as a shunt product which also led to the discovery of salamandamide B from Pseudomonas lactis SS101.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical
Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Majer
- Pharmaceutical
Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Manuela Haussmann
- Pharmaceutical
Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University
Mainz, 55099 Mainz, Germany
| | - Markus Kramer
- Institute
of Organic Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Feyisara Eyiwumi Oni
- Department
of Phytopathology, Rijk Zwaan Breeding B.V., 2678 ZG De Lier, The Netherlands
| | - Monica Höfte
- Lab.
Phytopathology, Department of Plants and Crops, Faculty of Bioscience
Engineering, Ghent University, 9000 Gent, Belgium
| | - Rabea Voget
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Natalia Ruetalo
- Institute
for Medical Virology and Epidemiology, Section Molecular Virology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Michael Schindler
- Institute
for Medical Virology and Epidemiology, Section Molecular Virology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jan Straetener
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Tatjana Wannenwetsch
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- German
Center for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Ryan Karongo
- Pharmaceutical
Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen, 72076 Tübingen, Germany
| | - Benedikt Masberg
- Pharmaceutical
Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen, 72076 Tübingen, Germany
| | | | - Carly R. Muletz-Wolz
- Center
for Conservation Genomics, Smithsonian’s
National Zoo and Conservation Biology Institute, Washington, D.C. 20008, United States
| | - Harald Gross
- Pharmaceutical
Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German
Center for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Brannen DE, Marks J, Schairbaum R, Bokanyi R. First report of the agricultural biocontrol agent Bacillus velezensis and foodborne outbreak due to rope spoilage in cakes. Appl Environ Microbiol 2025; 91:e0257024. [PMID: 40152609 PMCID: PMC12016526 DOI: 10.1128/aem.02570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
This paper presents an outbreak involving retail bakery cakes and a celebration at a business with multiple sites. Bacillus spore-forming bacteria have been identified as the cause of "ropey bread" spoilage for over 100 years. Causative strains of rope spoilage include B. subtilis and other Bacillus species. Thirty-five employees identified as having been at a celebration event across 11 sites were questioned to characterize the amount of cake eaten, observations, and symptoms. No human specimens were obtained, but leftover cake was analyzed by the Ohio Department of Health Bureau of Public Health Laboratory. The odds that cake caused symptoms were 9.23 (1.02-83). The presence of odor decreased the amount eaten by 151 g (103-205 g), P = 0.001. Enteric symptoms developed 0.41-4.5 hours after exposure, with 5 of 12 cases having latent diarrhea. Cakes were positive for Bacillus velezensis. This appears to be the first mention of B. velezensis as a contributor to the re-emergence of rope spoilage in the bakery industry. Updates to the Bacillus taxonomy starting in 1973 may account for why B. subtilis and other Bacillus strains are historically listed without mention of B. velezensis as a cause of rope spoilage. Given the ability of B. velezensis to be an effective biocontrol agent and to grow at pH and water activity levels like many baked goods, there is a need to study issues along the entire food chain to balance the impact on biocontrol additives on food production and safety.IMPORTANCEThis appears to be the first mention of Bacillus velezensis as a contributor to the re-emergence of rope spoilage in the bakery industry. Given the ability of B. velezensis to be an effective biocontrol agent and to grow at pH and water activity levels like many baked goods, there is a need to study issues along the entire food chain to balance the impact on biocontrol additives on food production and safety.
Collapse
Affiliation(s)
| | - Jere Marks
- Greene County Public Health, Greene County, Xenia, Ohio, USA
| | | | - Rick Bokanyi
- Ohio Department of Health Laboratory, Reynoldsburg, Ohio, USA
| |
Collapse
|
3
|
Huang C, Wang X, Gao Y, Jiang X, Wang L, Ou X, Wang Y, Zhou T, Yuan QS. The comparative genomic analysis provides insight into the divergent inhibitory activity metabolites in pathogen-driven three Pseudomonas palleroniana strains against primary pathogens of Pseudostellaria heterophylla. BMC Genomics 2025; 26:332. [PMID: 40175895 PMCID: PMC11963402 DOI: 10.1186/s12864-025-11527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
Pseudostellaria heterophylla (Miq.) Pax ex Pax et Hoffm. is a member of the Caryophyllaceae family, in which dried tuberous root is the well-known traditional Chinese medicine (TCM) and a widespread food ingredient in Asia. In recent years, the large-scale cultivation of P. heterophylla has led to frequent infectious diseases caused by multiple pathogens. However, efficient and safe approaches for preventing and managing P. heterophylla diseases have become urgent for this high-quality industrial development. Herein, a culturable microbiome of diseased P. heterophylla rhizosphere soil was constructed, and the broad-spectrum antifungal activity of Pseudomonas was screened. Three P. palleroniana strains, B-BH16-1, B-JK4-1, and HP-YBB-1B, were isolated and identified with vigorous antifungal activity by confrontation method. We employed the PacBio RS II single-molecule real-time (SMRT) sequencing and Illumina sequencing methods to obtain the genome of these three isolates. Phylogenetic, synteny, and ANI analysis showed that the lineage between strain B-JK4-1 with B-BH16-1 or HY-YBB-1B was closer than that between strain B-BH16-1 with HP-YBB-1B. The comparative genome of strains B-BH16-1, B-JK4-1, and HP-YBB-1B showed marked differences in secondary metabolite biosynthesis genes among these three P. palleroniana strains. Strain B-BH16-1, B-JK4-1, and HP-YBB-1 produced tolaasin I/tolaasin F (23 genes), sessilin A (37 genes), and putisolvin (39 genes), respectively. CAZyme analysis showed that 126, 129, and 127 CAZymes were identified in strains B-BH16-1, B-JK4-1, and HP-YBB-1B genomes, which genes in auxiliary activities (AA), carbohydrate esterases (CE), and glycosyl transferases (GT) categories were different among these three strains. These results provide new insights into the divergent antifungal metabolites in pathogen-driven three P. palleroniana strains against primary pathogens of Pseudostellaria heterophylla.
Collapse
Affiliation(s)
- Chunfeng Huang
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoai Wang
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanping Gao
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xue Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Wang
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Zhou
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing-Song Yuan
- Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Ravi A, Das S, Sebastian SK, Aravindakumar CT, Mathew J, Krishnankutty RE. Bioactive Metabolites of Serratia sp. NhPB1 Isolated from Pitcher of Nepenthes and its Application to Control Pythium aphanidermatum. Probiotics Antimicrob Proteins 2025; 17:721-736. [PMID: 37872287 DOI: 10.1007/s12602-023-10154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/25/2023]
Abstract
Plant-associated bacteria have already been considered as the store house of bioactive compounds that confer the plant growth promotion and disease protection. Hence, the unique plant parts have already been expected to harbor diverse microbial communities with multi-beneficial properties. Based on this, the current study has been designed to identify the potential of Serratia sp. NhPB1 isolated from the pitcher of Nepenthes plant for its activity against the infamous pathogen Pythium aphanidermatum. The in vitro antifungal, plant growth promoting and enzymatic activities of the isolate indicated its promises for agricultural application. The isolate NhPB1 was also demonstrated to have positive effect on Solanum lycopersicum and Capsicum annuum, due to its plant beneficial metabolites. From the results of LC-MS/MS analysis, the isolate has also been revealed to have the ability to synthesize bioactive compounds including salicylic acid, cyclodipeptides, acyl homoserine lactone, indole-3-acetic acid, and serrawettin W1. These identified compounds and their known biological properties make the isolate characterized in the study to have significant promises as an eco-friendly solution for the improvement of agricultural productivity.
Collapse
Affiliation(s)
- Aswani Ravi
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, 686561, India
| | | | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | |
Collapse
|
5
|
Morales-Barron BM, Larios-Serrato V, Morales-García YE, Quintero-Hernández V, Estrada-de los Santos P, Muñoz-Rojas J. Effect of Pseudomonas protegens EMM-1 Against Rhizopus oryzae in Interactions with Mexican Autochthonous Red Maize. Life (Basel) 2025; 15:554. [PMID: 40283109 PMCID: PMC12028814 DOI: 10.3390/life15040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
In the present study, the strain Rhizopus oryzae EMM was isolated from germinated autochthonous red maize seeds, which were harvested in a region of San Diego-Buenavista, Papalotla, Tlaxcala, Mexico, where cobs with fungal infections have been observed. This fungal strain caused wilting in the maize seedlings. Pseudomonas protegens EMM-1 was tested for its ability to inhibit R. oryzae EMM, both in culture media and in association with maize plantlets. P. protegens EMM-1 inhibited the growth of R. oryzae EMM under all culture media conditions explored. The ability of P. protegens EMM-1 to inhibit the growth of R. oryzae EMM associated with plants was evaluated in both a hydroponic system and in vermiculite. In both systems, P. protegens EMM-1 strongly inhibited the growth of R. oryzae EMM. The dry weight of root plants infected with R. oryzae EMM and inoculated with P. protegens EMM-1 increased to 0.43 g, while that of plants infected only with R. oryzae EMM reached just 0.19 g under hydroponic conditions. However, no differences were observed under vermiculite conditions. The dry weight of the aerial region of plants infected with R. oryzae EMM and inoculated with P. protegens EMM-1 was greater than that of plants infected only with R. oryzae EMM, both under hydroponic and vermiculite conditions. These results indicate that P. protegens EMM-1 inhibits the infection caused by R. oryzae EMM, thereby improving plant growth. Moreover, the genome analysis of P. protegens EMM-1 revealed the presence of several genes that potentially encode for antimicrobial compounds, which could strengthen the potential use of P. protegens EMM-1 as a biocontrol agent in maize plants.
Collapse
Affiliation(s)
- Bruce Manuel Morales-Barron
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala, Col. Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico; (B.M.M.-B.); (V.L.-S.)
- Ecology and Survival of Microorganisms Group, Laboratorio de Ecología Molecular Microbiana, Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla C.P. 72570, Mexico; (Y.E.M.-G.); (V.Q.-H.)
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala, Col. Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico; (B.M.M.-B.); (V.L.-S.)
| | - Yolanda Elizabeth Morales-García
- Ecology and Survival of Microorganisms Group, Laboratorio de Ecología Molecular Microbiana, Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla C.P. 72570, Mexico; (Y.E.M.-G.); (V.Q.-H.)
- Grupo Inoculantes Microbianos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Verónica Quintero-Hernández
- Ecology and Survival of Microorganisms Group, Laboratorio de Ecología Molecular Microbiana, Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla C.P. 72570, Mexico; (Y.E.M.-G.); (V.Q.-H.)
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Paulina Estrada-de los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala, Col. Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico; (B.M.M.-B.); (V.L.-S.)
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Group, Laboratorio de Ecología Molecular Microbiana, Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla C.P. 72570, Mexico; (Y.E.M.-G.); (V.Q.-H.)
| |
Collapse
|
6
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
7
|
Wasmuth I, Warinner C, Stallforth P. Microbial dynamics and Pseudomonas natural product production in milk and dairy products. Nat Prod Rep 2025. [PMID: 40028703 PMCID: PMC11874467 DOI: 10.1039/d4np00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 03/05/2025]
Abstract
Covering: 2000 up to the first half of 2024Milk and its derived dairy products have long been integral to the human diet, with evidence of consumption dating back over 9000 years. Milk's high nutritional value renders dairy products an important element of human diet while also offering a fertile environment for microbial growth. Beneficial microorganisms in dairy products are often associated with biogenic and probiotic effects, whereas spoilage or pathogenic microorganisms can pose health risks. Fermentation is a key method to preserve milk. Whereas dairying practices in most parts of the world have been highly altered by industrialization over the past century, nomadic pastoralists in Mongolia notably retain a rich tradition of household-level dairy fermentation that has been practiced since 3000 BC. Milk-associated microorganisms produce a vast number of low molecular weight natural products that can mediate beneficial and detrimental interactions. Bacteria of the genus Pseudomonas are found in traditional Mongolian dairy products and are common contaminants in commercial dairy products, and they can strongly impact the quality and shelf-life of dairy products. These bacteria are well known for their ability to produce a variety of secondary metabolites, including nonribosomal (lipo)peptides, which are both structurally and functionally diverse. Lipopeptides can have antimicrobial properties, act as quorum sensing molecules, and contribute to biofilm formation due to their amphiphilic nature. Although often associated with spoilage, some of these natural products can also exhibit positive effects with potential beneficial applications in the dairy industry. This review aims to provide a comprehensive overview of the interplay between culinary fermentation and the production and activities of microbial-derived natural products.
Collapse
Affiliation(s)
- Ina Wasmuth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christina Warinner
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Zhou Z, Xiang L, Wang X, Jiang G, Cheng J, Cao X, Fan X, Shen H. An in-depth study of the growth inhibition of Vibrio parahaemolyticus by Surfactin and its effects on cell membranes, ROS levels and gene transcription. J Invertebr Pathol 2025; 211:108298. [PMID: 40043904 DOI: 10.1016/j.jip.2025.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VpAHPND) poses a significant challenge to the shrimp farming industry. Although lipopeptides produced by Bacillus subtilis have been shown to exert strong inhibitory effects against Vibrio parahaemolyticus, the underlying mechanisms remain largely unexplored. This study reveals that the lipopeptide surfactin, produced by Bacillus subtilis, significantly inhibits the VpAHPND strain JSHY-1669 through multiple mechanisms. Using antagonistic assays and transcriptomic analysis, this paper investigates the molecular mechanisms of surfactin's inhibitory action on VpAHPND strain JSHY-1669. The minimum inhibitory concentration (MIC) of surfactin against JSHY-1669 was determined to be 0.125 mg/mL, with a cumulative inhibitory effect. Exposure to surfactin caused significant structural damage to the bacterial cells, markedly inhibiting their growth and virulence gene expression. Transcriptomic analysis identified 64 genes with significant differential expression, including upregulation of genes involved in key metabolic pathways such as carbohydrate transport, and downregulation of non-essential pathways like amino acid and sulfur metabolism. Surfactin affects JSHY-1669 by disrupting key physiological processes. Specifically, it increases cell membrane depolarization, reactive oxygen species (ROS) production, and malondialdehyde (MDA) levels. These changes collectively lead to the loss of membrane integrity, which ultimately inhibits bacterial growth. Additionally, the study found downregulation of slyA, a key regulatory factor related to DNA-binding transcription, virulence regulation, and carbohydrate metabolism. Surfactin may expand its inhibitory range by affecting the slyA regulatory network, providing a basis for surfactin's broader antibacterial targets. These findings elucidate the inhibitory mechanisms of surfactin on VpAHPND strain JSHY-1669, laying a foundation for its potential applications.
Collapse
Affiliation(s)
- Zijie Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | - Luoping Xiang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | | | - Ge Jiang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xianping Fan
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China.
| |
Collapse
|
9
|
Wesche J, Wu P, Luo CX, Schnabel G. Pyrrolnitrin in Pseudomonas chlororaphis Strain AFS009 Metabolites Reduces Constitutive and Demethylation Inhibitor-Induced MfCYP51 Gene Expression in Monilinia fructicola. PLANT DISEASE 2025; 109:657-663. [PMID: 39359038 DOI: 10.1094/pdis-07-24-1470-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Brown rot, caused by Monilinia fructicola, is one of the most economically important diseases of peach. Demethylation inhibitor (DMI) fungicides play an important part in managing brown rot in the Southeastern United States, but over the last 20 years, reduced efficacy to DMIs has been reported in field isolates overexpressing the DMI target enzyme encoding the MfCYP51 gene. Metabolites of the biocontrol agent (BCA) Pseudomonas chlororaphis strain AFS009 suppressed the MfCYP51 gene in sensitive and resistant M. fructicola isolates previously, but it is not known what molecule was responsible. The goals of this study were to determine the presence and role of pyrrolnitrin (PRN), a common metabolite of P. chlororaphis and chemical analog to fludioxonil with antifungal activity, in the suppression of the MfCYP51 gene and to investigate whether MfCYP51 expression can also be suppressed by Bacillus subtilis (Theia). High-performance liquid chromatography detected PRN at 1.75 μg/mg in P. chlororaphis metabolites formulated as Howler EVO (Howler). PRN at 0.1 μg/ml, fludioxonil at 0.1 μg/ml, and Howler applied at a dose that contained 0.1 μg/ml PRN significantly reduced the MfCYP51 gene expression at similar levels in DMI-resistant isolates. Furthermore, MfCYP51 expression in DMI-sensitive and three DMI-resistant isolates treated with Howler (88.1 μg/ml), Theia (209.5 μg/ml), propiconazole (0.3 μg/ml), or the mixture of either Howler or Theia + propiconazole revealed that Howler significantly reduced the MfCYP51 target gene expression in two of three sensitive and all three resistant M. fructicola isolates. On the other hand, Theia showed no suppressive effect and even increased the MfCYP51 gene expression level in two of three resistant isolates. In detached fruit assays on apple with a DMI-resistant isolate, only the mixture of Howler + 50 μg/ml propiconazole resulted in synergism. The results indicate that suppression of MfCYP51 target gene is BCA dependent and can be induced by PRN.
Collapse
Affiliation(s)
- Johanna Wesche
- Department of Plant and Environmental Science, Clemson University, Clemson, SC 29634, U.S.A
| | - Peishan Wu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guido Schnabel
- Department of Plant and Environmental Science, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
10
|
Tian R, Tian Y, Mi Q, Huang L. Histocytological analysis reveals the biocontrol activity of a rhizospheric bacterium Pseudomonas rhizophila Z98 against kiwifruit bacterial canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106251. [PMID: 40015847 DOI: 10.1016/j.pestbp.2024.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
Kiwifruit bacterial canker (KBC), caused by Pseudomonas syringae pv. actinidiae (Psa), poses a significant threat to the global kiwifruit industry. Currently, there is a scarcity of highly efficient biocontrol agents for the prevention and control of KBC, which limits the comprehensive management of the disease. This study investigates the biocontrol potential of P. rhizophila Z98, isolated from kiwifruit rhizosphere, which exhibits significant inhibitory effects on Psa. The in vitro leaf disc and vein assays demonstrated Z98's potent preventive effect, achieving a 98.89 % reduction in KBC and its ability to limit Psa's vascular spread. Microscopic analysis showed that Psa cells exposed to Z98 underwent significant morphological changes, including cell wall depressions, wrinkling, tumorous protrusions, and intracellular disruptions like cytoplasmic disintegration and vacuolization, culminating in cell death. These effects were were mirrored with Z98's fermentation broth crude extract, suggesting that Z98 combats Psa through the secretion of bioactive substances. Additionally, Z98 successfully colonizes kiwifruit tissues, achieving a biomass of 3.78 × 105 CFU·g-1 without compromising tissue integrity. Moreover, Z98 induces the upregulation of defense-related genes and callose deposition in kiwifruit, thereby activating plant immune responses. These findings elucidate the cellular mechanisms underlying the biocontrol effects of rhizosphere bacteria and offer a novel biological resource for managing bacterial canker in woody plants.
Collapse
Affiliation(s)
- Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yujie Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Lin L, Shen D, Shao X, Yang Y, Li L, Zhong C, Jiang J, Wang M, Qian G. Soil microbiome bacteria protect plants against filamentous fungal infections via intercellular contacts. Proc Natl Acad Sci U S A 2025; 122:e2418766122. [PMID: 39813250 PMCID: PMC11762177 DOI: 10.1073/pnas.2418766122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Bacterial-fungal interaction (BFI) has significant implications for the health of host plants. While the diffusible antibiotic metabolite-mediated competition in BFI has been extensively characterized, the impact of intercellular contact remains largely elusive. Here, we demonstrate that the intercellular contact is a prevalent mode of interaction between beneficial soil bacteria and pathogenic filamentous fungi. By generating antibiotics-deficient mutants in two common soil bacteria, Lysobacter enzymogenes and Pseudomonas fluorescens, we show that antibiotics-independent BFI effectively inhibits pathogenic fungi. Furthermore, transcriptional and genetic evidence revealed that this antibiotics-independent BFI relies on intercellular contact mediated by the type VI secretion system (T6SS), which may facilitate the translocation of bacterial toxic effectors into fungal cells. Finally, by using a "conidia enrichment" platform, we found that T6SS-mediated fungal inhibition resulting from intercellular contact naturally occurs within the soil microbiome, particularly represented by Pseudomonas fulva. Overall, these results demonstrate that bacteria from the soil microbiome can protect host plants from fungal infection through antibiotics-independent intercellular contacts, thus revealing a naturally occurring and ecologically important mode of BFI in agricultural contexts.
Collapse
Affiliation(s)
- Long Lin
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Danyu Shen
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Xiaolong Shao
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Yicheng Yang
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Li Li
- Engineering Laboratory for Kiwifruit Industrial Technology, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Caihong Zhong
- Engineering Laboratory for Kiwifruit Industrial Technology, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, College of Life Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou310058, China
- Department of Plant Protection, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Guoliang Qian
- Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
12
|
Liu W, Xiao X, Li L, Shen X, Cao Y, Gao C, Zhao Y. Biochar-based metal tolerating plant growth promoting bacterial inoculants enhanced the ability of ryegrass for phytostabilization. ENVIRONMENTAL RESEARCH 2025; 265:120389. [PMID: 39577731 DOI: 10.1016/j.envres.2024.120389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metal-tolerant microbes with plant growth-promoting traits represent a promising biological amendment for enhancing the phytostabilization of contaminated soils. However, the relationship between phytostabilization efficiency and microbial consortium composition and diversity remains unclear. This study selected three cadmium (Cd) resistant plant growth promoting bacteria (PGPB) from Bacillus, Pseudomonas, and Rhodopseudomonas were selected as candidates for biochar-based microbial inoculants. In our pot experiment with single, dual, and triple inoculations, a more diverse microbial consortium significantly increased root Cd accumulation and aboveground biomass. Triple inoculation boosted root Cd accumulation by 56.4 %-121.5 % and belowground biomass by 4.8 %-46.2 %, compared to dual and single inoculations. However, this trend was not observed in the aboveground parts of the plants, resulting in a decrease in the translocation factor of Cd in ryegrass. Microbial inoculation altered the structure of the rhizosphere bacterial community, especially the triple microbial inoculation treatment, which showed significant differences compared to the other treatment groups. However, there were no significant changes in alpha diversity. Increased soil pH and its positive interaction with soil enzymes significantly contributed to the phytostabilization efficiency of biochar-based microbial inoculation, whereas the contribution of rhizosphere bacterial communities was much less significant. In summary, metal-tolerant PGPB inoculation can promote phytostabilization efficiency and enhance metal immobilization in soil, reducing their threat to organisms and the environment.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510630, China.
| | - Xiaoxia Shen
- Jiangsu Longhuan Environmental Technology Co., LTD, Changzhou, 213164, China
| | - Yue Cao
- Jiangsu Longhuan Environmental Technology Co., LTD, Changzhou, 213164, China
| | - Chenxin Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
13
|
Grifé-Ruiz M, Hierrezuelo-León J, de Vicente A, Pérez-García A, Romero D. Diversification of Lipopeptide Analogues Drives Versatility in Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1403-1416. [PMID: 39760433 PMCID: PMC11741111 DOI: 10.1021/acs.jafc.4c11372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Cyclic lipopeptides (CLPs) are potent secondary metabolites with diverse biological functions. Bacillus strains primarily produce CLPs of three key families, namely, iturins, fengycins, and surfactins, each comprising structural variants characterized by a cyclic peptide linked to a fatty acid chain. Despite extensive research on CLPs, the individual roles of these analogues and their proportion in driving biological activity have remained largely overlooked. In this study, we purified and chemically characterized CLP variants from Bacillus velezensis UMAF6639 and tested them individually for their antifungal and plant growth-promoting effects. We isolated 5 fractions containing iturin A analogues (from C13 to C17), 5 fengycin fractions (containing C16, C17, and C18 fengycin A and C14, C15, C16, and C17 fengycin B), and 5 surfactin fractions (from C12 to C16). We show how antifungal activity and seed radicle growth promotion relied on the lipopeptide structural variant and concentration based on the physiological ratio calculated for each lipopeptide variant. Notably, we found that the most toxic variants were the least abundant, which likely minimized autotoxicity while preserving bioactivity. This balance is achieved through synergistic interactions with more abundant, less aggressive analogues. Furthermore, certain fengycin and surfactin variants were shown to increase bacterial population density and exopolysaccharide production, crucial strategies for microbial competition with significant ecological impacts. In addition to advancing basic knowledge, our findings will support the development of precision biotechnological innovations, offering targeted solutions to drive sustainable food production and preservation strategies.
Collapse
Affiliation(s)
- Montserrat Grifé-Ruiz
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Jesús Hierrezuelo-León
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura
Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
14
|
Legrifi I, Al Figuigui J, Lahmamsi H, Taoussi M, Radi M, Belabess Z, Lazraq A, Barka EA, Lahlali R. Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth. Int Microbiol 2025:10.1007/s10123-025-00632-z. [PMID: 39808253 DOI: 10.1007/s10123-025-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies. This study aims to evaluate the potential of rhizobacteria in managing Pythium schmitthenneri-induced root rot in olive trees. We screened 140 bacteria isolated from olive tree rhizospheres for antifungal activity against the pathogen in vitro. Twelve isolates exhibited promising antifungal activity, identified through 16S rDNA gene sequencing as primarily Bacillus, Pseudomonas, Stenotrophomonas, and Alcaligenes species. Particularly, Pseudomonas koreensis (A28 and A29), Pseudomonas reinekei (A16), and Bacillus halotolerans (A10) were the highest effective strains. Mechanistic investigations revealed positive protease production in all twelve isolates, with eight producing amylase and cellulase. Chitinase activity was absent, while five solubilized tricalcium phosphate. Furthermore, eight secreted hydrocyanic acid (HCN), ten synthesized indole-3-acetic acid (IAA), and nine produced siderophores. Variability existed in antimicrobial substance production, including bacillomycin (seven isolates), iturin (eleven isolates), fengycin (two isolates), and surfactin (three isolates). Plant growth-promoting rhizobacteria (PGPR) capabilities were assessed using canola (Brassica napus) seedlings, showing enhanced growth in treated seedlings compared to controls. Greenhouse experiments confirmed the biocontrol efficacy of P. koreensis A28 and Bacillus subtilis C6 against root rot disease. These findings suggest these strains could serve as promising tools for managing olive tree root rot, offering a sustainable alternative to hazardous agrochemicals.
Collapse
Grants
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
Collapse
Affiliation(s)
- Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Jamila Al Figuigui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Haitam Lahmamsi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Microbial Biotechnology and Bioactive Molecules, Sidi Mohamed BenAbdellah University, Route d'Imouzzer, PO Box 2202, Fez, Morocco
| | - Mohammed Taoussi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Zitoune, PO Box 11201, Meknes, Morocco
| | - Mohammed Radi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Zitoune, PO Box 11201, Meknes, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, 50000, Meknes, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes- USC INRAe1488, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
15
|
Bisht N, Singh T, Ansari MM, Chauhan PS. The hidden language of plant-beneficial microbes: chemo-signaling dynamics in plant microenvironments. World J Microbiol Biotechnol 2025; 41:35. [PMID: 39800824 DOI: 10.1007/s11274-025-04253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour. They also produce phytohormones which help regulate growth and stress responses in plants. Plants also interact with the associated microorganisms by exuding substances such as carbon and nitrogen sources, quorum-sensing molecules, peptide signals, secondary metabolites such as flavonoids and strigolactones. A successful exchange of chemical signals is essential for maintaining these associations, with significant implications for plant growth and development. This review explores the intricate array of signaling molecules and complex mechanisms governing plant-microbe interactions, elucidating the pivotal role of chemo-communication pathways. By examining these molecular dialogues, the review aims to deepen our understanding of chemo-signaling molecules, paving the way for future applications of these networks in promoting agricultural sustainability.
Collapse
Affiliation(s)
- Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India.
| |
Collapse
|
16
|
Grenz K, Chia KS, Turley EK, Tyszka AS, Atkinson RE, Reeves J, Vickers M, Rejzek M, Walker JF, Carella P. A necrotizing toxin enables Pseudomonas syringae infection across evolutionarily divergent plants. Cell Host Microbe 2025; 33:20-29.e5. [PMID: 39706183 DOI: 10.1016/j.chom.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The Pseudomonas syringae species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of P. syringae is centered on its infection of flowering plants. We took a comparative approach to understand how P. syringae infects evolutionarily divergent plants. We identified P. syringae isolates causing disease in the liverwort Marchantia polymorpha, the fern Ceratopteris richardii, and the flowering plant Nicotiana benthamiana, which last shared a common ancestor >500 million years ago. Phytotoxin-enriched phylogroup (PG) 2 isolates of P. syringae are virulent in non-flowering plants, relying on type-3 effectors and the lipopeptide phytotoxin syringomycin. Ectopic syringomycin promotes tissue necrosis, activates conserved stress-related genes, and enhances in planta bacterial growth of toxin-deficient PGs in Marchantia. Collectively, our research reveals a key role for syringomycin in promoting Pseudomonas colonization, which works alongside effectors to antagonize an exceptionally wide spectrum of land plants.
Collapse
Affiliation(s)
- Kristina Grenz
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Emma K Turley
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Alexa S Tyszka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Jacob Reeves
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Rejzek
- Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
17
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
18
|
Lozano-Andrade CN, Dinesen C, Wibowo M, Bach NA, Hesselberg-Thomsen V, Jarmusch SA, Strube ML, Kovács ÁT. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. THE ISME JOURNAL 2025; 19:wraf013. [PMID: 39846898 PMCID: PMC11833321 DOI: 10.1093/ismejo/wraf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation. Despite the growing body of knowledge on their mode of action, biosynthesis, and regulation, we still do not fully understand the role of secondary metabolites on the ecology of the producers and resident communities in situ. Here, we specifically examine the influence of Bacillus subtilis-produced cyclic lipopeptides during the assembly of a bacterial synthetic community, and simultaneously, explore the impact of cyclic lipopeptides on B. subtilis establishment success in a synthetic community propagated in an artificial soil microcosm. We found that surfactin production facilitates B. subtilis establishment success within multiple synthetic communities. Although neither a wild type nor a cyclic lipopeptide non-producer mutant had a major impact on the synthetic community composition over time, both the B. subtilis and the synthetic community metabolomes were altered during co-cultivation. Overall, our work demonstrates the importance of surfactin production in microbial communities, suggesting a broad spectrum of action of this natural product.
Collapse
Affiliation(s)
| | - Caja Dinesen
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Mario Wibowo
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Nil Arenos Bach
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
19
|
Darwiche N, Dufresne C, Chartier A, Claude B, Colas C, Fougère L, Sebban M, Lucchesi ME, Le Floch S, Nehmé R. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization-Rhamnolipids as a Model. Crit Rev Anal Chem 2024:1-21. [PMID: 39734093 DOI: 10.1080/10408347.2024.2441428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
In recent years, biosurfactants (BS) produced by various bacteria, fungi and yeast strains have attracted much interest because of their unique properties and potential applications in many industries ranging from bioremediation to agriculture and biomedical to cosmetics. Glycolipids are a popular group of BS that include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, xylolipids and cellobiose lipids. Lipopeptides e.g., surfactins, iturins and fengycins are of major biotechnological interest because of their antitumor, immunomodulatory, and antimicrobial activities effects. This review addresses the structural properties of glycolipids and lipopeptides, their main domains of application as well as the screening tests of BS production. Glycolipids are mostly composed of a carbohydrate moiety linked to a ß-hydroxy fatty acid chain with a glycosidic bond. The properties of glycolipids are related to the nature of the carbohydrate moiety and the length of the fatty acid chain. The lipopeptide structure is mainly composed of a linear or cyclic peptide linked to fatty acids of different chain lengths. The structural complexity of these compounds requires various analytical techniques for characterization and quantification. As an example, the analytical techniques used for the characterization of rhamnolipids are presented in this review. RLs are very promising BS with a wide range of applications in various fields, such as cosmetics, food science, pharmaceuticals, and environmental remediation.
Collapse
Affiliation(s)
- Nadin Darwiche
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Christelle Dufresne
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Agnès Chartier
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Bérengère Claude
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Muriel Sebban
- Laboratoire de Chimie Organique Bioorganique -Réactivité et Analyse, COBRA, UMR 6014, Université Rouen Normandie, Bâtiment IRCOF, Mont-Saint-Aignan Cedex, France
| | - Marie-Elisabeth Lucchesi
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne (LUBEM), Université de Bretagne Occidentale, Brest Cedex3, France
| | - Stéphane Le Floch
- Centre de documentation, de recherche et d'expérimentations sur les pollutions accidentelles des eaux-CEDRE, Brest Cedex 2, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| |
Collapse
|
20
|
Liu Z, Cong Y, Sossah FL, Sheng H, Li Y. Identification of bacterial communities associated with needle mushroom ( Flammulina filiformis) and its production environment. Front Microbiol 2024; 15:1429213. [PMID: 39741595 PMCID: PMC11685130 DOI: 10.3389/fmicb.2024.1429213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Flammulina filiformis is an important edible and medicinal mushroom widely cultivated in East Asia, with its quality and health strongly influenced by associated microbial communities. However, limited data exist on the bacterial communities associated with F. filiformis cultivation in Chinese farms. This study investigated bacterial communities associated with F. filiformis and its production environment using high-throughput 16S rRNA gene amplicon sequencing and culture-dependent methods. A total of 42 samples were collected from farms in Jilin and Guizhou provinces, China, for microbial community profiling. The analysis revealed diverse bacterial phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria. Genera such as Pseudomonas, Lactobacillus, Acinetobacter, Flavobacterium, and Phyllobacterium were identified, with notable regional variations in the relative abundance of Pseudomonas and Lactobacillus. Pathogenic species, including Pseudomonas tolaasii, Ewingella americana, Stenotrophomonas maltophilia, Pseudomonas sp., Lelliottia amnigena, and Janthinobacterium lividum, were identified through phenotypic, biochemical, and molecular analyses. Pathogenicity tests confirmed the disease-causing potential of P. tolaasii, E. americana, and J. lividum in F. filiformis. These findings highlight regional differences in bacterial community composition and emphasize the need for tailored management practices. This study contributes to safe, high-quality mushroom cultivation and provides insights into improved cultivation practices, including Mushroom Good Agricultural Practices (MGAP).
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Institute of Edible Fungi, Guizhou University, Guiyang, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
21
|
El Amrani B. Insights into the Biotic Factors Shaping Ectomycorrhizal Associations. BIOLOGY 2024; 13:1044. [PMID: 39765711 PMCID: PMC11673544 DOI: 10.3390/biology13121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Ectomycorrhizal (EM) associations are essential symbiotic relationships that contribute significantly to the health and functioning of forest ecosystems. This review examines the biotic factors that influence EM associations, focusing on plant and fungal diversity, host specificity, and microbial interactions. Firstly, the diversity of host plants and ectomycorrhizal fungi (EMF) is discussed, highlighting how the richness of these organisms affects the formation and success of EM symbioses. Next, host specificity is explored, with a focus on the complex relationships between EMF and their host plants. Microbial interactions are examined in depth, with sections on both positive and negative influences of bacteria and different fungal groups on EM formation. Overall, this review provides a comprehensive overview of the biotic factors that shape EM associations, offering insights into the mechanisms that underpin these critical ecological interactions and their broader implications for ecosystem management and restoration.
Collapse
Affiliation(s)
- Belkacem El Amrani
- Lumbricidae, Improving Soil Productivity and Environment Unit (LAPSE), Higher Normal School (ENS), Mohammed V University in Rabat, Rabat P.O. Box 554, Morocco
| |
Collapse
|
22
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
Park H, Lee Y, Balaraju K, Kim J, Jeon Y. Characterization and Biocontrol Efficacy of Bacillus velezensis GYUN-1190 against Apple Bitter Rot. THE PLANT PATHOLOGY JOURNAL 2024; 40:681-695. [PMID: 39639671 PMCID: PMC11626033 DOI: 10.5423/ppj.oa.05.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The application of synthetic fungicides has resulted in environmental pollution and adverse effects on non-target species. To reduce the use of agrochemicals, crop disease management requires microbial biological control agents. Bacillus-related genera produce secondary metabolites to control fungal pathogens. Bacillus velezensis GYUN-1190, isolated from soil, showed antagonistic activity against Colletotrichum fructicola, the apple anthracnose pathogen. Volatile organic compounds and culture filtrate (CF) from GYUN-1190 inhibited C. fructicola growth in vitro, by 80.9% and 30.25%, respectively. The CF of GYUN-1190 inhibited pathogen spore germination more than cell suspensions at 10 8 cfu/ml. Furthermore, GYUN-1190 CF is effective in inhibiting C. fructicola mycelial growth in vitro, and it suppresses apple fruit bitter rot more effectively than GYUN-1190 cell suspensions and pyraclostrobin in planta. The mycelial growth of C. fructicola was completely inhibited 48 h after immersion into the CF, in compared with positive controls and GYUN-1190 cell suspensions. The genetic mechanism underlying the biocontrol features of GYUN-1190 was defined using its whole-genome sequence, which was closely compared to similar strains. It consisted of 4,240,653 bp with 45.9% GC content, with 4,142 coding sequences, 87 tRNA, and 28 rRNA genes. The genomic investigation found 14 putative secondary metabolite biosynthetic gene clusters. The investigation suggests that B. velezensis GYUN-1190 might be more effective than chemical fungicides and could address its potential as a biological control agent.
Collapse
Affiliation(s)
- Hyeonjin Park
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
24
|
Albornoz RV, Oyarzún D, Burgess K. Optimisation of surfactin yield in Bacillus using data-efficient active learning and high-throughput mass spectrometry. Comput Struct Biotechnol J 2024; 23:1226-1233. [PMID: 38550972 PMCID: PMC10973723 DOI: 10.1016/j.csbj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Integration of machine learning and high throughput measurements are essential to drive the next generation of the design-build-test-learn (DBTL) cycle in synthetic biology. Here, we report the use of active learning in combination with metabolomics for optimising production of surfactin, a complex lipopeptide resulting from a non-ribosomal assembly pathway. We designed a media optimisation algorithm that iteratively learns the yield landscape and steers the media composition toward maximal production. The algorithm led to a 160 % yield increase after three DBTL runs as compared to an M9 baseline. Metabolomics data helped to elucidate the underpinning biochemistry for yield improvement and revealed Pareto-like trade-offs in production of other lipopeptides from related pathways. We found positive associations between organic acids and surfactin, suggesting a key role of central carbon metabolism, as well as system-wide anisotropies in how metabolism reacts to shifts in carbon and nitrogen levels. Our framework offers a novel data-driven approach to improve yield of biological products with complex synthesis pathways that are not amenable to traditional yield optimisation strategies.
Collapse
Affiliation(s)
- Ricardo Valencia Albornoz
- Institute of Quantitative Biology, Biochemistry & Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Diego Oyarzún
- Institute of Quantitative Biology, Biochemistry & Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry & Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Anckaert A, Declerck S, Poussart LA, Lambert S, Helmus C, Boubsi F, Steels S, Argüelles-Arias A, Calonne-Salmon M, Ongena M. The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr Biol 2024; 34:4934-4950.e8. [PMID: 39378881 DOI: 10.1016/j.cub.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Collapse
Affiliation(s)
- Adrien Anckaert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Laure-Anne Poussart
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Stéphanie Lambert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Catherine Helmus
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Farah Boubsi
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Anthony Argüelles-Arias
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| |
Collapse
|
26
|
Habibi R, Zibaee I, Talebi R, Behravan J, Tarighi S, Brejnrod A, Kjøller AH, Sørensen SJ, Madsen JS. L-asparaginase-driven antibiosis in Pseudomonas fluorescens EK007: A promising biocontrol strategy against fire blight. Int J Biol Macromol 2024; 281:136402. [PMID: 39383903 DOI: 10.1016/j.ijbiomac.2024.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Fire blight, caused by Erwinia amylovora, is a destructive bacterial disease affecting pear and apple trees. The biocontrol ability of Pseudomonas fluorescens EK007 suppresses E. amylovora through competitive exclusion. In this study, EK007 was isolated from the pear phylloplane and characterized as an effective biological agent through antibacterial compounds. To identify the mechanisms underlying EK007's biocontrol activity, physiological tests, transposon insertion mutant libraries, allelic exchange, and whole-genome sequencing were performed. A transposon mutation in the massC homolog gene, part of the massetolide A lipopeptide biosynthesis cluster, reduced the biocontrol efficiency. Allelic exchange confirmed cyclic lipopeptide (CLP) as part of the mechanism. Additionally, a gacA mutant isolated by transposon mutagenesis showed deficient inhibition activity. Culture conditions and nutritional sources clearly influenced EK007's antimicrobial activity against E. amylovora. Growth yield generally correlated with antibiotic production, with amino acids and iron affecting production. Asparagine and aspartate shut down biocontrol activity. This study presents preliminary findings on a novel CLP that may contribute to EK007's antibacterial activity against E. amylovora. While EK007 shows promise as a biocontrol candidate compared to related strains, these results are based solely on in vitro studies, highlighting the need for further investigations to evaluate its efficacy in natural environments.
Collapse
Affiliation(s)
- Roghayeh Habibi
- Section of Phytopathology, Department of Plant Protection, Ferdowsi University of Mashhad, Iran; Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Idin Zibaee
- Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Rasht, Iran.
| | - Reza Talebi
- Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran-North branch (ABRII), Rasht, Iran.
| | - Javad Behravan
- Section of Pharmaceutical Biotechnology, Department of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Saeed Tarighi
- Section of Phytopathology, Department of Plant Protection, Ferdowsi University of Mashhad, Iran
| | - Asker Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Annelise Helene Kjøller
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Dimaria G, Sicilia A, Modica F, Russo M, Bazzano MC, Massimino ME, Piero ARL, Bella P, Catara V. Biocontrol efficacy of Pseudomonas mediterranea PVCT 3C against Plenodomus tracheiphilus: In vitro and in planta mechanisms at early disease stages. Microbiol Res 2024; 287:127833. [PMID: 39032265 DOI: 10.1016/j.micres.2024.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.
Collapse
Affiliation(s)
- Giulio Dimaria
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Francesco Modica
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | | | | | - Maria Elena Massimino
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Vittoria Catara
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy.
| |
Collapse
|
28
|
Chai L, Zaburdaev V, Kolter R. How bacteria actively use passive physics to make biofilms. Proc Natl Acad Sci U S A 2024; 121:e2403842121. [PMID: 39264745 PMCID: PMC11459164 DOI: 10.1073/pnas.2403842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using Bacillus subtilis as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
Collapse
Affiliation(s)
- Liraz Chai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
29
|
Cao Y, Shen Z, Zhang N, Deng X, Thomashow LS, Lidbury I, Liu H, Li R, Shen Q, Kowalchuk GA. Phosphorus availability influences disease-suppressive soil microbiome through plant-microbe interactions. MICROBIOME 2024; 12:185. [PMID: 39342390 PMCID: PMC11439275 DOI: 10.1186/s40168-024-01906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Soil nutrient status and soil-borne diseases are pivotal factors impacting modern intensive agricultural production. The interplay among plants, soil microbiome, and nutrient regimes in agroecosystems is essential for developing effective disease management. However, the influence of nutrient availability on soil-borne disease suppression and associated plant-microbe interactions remains to be fully explored. T his study aims to elucidate the mechanistic understanding of nutrient impacts on disease suppression, using phosphorous as a target nutrient. RESULTS A 6-year field trial involving monocropping of tomatoes with varied fertilizer manipulations demonstrated that phosphorus availability is a key factor driving the control of bacterial wilt disease caused by Ralstonia solanacearum. Subsequent greenhouse experiments were then conducted to delve into the underlying mechanisms of this phenomenon by varying phosphorus availability for tomatoes challenged with the pathogen. Results showed that the alleviation of phosphorus stress promoted the disease-suppressive capacity of the rhizosphere microbiome, but not that of the bulk soil microbiome. This appears to be an extension of the plant trade-off between investment in disease defense mechanisms versus phosphorus acquisition. Adequate phosphorus levels were associated with elevated secretion of root metabolites such as L-tryptophan, methoxyindoleacetic acid, O-phosphorylethanolamine, or mangiferin, increasing the relative density of microbial biocontrol populations such as Chryseobacterium in the rhizosphere. On the other hand, phosphorus deficiency triggered an alternate defense strategy, via root metabolites like blumenol A or quercetin to form symbiosis with arbuscular mycorrhizal fungi, which facilitated phosphorus acquisition as well. CONCLUSION Overall, our study shows how phosphorus availability can influence the disease suppression capability of the soil microbiome through plant-microbial interactions. These findings highlight the importance of optimizing nutrient regimes to enhance disease suppression, facilitating targeted crop management and boosting agricultural productivity. Video Abstract.
Collapse
Affiliation(s)
- Yifan Cao
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Na Zhang
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164, USA
| | - Ian Lidbury
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
30
|
Han C, Cheng Q, Du X, Liang L, Fan G, Xie J, Wang X, Tang Y, Zhang H, Hu C, Zhao X. Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5768-5789. [PMID: 38809805 DOI: 10.1093/jxb/erae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Plants can recruit beneficial microbes to enhance their ability to resist disease. It is well established that selenium is beneficial in plant growth, but its role in mediating microbial disease resistance remains poorly understood. Here, we investigated the correlation between selenium, oilseed rape rhizosphere microbes, and Sclerotinia sclerotiorum. Soil application of 0.5 and 1.0 mg kg-1 selenium [selenate Na2SeO4, Se(VI) or selenite Na2SeO3, Se(IV)] significantly increased the resistance of oilseed rape to Sclerotinia sclerotiorum compared with no selenium application, with a disease inhibition rate higher than 20% in Se(VI)0.5, Se(IV)0.5 and Se(IV)1.0 mg kg-1 treatments. The disease resistance of oilseed rape was related to the presence of rhizosphere microorganisms and beneficial bacteria isolated from the rhizosphere inhibited Sclerotinia stem rot. Burkholderia cepacia and the synthetic community consisting of Bacillus altitudinis, Bacillus megaterium, Bacillus cereus, Bacillus subtilis, Bacillus velezensis, Burkholderia cepacia, and Flavobacterium anhui enhanced plant disease resistance through transcriptional regulation and activation of plant-induced systemic resistance. In addition, inoculation of isolated bacteria optimized the bacterial community structure of leaves and enriched beneficial microorganisms such as Bacillus, Pseudomonas, and Sphingomonas. Bacillus isolated from the leaves were sprayed on detached leaves, and it also performed a significant inhibition effect on Sclerotinia sclerotiorum. Overall, our results indicate that selenium improves plant rhizosphere microorganisms and increase resistance to Sclerotinia sclerotiorum in oilseed rape.
Collapse
Affiliation(s)
- Chuang Han
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanni Tang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| |
Collapse
|
31
|
Muangkaew P, Prasad D, De Roo V, Verleysen Y, Zhou L, De Mot R, Höfte M, Madder A, Geudens N, Martins JC. Breaking Cycles: Saponification-Enhanced NMR Fingerprint Matching for the Identification and Stereochemical Evaluation of Cyclic Lipodepsipeptides from Natural Sources. Chemistry 2024; 30:e202400667. [PMID: 38647356 DOI: 10.1002/chem.202400667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
We previously described NMR based fingerprint matching with peptide backbone resonances as a fast and reliable structural dereplication approach for Pseudomonas cyclic lipodepsipeptides (CLiPs). In combination with total synthesis of a small library of configurational CLiP congeners this also allows unambiguous determination of stereochemistry, facilitating structure-activity relationship studies and enabling three-dimensional structure determination. However, the on-resin macrocycle formation in the synthetic workflow brings considerable burden and limits universal applicability. This drawback is here removed altogether by also transforming the native CLiP into a linearized analogue by controlled saponification of the ester bond. This eliminates the need for macrocycle formation, limiting the synthesis effort to linear peptide analogues. NMR fingerprints of such linear peptide analogues display a sufficiently distinctive chemical shift fingerprint to act as effective discriminators. The approach is developed using viscosin group CLiPs and subsequently demonstrated on putisolvin, leading to a structural revision, and tanniamide from Pseudomonas ekonensis COR58, a newly isolated lipododecapeptide that defines a new group characterized by a ten-residue large macrocycle, the largest to date in the Pseudomonas CLiP portfolio. These examples demonstrate the effectiveness of the saponification- enhanced approach that broadens applicability of NMR fingerprint matching for the determination of the stereochemistry of CLiPs.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Durga Prasad
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Vic De Roo
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Yentl Verleysen
- Organic Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - René De Mot
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Annemieke Madder
- Organic Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| |
Collapse
|
32
|
Gilhar O, Ben-Navi LR, Olender T, Aharoni A, Friedman J, Kolodkin-Gal I. Multigenerational inheritance drives symbiotic interactions of the bacterium Bacillus subtilis with its plant host. Microbiol Res 2024; 286:127814. [PMID: 38954993 DOI: 10.1016/j.micres.2024.127814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Bacillus subtilis is a beneficial bacterium that supports plant growth and protects plants from bacterial, fungal, and viral infections. Using a simplified system of B. subtilis and Arabidopsis thaliana interactions, we studied the fitness and transcriptome of bacteria detached from the root over generations of growth in LB medium. We found that bacteria previously associated with the root or exposed to its secretions had greater stress tolerance and were more competitive in root colonization than bacteria not previously exposed to the root. Furthermore, our transcriptome results provide evidence that plant secretions induce a microbial stress response and fundamentally alter signaling by the cyclic nucleotide c-di-AMP, a signature maintained by their descendants. The changes in cellular physiology due to exposure to plant exudates were multigenerational, as they allowed not only the bacterial cells that colonized a new plant but also their descendants to have an advance over naive competitors of the same species, while the overall plasticity of gene expression and rapid adaptation were maintained. These changes were hereditary but not permanent. Our work demonstrates a bacterial memory manifested by multigenerational reversible adaptation to plant hosts in the form of activation of the stressosome, which confers an advantage to symbiotic bacteria during competition.
Collapse
Affiliation(s)
- Omri Gilhar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| |
Collapse
|
33
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
34
|
Rajewska M, Maciąg T, Narajczyk M, Jafra S. Carbon Source and Substrate Surface Affect Biofilm Formation by the Plant-Associated Bacterium Pseudomonas donghuensis P482. Int J Mol Sci 2024; 25:8351. [PMID: 39125921 PMCID: PMC11312691 DOI: 10.3390/ijms25158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Tomasz Maciąg
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
35
|
Schmid PJ, Forstner P, Kittinger C. Sliding motility of Bacillus cereus mediates vancomycin pseudo-resistance during antimicrobial susceptibility testing. J Antimicrob Chemother 2024; 79:1628-1636. [PMID: 38785365 PMCID: PMC11215547 DOI: 10.1093/jac/dkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The glycopeptide vancomycin is the antimicrobial agent-of-choice for the treatment of severe non-gastrointestinal infections with members of Bacillus cereus sensu lato (s.l.). Recently, sporadic detection of vancomycin-resistant phenotypes emerged, mostly for agar diffusion testing such as the disc diffusion method or gradient test (e.g. Etest®) method. RESULTS In this work, we were able to disprove a preliminarily assumed high resistance to vancomycin in an isolate of B. cereus s.l. using broth microdilution and agar dilution. Microscopic imaging during vancomycin susceptibility testing showed spreading towards the inhibition zone, which strongly suggested sliding motility. Furthermore, transcriptomic analysis using RNA-Seq on the nanopore platform revealed several key genes of biofilm formation (e.g. calY, tasA, krsEABC) to be up-regulated in pseudo-resistant cells, substantiating that bacterial sliding is responsible for the observed mobility. Down-regulation of virulence (e.g. hblABCD, nheABC, plcR) and flagellar genes compared with swarming cells also confirmed the non-swarming phenotype of the pseudo-resistant isolate. CONCLUSIONS The results highlight an insufficiency of agar diffusion testing for vancomycin susceptibility in the B. cereus group, and reference methods like broth microdilution are strongly recommended. As currently no guideline mentions interfering phenotypes in antimicrobial susceptibility testing of B. cereus s.l., this knowledge is essential to obtain reliable results on vancomycin susceptibility. In addition, this is the first report of sliding motility undermining accurate antimicrobial susceptibility testing in B. cereus s.l. and may serve as a basis for future studies on bacterial motility in susceptibility testing and its potential impact on treatment efficacy.
Collapse
Affiliation(s)
- Paul J Schmid
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Patrick Forstner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Wesche J, Schnabel G. Influence of Propiconazole and Metconazole Formulations on Bacillus subtilis Vegetative Cell Growth and Disease Control of Fruit Crops. PHYTOPATHOLOGY 2024; 114:1515-1524. [PMID: 38489213 DOI: 10.1094/phyto-01-24-0029-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Biological control agent Bacillus subtilis formulated as Theia is registered for control of fungal and bacterial diseases of fruit crops. Combinations of Theia and strategic concentrations of two demethylation inhibitor (DMI) fungicides were investigated to explore potential synergisms. Bacteria were cultured in nutrient broth and combined with technical grades and two formulations of propiconazole (emulsifiable concentrate [EC] and wettable powder) and metconazole (EC and water-dispersible granule) at 0, 10, 50, 100, and 150 µg/ml of active ingredient. After cocultivation, the optical density (OD600) and colony forming units (CFU/ml) were evaluated. In contrast to EC formulations, the wettable powder or water-dispersible granule formulations at 10 or 50 µg/ml of both DMIs did not affect vegetative cell growth. The mixture of Theia and each formulated DMI at 50 µg/ml of active ingredient resulted in a significant reduction of Monilinia fructicola lesion development on apple, Colletotrichum siamense lesion development on cherry, and Botrytis cinerea lesion development on cherry. The combination of Theia with EC formulations showed weaker disease reduction due to antagonism. Only Theia plus non-EC formulated propiconazole and metconazole significantly reduced brown rot disease incidence of apple compared with the respective solo treatments and anthracnose disease incidence of cherry compared with the untreated control. Our results indicated that at least some DMI fungicides possess bactericidal effects depending on the formulation and concentration. The combination of Theia with a lower-than-label-rate concentration (50 µg/ml) of the DMI fungicides propiconazole and metconazole showed potential for synergistic effects, especially when non-EC formulations were used.
Collapse
Affiliation(s)
- Johanna Wesche
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street Clemson, SC 29634
| |
Collapse
|
37
|
Liao K, Wu J, Wang C, Li JZ, Wei HL. Pseudomonas beijingensis sp. nov., a novel species widely colonizing plant rhizosphere. Int J Syst Evol Microbiol 2024; 74:006473. [PMID: 39058535 PMCID: PMC11281800 DOI: 10.1099/ijsem.0.006473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
A polyphasic taxonomic approach was used to characterize the three bacterial strains (FP830T, FP2034, and FP2262) isolated from the rhizosphere soil of rice, corn, and highland barley in Beijing, Heilongjiang, and Tibet, respectively, in PR China. These strains were Gram-negative, rod-shaped, and have one or two polar flagella. They exhibited optimal growth at 28 °C and pH 7.0 in the presence of 1 % (w/v) NaCl and showed fluorescence under ultraviolet light when cultivated on King's B plates. The FP830T genome size is 6.4 Mbp with a G+C content of 61.0 mol%. FP830T has the potential to promote plant growth by producing various metabolites such as fengycin, pyoverdin, indole-3-acetic acid, and the volatile substance 2,3-butanediol. Phylogenetic analysis indicated that three isolates formed an independent branch, which most closely related to type strains Pseudomonas thivervalensis DSM 13194T and Pseudomonas zanjanensis SWRI12T. The values of average nucleotide identity and digital DNA-DNA hybridization between three isolates and closest relatives were not higher than 93.7 and 52.3 %, respectively. The dominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The predominant respiratory quinone was ubiquinone (Q-9). Based on polyphasic taxonomic analysis, it was concluded that strains FP830T, FP2034, and FP2262 represented a novel species within the genus Pseudomonas, and Pseudomonas beijingensis sp. nov. was proposed for the name of novel species. The type strain is FP830T (=ACCC 62448T=JCM 35689T).
Collapse
Affiliation(s)
- Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jingyi Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Can Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jun-Zhou Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
38
|
Assena MW, Pfannstiel J, Rasche F. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f.sp. Strigae. BMC Microbiol 2024; 24:227. [PMID: 38937715 PMCID: PMC11212183 DOI: 10.1186/s12866-024-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.
Collapse
Affiliation(s)
- Mekuria Wolde Assena
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
- Department of Horticulture, Wolkite University, Wolkite, Ethiopia
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottilie-Zeller- Weg 2, 70599, Stuttgart, Germany
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany.
- International Institute of Tropical Agriculture, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
39
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
40
|
Ze M, Ma F, Zhang J, Duan J, Feng D, Shen Y, Chen G, Hu X, Dong M, Qi T, Zou L. Beneficial effects of Bacillus mojavensis strain MTC-8 on plant growth, immunity and disease resistance against Magnaporthe oryzae. Front Microbiol 2024; 15:1422476. [PMID: 38933037 PMCID: PMC11199545 DOI: 10.3389/fmicb.2024.1422476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rice blast, a prevalent and highly destructive rice disease that significantly impacts rice yield, is caused by the rice blast fungus. In the present study, a strain named MTC-8, identified as Bacillus mojavensis, was demonstrated has strong antagonistic activity against the rice blast fungus, Rhizoctonia solani, Ustilaginoidea virens, and Bipolaria maydis. The potential biocontrol agents were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis and chromatography. Further investigations elucidated the inhibitory mechanism of the isolated compound and demonstrated its ability to suppress spore germination, alter hyphal morphology, disrupt cell membrane integrity, and induce defense-related gene expression in rice. MTC-8 promoted plant growth and may lead to the development of a biocontrol agent that meets agricultural standards. Overall, the Bacillus mojavensis MTC-8 strain exerted beneficial effects on plant growth, immunity and disease resistance against rice blast fungus. In this study, we isolated and purified a bioactive substance from fermentation broth, and the results provide a foundation for the development and application of biopesticides. Elucidation of the inhibitory mechanism against rice blast fungus provides theoretical support for the identification of molecular targets. The successful development of a biocontrol agent lays the groundwork for its practical application in agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| |
Collapse
|
41
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
42
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
43
|
Espinosa-Zaragoza S, Domínguez-Liévano A, Gómez-Gutiérrez JA, Wong-Villarreal A, Aguilar-Marcelino L, Cerqueda-García D, Rangel-Zaragoza JL, Sanzón-Gómez D, Mireles-Arriaga AI, Sachman-Ruíz B. In vitro Acaricidal Activity of Serratia Ureilytica Against the Dust Mite Tyrophagus Putrescentiae and Identification of Genes Related to Biocontrol. Curr Microbiol 2024; 81:199. [PMID: 38822161 DOI: 10.1007/s00284-024-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.
Collapse
Affiliation(s)
- Saúl Espinosa-Zaragoza
- Facultad de Ciencias Agrícolas, Universidad Autónoma de Chiapas, 30660, Huehuetán, Mexico
| | - Alexis Domínguez-Liévano
- Departamento Ciencias de La Sustentabilidad, El Colegio de La Frontera Sur, Unidad Tapachula, Chiapas, México
| | - Jaime Adriel Gómez-Gutiérrez
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Morelos, 62209, México
| | | | - Liliana Aguilar-Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550, Jiutepec, MR, Mexico.
| | - Daniel Cerqueda-García
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C. - INECOL.Carretera Antigua a Coatepec No. 351, Col. El Haya, 91073, Xalapa, Ver, México
| | - José Luis Rangel-Zaragoza
- Dirección General de Sanidad Vegetal, Centro Nacional de Referencia Fitosanitaria, Km. 37.5, Carretera Federal México-Pachuca, Av. Centenario de La Educación, Col. Santa Ana, 55740, Tecámac, Edo, Mexico
| | - Diana Sanzón-Gómez
- División Ciencias de La Vida, Departamento de Agronomía, Universidad de Guanajuato, Campus Irapuato-Salamanca, 36500, Irapuato, Mexico
| | - Ana Isabel Mireles-Arriaga
- Departamento de Agronomía, División Ciencias de La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, 36500, Irapuato, Mexico
| | - Bernardo Sachman-Ruíz
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550, Jiutepec, MR, Mexico
| |
Collapse
|
44
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
45
|
Barone GD, Zhou Y, Wang H, Xu S, Ma Z, Cernava T, Chen Y. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity. J Zhejiang Univ Sci B 2024; 25:1-16. [PMID: 38773879 DOI: 10.1631/jzus.b2300914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 05/24/2024]
Abstract
Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals. To harness such functions, a detailed understanding of plant‒microbe and microbe‒microbe interactions is necessary. Among interactions within the plant microbiota, those between bacteria are the most common ones; they are not only of ecological importance but also essential for maintaining the health and productivity of the host plants. This review focuses on recent literature in this field and highlights various consequences of bacteria‒bacteria interactions under different agricultural settings. In addition, the molecular and genetic backgrounds of bacteria that facilitate such interactions are emphasized. Representative examples of commonly found bacterial metabolites with bioactive properties, as well as their modes of action, are given. Integrating our understanding of various binary interactions into complex models that encompass the entire microbiota will benefit future developments in agriculture and beyond, which could be further facilitated by artificial intelligence-based technologies.
Collapse
Affiliation(s)
| | - Yaqi Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK.
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Machushynets N, Al Ayed K, Terlouw BR, Du C, Buijs NP, Willemse J, Elsayed SS, Schill J, Trebosc V, Pieren M, Alexander FM, Cochrane SA, Liles MR, Medema MH, Martin NI, van Wezel GP. Discovery and Derivatization of Tridecaptin Antibiotics with Altered Host Specificity and Enhanced Bioactivity. ACS Chem Biol 2024; 19:1106-1115. [PMID: 38602492 PMCID: PMC11106739 DOI: 10.1021/acschembio.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.
Collapse
Affiliation(s)
- Nataliia
V. Machushynets
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Karol Al Ayed
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Barbara R. Terlouw
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Ned P. Buijs
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Joost Willemse
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Julian Schill
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Vincent Trebosc
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Michel Pieren
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Francesca M. Alexander
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Stephen A. Cochrane
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Mark R. Liles
- Department
of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Marnix H. Medema
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
- Department
of Microbial Ecology, Netherlands Institute
of Ecology, Wageningen 6700 PB, The Netherlands
| |
Collapse
|
47
|
Liu Z, Zhang J, Fan C, Sun S, An X, Sun Y, Gao T, Zhang D. Influence of Bacillus subtilis strain Z-14 on microbial ecology of cucumber rhizospheric vermiculite infested with fusarium oxysporum f. sp. cucumerinum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105875. [PMID: 38685217 DOI: 10.1016/j.pestbp.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Fusarium oxysporum (FO) is a typical soil-borne pathogenic fungus, and the cucumber wilt disease caused by F. oxysporum f. sp. cucumerinum (FOC) seriously affects crop yield and quality. Vermiculite is increasingly being used as a culture substrate; nevertheless, studies exploring the effectiveness and mechanisms of biocontrol bacteria in this substrate are limited. In this study, vermiculite was used as a culture substrate to investigate the control effect of Bacillus subtilis strain Z-14 on cucumber wilt and the rhizospheric microecology, focusing on colonization ability, soil microbial diversity, and rhizosphere metabolome. Pot experiments showed that Z-14 effectively colonized the cucumber roots, achieving a controlled efficacy of 61.32% for wilt disease. It significantly increased the abundance of Bacillus and the expression of NRPS and PKS genes, while reducing the abundance of FO in the rhizosphere. Microbial diversity sequencing showed that Z-14 reduced the richness and diversity of the rhizosphere bacterial community, increased the richness and diversity of the fungal community, and alleviated the effect of FO on the community structure of the cucumber rhizosphere. The metabolomics analysis revealed that Z-14 affected ABC transporters, amino acid synthesis, and the biosynthesis of plant secondary metabolites. Additionally, Z-14 increased the contents of phenylacetic acid, capsidol, and quinolinic acid, all of which were related to the antagonistic activity in the rhizosphere. Z-14 exhibited a significant control effect on cucumber wilt and influenced the microflora and metabolites in rhizospheric vermiculite, providing a theoretical basis for further understanding the control effect and mechanism of cucumber wilt in different culture substrates.
Collapse
Affiliation(s)
- Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Jizong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Xutong An
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Yanheng Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China.
| |
Collapse
|
48
|
Kunzler M, Schlechter RO, Schreiber L, Remus-Emsermann MNP. Hitching a Ride in the Phyllosphere: Surfactant Production of Pseudomonas spp. Causes Co-swarming of Pantoea eucalypti 299R. MICROBIAL ECOLOGY 2024; 87:62. [PMID: 38683223 PMCID: PMC11058625 DOI: 10.1007/s00248-024-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Here, we demonstrate the beneficial effect of surfactant-producing pseudomonads on Pantoea eucalypti 299R. We conducted a series of experiments in environments of increasing complexity. P. eucalypti 299R (Pe299R), and Pseudomonas sp. FF1 (Pff1) or Pe299R and surfactant-production deficient Pseudomonas sp. FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of Pe299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, Pe299R was able to co-swarm with Pff1 which led to a significant increase in Pe299R biomass compared to Pe299R growing with Pff1ΔviscB or in monoculture. Finally in planta, and using the single-cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated Pe299R subpopulations that did not occur in the presence of Pff1ΔviscB. We tested three additional surfactant-producing pseudomonads and their respective surfactant knockout mutants on PE299R on swarming agar showing similar results. This led us to propose a model for the positive effect of surfactant production during leaf colonization. Our results indicate that co-motility might be common during leaf colonization and adds yet another facet to the already manyfold roles of surfactants.
Collapse
Affiliation(s)
- Michael Kunzler
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany
| | - Rudolf O Schlechter
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany
| | - Lukas Schreiber
- Institute for Cellular and Molecular Botany, Bonn University, Kirschallee 1-3, 53115, Bonn, Germany
| | - Mitja N P Remus-Emsermann
- Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195, Berlin, Germany.
| |
Collapse
|
49
|
Sabino YNV, de Araújo Domingues KC, O'Connor PM, Marques PH, Santos EH, Tótola MR, Abreu LM, de Queiroz MV, Cotter PD, Mantovani HC. Bacillus velezensis iturins inhibit the hemolytic activity of Staphylococcus aureus. Sci Rep 2024; 14:9469. [PMID: 38658583 PMCID: PMC11043418 DOI: 10.1038/s41598-024-58973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Bovine mastitis caused by S. aureus has a major economic impact on the dairy sector. With the crucial need for new therapies, anti-virulence strategies have gained attention as alternatives to antibiotics. Here we aimed to identify novel compounds that inhibit the production/activity of hemolysins, a virulence factor of S. aureus associated with mastitis severity. We screened Bacillus strains obtained from diverse sources for compounds showing anti-hemolytic activity. Our results demonstrate that lipopeptides produced by Bacillus spp. completely prevented the hemolytic activity of S. aureus at certain concentrations. Following purification, both iturins, fengycins, and surfactins were able to reduce hemolysis caused by S. aureus, with iturins showing the highest anti-hemolytic activity (up to 76% reduction). The lipopeptides showed an effect at the post-translational level. Molecular docking simulations demonstrated that these compounds can bind to hemolysin, possibly interfering with enzyme action. Lastly, molecular dynamics analysis indicated general stability of important residues for hemolysin activity as well as the presence of hydrogen bonds between iturins and these residues, with longevous interactions. Our data reveals, for the first time, an anti-hemolytic activity of lipopeptides and highlights the potential application of iturins as an anti-virulence therapy to control bovine mastitis caused by S. aureus.
Collapse
Affiliation(s)
| | | | | | - Pedro Henrique Marques
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Eduardo Horta Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | |
Collapse
|
50
|
Jemil N, Besbes I, Gharbi Y, Triki MA, Cheffi M, Manresa A, Nasri M, Hmidet N. Bacillus methylotrophicus DCS1: Production of Different Lipopeptide Families, In Vitro Antifungal Activity and Suppression of Fusarium Wilt in Tomato Plants. Curr Microbiol 2024; 81:142. [PMID: 38625396 DOI: 10.1007/s00284-024-03660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production. After 72 h of fermentation corresponding to the end of incubation period, B. methylotrophicus DCS1 is able to produce a mixture of surfactin, pumilacidin, iturin A/mycosubtilin, iturin C1, bacillomycin D and fengycins A and B isoforms. The results of in vitro antifungal experiments suggest that B. methylotrophicus DCS1 has a significant potential as a biocontrol agent, owing to lipopeptides produced, endowed with antifungal activity against several phytopathogenic fungi. The curative treatment of tomato plants with DCS1 bacterial suspension was more effective in the protection against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) than the preventive treatment by comparing the average number of leaves remaining healthy after 30 days of each treatment and the appearance of tomato plants roots. The results indicate that B. methylotrophicus DCS1 exhibit a significant suppression of Fusarium wilt symptoms in tomato plants comparable to that of commercial fungicides and could be an alternative to chemically synthesized pesticides.
Collapse
Affiliation(s)
- Nawel Jemil
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| | - Imen Besbes
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Yaakoub Gharbi
- Laboratory of Genetic Resources of Olive Tree : Characterization, Valorization and Phytosanitary Protection, Olive Tree Institute, University of Sfax, 3038, Sfax, Tunisia
| | - Mohamed Ali Triki
- Laboratory of Genetic Resources of Olive Tree : Characterization, Valorization and Phytosanitary Protection, Olive Tree Institute, University of Sfax, 3038, Sfax, Tunisia
| | - Manel Cheffi
- Laboratory of Genetic Resources of Olive Tree : Characterization, Valorization and Phytosanitary Protection, Olive Tree Institute, University of Sfax, 3038, Sfax, Tunisia
| | - Angeles Manresa
- Section of Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, Joan XXIII S/N, 08028, Barcelona, Spain
| | - Moncef Nasri
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Noomen Hmidet
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia
| |
Collapse
|