1
|
Salama LA, Saleh HH, Abdel-Rhman SH, Barwa R, Hassan R. Assessment of typing methods, virulence genes profile and antimicrobial susceptibility for clinical isolates of Proteus mirabilis. Ann Clin Microbiol Antimicrob 2025; 24:4. [PMID: 39815271 PMCID: PMC11734338 DOI: 10.1186/s12941-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated. Sixty P. mirabilis isolated undergo antibiotic susceptibility test by standard Kirby Bauer method. They showed high resistance to nitrofurantoin and trimethoprim/sulfamethoxazole that appear mainly in 3rd age group. The 2nd age group comprised most of the resistant isolates to the tested antibiotics. A total of 73.33% of isolates were classified as multi drug resistance (MDR) and 78.3% of isolates were distributed in several antibiotypes with MAR index over 0.2. Twenty-one isolates were strong biofilm-producers and they were significantly related to MDR. Different virulence factors as protease, urease and hemolysin production are detected. Detection of several virulence genes by PCR; zapA and ureC were harbored by all isolates, followed by rsbA (95%), ureA and flaA (93%), hpmA (91.7%) and mrpA (73.3%). Determination of genetic diversity between isolates was performed by different methods (RAPD, ISSR, ERIC, BOX-AIR and REP-PCR) by using several parameters as typeability and discriminatory power indicating that ERIC-PCR was the best method followed by REP-PCR 1R. Rand's & Wallace coefficients were used for calculating the congruence among typing methods. Conclusions: The results obtained from both conventional and molecular typing methods indicated that molecular methods are superior to conventional methods in the discrimination of isolates. ERIC-PCR and Rep-PCR provide high discrimination ability among P. mirabilis clinical isolates contributing to epidemiological studies.
Collapse
Affiliation(s)
- Lamiaa A Salama
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | | | - Shaymaa H Abdel-Rhman
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Yang A, Tian Y, Li X. Unveiling the hidden arsenal: new insights into Proteus mirabilis virulence in UTIs. Front Cell Infect Microbiol 2024; 14:1465460. [PMID: 39606746 PMCID: PMC11599158 DOI: 10.3389/fcimb.2024.1465460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium commonly found in urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). The pathogenic mechanisms of Proteus mirabilis are complex and diverse, involving various virulence factors, including fimbriae, flagella, urease, polyphosphate kinase, lipopolysaccharides, cyclic AMP receptor protein, Sigma factor RpoE, and RNA chaperone protein Hfq. These factors play crucial roles in bacterial colonization, invasion, evasion of host immune responses, biofilm formation, and urinary stone formation. This paper is the first to comprehensively describe the hydrogenase system, autotransporter proteins, molybdate-binding protein ModA, and two-component systems as virulence factors in Proteus mirabilis, providing new insights into its pathogenic mechanisms in urinary tract infections. This review explores the mechanisms of biofilm formation by Proteus mirabilis and the various virulence factors involved in UTIs, revealing many newly discovered virulence factors from recent studies. These findings may offer new targets for clinical treatment of UTIs and vaccine development, highlighting the importance of understanding these virulence factors.
Collapse
Affiliation(s)
- Aoyu Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchong Tian
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Partridge JD, Harshey RM. Flagellar protein FliL: A many-splendored thing. Mol Microbiol 2024; 122:447-454. [PMID: 39096095 PMCID: PMC11871937 DOI: 10.1111/mmi.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
FliL is a bacterial flagellar protein demonstrated to associate with, and regulate ion flow through, the stator complex in a diverse array of bacterial species. FliL is also implicated in additional functions such as stabilizing the flagellar rod, modulating rotor bias, sensing the surface, and regulating gene expression. How can one protein do so many things? Its location is paramount to understanding its numerous functions. This review will look at the evidence, attempt to resolve some conflicting findings, and offer new thoughts on FliL.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Huang WS, Lee YJ, Wang L, Chen HH, Chao YJ, Cheng V, Liaw SJ. Copper affects virulence and diverse phenotypes of uropathogenic Proteus mirabilis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00044-6. [PMID: 38453541 DOI: 10.1016/j.jmii.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Copper plays a role in urinary tract infection (UTI) and urinary copper content is increased during Proteus mirabilis UTI. We therefore investigated the effect of copper on uropathogenic P. mirabilis and the underlying mechanisms, focusing on the virulence associated aspects. METHODS Mouse colonization, swarming/swimming assays, measurement of cell length, flagellin level and urease activity, adhesion/invasion assay, biofilm formation, killing by macrophages, oxidative stress susceptibility, OMPs analysis, determination of MICs and persister cell formation, RT-PCR and transcriptional reporter assay were performed. RESULTS We found that copper-supplemented mice were more resistant to be colonized in the urinary tract, together with decreased swarming/swimming, ureases activity, expression of type VI secretion system and adhesion/invasion to urothelial cells and increased killing by macrophages of P. mirabilis at a sublethal copper level. However, bacterial biofilm formation and resistance to oxidative stress were enhanced under the same copper level. Of note, the presence of copper led to increased ciprofloxacin MIC and more persister cell formation against ampicillin. In addition, the presence of copper altered the outer membrane protein profile and triggered expression of RcsB response regulator. For the first time, we unveiled the pleiotropic effects of copper on uropathogenic P. mirabilis, especially for induction of bacterial two-component signaling system regulating fitness and virulence. CONCLUSION The finding of copper-mediated virulence and fitness reinforced the importance of copper for prevention and therapeutic interventions against P. mirabilis infections. As such, this study could facilitate the copper-based strategies against UTI by P. mirabilis.
Collapse
Affiliation(s)
- Wei-Syuan Huang
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Lu Wang
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Hsuan Chen
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yueh-Jung Chao
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Vivien Cheng
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Fusco A, Savio V, Chiaromonte A, Alfano A, D’Ambrosio S, Cimini D, Donnarumma G. Evaluation of Different Activity of Lactobacillus spp. against Two Proteus mirabilis Isolated Clinical Strains in Different Anatomical Sites In Vitro: An Explorative Study to Improve the Therapeutic Approach. Microorganisms 2023; 11:2201. [PMID: 37764044 PMCID: PMC10534642 DOI: 10.3390/microorganisms11092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Between these, bacterial prostatitis is believed to be the leading cause of recurrent UTIs in men under 50 years of age and is often unresponsive to antibiotic treatment. Proteus mirabilis is more commonly associated with UTIs in these abnormalities, especially in patients undergoing catheterization. Lactobacillus spp. are an important component of the human microbiota and occur in large quantities in foods. Probiotics are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. In addition to their ability to produce antimicrobial metabolites, they have immunomodulatory activity and do not cause side effects. For this reason, the combination of probiotic microorganisms and conventional drugs was considered. The aim of this work was to select the most active Lactobacillus strains against two clinical isolates of P. mirabilis on bladder and prostatic epithelium, potentially exploitable to improve the clinical management of UTIs.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| | | | | | | | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| |
Collapse
|
6
|
Partridge JD, Dufour Y, Hwang Y, Harshey RM. Flagellar motor remodeling during swarming requires FliL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549092. [PMID: 37503052 PMCID: PMC10370021 DOI: 10.1101/2023.07.14.549092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move. Bacterial physiology and morphology are also altered during swarming to cope with the challenges of surface navigation. FliL was reported to enhance motor output in several bacteria and observed to assemble as a ring around ion-conducting stators that power the motor. In this study we identify a common new function for FliL in diverse bacteria - Escherichia coli, Bacillus subtilis and Proteus mirabilis . During swarming, all these bacteria show increased cell speed and a skewed motor bias that suppresses cell tumbling. We demonstrate that these altered motor parameters, or 'motor remodeling', require FliL. Both swarming and motor remodeling can be restored in an E. coli fliL mutant by complementation with fliL genes from P. mirabilis and B. subtilis , showing conservation of swarming-associated FliL function across phyla. In addition, we demonstrate that the strong interaction we reported earlier between FliL and the flagellar MS-ring protein FliF is confined to the RBM-3 domain of FliF that links the periplasmic rod to the cytoplasmic C-ring. This interaction may explain several phenotypes associated with the absence of FliL.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Yann Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - YuneSahng Hwang
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and the LaMontagne Center for Infectious Diseases The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
7
|
Gmiter D, Pacak I, Nawrot S, Czerwonka G, Kaca W. Genomes comparison of two Proteus mirabilis clones showing varied swarming ability. Mol Biol Rep 2023; 50:5817-5826. [PMID: 37219671 PMCID: PMC10290045 DOI: 10.1007/s11033-023-08518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Proteus mirabilis is a Gram-negative bacteria most noted for its involvement with catheter-associated urinary tract infections. It is also known for its multicellular migration over solid surfaces, referred to as 'swarming motility'. Here we analyzed the genomic sequences of two P. mirabilis isolates, designated K38 and K39, which exhibit varied swarming ability. METHODS AND RESULTS The isolates genomes were sequenced using Illumina NextSeq sequencer, resulting in about 3.94 Mbp, with a GC content of 38.6%, genomes. Genomes were subjected for in silico comparative investigation. We revealed that, despite a difference in swarming motility, the isolates showed high genomic relatedness (up to 100% ANI similarity), suggesting that one of the isolates probably originated from the other. CONCLUSIONS The genomic sequences will allow us to investigate the mechanism driving this intriguing phenotypic heterogeneity between closely related P. mirabilis isolates. Phenotypic heterogeneity is an adaptive strategy of bacterial cells to several environmental pressures. It is also an important factor related to their pathogenesis. Therefore, the availability of these genomic sequences will facilitate studies that focus on the host-pathogen interactions during catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- Dawid Gmiter
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland.
| | - Ilona Pacak
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Sylwia Nawrot
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Czerwonka
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Wieslaw Kaca
- Department of Microbiology, Institute of Biology, Faculty of Natural Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
8
|
Bacterial Motility and Its Role in Skin and Wound Infections. Int J Mol Sci 2023; 24:ijms24021707. [PMID: 36675220 PMCID: PMC9864740 DOI: 10.3390/ijms24021707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Skin and wound infections are serious medical problems, and the diversity of bacteria makes such infections difficult to treat. Bacteria possess many virulence factors, among which motility plays a key role in skin infections. This feature allows for movement over the skin surface and relocation into the wound. The aim of this paper is to review the type of bacterial movement and to indicate the underlying mechanisms than can serve as a target for developing or modifying antibacterial therapies applied in wound infection treatment. Five types of bacterial movement are distinguished: appendage-dependent (swimming, swarming, and twitching) and appendage-independent (gliding and sliding). All of them allow bacteria to relocate and aid bacteria during infection. Swimming motility allows bacteria to spread from 'persister cells' in biofilm microcolonies and colonise other tissues. Twitching motility enables bacteria to press through the tissues during infection, whereas sliding motility allows cocci (defined as non-motile) to migrate over surfaces. Bacteria during swarming display greater resistance to antimicrobials. Molecular motors generating the focal adhesion complexes in the bacterial cell leaflet generate a 'wave', which pushes bacterial cells lacking appendages, thereby enabling movement. Here, we present the five main types of bacterial motility, their molecular mechanisms, and examples of bacteria that utilise them. Bacterial migration mechanisms can be considered not only as a virulence factor but also as a target for antibacterial therapy.
Collapse
|
9
|
Gmiter D, Kaca W. Into the understanding the multicellular lifestyle of Proteus mirabilis on solid surfaces. Front Cell Infect Microbiol 2022; 12:864305. [PMID: 36118021 PMCID: PMC9478170 DOI: 10.3389/fcimb.2022.864305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Indwelling urinary catheterization can lead to the development of catheter-associated urinary tract infections (CAUTIs), an important type of nosocomial infection, as well as other medical issues among institutionalized adults. Recently, Proteus mirabilis was highlighted as the important cause of CAUTIs. The pathogenicity of P. mirabilis is dependent on two multicellular types of surface colonization: the adherence and swarming motility. Adhesion, mostly mediated by fimbrial and nonfimbrial adhesins, is important for the initiation of biofilm formation. Moreover, the production of urease frequently results in biofilm crystallization, which leads to the blockage of catheters. The heterologous polymeric matrix of the biofilm offers protection against antibiotics and the host immune system. P. mirabilis displays remarkable motility abilities. After contact with solid surfaces, hyper-flagellated cells are able to rapidly migrate. The importance of swarming motility in CAUTIs development remains controversial; however, it was indicated that swarming cells were able to co-express other virulence factors. Furthermore, flagella are strong immunomodulating proteins. On the other hand, both biofilm formation and swarming motility implicates multiple inter- and intraspecies interactions, which might contribute to the pathogenicity.
Collapse
|
10
|
Shokouhfard M, Kermanshahi RK, Feizabadi MM, Teimourian S, Safari F. Lactobacillus spp. derived biosurfactants effect on expression of genes involved in Proteus mirabilis biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105264. [PMID: 35272045 DOI: 10.1016/j.meegid.2022.105264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
Nosocomial infections (NIs) have been defined as infections ocuurring shortly after hospitalization or discharging from the hospital. It is associated with increased morbidities and mortalities. Proteus mirabilis considered as the hospital-acquired pathogen. The purpose of this study was to investigate the effect of Lactobacillus acidophilus-derived biosurfactant on P. mirabilis biofilm formation and flhDC/rsmA expression level (P. mirabilis standard strain ATCC 7002 and urinary infection isolated P. mirabilis strains). One of the potential strategies for the prevention of nosocomial infections is the use of probiotics. L. acidophilus was selected as a probiotic strain to produce biosurfactants. A biosurfactant reduces the adhesion of strains to microtiter plate and glass slide surfaces due to the reduction of surface tension. By using Real time PCR quantitation method we showed that biosurfactant significantly reduced rsmA expression whereas increased flhDC expression in P. mirabilis isolates. Several properties of P. mirabilis cells (biofilm formation, adhesion, and gene expression) were changed after L. acidophilus- derived biosurfactant treatment. In this study we showed that biosurfacant treatment can pave the way for a possible control of biofilm development. Based on our findings, we suggest that the prepared biosurfactant may interfere with adhesion of P. mirabilis to catheters and other devices.
Collapse
Affiliation(s)
- Maliheh Shokouhfard
- Department of Microbiology, School of Science, Alzahra University, Tehran, Iran; Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - R-Kasra Kermanshahi
- Department of Microbiology, School of Science, Alzahra University, Tehran, Iran
| | - M-Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
11
|
Zhang B, Bai P, Wang D. Growth Behavior and Transcriptome Profile Analysis of Proteus mirabilis Strain Under Long- versus Short-Term Simulated Microgravity Environment. Pol J Microbiol 2022; 71:161-171. [PMID: 35635525 PMCID: PMC9252141 DOI: 10.33073/pjm-2022-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Spaceflight missions affect the behavior of microbes that are inevitably introduced into space environments and may impact astronauts’ health. Current studies have mainly focused on the biological characteristics and molecular mechanisms of microbes after short-term or long-term spaceflight, but few have compared the impact of various lengths of spaceflight missions on the characteristics of microbes. Researchers generally agree that microgravity (MG) is the most critical factor influencing microbial physiology in space capsules during flight missions. This study compared the growth behavior and transcriptome profile of Proteus mirabilis cells exposed to long-term simulated microgravity (SMG) with those exposed to short-term SMG. The results showed that long-term SMG decreased the growth rate, depressed biofilm formation ability, and affected several transcriptomic profiles, including stress response, membrane transportation, metal ion transportation, biological adhesion, carbohydrate metabolism, and lipid metabolism in contrast to short-term SMG. This study improved the understanding of long-term versus short-term SMG effects on P. mirabilis behavior and provided relevant references for analyzing the influence of P. mirabilis on astronaut health during spaceflights.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital , Binzhou , China
| | - Po Bai
- Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center , Beijing , China
| | - Dapeng Wang
- Respiratory Diseases Department, The Second Medical Center of PLA General Hospital , Beijing , China
| |
Collapse
|
12
|
Not Only Antimicrobial: Metronidazole Mitigates the Virulence of Proteus mirabilis Isolated from Macerated Diabetic Foot Ulcer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156847] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic foot ulcers are recognized to be a severe complication of diabetes, increasing the risk of amputation and death. The bacterial infection of Diabetic foot ulcers with virulent and resistant bacteria as Proteus mirabilis greatly worsens the wound and may not be treated with conventional therapeutics. Developing new approaches to target bacterial virulence can be helpful to conquer such infections. In the current work, we evaluated the anti-virulence activities of the widely used antibacterial metronidazole. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MEBC) were determined for selected antibiotics which P. mirabilis was resistant to them in the presence and absence of metronidazole in sub-MIC. The effect of metronidazole in sub-MIC on P. mirabilis virulence factors as production of exoenzymes, motilities, adhesion and biofilm formation, were evaluated. Furthermore, molecular docking of metronidazole into P. mirabilis adhesion and essential quorum sensing (QS) proteins, was performed. The results revealed a significant ability of metronidazole to in-vitro inhibit P. mirabilis virulence factors and antagonize its essential proteins. Moreover, metronidazole markedly decreased the MICs and MBECs of tested antibiotics. Conclusively, metronidazole in sub-MIC is a plausible anti-virulence and anti-QS agent that can be combined to other antibiotics as anti-virulence adjuvant to defeat aggressive infections.
Collapse
|
13
|
Chen W, Mani N, Karani H, Li H, Mani S, Tang JX. Confinement discerns swarmers from planktonic bacteria. eLife 2021; 10:e64176. [PMID: 33884952 PMCID: PMC8112864 DOI: 10.7554/elife.64176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Powered by flagella, many bacterial species exhibit collective motion on a solid surface commonly known as swarming. As a natural example of active matter, swarming is also an essential biological phenotype associated with virulence, chemotaxis, and host pathogenesis. Physical changes like cell elongation and hyper-flagellation have been shown to accompany the swarming phenotype. Less studied, however, are the contrasts of collective motion between the swarming cells and their counterpart planktonic cells of comparable cell density. Here, we show that confining bacterial movement in circular microwells allows distinguishing bacterial swarming from collective swimming. On a soft agar plate, a novel bacterial strain Enterobacter sp. SM3 in swarming and planktonic states exhibited different motion patterns when confined to circular microwells of a specific range of sizes. When the confinement diameter was between 40 μm and 90 μm, swarming SM3 formed a single-swirl motion pattern in the microwells whereas planktonic SM3 formed multiple swirls. Similar differential behavior is observed across several other species of gram-negative bacteria. We also observed 'rafting behavior' of swarming bacteria upon dilution. We hypothesize that the rafting behavior might account for the motion pattern difference. We were able to predict these experimental features via numerical simulations where swarming cells are modeled with stronger cell-cell alignment interaction. Our experimental design using PDMS microchip disk arrays enabled us to observe bacterial swarming on murine intestinal surface, suggesting a new method for characterizing bacterial swarming under complex environments, such as in polymicrobial niches, and for in vivo swarming exploration.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Physics, Brown UniversityProvidenceUnited States
- Department of Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Neha Mani
- Department of Physics, Brown UniversityProvidenceUnited States
| | - Hamid Karani
- Department of Physics, Brown UniversityProvidenceUnited States
| | - Hao Li
- Department of Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Sridhar Mani
- Department of Medicine, Albert Einstein College of MedicineBronxUnited States
| | - Jay X Tang
- Department of Physics, Brown UniversityProvidenceUnited States
| |
Collapse
|
14
|
Stella NA, Brothers KM, Shanks RMQ. Differential susceptibility of airway and ocular surface cell lines to FlhDC-mediated virulence factors PhlA and ShlA from Serratia marcescens. J Med Microbiol 2021; 70:001292. [PMID: 33300860 PMCID: PMC8131021 DOI: 10.1099/jmm.0.001292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction. Serratia marcescens is a bacterial pathogen that causes ventilator-associated pneumonia and ocular infections. The FlhD and FlhC proteins complex to form a heteromeric transcription factor whose regulon, in S. marcescens, regulates genes for the production of flagellum, phospholipase A and the cytolysin ShlA. The previously identified mutation, scrp-31, resulted in highly elevated expression of the flhDC operon. The scrp-31 mutant was observed to be more cytotoxic to human airway and ocular surface epithelial cells than the wild-type bacteria and the present study sought to identify the mechanism underlying the increased cytotoxicity phenotype.Hypothesis/Gap Statement. Although FlhC and FlhD have been implicated as virulence determinants, the mechanisms by which these proteins regulate bacterial cytotoxicity to different cell types remains unclear.Aim. This study aimed to evaluate the mechanisms of FlhDC-mediated cytotoxicity to human epithelial cells by S. marcescens.Methodology. Wild-type and mutant bacteria and bacterial secretomes were used to challenge airway and ocular surface cell lines as evaluated by resazurin and calcein AM staining. Pathogenesis was further tested using a Galleria mellonella infection model.Results. The increased cytotoxicity of scrp-31 bacteria and secretomes to both cell lines was eliminated by mutation of flhD and shlA. Mutation of the flagellin gene had no impact on cytotoxicity under any tested condition. Elimination of the phospholipase gene, phlA, had no effect on bacteria-induced cytotoxicity to either cell line, but reduced cytotoxicity caused by secretomes to airway epithelial cells. Mutation of flhD and shlA, but not phlA, reduced bacterial killing of G. mellonella larvae.Conclusion. This study indicates that the S. marcescens FlhDC-regulated secreted proteins PhlA and ShlA, but not flagellin, are cytotoxic to airway and ocular surface cells and demonstrates differences in human epithelial cell susceptibility to PhlA.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Filipiak A, Chrapek M, Literacka E, Wawszczak M, Głuszek S, Majchrzak M, Wróbel G, Łysek-Gładysińska M, Gniadkowski M, Adamus-Białek W. Pathogenic Factors Correlate With Antimicrobial Resistance Among Clinical Proteus mirabilis Strains. Front Microbiol 2020; 11:579389. [PMID: 33324365 PMCID: PMC7723865 DOI: 10.3389/fmicb.2020.579389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
Proteus mirabilis is the third most common etiological factor of urinary tract infection. It produces urease, which contributes to the formation of a crystalline biofilm, considered to be one of the most important virulence factors of P. mirabilis strains, along with their ability to swarm on a solid surface. The aim of this study was to analyze the pathogenic properties of two selected groups of clinical P. mirabilis isolates, antimicrobial susceptible and multidrug resistant (MDR), collected from hospitals in different regions in Poland. The strains were examined based on virulence gene profiles, urease and hemolysin production, biofilm formation, and swarming properties. Additionally, the strains were characterized based on the Dienes test and antibiotic susceptibility patterns. It turned out that the MDR strains exhibited kinship more often than the susceptible ones. The strains which were able to form a stronger biofilm had broader antimicrobial resistance profiles. It was also found that the strongest swarming motility correlated with susceptibility to most antibiotics. The correlations described in this work encourage further investigation of the mechanisms of pathogenicity of P. mirabilis.
Collapse
Affiliation(s)
- Aneta Filipiak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Magdalena Chrapek
- Department of Mathematics, Jan Kochanowski University, Kielce, Poland
| | | | - Monika Wawszczak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Michał Majchrzak
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Grzegorz Wróbel
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | | | | | - Wioletta Adamus-Białek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
16
|
Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms 2020; 8:microorganisms8111775. [PMID: 33198099 PMCID: PMC7696407 DOI: 10.3390/microorganisms8111775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Proteus mirabilis is a component of the normal intestinal microflora of humans and animals, but can cause urinary tract infections and even sepsis in hospital settings. In recent years, the number of multidrug-resistant P. mirabilis isolates, including the ones producing extended-spectrum β-lactamases (ESBLs), is increasing worldwide. However, the number of investigations dedicated to this species, especially, whole-genome sequencing, is much lower in comparison to the members of the ESKAPE pathogens group. This study presents a detailed analysis of clinical multidrug-resistant ESBL-producing P. mirabilis isolate using short- and long-read whole-genome sequencing, which allowed us to reveal possible horizontal gene transfer between Klebsiella pneumoniae and P. mirabilis plasmids and to locate the CRISPR-Cas system in the genome together with its probable phage targets, as well as multiple virulence genes. We believe that the data presented will contribute to the understanding of antibiotic resistance acquisition and virulence mechanisms for this important pathogen.
Collapse
|
17
|
Gu W, Wang W, Tong P, Liu C, Jia J, Lu C, Han Y, Sun X, Kuang D, Li N, Dai J. Comparative genomic analysis of Proteus spp. isolated from tree shrews indicated unexpectedly high genetic diversity. PLoS One 2020; 15:e0229125. [PMID: 32084183 PMCID: PMC7034874 DOI: 10.1371/journal.pone.0229125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Proteus spp. are commensal gastrointestinal bacteria in many hosts, but information regarding the mutual relationships between these bacteria and their hosts is limited. The tree shrew is an alternative laboratory animal widely used for human disease research. However, little is known about the relationship between Proteus spp. and tree shrews. In this study, the complete genome sequencing method was used to analyse the characteristics of Proteus spp. isolated from tree shrews, and comparative genomic analysis was performed to reveal their relationships. The results showed that 36 Proteus spp. bacteria were isolated, including 34 Proteus mirabilis strains and two Proteus vulgaris strains. The effective rate of sequencing was 93.53%±2.73%, with an average GC content of 39.94%±0.25%. Briefly, 3682.89±90.37, 2771.36±36.01 and 2832.06±42.49 genes were annotated in the NCBI non-redundant nucleotide database (NR), SwissProt database and KEGG database, respectively. The high proportions of macrolide-, vancomycin-, bacitracin-, and tetracycline-resistance profiles of the strains were annotated in the Antibiotic Resistance Genes Database (ARDB). Flagella, lipooligosaccharides, type 1 fimbriae and P fimbriae were the most abundantly annotated virulence factors in the Virulence Factor Database (VFDB). SNP variants indicated high proportions of base transitions (Ts), homozygous mutations (Hom) and non-synonymous mutations (Non-Syn) in Proteus spp. (P<0.05). Phylogenetic analysis of Proteus spp. and other references revealed high genetic diversity for strains isolated from tree shrews, and host specificity of Proteus spp. bacteria was not found. Overall, this study provided important information on characteristics of genome for Proteus spp. isolated from tree shrews.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jie Jia
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- * E-mail:
| |
Collapse
|
18
|
Hussein EI, Al-Batayneh K, Masadeh MM, Dahadhah FW, Al Zoubi MS, Aljabali AA, Alzoubi KH. Assessment of Pathogenic Potential, Virulent Genes Profile, and Antibiotic Susceptibility of Proteus mirabilis from Urinary Tract Infection. Int J Microbiol 2020; 2020:1231807. [PMID: 32089693 PMCID: PMC7029293 DOI: 10.1155/2020/1231807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Proteus mirabilis is the third most common bacterium that can cause complicated UTI, especially in catheterized patients. Urovirulence genes of P. mirabilis strains are poorly identified among UTI patients. The aims of the present study were to determine the prevalence of the uropathogenic P. mirabilis strains isolated from UTI patients by the detection of several P. mirabilis virulence genes and to characterize the antibiotic susceptibility profile of P. mirabilis isolates. P. mirabilis isolates were collected from urine specimens of patients suffering from UTI. Virulence genes in P. mirabilis, namely, hpmA, hpmB, rsbA, luxS, ureC1, hlyA, rpoA, atfA, atfC, mrpA, and pm1 were detected in the isolates via PCR detection method. All P. mirabilis virulence genes were detected in more than 90% of the isolates except hlyA gene, which was detected in only 23.8% of the isolates. The rate of susceptibility for ceftriaxone was 96.8%, followed by norfloxacin (82.5%), gentamicin (71.4%), ciprofloxacin (69.8%), cephalexin (52.4%), nalidixic acid (42.9%), sulfamethoxazole (39.7%), ampicillin (36.5%), and nitrofurantoin (3.2%). Significant associations (P < 0.05) were detected between antimicrobial susceptibility of each of the following antibiotics and the presence virulence genes. Cephalexin antimicrobial susceptibility was significantly associated with the presence each of ureC1 and atfC. Sulfamethoxazole antimicrobial susceptibility was significantly associated with the presence atfA. Ceftriaxone antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfC, mrpA, and pm1. Nitrofurantoin antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfA, atfC, mrpA, and pm1. In conclusion, an association between the presence of urovirulence genes of P. mirabilis and increasing P. mirabilis resistance to antimicrobials has been demonstrated.
Collapse
Affiliation(s)
- Emad I. Hussein
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
- Department of Food Science and Human Nutrition, A'Sharqiyah University, Ibra, Oman
| | - Khalid Al-Batayneh
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Majed M. Masadeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Fatina W. Dahadhah
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Alaa A. Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
19
|
Durgadevi R, Abirami G, Alexpandi R, Nandhini K, Kumar P, Prakash S, Veera Ravi A. Explication of the Potential of 2-Hydroxy-4-Methoxybenzaldehyde in Hampering Uropathogenic Proteus mirabilis Crystalline Biofilm and Virulence. Front Microbiol 2019; 10:2804. [PMID: 31921010 PMCID: PMC6914683 DOI: 10.3389/fmicb.2019.02804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
Proteus mirabilis is an important etiological agent of catheter-associated urinary tract infections (CAUTIs) owing to its efficient crystalline biofilm formation and virulence enzyme production. Hence, the present study explicated the antibiofilm and antivirulence efficacies of 2-hydroxy-4-methoxybenzaldehyde (HMB) against P. mirabilis in a non-bactericidal manner. HMB showed concentration-dependent biofilm inhibition, which was also evinced in light, confocal, and scanning electron microscopic (SEM) analyses. The other virulence factors such as urease, hemolysin, siderophores, and extracellular polymeric substances production as well as swimming and swarming motility were also inhibited by HMB treatment. Further, HMB treatment effectively reduced the struvite/apatite production as well as crystalline biofilm formation by P. mirabilis. Furthermore, the results of gene expression analysis unveiled the ability of HMB to impair the expression level of virulence genes such as flhB, flhD, rsbA, speA, ureR, hpmA, and hpmB, which was found to be in correlation with the results of in vitro bioassays. Additionally, the cytotoxicity analysis divulged the innocuous characteristic of HMB against human embryonic kidney cells. Thus, the present study reports the potency of HMB to act as a promising therapeutic remedy for P. mirabilis-instigated CAUTIs.
Collapse
Affiliation(s)
| | - Gurusamy Abirami
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | | | - Kumar Nandhini
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - Santhiyagu Prakash
- Department of Basic Science, Tamilnadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | | |
Collapse
|
20
|
Venosi S, Ceccarelli G, de Angelis M, Laghi L, Bianchi L, Martinelli O, Maruca D, Cavallari EN, Toscanella F, Vassalini P, Trinchieri V, Oliva A, d'Ettorre G. Infected chronic ischemic wound topically treated with a multi-strain probiotic formulation: a novel tailored treatment strategy. J Transl Med 2019; 17:364. [PMID: 31706326 PMCID: PMC6842486 DOI: 10.1186/s12967-019-2111-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background A wide debate is ongoing regarding the role of cutaneous dysbiosis in the pathogenesis and evolution of difficult-to-treat chronic wounds. Nowadays, probiotic treatment considered as an useful tool to counteract dysbiosis but the evidence in regard to their therapeutic use in the setting of difficult-to-treat cutaneous ulcers is still poor. Aim: clinical report An 83-year-old woman suffering a critical limb ischemia and an infected difficult-to-treat ulcerated cutaneous lesion of the right leg, was complementary treated with local application of a mixture of probiotic bacteria. Methods Microbiological and metabolomic analysis were conducted on wound swabs obtained before and after bacteriotherapy. Results During the treatment course, a progressive healing of the lesion was observed with microbiological resolution of the polymicrobial infection of the wound. Metabolomic analysis showed a significant difference in the local concentration of propionate, 2-hydroxyisovalerate, 2-oxoisocaproate, 2,3-butanediol, putrescine, thymine, and trimethylamine before and after bacteriotherapy. Conclusion The microbiological and metabolomic results seem to confirm the usefulness of complementary probiotic treatment in difficult-to-treat infected wounds. Further investigations are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Salvatore Venosi
- Department of Cardio-Thoraco-Vascular, Surgery and Transplants, University of Rome Sapienza, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy.
| | - Massimiliano de Angelis
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Luca Laghi
- Department of Agri-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Laura Bianchi
- Functional Proteomic Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Ombretta Martinelli
- Department of Cardio-Thoraco-Vascular, Surgery and Transplants, University of Rome Sapienza, Rome, Italy
| | - Debora Maruca
- Department of Cardio-Thoraco-Vascular, Surgery and Transplants, University of Rome Sapienza, Rome, Italy
| | - Eugenio Nelson Cavallari
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Fabrizia Toscanella
- Diabetic Foot Center, Istituto Nazionale Ricovero e Cura Anziani (INRCA), Ancona, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Vito Trinchieri
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Viale del Policlinico 155, Rome, Italy
| |
Collapse
|
21
|
Testing the Ability of Compounds to Induce Swarming. Methods Mol Biol 2019. [PMID: 31309493 DOI: 10.1007/978-1-4939-9601-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
One of the most distinctive features of Proteus mirabilis is its ability to undergo differentiation from short, rod-shaped vegetative cells with peritrichous flagella to massively elongated swarm cells that express hundreds to thousands of flagella. The unique bull's-eye pattern that forms from cycles of active swarming and consolidation back to the vegetative state has long been a distinguishing characteristic of this species. Many factors involved in regulation of flagellar synthesis and swarm cell differentiation have been characterized, but the exact conditions sensed by P. mirabilis that send a signal to initiate differentiation and motility have yet to be fully elucidated. Here we describe a method for using several types of media to investigate compounds that induce swarming motility under conditions that would not normally be permissive.
Collapse
|
22
|
Methods for Transposon Mutagenesis in Proteus mirabilis. Methods Mol Biol 2019. [PMID: 31197711 DOI: 10.1007/978-1-4939-9570-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several methods for transposon mutagenesis have been employed for use in P. mirabilis. The first method involves the use of mini-Tn5 derivatives, which are delivered by conjugation of a suicide plasmid containing this transposon, followed by transposition into the chromosome. A second method is the use of preformed transposon/transposase complexes (transposomes), which are introduced into P. mirabilis cells by electroporation. Each of these methods will be discussed along with the advantages and disadvantages of each.
Collapse
|
23
|
Cell Shape and Population Migration Are Distinct Steps of Proteus mirabilis Swarming That Are Decoupled on High-Percentage Agar. J Bacteriol 2019; 201:JB.00726-18. [PMID: 30858303 DOI: 10.1128/jb.00726-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 01/10/2023] Open
Abstract
Swarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacterium Proteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address how P. mirabilis populations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions among P. mirabilis cells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCE How surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers like P. mirabilis is not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell's lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.
Collapse
|
24
|
Aygül A, Öztürk İ, Çilli FF, Ermertcan Ş. Quercetin inhibits swarming motility and activates biofilm production of Proteus mirabilis possibly by interacting with central regulators, metabolic status or active pump proteins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:65-71. [PMID: 30668324 DOI: 10.1016/j.phymed.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Via its virulence factors such as swarm differentiation, biofilm and hemolysin production, urease enzyme, Proteus mirabilis causes urinary tract infections (UTIs), especially in complicated cases. Anti-pathogenic compounds attenuate the virulence of bacteria without showing 'cidal' activity and carry the potential to be used in the prevention and treatment of infectious diseases. PURPOSE Search for anti-pathogenic effects of quercetin, which is a widely known and biologically active phytochemical, on Proteus mirabilis was the purpose of this study. In this context, the potential inhibitory activity of quercetin on swarming motility and biofilm production of a wild-type strain, P. mirabilis HI4320, was investigated in both phenotypically and genotypically. METHODS Quercetin's effect on swarming motility was examined on LB agar plates, containing quercetin at various concentrations, by measuring the swarming diameter. The effect on biofilm formation, on the other hand, was analyzed by staining the formed biofilm of the bacterium, exposed to quercetin at various concentrations, with crystal violet and reading spectrophotometrically. Differences in expression levels of selected genes involved in swarming regulation were determined by real-time reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) to evaluate the mechanism of inhibitory action on swarming. Further investigations were carried out repeating swarming assays with the clones that derived from the wild-type strain by a TA system kit for direct one-step cloning and overexpressing the relevant genes. RESULTS Our study revealed that quercetin inhibited swarming motility while activating biofilm production of P. mirabilis in direct proportion to the dose. Although all selected genes are inhibited in the same manner in liquid medium, and no significant differences could be detected in solid medium as demonstrated by RT-qPCR, experiments repeated with the clones overexpressing flhC (a component of flagellar transcriptional activator), speB (an agmatinase enzyme) and ompF (an outer membrane porin) genes showed that the respective clones could restore swarming, compensating for the inhibitory effect of quercetin. CONCLUSION Quercetin's inhibitory effect on P. mirabilis swarming was possibly due to interactions with components of swarming regulators, the genes expressing polyamine coding enzymes that trigger swarm differentiation, or active pump proteins.
Collapse
Affiliation(s)
- Abdurrahman Aygül
- Çukurova University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Adana 01380, Turkey.
| | - İsmail Öztürk
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir 35040, Turkey
| | - Fatma Feriha Çilli
- Ege University, Faculty of Medicine, Department of Medical Microbiology, İzmir 35040, Turkey
| | - Şafak Ermertcan
- Ege University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İzmir 35040, Turkey
| |
Collapse
|
25
|
Pelling H, Nzakizwanayo J, Milo S, Denham EL, MacFarlane WM, Bock LJ, Sutton JM, Jones BV. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 2019; 68:277-293. [PMID: 30811615 DOI: 10.1111/lam.13144] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/21/2022]
Abstract
Urethral catheters are the most commonly deployed medical devices and used to manage a wide range of conditions in both hospital and community care settings. The use of long-term catheterization, where the catheter remains in place for a period >28 days remains common, and the care of these patients is often undermined by the acquisition of infections and formation of biofilms on catheter surfaces. Particular problems arise from colonization with urease-producing species such as Proteus mirabilis, which form unusual crystalline biofilms that encrust catheter surfaces and block urine flow. Encrustation and blockage often lead to a range of serious clinical complications and emergency hospital referrals in long-term catheterized patients. Here we review current understanding of bacterial biofilm formation on urethral catheters, with a focus on crystalline biofilm formation by P. mirabilis, as well as approaches that may be used to control biofilm formation on these devices. SIGNIFICANCE AND IMPACT OF THE STUDY: Urinary catheters are the most commonly used medical devices in many healthcare systems, but their use predisposes to infection and provide ideal conditions for bacterial biofilm formation. Patients managed by long-term urethral catheterization are particularly vulnerable to biofilm-related infections, with crystalline biofilm formation by urease producing species frequently leading to catheter blockage and other serious clinical complications. This review considers current knowledge regarding biofilm formation on urethral catheters, and possible strategies for their control.
Collapse
Affiliation(s)
- H Pelling
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - J Nzakizwanayo
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - S Milo
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - E L Denham
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - W M MacFarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - L J Bock
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - J M Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - B V Jones
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| |
Collapse
|
26
|
Abstract
The opportunistic pathogen Proteus mirabilis engages in visually dramatic and dynamic social behaviors. Populations of P. mirabilis can rapidly occupy surfaces, such as high-percentage agar and latex, through a collective surface-based motility termed swarming. When in these surface-occupying swarm colonies, P. mirabilis can distinguish between clonal siblings (self) and foreign P. mirabilis strains (nonself). This ability can be assessed by at least two standard methods: boundary formation, aka a Dienes line, and territorial exclusion. Here we describe methods for quantitative analysis of swarm colony expansion, of boundary formation, and of territorial exclusion. These assays can be employed to assess several aspects of P. mirabilis sociality including collective swarm motility, competition, and self versus nonself recognition.
Collapse
Affiliation(s)
- Kristin Little
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
27
|
Abstract
This chapter outlines a method for making unmarked, in-frame deletion mutations in Proteus mirabilis by allelic replacement. This method utilizes an R6K-based suicide plasmid allowing for integration of the plasmid by homologous recombination via a cloned insert. The plasmid also contains the sacB gene to select for plasmid loss (excision) in the presence of sucrose to create a mutant allele. This method has been applied to the P. mirabilis strains PM7002 and BB2000 and should be generally applicable to other P. mirabilis strains. The same methods described in this chapter can be used to introduce marked or point mutations in a given gene.
Collapse
Affiliation(s)
- Kristen E Howery
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
- Research Service, Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
28
|
MrpJ Directly Regulates Proteus mirabilis Virulence Factors, Including Fimbriae and Type VI Secretion, during Urinary Tract Infection. Infect Immun 2018; 86:IAI.00388-18. [PMID: 30082479 DOI: 10.1128/iai.00388-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (CAUTIs) and urolithiasis. The transcriptional regulator MrpJ inversely modulates two critical aspects of P. mirabilis UTI progression: fimbria-mediated attachment and flagellum-mediated motility. Transcriptome data indicated a network of virulence-associated genes under MrpJ's control. Here, we identify the direct gene regulon of MrpJ and its contribution to P. mirabilis pathogenesis, leading to the discovery of novel virulence targets. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) was used for the first time in a CAUTI pathogen to probe for in vivo direct targets of MrpJ. Selected MrpJ-regulated genes were mutated and assessed for their contribution to UTI using a mouse model. ChIP-seq revealed a palindromic MrpJ binding sequence and 78 MrpJ-bound regions, including binding sites upstream of genes involved in motility, fimbriae, and a type VI secretion system (T6SS). A combinatorial mutation approach established the contribution of three fimbriae (fim8A, fim14A, and pmpA) to UTI and a new pathogenic role for the T6SS in UTI progression. In conclusion, this study (i) establishes the direct gene regulon and an MrpJ consensus binding site and (ii) led to the discovery of new virulence genes in P. mirabilis UTI, which could be targeted for therapeutic intervention of CAUTI.
Collapse
|
29
|
Swarmer Cell Development of the Bacterium Proteus mirabilis Requires the Conserved Enterobacterial Common Antigen Biosynthesis Gene rffG. J Bacteriol 2018; 200:JB.00230-18. [PMID: 29967121 DOI: 10.1128/jb.00230-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Individual cells of the bacterium Proteus mirabilis can elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating that P. mirabilis requires the gene rffG for swarmer cell elongation and subsequent swarm motility. The rffG gene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein of Escherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize the rffG gene in P. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of the rffG gene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that in rffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilis swarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, the rffG-dependent moieties provide a novel attractive target for potential antimicrobials.
Collapse
|
30
|
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0009-2017. [PMID: 29424333 PMCID: PMC5880328 DOI: 10.1128/ecosalplus.esp-0009-2017] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/10/2023]
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
31
|
Hemolytic Escherichia coli Inhibits Swarming and Differentiation of Proteus mirabilis. Curr Microbiol 2017; 75:471-475. [PMID: 29209821 DOI: 10.1007/s00284-017-1404-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Swarming is a hallmark of Proteus mirabilis, whether common gram-negative bacilli affect the swarming of P. mirabilis is still unclear. In this study, we found that P. mirabilis swarming was inhibited by Escherichia coli ATCC25922, but was not affected by Klebsiella pneumoniae, Acinetobacter baumannii, or Pseudomonas aeruginosa strains. The migration distance of P. mirabilis when mixed with E. coli ATCC25922 was strongly reduced, and the inhibition of the swarming of P. mirabilis by E. coli ATCC25922 was dependent on cell density. In addition, initiation of P. mirabilis swarming was delayed by E. coli ATCC25922. Among clinical isolates, including gram-negative bacilli and gram-positive cocci, only hemolytic E. coli inhibited the swarming of P. mirabilis. In summary, hemolytic E. coli inhibited the swarming and differentiation of P. mirabilis.
Collapse
|
32
|
Uzelac G, Patel HK, Devescovi G, Licastro D, Venturi V. Quorum sensing and RsaM regulons of the rice pathogen Pseudomonas fuscovaginae. MICROBIOLOGY-SGM 2017; 163:765-777. [PMID: 28530166 DOI: 10.1099/mic.0.000454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen causing sheath brown rot in rice, as well as diseases in other gramineae food crops including maize, sorghum and wheat. Pfv possesses two conserved N-acyl homoserine lactone (AHL) quorum sensing (QS) systems called PfvI/R and PfsI/R, which are repressed by RsaL and RsaM, respectively. The two systems are not hierarchically organized and are involved in plant virulence. In this study the AHL QS PfsI/R, PfvI/R and RsaM regulons were determined by transcriptomic analysis. The PfsI/R system regulates 98 genes, whereas 26 genes are regulated by the PfvI/R AHL QS system; only two genes are regulated by both systems. RsaM, on the other hand, regulates over 400 genes: 206 are negatively regulated and 260 are positively regulated. More than half of the genes controlled by the PfsI/R system and 65 % by the PfvI/R system are also part of the RsaM regulon; this is due to RsaM being involved in the regulation of both systems. It is concluded that the two QS systems regulate a unique set of genes and that RsaM is a global regulator mediating the expression of different genes through the two QS systems as well as genes independently of QS.
Collapse
Affiliation(s)
- Gordana Uzelac
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Hitendra Kumar Patel
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.,Present address: CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
33
|
Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains. Int J Mol Sci 2017; 18:ijms18020414. [PMID: 28212280 PMCID: PMC5343948 DOI: 10.3390/ijms18020414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the abiotic surface of the urinary catheters. Since, to date, the role of P. mirabilis in the etiopathogenesis of different types of urinary tract infections is not well established, in this study we sought to characterize two different clinically isolated strains of P. mirabilis (PM1 and PM2) with distinctive phenotypes and analyzed various virulence factors possibly implicated in the ability to induce UTIs and CAUTIs. In particular, we analyzed motility, biofilm formation both on abiotic and biotic surfaces of PM1 and PM2 and paralleled these parameters with the ability to induce an inflammatory response in an epithelial cell model. Results showed that PM1 displayed major motility and a capacity to form biofilm and was associated with an anti-inflammatory response of host cells. Conversely, PM2 exhibited lack motility and a had slower organization in biofilm but promoted an increase of proinflammatory cytokine expression in infected epithelial cells. Our study provides data useful to start uncovering the pathologic basis of P. mirabilis-associated urinary infections. The evidence of different virulence factors expressed by PM1 and PM2 highlights the possibility to use precise and personalized therapies targeting specific virulence pathways.
Collapse
|
34
|
Drzewiecka D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. MICROBIAL ECOLOGY 2016; 72:741-758. [PMID: 26748500 PMCID: PMC5080321 DOI: 10.1007/s00248-015-0720-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/13/2015] [Indexed: 05/04/2023]
Abstract
Proteus spp. bacteria were first described in 1885 by Gustav Hauser, who had revealed their feature of intensive swarming growth. Currently, the genus is divided into Proteus mirabilis, Proteus vulgaris, Proteus penneri, Proteus hauseri, and three unnamed genomospecies 4, 5, and 6 and consists of 80 O-antigenic serogroups. The bacteria are known to be human opportunistic pathogens, isolated from urine, wounds, and other clinical sources. It is postulated that intestines are a reservoir of these proteolytic organisms. Many wild and domestic animals may be hosts of Proteus spp. bacteria, which are commonly known to play a role of parasites or commensals. However, interesting examples of their symbiotic relationships with higher organisms have also been described. Proteus spp. bacteria present in soil or water habitats are often regarded as indicators of fecal pollution, posing a threat of poisoning when the contaminated water or seafood is consumed. The health risk may also be connected with drug-resistant strains sourcing from intestines. Positive aspects of the bacteria presence in water and soil are connected with exceptional features displayed by autochthonic Proteus spp. strains detected in these environments. These rods acquire various metabolic abilities allowing their adaptation to different environmental conditions, such as high concentrations of heavy metals or toxic substances, which may be exploited as sources of energy and nutrition by the bacteria. The Proteus spp. abilities to tolerate or utilize polluting compounds as well as promote plant growth provide a possibility of employing these microorganisms in bioremediation and environmental protection.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237, Łódź, Poland.
| |
Collapse
|
35
|
Kušar D, Šrimpf K, Isaković P, Kalšek L, Hosseini J, Zdovc I, Kotnik T, Vengušt M, Tavčar-Kalcher G. Determination of N-acylhomoserine lactones of Pseudomonas aeruginosa in clinical samples from dogs with otitis externa. BMC Vet Res 2016; 12:233. [PMID: 27756390 PMCID: PMC5070178 DOI: 10.1186/s12917-016-0843-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background Bacterial intercellular communication, called quorum sensing, takes place via the production and collective response to signal molecules. In Gram-negative bacteria, like Pseudomonas aeruginosa, these signaling molecules are N-acylhomoserine lactones (AHLs). P. aeruginosa is a common cause of inflammation of the ear canal (otitis externa) in dogs. It employs quorum sensing to coordinate the expression of host tissue-damaging factors, which are largely responsible for its virulence. The treatment of P. aeruginosa-associated otitis is challenging due to a high intrinsic resistance of P. aeruginosa to several antibiotics. Attenuation of quorum sensing signals to inhibit bacterial virulence is a novel strategy for the treatment of resistant bacterial pathogens, including P. aeruginosa. Therefore, it is important to recognize and define quorum sensing signal molecules in clinical samples. To date, there are no reports on determination of AHLs in the veterinary clinical samples. The purpose of this study was to validate an analytical procedure for determination of the concentration of AHLs in the ear rinses from dogs with P. aeruginosa-associated otitis externa. Samples were obtained with rinsing the ear canals with physiological saline solution. For validation, samples from healthy dogs were spiked with none or different known amounts of the selected AHLs. With the validated procedure, AHLs were analyzed in the samples taken in weekly intervals from two dogs, receiving a standard treatment for P. aeruginosa-associated otitis externa. Results Validation proved that the procedure enables quantification of AHLs in non-clinical and clinical samples. In addition, a time dependent reduction of AHL concentration was detected for the treated dogs. Conclusions Our results indicate that liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is superior in detecting AHLs compared to other chromatographic techniques. This is the first report on determination of AHLs in the clinical samples of veterinary importance. The analytical procedure described in this paper is capable of supporting novel antimicrobial strategies, which target quorum sensing.
Collapse
Affiliation(s)
- Darja Kušar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia.
| | - Karin Šrimpf
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | - Petra Isaković
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | - Lina Kalšek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | - Javid Hosseini
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | - Tina Kotnik
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | - Modest Vengušt
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1115, Ljubljana, Slovenia
| | | |
Collapse
|
36
|
Morozova V, Kozlova Y, Shedko E, Kurilshikov A, Babkin I, Tupikin A, Yunusova A, Chernonosov A, Baykov I, Кondratov I, Kabilov M, Ryabchikova E, Vlassov V, Tikunova N. Lytic bacteriophage PM16 specific for Proteus mirabilis: a novel member of the genus Phikmvvirus. Arch Virol 2016; 161:2457-72. [PMID: 27350061 DOI: 10.1007/s00705-016-2944-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
Lytic Proteus phage PM16, isolated from human faeces, is a novel virus that is specific for Proteus mirabilis cells. Bacteriophage PM16 is characterized by high stability, a short latency period, large burst size and the occurrence of low phage resistance. Phage PM16 was classified as a member of the genus Phikmvvirus on the basis of genome organization, gene synteny, and protein sequences similarities. Within the genus Phikmvvirus, phage PM16 is grouped with Vibrio phage VP93, Pantoea phage LIMElight, Acinetobacter phage Petty, Enterobacter phage phiKDA1, and KP34-like bacteriophages. An investigation of the phage-cell interaction demonstrated that phage PM16 attached to the cell surface, not to the bacterial flagella. The study of P. mirabilis mutant cells obtained during the phage-resistant bacterial cell assay that were resistant to phage PM16 re-infection revealed a non-swarming phenotype, changes in membrane characteristics, and the absence of flagella. Presumably, the resistance of non-swarming P. mirabilis cells to phage PM16 re-infection is determined by changes in membrane macromolecular composition and is associated with the absence of flagella and a non-swarming phenotype.
Collapse
Affiliation(s)
- V Morozova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia.
| | - Yu Kozlova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - E Shedko
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Kurilshikov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - I Babkin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Yunusova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - I Baykov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - I Кondratov
- Limnological Institute of SB RAS, Ulan-Batorskaya Str., 3, Irkutsk, Russia
| | - M Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - E Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - N Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| |
Collapse
|
37
|
Wael AHH. Diclofenac inhibits virulence of Proteus mirabilis isolated from diabetic foot ulcer. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2016.8043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
O'May C, Amzallag O, Bechir K, Tufenkji N. Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320. Can J Microbiol 2016; 62:464-74. [PMID: 27090825 DOI: 10.1139/cjm-2015-0715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteus mirabilis is a major cause of catheter-associated urinary tract infection (CAUTI), emphasizing that novel strategies for targeting this bacterium are needed. Potential targets are P. mirabilis surface-associated swarming motility and the propensity of these bacteria to form biofilms that may lead to catheter blockage. We previously showed that the addition of cranberry powder (CP) to lysogeny broth (LB) medium resulted in impaired P. mirabilis swarming motility over short time periods (up to 16 h). Herein, we significantly expanded on those findings by exploring (i) the effects of cranberry derivatives on biofilm formation of P. mirabilis, (ii) whether swarming inhibition occurred transiently or over longer periods more relevant to real infections (∼3 days), (iii) whether swarming was also blocked by commercially available cranberry juices, (iv) whether CP or cranberry juices exhibited effects under natural urine conditions, and (v) the effects of cranberry on medium pH, which is an indirect indicator of urease activity. At short time scales (24 h), CP and commercially available pure cranberry juice impaired swarming motility and repelled actively swarming bacteria in LB medium. Over longer time periods more representative of infections (∼3 days), the capacity of the cranberry material to impair swarming diminished and bacteria would start to migrate across the surface, albeit by exhibiting a different motility phenotype to the regular "bull's-eye" swarming phenotype of P. mirabilis. This bacterium did not swarm on urine agar or LB agar supplemented with urea, suggesting that any potential application of anti-swarming compounds may be better suited to settings external to the urine environment. Anti-swarming effects were confounded by the ability of cranberry products to enhance biofilm formation in both LB and urine conditions. These findings provide key insights into the long-term strategy of targeting P. mirabilis CAUTIs.
Collapse
Affiliation(s)
- Che O'May
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Olivier Amzallag
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Karim Bechir
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| |
Collapse
|
39
|
Harshey RM, Partridge JD. Shelter in a Swarm. J Mol Biol 2015; 427:3683-94. [PMID: 26277623 DOI: 10.1016/j.jmb.2015.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/04/2023]
Abstract
Flagella propel bacteria during both swimming and swarming, dispersing them widely. However, while swimming bacteria use chemotaxis to find nutrients and avoid toxic environments, swarming bacteria appear to suppress chemotaxis and to use the dynamics of their collective motion to continuously expand and acquire new territory, barrel through lethal chemicals in their path, carry along bacterial and fungal cargo that assists in exploration of new niches, and engage in group warfare for niche dominance. Here, we focus on two aspects of swarming, which, if understood, hold the promise of revealing new insights into microbial signaling and behavior, with ramifications beyond bacterial swarming. These are as follows: how bacteria sense they are on a surface and turn on programs that promote movement and how they override scarcity and adversity as dense packs.
Collapse
Affiliation(s)
- Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jonathan D Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Anyan ME, Amiri A, Harvey CW, Tierra G, Morales-Soto N, Driscoll CM, Alber MS, Shrout JD. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2014; 111:18013-8. [PMID: 25468980 PMCID: PMC4273417 DOI: 10.1073/pnas.1414661111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.
Collapse
Affiliation(s)
- Morgen E Anyan
- Departments of Civil and Environmental Engineering and Earth Sciences
| | | | | | - Giordano Tierra
- Applied and Computational Mathematics and Statistics, and Mathematical Institute, Charles University, 18675 Prague, Czech Republic; and
| | - Nydia Morales-Soto
- Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Callan M Driscoll
- Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Mark S Alber
- Physics, Applied and Computational Mathematics and Statistics, and Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Joshua D Shrout
- Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; Biological Sciences, and
| |
Collapse
|
41
|
Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming. J Bacteriol 2014; 197:159-73. [PMID: 25331431 DOI: 10.1128/jb.02235-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor.
Collapse
|
42
|
Armbruster CE, Hodges SA, Smith SN, Alteri CJ, Mobley HLT. Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force. Microbiologyopen 2014; 3:630-41. [PMID: 25100003 PMCID: PMC4234256 DOI: 10.1002/mbo3.194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
Swarming contributes to Proteus mirabilis pathogenicity by facilitating access to the catheterized urinary tract. We previously demonstrated that 0.1–20 mmol/L arginine promotes swarming on normally nonpermissive media and that putrescine biosynthesis is required for arginine-induced swarming. We also previously determined that arginine-induced swarming is pH dependent, indicating that the external proton concentration is critical for arginine-dependent effects on swarming. In this study, we utilized survival at pH 5 and motility as surrogates for measuring changes in the proton gradient (ΔpH) and proton motive force (μH+) in response to arginine. We determined that arginine primarily contributes to ΔpH (and therefore μH+) through the action of arginine decarboxylase (speA), independent of the role of this enzyme in putrescine biosynthesis. In addition to being required for motility, speA also contributed to fitness during infection. In conclusion, consumption of intracellular protons via arginine decarboxylase is one mechanism used by P. mirabilis to conserve ΔpH and μH+ for motility.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48104
| | | | | | | | | |
Collapse
|
43
|
Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. J Bacteriol 2013; 195:5141-50. [PMID: 24013633 DOI: 10.1128/jb.00837-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FeaR is an AraC family regulator that activates transcription of the tynA and feaB genes in Escherichia coli. TynA is a periplasmic topaquinone- and copper-containing amine oxidase, and FeaB is a cytosolic NAD-linked aldehyde dehydrogenase. Phenylethylamine, tyramine, and dopamine are oxidized by TynA to the corresponding aldehydes, releasing one equivalent of H2O2 and NH3. The aldehydes can be oxidized to carboxylic acids by FeaB, and (in the case of phenylacetate) can be further degraded to enter central metabolism. Thus, phenylethylamine can be used as a carbon and nitrogen source, while tyramine and dopamine can be used only as sources of nitrogen. Using genetic, biochemical and computational approaches, we show that the FeaR binding site is a TGNCA-N8-AAA motif that occurs in 2 copies in the tynA and feaB promoters. We show that the coactivator for FeaR is the product rather than the substrate of the TynA reaction. The feaR gene is upregulated by carbon or nitrogen limitation, which we propose reflects regulation of feaR by the cyclic AMP receptor protein (CRP) and the nitrogen assimilation control protein (NAC), respectively. In carbon-limited cells grown in the presence of a TynA substrate, tynA and feaB are induced, whereas in nitrogen-limited cells, only the tynA promoter is induced. We propose that tynA and feaB expression is finely tuned to provide the FeaB activity that is required for carbon source utilization and the TynA activity required for nitrogen and carbon source utilization.
Collapse
|
44
|
McCall J, Hidalgo G, Asadishad B, Tufenkji N. Cranberry impairs selected behaviors essential for virulence in Proteus mirabilis HI4320. Can J Microbiol 2013; 59:430-6. [PMID: 23750959 DOI: 10.1139/cjm-2012-0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteus mirabilis is an etiological agent of complicated urinary tract infections. North American cranberries (Vaccinium macrocarpon) have long been considered to have protective properties against urinary tract infections. This work reports the effects of cranberry powder (CP) on the motility of P. mirabilis HI4320 and its expression of flaA, flhD, and ureD. Our results show that swimming and swarming motilities and swarmer-cell differentiation were inhibited by CP. Additionally, transcription of the flagellin gene flaA and of flhD, the first gene of the flagellar master operon flhDC, decreased during exposure of P. mirabilis to various concentrations of CP. Moreover, using ureD-gfp, a fusion of the urease accessory gene ureD with gfp, we show that CP inhibits urease expression. Because we demonstrate that CP does not inhibit the growth of P. mirabilis, the observed effects are not attributable to toxicity. Taken together, our results demonstrate that CP hinders motility of P. mirabilis and reduces the expression of important virulence factors.
Collapse
Affiliation(s)
- Jennifer McCall
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 2B2, Canada
| | | | | | | |
Collapse
|
45
|
Abstract
The disA gene encodes a putative amino acid decarboxylase that inhibits swarming in Proteus mirabilis. 5' rapid amplification of cDNA ends (RACE) and deletion analysis were used to identify the disA promoter. The use of a disA-lacZ fusion indicated that FlhD(4)C(2), the class I flagellar master regulator, did not have a role in disA regulation. The putative product of DisA, phenethylamine, was able to inhibit disA expression, indicating that a negative regulatory feedback loop was present. Transposon mutagenesis was used to identify regulators of disA and revealed that umoB (igaA) was a negative regulator of disA. Our data demonstrate that the regulation of disA by UmoB is mediated through the Rcs phosphorelay.
Collapse
|
46
|
Kurihara S, Sakai Y, Suzuki H, Muth A, Phanstiel O, Rather PN. Putrescine importer PlaP contributes to swarming motility and urothelial cell invasion in Proteus mirabilis. J Biol Chem 2013; 288:15668-76. [PMID: 23572531 DOI: 10.1074/jbc.m113.454090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.
Collapse
Affiliation(s)
- Shin Kurihara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tiensuu T, Andersson C, Rydén P, Johansson J. Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes. Mol Microbiol 2013; 87:909-24. [PMID: 23331346 PMCID: PMC3610012 DOI: 10.1111/mmi.12140] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 02/03/2023]
Abstract
Recently, several light receptors have been identified in non-phototrophic bacteria, but their physiological roles still remain rather elusive. Here we show that colonies of the saprophytic bacterium Listeria monocytogenes undergo synchronized multicellular behaviour on agar plates, in response to oscillating light/dark conditions, giving rise to alternating ring formation (opaque and translucent rings). On agar plates, bacteria from opaque rings survive increased levels of reactive oxygen species (ROS), as well as repeated cycles of light and dark, better than bacteria from translucent rings. The ring formation is strictly dependent on a blue-light receptor, Lmo0799, acting through the stress-sigma factor, σB. A transposon screening identified 48 mutants unable to form rings at alternating light conditions, with several of them showing a decreased σB activity/level. However, some of the tested mutants displayed a varied σB activity depending on which of the two stress conditions tested (light or H2O2 exposure). Intriguingly, the transcriptional regulator PrfA and the virulence factor ActA were shown to be required for ring formation by a mechanism involving activation of σB. All in all, this suggests a distinct pathway for Lmo0799 that converge into a common signalling pathway for σB activation. Our results show that night and day cycles co-ordinate a reversible differentiation of a L. monocytogenes colony at room temperature, by a process synchronized by a blue-light receptor and σB.
Collapse
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | | | | | | |
Collapse
|
48
|
Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 2013; 195:1305-19. [PMID: 23316040 DOI: 10.1128/jb.02136-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. L-Arginine, L-glutamine, DL-histidine, malate, and DL-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.
Collapse
|
49
|
Proteus sp. – an opportunistic bacterial pathogen – classification, swarming growth, clinical significance and virulence factors. ACTA ACUST UNITED AC 2012. [DOI: 10.2478/fobio-2013-0001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genus Proteus belongs to the Enterobacteriaceae family, where it is placed in the tribe Proteeae, together with the genera Morganella and Providencia. Currently, the genus Proteus consists of five species: P. mirabilis, P. vulgaris, P. penneri, P. hauseri and P. myxofaciens, as well as three unnamed Proteus genomospecies. The most defining characteristic of Proteus bacteria is a swarming phenomenon, a multicellular differentiation process of short rods to elongated swarmer cells. It allows population of bacteria to migrate on solid surface. Proteus bacteria inhabit the environment and are also present in the intestines of humans and animals. These microorganisms under favorable conditions cause a number of infections including urinary tract infections (UTIs), wound infections, meningitis in neonates or infants and rheumatoid arthritis. Therefore, Proteus is known as a bacterial opportunistic pathogen. It causes complicated UTIs with a higher frequency, compared to other uropathogens. Proteus infections are accompanied by a formation of urinary stones, containing struvite and carbonate apatite. The virulence of Proteus rods has been related to several factors including fimbriae, flagella, enzymes (urease - hydrolyzing urea to CO2 and NH3, proteases degrading antibodies, tissue matrix proteins and proteins of the complement system), iron acqusition systems and toxins: hemolysins, Proteus toxin agglutinin (Pta), as well as an endotoxin - lipopolysaccharide (LPS). Proteus rods form biofilm, particularly on the surface of urinary catheters, which can lead to serious consequences for patients. In this review we present factors involved in the regulation of swarming phenomenon, discuss the role of particular pathogenic features of Proteus spp., and characterize biofilm formation by these bacteria.
Collapse
|
50
|
Activity of Proteus mirabilis FliL is viscosity dependent and requires extragenic DNA. J Bacteriol 2012; 195:823-32. [PMID: 23222728 DOI: 10.1128/jb.02024-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a urinary tract pathogen and well known for its ability to move over agar surfaces by flagellum-dependent swarming motility. When P. mirabilis encounters a highly viscous environment, e.g., an agar surface, it differentiates from short rods with few flagella to elongated, highly flagellated cells that lack septa and contain multiple nucleoids. The bacteria detect a surface by monitoring the rotation of their flagellar motors. This process involves an enigmatic flagellar protein called FliL, the first gene in an operon (fliLMNOPQR) that encodes proteins of the flagellar rotor switch complex and flagellar export apparatus. We used a fliL knockout mutant to gain further insight into the function of FliL. Loss of FliL results in cells that cannot swarm (Swr(-)) but do swim (Swm(+)) and produces cells that look like wild-type swarmer cells, termed "pseudoswarmer cells," that are elongated, contain multiple nucleoids, and lack septa. Unlike swarmer cells, pseudoswarmer cells are not hyperflagellated due to reduced expression of flaA (the gene encoding flagellin), despite an increased transcription of both flhD and fliA, two positive regulators of flagellar gene expression. We found that defects in fliL prevent viscosity-dependent sensing of a surface and viscosity-dependent induction of flaA transcription. Studies with fliL cells unexpectedly revealed that the fliL promoter, fliL coding region, and a portion of fliM DNA are needed to complement the Swr(-) phenotype. The data support a dual role for FliL as a critical link in sensing a surface and in the maintenance of flagellar rod integrity.
Collapse
|