1
|
Ho K, Harshey RM. Membrane-associated σ factors disrupt rRNA operon clustering in Escherichia coli. PLoS Biol 2025; 23:e3003113. [PMID: 40245090 PMCID: PMC12037070 DOI: 10.1371/journal.pbio.3003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/28/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Chromosomal organization in Escherichia coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or "clustering" of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies-fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Momin H, Appukuttan D, Venkatesh KV. The catabolic nature of fermentative substrates influences proteomic rewiring in Escherichia coli under anoxic growth. Microb Cell Fact 2025; 24:71. [PMID: 40133894 PMCID: PMC11938722 DOI: 10.1186/s12934-025-02658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND During anaerobic batch fermentation of substrates by Escherichia coli, there is a decline in cell proliferation rates and a huge demand is placed on cellular proteome to cater to its catabolic and anabolic needs under anoxic growth. Considering cell growth rates as a physiological parameter, previous studies have established a direct relationship between E. coli growth rate and cellular ribosomal content for fast-proliferating cells. In this study, we integrated experimental findings with a systemic coarse-grained proteome allocation model, to characterize the physiological outcomes at slow growth rate during anaerobic fermentative catabolism of different glycolytic and non-glycolytic substrates. RESULTS The anaerobic catabolism of substrates favored high ribosomal abundances at lower growth rates. Interestingly, a modification of the previously discussed "growth law", the ratio of active to inactive ribosomal proteome was found to be linearly related to the growth rate for cells proliferating at slow to moderate regime (growth rate < 0.8 h- 1). Also, under nutrient- and oxygen-limiting growth conditions, the proteome proportion allocated for ribosomal activity was reduced, and the resources were channelized towards metabolic activities to overcome the limitations imposed during uptake and metabolizing substrate. The energy-intensive uptake mechanism or lower substrate affinity, expended more catabolic proteome, which reduced its availability to other cellular functions. CONCLUSIONS Thus, the nature of catabolic substrates imposed either uptake limitation or metabolic limitation coupled with ribosomal limitation (arising due to anoxic and nutritional stress), which resulted in higher proteome expenditure leading to sub-optimal growth phenotype. This study can form the basis for analyzing E. coli's ability to optimize metabolic efficiency under different environmental conditions- including stress responses. It can be further extended to optimizing the industrial anaerobic conversions for improving productivity and yield.
Collapse
Affiliation(s)
- Huda Momin
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deepti Appukuttan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
3
|
Ho K, Harshey RM. Membrane-associated σ factors disrupt rRNA operon clustering in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.20.614170. [PMID: 39345417 PMCID: PMC11429968 DOI: 10.1101/2024.09.20.614170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Chromosomal organization in E. coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or 'clustering' of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies - fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
4
|
Zhang H, Shao C, Wang J, Chu Y, Xiao J, Kang Y, Zhang Z. Combined Study of Gene Expression and Chromosome Three-Dimensional Structure in Escherichia coli During Growth Process. Curr Microbiol 2024; 81:122. [PMID: 38530471 DOI: 10.1007/s00284-024-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.
Collapse
Affiliation(s)
- Hao Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhewen Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| |
Collapse
|
5
|
Woo H, Kim Y, Kim D, Yoon SH. Machine learning identifies key metabolic reactions in bacterial growth on different carbon sources. Mol Syst Biol 2024; 20:170-186. [PMID: 38291231 PMCID: PMC10912204 DOI: 10.1038/s44320-024-00017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Carbon source-dependent control of bacterial growth is fundamental to bacterial physiology and survival. However, pinpointing the metabolic steps important for cell growth is challenging due to the complexity of cellular networks. Here, the elastic net model and multilayer perception model that integrated genome-wide gene-deletion data and simulated flux distributions were constructed to identify metabolic reactions beneficial or detrimental to Escherichia coli grown on 30 different carbon sources. Both models outperformed traditional in silico methods by identifying not just essential reactions but also nonessential ones that promote growth. They successfully predicted metabolic reactions beneficial to cell growth, with high convergence between the models. The models revealed that biosynthetic pathways generally promote growth across various carbon sources, whereas the impact of energy-generating pathways varies with the carbon source. Intriguing predictions were experimentally validated for findings beyond experimental training data and the impact of various carbon sources on the glyoxylate shunt, pyruvate dehydrogenase reaction, and redundant purine biosynthesis reactions. These highlight the practical significance and predictive power of the models for understanding and engineering microbial metabolism.
Collapse
Affiliation(s)
- Hyunjae Woo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
He Y, Jin H, Ju F. Toxicological effects and underlying mechanisms of chlorination-derived metformin byproducts in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167281. [PMID: 37758144 DOI: 10.1016/j.scitotenv.2023.167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Chlorination-derived byproducts of the emerging contaminant metformin, such as (3E)-3-(chloroimino)-N,N-dimethyl-3H-1,2,4-triazol-5-amine (3,3-CDTA) and N-cyano-N,N-dimethylcarbaminmidic chloride (NCDC), occur in global waters and are toxic to organisms, from bacteria to mice. However, the mechanisms underlying their toxicity remain unknown. Here, we explored the toxicological effects and potential molecular mechanisms of 3,3-CDTA and NCDC at milligram concentrations, using Escherichia coli as a model organism. Compared with metformin (>300 mg/L), 3,3-CDTA and NCDC exerted stronger toxicity to E. coli, with a 4-h half maximal inhibitory concentration of 2.97 mg/L and 75.7 mg/L, respectively. Both byproducts disrupted E. coli cellular structures and components, decreased membrane potential and adenosine triphosphate (ATP) biosynthesis, and led to excessive reactive oxidative species (ROS), as well as the ROS-scavenging enzymes superoxide dismutase and catalase. Proteomic analysis and molecular docking supported these biomarker responses in the byproduct-treated E. coli, and indicated potential damage to DNA/RNA processes, while also provided novel insights into the toxicological and detoxified-byproduct effects at the proteome level. The toxicity-related events of NCDC and 3,3-CDTA included membrane disruption, oxidative stress, and abnormal protein expression. This study is the first to examine the toxicological effects of chlorination-derived metformin byproducts in E. coli and the associated pathways involved; thereby broadening our understanding regarding the toxicity and transformation risks of metformin throughout its entire life process.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Hui Jin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Research Centre for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
7
|
Zhang J, Zheng M, Tang Z, Zhong S, Bu T, Li Q. The Regulatory Functions of the Multiple Alternative Sigma Factors RpoE, RpoHI, and RpoHII Depend on the Growth Phase in Rhodobacter sphaeroides. Microorganisms 2023; 11:2678. [PMID: 38004690 PMCID: PMC10673084 DOI: 10.3390/microorganisms11112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial growth, under laboratory conditions or in a natural environment, goes through different growth phases. Some gene expressions are regulated with respect to the growth phase, which allows bacteria to adapt to changing conditions. Among them, many gene transcriptions are controlled by RpoHI or RpoHII in Rhodobacter sphaeroides. In a previous study, it was proven that the alternative sigma factors, RpoE, RpoHI, and RpoHII, are the major regulators of oxidative stress. Moreover, the growth of bacteria reached a stationary phase, and following the outgrowth, rpoE, rpoHI, and rpoHII mRNAs increased with respect to the growth phase. In this study, we demonstrated the regulatory function of alternative sigma factors in the rsp_0557 gene. The gene rsp_0557 is expressed with respect to the growth phase and belongs to the RpoHI/RpoHII regulons. Reporter assays showed that the antisigma factor ChrR turns on or over the RpoE activity to regulate rsp_0557 expression across the growth phase. In the exponential phase, RpoHII and sRNA Pos19 regulate the expression of rsp_0557 to an appropriate level under RpoE control. In the stationary phase, RpoHI and Pos19 stabilize the transcription of rsp_0557 at a high level. During outgrowth, RpoHI negatively regulates the transcription of rsp_0557. Taken together, our data indicate that these regulators are recruited by cells to adapt to or survive under different conditions throughout the growth phase. However, they still did not display all of the regulators involved in growth phase-dependent regulation. More research is still needed to learn more about the interaction between the regulators and the process of adapting to changed growth conditions and environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (J.Z.); (M.Z.); (Z.T.); (S.Z.); (T.B.)
| |
Collapse
|
8
|
Choudhury A, Gachet B, Dixit Z, Faure R, Gill RT, Tenaillon O. Deep mutational scanning reveals the molecular determinants of RNA polymerase-mediated adaptation and tradeoffs. Nat Commun 2023; 14:6319. [PMID: 37813857 PMCID: PMC10562459 DOI: 10.1038/s41467-023-41882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
RNA polymerase (RNAP) is emblematic of complex biological systems that control multiple traits involving trade-offs such as growth versus maintenance. Laboratory evolution has revealed that mutations in RNAP subunits, including RpoB, are frequently selected. However, we lack a systems view of how mutations alter the RNAP molecular functions to promote adaptation. We, therefore, measured the fitness of thousands of mutations within a region of rpoB under multiple conditions and genetic backgrounds, to find that adaptive mutations cluster in two modules. Mutations in one module favor growth over maintenance through a partial loss of an interaction associated with faster elongation. Mutations in the other favor maintenance over growth through a destabilized RNAP-DNA complex. The two molecular handles capture the versatile RNAP-mediated adaptations. Combining both interaction losses simultaneously improved maintenance and growth, challenging the idea that growth-maintenance tradeoff resorts only from limited resources, and revealing how compensatory evolution operates within RNAP.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Laboratoire Biophysique et Évolution (LBE), UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France.
| | - Benoit Gachet
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
| | - Zoya Dixit
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France
| | - Roland Faure
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Rennes, INRIA RBA, CNRS UMR 6074, Rennes, France
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado-Boulder, Boulder, CO, 80309-0027, USA
- Novo Nordisk Foundation, Denmark Technical University, 2800 Kgs, Lyngby, Denmark
| | - Olivier Tenaillon
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France.
| |
Collapse
|
9
|
Fan J, El Sayyed H, Pambos OJ, Stracy M, Kyropoulos J, Kapanidis AN. RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons. Nucleic Acids Res 2023; 51:8085-8101. [PMID: 37351576 PMCID: PMC10450203 DOI: 10.1093/nar/gkad511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.
Collapse
Affiliation(s)
- Jun Fan
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hafez El Sayyed
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Oliver J Pambos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jingwen Kyropoulos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| |
Collapse
|
10
|
Coppens L, Tschirhart T, Leary DH, Colston SM, Compton JR, Hervey WJ, Dana KL, Vora GJ, Bordel S, Ledesma-Amaro R. Vibrio natriegens genome-scale modeling reveals insights into halophilic adaptations and resource allocation. Mol Syst Biol 2023; 19:e10523. [PMID: 36847213 PMCID: PMC10090949 DOI: 10.15252/msb.202110523] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Vibrio natriegens is a Gram-negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism-specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome-scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry-based proteomics data confirmed the translation of at least 76% of the enzyme-encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP-generating system and the discovery of a role for a sodium-dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.
Collapse
Affiliation(s)
- Lucas Coppens
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Tanya Tschirhart
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Dagmar H Leary
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Sophie M Colston
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Jaimee R Compton
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - William Judson Hervey
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | | | - Gary J Vora
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
11
|
Lee JB, Kim SK, Han D, Yoon JW. Mutating both relA and spoT of enteropathogenic Escherichia coli E2348/69 attenuates its virulence and induces interleukin 6 in vivo. Front Microbiol 2023; 14:1121715. [PMID: 36937293 PMCID: PMC10017862 DOI: 10.3389/fmicb.2023.1121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Here, we report for the first time that disrupting both relA and spoT genes in enteropathogenic Escherichia coli E2348/69 can attenuate its virulence and significantly induce interleukin 6 (IL-6) in vivo. Our experimental analyses demonstrated that an E2348/69 ΔrelAΔspoT double mutant strain derepressed the expression of type IV bundle forming pilus (BFP) and repressed the expression of glutamate decarboxylase (GAD) and locus of enterocyte effacement (LEE). Whole genome-scale transcriptomic analysis revealed that 1,564 EPEC genes were differentially expressed in the ΔrelAΔspoT double mutant strain (cut-off > two-fold). Such depletion of relA and spoT attenuated the virulence of E2348/69 in a Caenorhabditis elegans infection model. Surprisingly, IL-6 was highly induced in porcine macrophages infected with the ΔrelAΔspoT double mutant strain compared to those with its wildtype strain. Coinciding with these in vitro results, in vivo murine peritoneal challenge assays showed high increase of IL-6 and improved bacterial clearance in response to infection by the ΔrelAΔspoT double mutant strain. Taken together, our data suggest that relA and spoT play an essential role in regulating biological processes during EPEC pathogenesis and that their depletion can affect host immune responses by inducing IL-6.
Collapse
|
12
|
da Silva MR, Alves de Almeida F, Coelho AÍM, da Silva FL, Vanetti MCD. Enhancing cell resistance for production of mixed microbiological reference materials with Salmonella and coliforms by freeze-drying. Braz J Microbiol 2022; 53:2107-2119. [PMID: 35962856 PMCID: PMC9679061 DOI: 10.1007/s42770-022-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
The reference material (RM) is a technical requirement for the quality assurance of analytical results and proficiency tests or interlaboratory comparisons. Microbiological RMs are most available in the dehydrated form, mainly by freeze-drying, and maintaining bacterial survival after preparation is a challenge. Thus, obtaining the most resistant cells is essential. Considering that bacteria present cross-response to dehydration after being submitted to an array of stress conditions, this study aimed to evaluate the influence of growth conditions on enterobacteria for the production of mixed microbiological RMs by freeze-drying in skim milk powder. Salmonella enterica serovar Enteritidis, Cronobacter sakazakii, Escherichia coli, and Citrobacter freundii were grown in a minimal medium with 0.5 M NaCl and 0 to 5.0 mM of manganese sulfate (MnSO4) until stationary phase. Salmonella Enteritidis presented an increased resistance to dehydration in the presence of Mn, while C. sakazakii was the most resistant to freeze-drying and further storage for 90 days. Mixed microbiological RMs were produced by freeze-drying and containing Salmonella Enteritidis and coliforms in skim milk powder with 100 mM of trehalose and the Salmonella survival rate was 91.2 to 93.6%. The mixed RM was stable after 30 days at -20 °C, and Salmonella and coliforms were detected by different methods being, the Rambach Agar the best for the bacterial differentiation. The results showed that the culture conditions applied in this study resulted in bacterial cells being more resistant to dehydration, freeze-drying, and stabilization for the production of mixed microbiological RMs more stable and homogeneous.
Collapse
Affiliation(s)
- Maria Roméria da Silva
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, MG, 35032-620, Brazil
| | | | - Fernanda Lopes da Silva
- Department of Food Technology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | |
Collapse
|
13
|
Lu J, Wang Y, Xu M, Fei Q, Gu Y, Luo Y, Wu H. Efficient biosynthesis of 3-hydroxypropionic acid from ethanol in metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 363:127907. [PMID: 36087655 DOI: 10.1016/j.biortech.2022.127907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Engineering microbial cell factories to convert CO2-based feedstock into chemicals and fuels provide a feasible carbon-neutral route for the third-generation biorefineries. Ethanol became one of the major products of syngas fermentation by engineered acetogens. The key building block chemical 3-hydroxypropionic acid (3-HP) can be synthesized from ethanol by the malonyl-CoA pathway with CO2 fixation. In this study, the effect of two ethanol consumption pathways on 3-HP synthesis were studied as well as the effect of TCA cycle, gluconeogenesis pathway, and transhydrogenase. And the 3-HP synthesis pathway was also optimized. The engineered strain synthesized 1.66 g/L of 3-HP with a yield of 0.24 g/g. Furthermore, the titer and the yield of 3-HP increased to 13.17 g/L and 0.57 g/g in the whole-cell biocatalysis system. This study indicated that ethanol as feedstock had the potential to synthesize 3-HP, which provided an alternative route for future biorefinery.
Collapse
Affiliation(s)
- Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuying Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingcheng Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
14
|
Comparative Genomic Analysis Reveals Potential Pathogenicity and Slow-Growth Characteristics of Genus Brevundimonas and Description of Brevundimonas pishanensis sp. nov. Microbiol Spectr 2022; 10:e0246821. [PMID: 35416704 PMCID: PMC9045160 DOI: 10.1128/spectrum.02468-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Brevundimonas consists of Gram-negative bacteria widely distributed in environment and can cause human infections. However, the genomic characteristics and pathogenicity of Brevundimonas remain poorly studied. Here, the whole-genome features of 24 Brevundimonas type strains were described. Brevundimonas spp. had relatively small genomes (3.13 ± 0.29 Mb) within the family Caulobacteraceae but high G+C contents (67.01 ± 2.19 mol%). Two-dimensional hierarchical clustering divided those genomes into 5 major clades, in which clades II and V contained nine and five species, respectively. Interestingly, phylogenetic analysis showed a one-to-one match between core and accessory genomes, which suggested coevolution of species within the genus Brevundimonas. The unique genes were annotated to biological functions like catalytic activity, signaling and cellular processes, multisubstance metabolism, etc. The majority of Brevundimonas spp. harbored virulence-associated genes icl, tufA, kdsA, htpB, and acpXL, which encoded isocitrate lyase, elongation factor, 2-dehydro-3-deoxyphosphooctonate aldolase, heat shock protein, and acyl carrier protein, respectively. In addition, genomic islands (GIs) and phages/prophages were identified within the Brevundimonas genus. Importantly, a novel Brevundimonas species was identified from the feces of a patient (suffering from diarrhea) by the analyses of biochemical characteristics, phylogenetic tree of 16S rRNA gene, multilocus sequence analysis (MLSA) sequences, and genomic data. The name Brevundimonas pishanensis sp. nov. was proposed, with type strain CHPC 1.3453 (= GDMCC 1.2503T = KCTC 82824T). Brevundimonas spp. also showed obvious slow growth compared with that of Escherichia coli. Our study reveals insights into genomic characteristics and potential virulence-associated genes of Brevundimonas spp., and provides a basis for further intensive study of the pathogenicity of Brevundimonas. IMPORTANCEBrevundimonas spp., a group of bacteria from the family Caulobacteraceae, is associated with nosocomial infections, deserve widespread attention. Our study elucidated genes potentially associated with the pathogenicity of the Brevundimonas genus. We also described some new characteristics of Brevundimonas spp., such as small chromosome size, high G+C content, and slow-growth phenotypes, which made the Brevundimonas genus a good model organism for in-depth studies of growth rate traits. Apart from the comparative analysis of the genomic features of the Brevundimonas genus, we also reported a novel Brevundimonas species, Brevundimonas pishanensis, from the feces of a patient with diarrhea. Our study promotes the understanding of the pathogenicity characteristics of Brevundimonas species bacteria.
Collapse
|
15
|
Lee JB, Kim SK, Yoon JW. Pathophysiology of enteropathogenic Escherichia coli during a host infection. J Vet Sci 2022; 23:e28. [PMID: 35187883 PMCID: PMC8977535 DOI: 10.4142/jvs.21160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.
Collapse
Affiliation(s)
- Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
16
|
Holt BA, Tuttle M, Xu Y, Su M, Røise JJ, Wang X, Murthy N, Kwong GA. Dimensionless parameter predicts bacterial prodrug success. Mol Syst Biol 2022; 18:e10495. [PMID: 35005851 PMCID: PMC8744131 DOI: 10.15252/msb.202110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding mechanisms of antibiotic failure is foundational to combating the growing threat of multidrug-resistant bacteria. Prodrugs-which are converted into a pharmacologically active compound after administration-represent a growing class of therapeutics for treating bacterial infections but are understudied in the context of antibiotic failure. We hypothesize that strategies that rely on pathogen-specific pathways for prodrug conversion are susceptible to competing rates of prodrug activation and bacterial replication, which could lead to treatment escape and failure. Here, we construct a mathematical model of prodrug kinetics to predict rate-dependent conditions under which bacteria escape prodrug treatment. From this model, we derive a dimensionless parameter we call the Bacterial Advantage Heuristic (BAH) that predicts the transition between prodrug escape and successful treatment across a range of time scales (1-104 h), bacterial carrying capacities (5 × 104 -105 CFU/µl), and Michaelis constants (KM = 0.747-7.47 mM). To verify these predictions in vitro, we use two models of bacteria-prodrug competition: (i) an antimicrobial peptide hairpin that is enzymatically activated by bacterial surface proteases and (ii) a thiomaltose-conjugated trimethoprim that is internalized by bacterial maltodextrin transporters and hydrolyzed by free thiols. We observe that prodrug failure occurs at BAH values above the same critical threshold predicted by the model. Furthermore, we demonstrate two examples of how failing prodrugs can be rescued by decreasing the BAH below the critical threshold via (i) substrate design and (ii) nutrient control. We envision such dimensionless parameters serving as supportive pharmacokinetic quantities that guide the design and administration of prodrug therapeutics.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - McKenzie Tuttle
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - Yilin Xu
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - Melanie Su
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - Joachim J Røise
- Department of BioengineeringInnovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Xioajian Wang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjingChina
| | - Niren Murthy
- Department of BioengineeringInnovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
- Parker H. Petit Institute of Bioengineering and BioscienceAtlantaGAUSA
- Institute for Electronics and NanotechnologyGeorgia TechAtlantaGAUSA
- Integrated Cancer Research CenterGeorgia TechAtlantaGAUSA
- Georgia ImmunoEngineering ConsortiumGeorgia Tech and Emory UniversityAtlantaGAUSA
- Emory School of MedicineAtlantaGAUSA
- Emory Winship Cancer InstituteAtlantaGAUSA
| |
Collapse
|
17
|
Cox CA, Bogacz M, El Abbar FM, Browning DD, Hsueh BY, Waters CM, Lee VT, Thompson SA. The Campylobacter jejuni Response Regulator and Cyclic-Di-GMP Binding CbrR Is a Novel Regulator of Flagellar Motility. Microorganisms 2021; 10:microorganisms10010086. [PMID: 35056537 PMCID: PMC8779298 DOI: 10.3390/microorganisms10010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
A leading cause of bacterial gastroenteritis, Campylobacter jejuni is also associated with broad sequelae, including extragastrointestinal conditions such as reactive arthritis and Guillain-Barré Syndrome (GBS). CbrR is a C. jejuni response regulator that is annotated as a diguanylate cyclase (DGC), an enzyme that catalyzes the synthesis of c-di-GMP, a universal bacterial second messenger, from GTP. In C. jejuni DRH212, we constructed an unmarked deletion mutant, cbrR-, and complemented mutant, cbrR+. Motility assays indicated a hyper-motile phenotype associated with cbrR-, whereas motility was deficient in cbrR+. The overexpression of CbrR in cbrR+ was accompanied by a reduction in expression of FlaA, the major flagellin. Biofilm assays and scanning electron microscopy demonstrated similarities between DRH212 and cbrR-; however, cbrR+ was unable to form significant biofilms. Transmission electron microscopy showed similar cell morphology between the three strains; however, cbrR+ cells lacked flagella. Differential radial capillary action of ligand assays (DRaCALA) showed that CbrR binds GTP and c-di-GMP. Liquid chromatography tandem mass spectrometry detected low levels of c-di-GMP in C. jejuni and in E. coli expressing CbrR. CbrR is therefore a negative regulator of FlaA expression and motility, a critical virulence factor in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Claudia A. Cox
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Marek Bogacz
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Faiha M. El Abbar
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA;
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Chris M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
- Correspondence:
| |
Collapse
|
18
|
Belliveau NM, Chure G, Hueschen CL, Garcia HG, Kondev J, Fisher DS, Theriot JA, Phillips R. Fundamental limits on the rate of bacterial growth and their influence on proteomic composition. Cell Syst 2021; 12:924-944.e2. [PMID: 34214468 PMCID: PMC8460600 DOI: 10.1016/j.cels.2021.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Despite abundant measurements of bacterial growth rate, cell size, and protein content, we lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we estimate the basic requirements and physical constraints on steady-state growth by considering key processes in cellular physiology across a collection of Escherichia coli proteomic data covering ≈4,000 proteins and 36 growth rates. Our analysis suggests that cells are predominantly tuned for the task of cell doubling across a continuum of growth rates; specific processes do not limit growth rate or dictate cell size. We present a model of proteomic regulation as a function of nutrient supply that reconciles observed interdependences between protein synthesis, cell size, and growth rate and propose that a theoretical inability to parallelize ribosomal synthesis places a firm limit on the achievable growth rate. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Griffin Chure
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina L Hueschen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hernan G Garcia
- Department of Molecular Cell Biology and Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Daniel S Fisher
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
Goodall DJ, Jameson KH, Hawkins M, Rudolph CJ. A Fork Trap in the Chromosomal Termination Area Is Highly Conserved across All Escherichia coli Phylogenetic Groups. Int J Mol Sci 2021; 22:ijms22157928. [PMID: 34360694 PMCID: PMC8347550 DOI: 10.3390/ijms22157928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Termination of DNA replication, the final stage of genome duplication, is surprisingly complex, and failures to bring DNA synthesis to an accurate conclusion can impact genome stability and cell viability. In Escherichia coli, termination takes place in a specialised termination area opposite the origin. A 'replication fork trap' is formed by unidirectional fork barriers via the binding of Tus protein to genomic ter sites. Such a fork trap system is found in some bacterial species, but it appears not to be a general feature of bacterial chromosomes. The biochemical properties of fork trap systems have been extensively characterised, but little is known about their precise physiological roles. In this study, we compare locations and distributions of ter terminator sites in E. coli genomes across all phylogenetic groups, including Shigella. Our analysis shows that all ter sites are highly conserved in E. coli, with slightly more variability in the Shigella genomes. Our sequence analysis of ter sites and Tus proteins shows that the fork trap is likely to be active in all strains investigated. In addition, our analysis shows that the dif chromosome dimer resolution site is consistently located between the innermost ter sites, even if rearrangements have changed the location of the innermost termination area. Our data further support the idea that the replication fork trap has an important physiological role that provides an evolutionary advantage.
Collapse
Affiliation(s)
- Daniel J. Goodall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Katie H. Jameson
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; (K.H.J.); (M.H.)
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; (K.H.J.); (M.H.)
| | - Christian J. Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence:
| |
Collapse
|
20
|
Curreli S, Tettelin H, Benedetti F, Krishnan S, Cocchi F, Reitz M, Gallo RC, Zella D. Analysis of DnaK Expression from a Strain of Mycoplasma fermentans in Infected HCT116 Human Colon Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22083885. [PMID: 33918708 PMCID: PMC8069837 DOI: 10.3390/ijms22083885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Several species of mycoplasmas, including Mycoplasma fermentans, are associated with certain human cancers. We previously isolated and characterized in our laboratory a strain of human mycoplasma M. fermentans subtype incognitus (MF-I1) able to induce lymphoma in a Severe Combined Immuno-Deficient (SCID) mouse model, and we demonstrated that its chaperone protein, DnaK, binds and reduces functions of human poly-ADP ribose polymerase-1 (PARP1) and ubiquitin carboxyl-terminal hydrolase protein-10 (USP10), which are required for efficient DNA repair and proper p53 activities, respectively. We also showed that other bacteria associated with human cancers (including Mycoplasmapneumoniae, Helicobacterpylori, Fusobacteriumnucleatum, Chlamydiathrachomatis, and Chlamydia pneumoniae) have closely related DnaK proteins, indicating a potential common mechanism of cellular transformation. Here, we quantify dnaK mRNA copy number by RT-qPCR analysis in different cellular compartments following intracellular MF-I1 infection of HCT116 human colon carcinoma cells. DnaK protein expression in infected cells was also detected and quantified by Western blot. The amount of viable intracellular mycoplasma reached a steady state after an initial phase of growth and was mostly localized in the cytoplasm of the invaded cells, while we detected a logarithmically increased number of viable extracellular bacteria. Our data indicate that, after invasion, MF-I1 is able to establish a chronic intracellular infection. Extracellular replication was more efficient while MF-I1 cultured in cell-free axenic medium showed a markedly reduced growth rate. We also identified modifications of important regulatory regions and heterogeneous lengths of dnaK mRNA transcripts isolated from intracellular and extracellular MF-I1. Both characteristics were less evident in dnaK mRNA transcripts isolated from MF-I1 grown in cell-free axenic media. Taken together, our data indicate that MF-I1, after establishing a chronic infection in eukaryotic cells, accumulates different forms of dnaK with efficient RNA turnover.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (S.C.); (D.Z.)
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selvi Krishnan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (S.K.); (F.C.); (M.R.); (R.C.G.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (S.C.); (D.Z.)
| |
Collapse
|
21
|
Manceau A, Nagy KL, Glatzel P, Bourdineaud JP. Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in Escherichia coli and Bacillus subtilis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3612-3623. [PMID: 33629845 DOI: 10.1021/acs.est.0c05202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, CS 40700, 38058 Grenoble, France
| | - Kathryn L Nagy
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, MC-186, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Jean-Paul Bourdineaud
- Institut Européen de Chimie et Biologie, Université de Bordeaux, CNRS, UMR 5234, 2 rue Escarpit, 33607 Pessac, France
| |
Collapse
|
22
|
Westermann AJ, Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions. Nat Rev Genet 2021; 22:361-378. [PMID: 33597744 DOI: 10.1038/s41576-021-00326-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
The human body is constantly exposed to microorganisms, which entails manifold interactions between human cells and diverse commensal or pathogenic bacteria. The cellular states of the interacting cells are decisive for the outcome of these encounters such as whether bacterial virulence programmes and host defence or tolerance mechanisms are induced. This Review summarizes how next-generation RNA sequencing (RNA-seq) has become a primary technology to study host-microbe interactions with high resolution, improving our understanding of the physiological consequences and the mechanisms at play. We illustrate how the discriminatory power and sensitivity of RNA-seq helps to dissect increasingly complex cellular interactions in time and space down to the single-cell level. We also outline how future transcriptomics may answer currently open questions in host-microbe interactions and inform treatment schemes for microbial disorders.
Collapse
Affiliation(s)
- Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Spira B, Ospino K. Diversity in E. coli (p)ppGpp Levels and Its Consequences. Front Microbiol 2020; 11:1759. [PMID: 32903406 PMCID: PMC7434938 DOI: 10.3389/fmicb.2020.01759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
(p)ppGpp is at the core of global bacterial regulation as it controls growth, the most important aspect of life. It would therefore be expected that at least across a species the intrinsic (basal) levels of (p)ppGpp would be reasonably constant. On the other hand, the historical contingency driven by the selective pressures on bacterial populations vary widely resulting in broad genetic polymorphism. Given that (p)ppGpp controls the expression of many genes including those involved in the bacterial response to environmental challenges, it is not surprising that the intrinsic levels of (p)ppGpp would also vary considerably. In fact, null mutations or less severe genetic polymorphisms in genes associated with (p)ppGpp synthesis and hydrolysis are common. Such variation can be observed in laboratory strains, in natural isolates as well as in evolution experiments. High (p)ppGpp levels result in low growth rate and high tolerance to environmental stresses. Other aspects such as virulence and antimicrobial resistance are also influenced by the intrinsic levels of (p)ppGpp. A case in point is the production of Shiga toxin by certain E. coli strains which is inversely correlated to (p)ppGpp basal level. Conversely, (p)ppGpp concentration is positively correlated to increased tolerance to different antibiotics such as β-lactams, vancomycin, and others. Here we review the variations in intrinsic (p)ppGpp levels and its consequences across the E. coli species.
Collapse
Affiliation(s)
- Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia Ospino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Fis Contributes to Resistance of Pseudomonas aeruginosa to Ciprofloxacin by Regulating Pyocin Synthesis. J Bacteriol 2020; 202:JB.00064-20. [PMID: 32205461 DOI: 10.1128/jb.00064-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
Factor for inversion stimulation (Fis) is a versatile DNA binding protein that plays an important role in coordinating bacterial global gene expression in response to growth phases and environmental stresses. Previously, we demonstrated that Fis regulates the type III secretion system (T3SS) in Pseudomonas aeruginosa In this study, we explored the role of Fis in the antibiotic resistance of P. aeruginosa and found that mutation of the fis gene increases the bacterial susceptibility to ciprofloxacin. We further demonstrated that genes related to pyocin biosynthesis are upregulated in the fis mutant. The pyocins are produced in response to genotoxic agents, including ciprofloxacin, and the release of pyocins results in lysis of the producer cell. Thus, pyocin biosynthesis genes sensitize P. aeruginosa to ciprofloxacin. We found that PrtN, the positive regulator of the pyocin biosynthesis genes, is upregulated in the fis mutant. Genetic experiments and electrophoretic mobility shift assays revealed that Fis directly binds to the promoter region of prtN and represses its expression. Therefore, our results revealed novel Fis-mediated regulation on pyocin production and bacterial resistance to ciprofloxacin in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is an important opportunistic pathogenic bacterium that causes various acute and chronic infections in human, especially in patients with compromised immunity, cystic fibrosis (CF), and/or severe burn wounds. About 60% of cystic fibrosis patients have a chronic respiratory infection caused by P. aeruginosa The bacterium is intrinsically highly resistant to antibiotics, which greatly increases difficulties in clinical treatment. Therefore, it is critical to understand the mechanisms and the regulatory pathways that are involved in antibiotic resistance. In this study, we elucidated a novel regulatory pathway that controls the bacterial resistance to fluoroquinolone antibiotics, which enhances our understanding of how P. aeruginosa responds to ciprofloxacin.
Collapse
|
25
|
Syeda AH, Dimude JU, Skovgaard O, Rudolph CJ. Too Much of a Good Thing: How Ectopic DNA Replication Affects Bacterial Replication Dynamics. Front Microbiol 2020; 11:534. [PMID: 32351461 PMCID: PMC7174701 DOI: 10.3389/fmicb.2020.00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Each cell division requires the complete and accurate duplication of the entire genome. In bacteria, the duplication process of the often-circular chromosomes is initiated at a single origin per chromosome, resulting in two replication forks that traverse the chromosome in opposite directions. DNA synthesis is completed once the two forks fuse in a region diametrically opposite the origin. In some bacteria, such as Escherichia coli, the region where forks fuse forms a specialized termination area. Polar replication fork pause sites flanking this area can pause the progression of replication forks, thereby allowing forks to enter but not to leave. Transcription of all required genes has to take place simultaneously with genome duplication. As both of these genome trafficking processes share the same template, conflicts are unavoidable. In this review, we focus on recent attempts to add additional origins into various ectopic chromosomal locations of the E. coli chromosome. As ectopic origins disturb the native replichore arrangements, the problems resulting from such perturbations can give important insights into how genome trafficking processes are coordinated and the problems that arise if this coordination is disturbed. The data from these studies highlight that head-on replication–transcription conflicts are indeed highly problematic and multiple repair pathways are required to restart replication forks arrested at obstacles. In addition, the existing data also demonstrate that the replication fork trap in E. coli imposes significant constraints to genome duplication if ectopic origins are active. We describe the current models of how replication fork fusion events can cause serious problems for genome duplication, as well as models of how such problems might be alleviated both by a number of repair pathways as well as the replication fork trap system. Considering the problems associated both with head-on replication-transcription conflicts as well as head-on replication fork fusion events might provide clues of how these genome trafficking issues have contributed to shape the distinct architecture of bacterial chromosomes.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, York, United Kingdom
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
26
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
27
|
Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep 2020; 25:236-248.e6. [PMID: 30282032 PMCID: PMC6312700 DOI: 10.1016/j.celrep.2018.08.093] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022] Open
Abstract
Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Most organisms encode multiple, distinct copies of rRNA genes, rendering the composition of the ribosome pool intrinsically heterogeneous. Here, Kurylo et al. show that nutrient limitation in E. coli upregulates the expression of ribosomes bearing conserved sequence variation in 16S rRNA that can regulate gene expression and phenotype.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jordana K Thibado
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Yoshida H, Wada A, Shimada T, Maki Y, Ishihama A. Coordinated Regulation of Rsd and RMF for Simultaneous Hibernation of Transcription Apparatus and Translation Machinery in Stationary-Phase Escherichia coli. Front Genet 2019; 10:1153. [PMID: 31867037 PMCID: PMC6904343 DOI: 10.3389/fgene.2019.01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core component of transcription apparatus) and ribosomes (the core component of translation machinery) is tightly coordinated to keep the relative level of transcription apparatus and translation machinery constant for effective and efficient utilization of resources and energy. Upon entry into the stationary phase, transcription apparatus is modulated by replacing RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient replacement of sigma, and the unused RpoD is stored silent as Rsd–RpoD complex. On the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In this review article, we overview how we found these factors and what we know about the molecular mechanisms for silencing transcription apparatus and translation machinery by these factors. In addition, we provide our recent findings of promoter-specific transcription factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for simultaneous hibernation of transcription apparatus and translation machinery.
Collapse
Affiliation(s)
- Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Wada
- Yoshida Biological Laboratory, Kyoto, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Japan.,Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Yasushi Maki
- Department of Physics, Osaka Medical College, Takatsuki, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
29
|
Sun Z, Cagliero C, Izard J, Chen Y, Zhou YN, Heinz WF, Schneider TD, Jin DJ. Density of σ70 promoter-like sites in the intergenic regions dictates the redistribution of RNA polymerase during osmotic stress in Escherichia coli. Nucleic Acids Res 2019; 47:3970-3985. [PMID: 30843055 DOI: 10.1093/nar/gkz159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase (RNAP), the transcription machinery, shows dynamic binding across the genomic DNA under different growth conditions. The genomic features that selectively redistribute the limited RNAP molecules to dictate genome-wide transcription in response to environmental cues remain largely unknown. We chose the bacterial osmotic stress response model to determine genomic features that direct genome-wide redistribution of RNAP during the stress. Genomic mapping of RNAP and transcriptome profiles corresponding to the different temporal states after salt shock were determined. We found rapid redistribution of RNAP across the genome, primarily at σ70 promoters. Three subsets of genes exhibiting differential salt sensitivities were identified. Sequence analysis using an information-theory based σ70 model indicates that the intergenic regions of salt-responsive genes are enriched with a higher density of σ70 promoter-like sites than those of salt-sensitive genes. In addition, the density of promoter-like sites has a positive linear correlation with RNAP binding at different salt concentrations. The RNAP binding contributed by the non-initiating promoter-like sites is important for gene transcription at high salt concentration. Our study demonstrates that hyperdensity of σ70 promoter-like sites in the intergenic regions of salt-responsive genes drives the RNAP redistribution for reprograming the transcriptome to counter osmotic stress.
Collapse
Affiliation(s)
- Zhe Sun
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Cedric Cagliero
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jerome Izard
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yixiong Chen
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yan Ning Zhou
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Thomas D Schneider
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ding Jun Jin
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
30
|
Sintsova A, Frick-Cheng AE, Smith S, Pirani A, Subashchandrabose S, Snitkin ES, Mobley H. Genetically diverse uropathogenic Escherichia coli adopt a common transcriptional program in patients with UTIs. eLife 2019; 8:49748. [PMID: 31633483 PMCID: PMC6802966 DOI: 10.7554/elife.49748] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTIs). A common virulence genotype of UPEC strains responsible for UTIs is yet to be defined, due to the large variation of virulence factors observed in UPEC strains. We hypothesized that studying UPEC functional responses in patients might reveal universal UPEC features that enable pathogenesis. Here we identify a transcriptional program shared by genetically diverse UPEC strains isolated from 14 patients during uncomplicated UTIs. Strikingly, this in vivo gene expression program is marked by upregulation of translational machinery, providing a mechanism for the rapid growth within the host. Our analysis indicates that switching to a more specialized catabolism and scavenging lifestyle in the host allows for the increased translational output. Our study identifies a common transcriptional program underlying UTIs and illuminates the molecular underpinnings that likely facilitate the fast growth rate of UPEC in infected patients.
Collapse
Affiliation(s)
- Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Arwen E Frick-Cheng
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Sara Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | | | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Harry Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
31
|
Kosaka T, Nakajima Y, Ishii A, Yamashita M, Yoshida S, Murata M, Kato K, Shiromaru Y, Kato S, Kanasaki Y, Yoshikawa H, Matsutani M, Thanonkeo P, Yamada M. Capacity for survival in global warming: Adaptation of mesophiles to the temperature upper limit. PLoS One 2019; 14:e0215614. [PMID: 31063502 PMCID: PMC6504187 DOI: 10.1371/journal.pone.0215614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
The Intergovernmental Panel on Climate Change recommends keeping the increase in temperature to less than a two-degree increase by the end of the century, but the direct impact of global warming on ecosystems including microbes has not been investigated. Here we performed thermal adaptation of two species and three strains of mesophilic microbes for improvement of the survival upper limit of temperature, and the improvement was evaluated by a newly developed method. To understand the limitation and variation of thermal adaptation, experiments with mutators and by multiple cultures were performed. The results of experiments including genome sequencing and analysis of the characteristics of mutants suggest that these microbes bear a genomic potential to endure a 2–3°C rise in temperature but possess a limited variation of strategies for thermal adaptation.
Collapse
Affiliation(s)
- Tomoyuki Kosaka
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi, Japan
| | | | - Ayana Ishii
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Maiko Yamashita
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Saki Yoshida
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masayuki Murata
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kunpei Kato
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Shiromaru
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Shun Kato
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yu Kanasaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Yoshikawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Minenosuke Matsutani
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Mamoru Yamada
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi, Japan
- * E-mail:
| |
Collapse
|
32
|
Heins AL, Lundin L, Nunes I, Gernaey KV, Sørensen SJ, Lantz AE. The effect of acetate on population heterogeneity in different cellular characteristics of Escherichia coli in aerobic batch cultures. Biotechnol Prog 2019; 35:e2796. [PMID: 30816011 DOI: 10.1002/btpr.2796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 01/14/2023]
Abstract
Acetate as the major by-product in industrial-scale bioprocesses with Escherichia coli is found to decrease process efficiency as well as to be toxic to cells, which has several effects like a significant induction of cellular stress responses. However, the underlying phenomena are poorly explored. Therefore, we studied time-resolved population heterogeneity of the E. coli growth reporter strain MG1655/pGS20PrrnBGFPAAV expressing destabilized green fluorescent protein during batch growth on acetate and glucose as sole carbon sources. Additionally, we applied five fluorescent stains targeting different cellular properties (viability as well as metabolic and respiratory activity). Quantitative analysis of flow cytometry data verified that bacterial populations in the bioreactor are more heterogeneous in growth as well as stronger metabolically challenged during growth on acetate as sole carbon source, compared to growth on glucose or acetate after diauxic shift. Interestingly, with acetate as sole carbon source, significant subpopulations were found with some cells that seem to be more robust than the rest of the population. In conclusion, following batch cultures population heterogeneity was evident in all measured parameters. Our approach enabled a deeper study of heterogeneity during growth on the favored substrate glucose as well as on the toxic by-product acetate. Using a combination of activity fluorescent dyes proved to be an accurate and fast alternative as well as a supplement to the use of a reporter strain. However, the choice of combination of stains should be well considered depending on which population traits to aim for.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.,Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Luisa Lundin
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.,Division of Scientific Support, Becton-Dickison biosciences, Erembodegem, Belgium
| | - Inês Nunes
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Eliasson Lantz
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Fazaeli A, Golestani A, Lakzaei M, Rasi Varaei SS, Aminian M. Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS One 2019; 14:e0212217. [PMID: 30759160 PMCID: PMC6373949 DOI: 10.1371/journal.pone.0212217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cholesterol oxidase is a bifunctional bacterial flavoenzyme which catalyzes oxidation and isomerization of cholesterol. This valuable enzyme has attracted a great deal of attention because of its wide application in the clinical laboratory, synthesis of steroid derived drugs, food industries, and its potentially insecticidal activity. Therefore, development of an efficient protocol for overproduction of cholesterol oxidase could be valuable and beneficial in this regard. The present study examined the role of various parameters (host strain, culture media, induction time, isopropyl ß-D-1-thiogalactopyranoside concentration, as well as post-induction incubation time and temperature) on over-expression of cholesterol oxidase from Chromobacterium sp. DS1. Applying the optimized protocol, the yield of recombinant cholesterol oxidase significantly increased from 92 U/L to 2115 U/L. Under the optimized conditions, the enzyme was produced on a large-scale, and overexpressed cholesterol oxidase was purified from cell lysate by column nickel affinity chromatography. Km and Vmax values of the purified enzyme for cholesterol were estimated using Lineweaver-Burk plot. Further, the optimum pH and optimum temperature for the enzyme activity were determined. This study reports a straightforward protocol for cholesterol oxidase production which can be performed in any laboratory.
Collapse
Affiliation(s)
- Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abolfazl Golestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Mostafa Lakzaei
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Samaneh Sadat Rasi Varaei
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Mahdi Aminian
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
34
|
Maharjan RP, Ferenci T. The impact of growth rate and environmental factors on mutation rates and spectra in Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:626-633. [PMID: 29797781 DOI: 10.1111/1758-2229.12661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Genetic variation in bacterial populations is remarkably sensitive to environmental influences, including simple, nutritional differences. Not only the rate but also the kind of mutational changes is biased by the nutritional state of bacteria. Here we investigate the mutational consequences of a universal variable for free-living bacteria, namely the growth rate. By controlling growth in chemostats, the rate and mix of mutations was investigated for populations of Escherichia coli subject to different specific growth rates. Both aerobic and anaerobic cultures were compared with see if growth rate is a factor in the commonest respiratory conditions for E. coli. We find mutation rates are raised markedly with decreasing growth rate. Base pair substitutions and 1-bp insertions and deletions increase with reduced growth rate, but less so in anaerobic cultures. Insertion sequence movements are particularly sensitive to growth rate, with IS2 being optimal at intermediate growth rates whereas IS1 and IS150 movements are highest at the slowest tested growth rate. A comprehensive comparison of growth rate effects, as well as six other environmental factors, provides the most complete picture yet of the range of mutational signatures in bacterial genetic variation.
Collapse
Affiliation(s)
- Ram P Maharjan
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, Posfai G, Gyorfy Z. Enhancing the Translational Capacity of E. coli by Resolving the Codon Bias. ACS Synth Biol 2018; 7:2656-2664. [PMID: 30351909 DOI: 10.1021/acssynbio.8b00332] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli is a well-established and popular host for heterologous expression of proteins. The preference in the choice of synonymous codons (codon bias), however, might differ for the host and the original source of the recombinant protein, constituting a potential bottleneck in production. Codon choice affects the efficiency of translation by a complex and poorly understood mechanism. The availability of certain tRNA species is one of the factors that may curtail the capacity of translation. Here we provide a tRNA-overexpressing strategy that allows the resolution of the codon bias, and boosts the translational capacity of the popular host BL21(DE3) when rare codons are encountered. In the BL21(DE3)-derived strain, called SixPack, copies of the genes corresponding to the six least abundant tRNA species have been assembled in a synthetic fragment and inserted into a rRNA operon. This arrangement, while not interfering with the growth properties of the new strain, allows dynamic control of the transcription of the extra tRNA genes, providing significantly elevated levels of the rare tRNAs in the exponential growth phase. Results from expression assays of a panel of recombinant proteins of diverse origin and codon composition showed that the performance of SixPack surpassed that of the parental BL21(DE3) or a related strain equipped with a rare tRNA-expressing plasmid.
Collapse
|
36
|
Fazaeli A, Golestani A, Lakzaei M, Rasi Varaei SS, Aminian M. Expression optimization of recombinant cholesterol oxidase in Escherichia coli and its purification and characterization. AMB Express 2018; 8:183. [PMID: 30421362 PMCID: PMC6232189 DOI: 10.1186/s13568-018-0711-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Cholesterol oxidase is a bacterial flavoenzyme which catalyzes oxidation and isomerization of cholesterol. This enzyme has a great commercial value because of its wide applications in cholesterol analysis of clinical samples, synthesis of steroid-derived drugs, food industries, and potentially insecticidal activity. Accordingly, development of an efficient protocol for overexpression of cholesterol oxidase can be very valuable and beneficial. In this study, expression optimization of cholesterol oxidase from Streptomyces sp. SA-COO was investigated in Escherichia coli host strains. Various parameters that may influence the yield of a recombinant enzyme were evaluated individually. The optimal host strain, culture media, induction time, Isopropyl ß-d-1-thiogalactopyranoside concentration, as well as post-induction incubation time and temperature were determined in a shaking flask mode. Applying the optimized protocol, the production of recombinant cholesterol oxidase was significantly enhanced from 3.2 to 158 U/L. Under the optimized condition, the enzyme was produced on a large-scale, and highly expressed cholesterol oxidase was purified from cell lysate by column nickel affinity chromatography. Km and Vmax values of the purified enzyme for cholesterol were estimated using Lineweaver–Burk plot. Further, the optimum pH and optimum temperature for the enzyme activity were also determined. We report a straightforward and easy protocol for cholesterol oxidase production which can be performed in any laboratory.
Collapse
|
37
|
Klauck G, Serra DO, Possling A, Hengge R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol 2018; 8:180066. [PMID: 30135237 PMCID: PMC6119863 DOI: 10.1098/rsob.180066] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial biofilms are large aggregates of cells embedded in an extracellular matrix of self-produced polymers. In macrocolony biofilms of Escherichia coli, this matrix is generated in the upper biofilm layer only and shows a surprisingly complex supracellular architecture. Stratified matrix production follows the vertical nutrient gradient and requires the stationary phase σS (RpoS) subunit of RNA polymerase and the second messenger c-di-GMP. By visualizing global gene expression patterns with a newly designed fingerprint set of Gfp reporter fusions, our study reveals the spatial order of differential sigma factor activities, stringent control of ribosomal gene expression and c-di-GMP signalling in vertically cryosectioned macrocolony biofilms. Long-range physiological stratification shows a duplication of the growth-to-stationary phase pattern that integrates nutrient and oxygen gradients. In addition, distinct short-range heterogeneity occurs within specific biofilm strata and correlates with visually different zones of the refined matrix architecture. These results introduce a new conceptual framework for the control of biofilm formation and demonstrate that the intriguing extracellular matrix architecture, which determines the emergent physiological and biomechanical properties of biofilms, results from the spatial interplay of global gene regulation and microenvironmental conditions. Overall, mature bacterial macrocolony biofilms thus resemble the highly organized tissues of multicellular organisms.
Collapse
Affiliation(s)
- Gisela Klauck
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Diego O Serra
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Alexandra Possling
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| |
Collapse
|
38
|
Origins Left, Right, and Centre: Increasing the Number of Initiation Sites in the Escherichia coli Chromosome. Genes (Basel) 2018; 9:genes9080376. [PMID: 30060465 PMCID: PMC6116050 DOI: 10.3390/genes9080376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022] Open
Abstract
The bacterium Escherichia coli contains a single circular chromosome with a defined architecture. DNA replication initiates at a single origin called oriC. Two replication forks are assembled and proceed in opposite directions until they fuse in a specialised zone opposite the origin. This termination area is flanked by polar replication fork pause sites that allow forks to enter, but not to leave. Thus, the chromosome is divided into two replichores, each replicated by a single replication fork. Recently, we analysed the replication parameters in E. coli cells, in which an ectopic origin termed oriZ was integrated in the right-hand replichore. Two major obstacles to replication were identified: (1) head-on replication⁻transcription conflicts at highly transcribed rrn operons, and (2) the replication fork trap. Here, we describe replication parameters in cells with ectopic origins, termed oriX and oriY, integrated into the left-hand replichore, and a triple origin construct with oriX integrated in the left-hand and oriZ in the right-hand replichore. Our data again highlight both replication⁻transcription conflicts and the replication fork trap as important obstacles to DNA replication, and we describe a number of spontaneous large genomic rearrangements which successfully alleviate some of the problems arising from having an additional origin in an ectopic location. However, our data reveal additional factors that impact efficient chromosome duplication, highlighting the complexity of chromosomal architecture.
Collapse
|
39
|
Mata Martin C, Sun Z, Zhou YN, Jin DJ. Extrachromosomal Nucleolus-Like Compartmentalization by a Plasmid-Borne Ribosomal RNA Operon and Its Role in Nucleoid Compaction. Front Microbiol 2018; 9:1115. [PMID: 29922250 PMCID: PMC5996182 DOI: 10.3389/fmicb.2018.01115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 02/01/2023] Open
Abstract
In the fast-growing Escherichia coli cells, RNA polymerase (RNAP) molecules are concentrated and form foci at clusters of ribosomal RNA (rRNA) operons resembling eukaryotic nucleolus. The bacterial nucleolus-like organization, spatially compartmentalized at the surface of the compact bacterial chromosome (nucleoid), serves as transcription factories for rRNA synthesis and ribosome biogenesis, which influences the organization of the nucleoid. Unlike wild type that has seven rRNA operons in the genome in a mutant that has six (Δ6rrn) rRNA operons deleted in the genome, there are no apparent transcription foci and the nucleoid becomes uncompacted, indicating that formation of RNAP foci requires multiple copies of rRNA operons clustered in space and is critical for nucleoid compaction. It has not been determined, however, whether a multicopy plasmid-borne rRNA operon (prrnB) could substitute the multiple chromosomal rRNA operons for the organization of the bacterial nucleolus-like structure in the mutants of Δ6rrn and Δ7rrn that has all seven rRNA operons deleted in the genome. We hypothesized that extrachromosomal nucleolus-like structures are similarly organized and functional in trans from prrnB in these mutants. In this report, using multicolor images of three-dimensional superresolution Structured Illumination Microscopy (3D-SIM), we determined the distributions of both RNAP and NusB that are a transcription factor involved in rRNA synthesis and ribosome biogenesis, prrnB clustering, and nucleoid structure in these two mutants in response to environmental cues. Our results found that the extrachromosomal nucleolus-like organization tends to be spatially located at the poles of the mutant cells. In addition, formation of RNAP foci at the extrachromosomal nucleolus-like structure condenses the nucleoid, supporting the idea that active transcription at the nucleolus-like organization is a driving force in nucleoid compaction.
Collapse
Affiliation(s)
| | | | | | - Ding Jun Jin
- Transcription Control Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
40
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
41
|
Imamura S, Nomura Y, Takemura T, Pancha I, Taki K, Toguchi K, Tozawa Y, Tanaka K. The checkpoint kinase TOR (target of rapamycin) regulates expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) and modulates chloroplast ribosomal RNA synthesis in a unicellular red alga. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:327-339. [PMID: 29441718 DOI: 10.1111/tpj.13859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 05/14/2023]
Abstract
Chloroplasts are plant organelles that carry out oxygenic photosynthesis. Chloroplast biogenesis depends upon chloroplast ribosomes and their translational activity. However, regulation of chloroplast ribosome biogenesis remains an important unanswered question. In this study, we found that inhibition of target of rapamycin (TOR), a general eukaryotic checkpoint kinase, results in a decline in chloroplast ribosomal RNA (rRNA) transcription in the unicellular red alga, Cyanidioschyzon merolae. Upon TOR inhibition, transcriptomics and other analyses revealed increased expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) gene (CmRSH4b), which encodes a homolog of the guanosine 3'-diphosphate 5'-diphosphate (ppGpp) synthetases that modulate rRNA synthesis in bacteria. Using an Escherichia coli mutant lacking ppGpp, CmRSH4b was demonstrated to have ppGpp synthetase activity. Expression analysis of a green fluorescent protein-fused protein indicated that CmRSH4b localizes to the chloroplast, and overexpression of the CmRSH4b gene resulted in a decrease of chloroplast rRNA synthesis concomitant with growth inhibition and reduction of chloroplast size. Biochemical analyses using C. merolae cell lysates or purified recombinant proteins revealed that ppGpp inhibits bacteria-type RNA polymerase-dependent chloroplast rRNA synthesis as well as a chloroplast guanylate kinase. These results suggest that CmRSH4b-dependent ppGpp synthesis in chloroplasts is an important regulator of chloroplast rRNA transcription. Nuclear and mitochondrial rRNA transcription were both reduced by TOR inhibition, suggesting that the biogeneses of the three independent ribosome systems are interconnected by TOR in plant cells.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuhta Nomura
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Keiko Taki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazuki Toguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
42
|
Mycoplasma genitalium Nonadherent Phase Variants Arise by Multiple Mechanisms and Escape Antibody-Dependent Growth Inhibition. Infect Immun 2018; 86:IAI.00866-17. [PMID: 29358335 DOI: 10.1128/iai.00866-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Antigenic variation of the immunodominant MgpB and MgpC proteins has been suggested to be a mechanism of immune evasion of the human pathogen Mycoplasma genitalium, a cause of several reproductive tract disease syndromes. Phase variation resulting in the loss of adherence has also been documented, but the molecular mechanisms underlying this process and its role in pathogenesis are still poorly understood. In this study, we isolated and characterized 40 spontaneous, nonadherent phase variants from in vitro-passaged M. genitalium cultures. In all cases, nonadherence was associated with the loss of MgpBC protein expression, attributable to sequence changes in the mgpBC expression site. Phase variants were grouped into seven classes on the basis of the nature of the mutation. Consistent with the established role of RecA in phase variation, 31 (79.5%) variants arose via recombination with MgPa repeat regions that contain mgpBC variable sequences. The remaining mutants arose via nonsense or frameshift mutations. As expected, revertants were obtained for phase variants that were predicted to be reversible but not for those that arose via an irreversible mechanism. Furthermore, phase variants were enriched in M. genitalium cultures exposed to antibodies reacting to the extracellular, conserved C terminus of MgpB but not in cultures exposed to antibodies reacting to an intracellular domain of MgpB or the cytoplasmic HU protein. Genetic characterization of the antibody-selected phase variants confirmed that they arose via reversible and irreversible recombination and point mutations within mgpBC These phase variants resisted antibody-mediated growth inhibition, suggesting that phase variation promotes immune evasion.
Collapse
|
43
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
A ring-polymer model shows how macromolecular crowding controls chromosome-arm organization in Escherichia coli. Sci Rep 2017; 7:11896. [PMID: 28928399 PMCID: PMC5605704 DOI: 10.1038/s41598-017-10421-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Macromolecular crowding influences various cellular processes such as macromolecular association and transcription, and is a key determinant of chromosome organization in bacteria. The entropy of crowders favors compaction of long chain molecules such as chromosomes. To what extent is the circular bacterial chromosome, often viewed as consisting of “two arms”, organized entropically by crowding? Using computer simulations, we examine how a ring polymer is organized in a crowded and cylindrically-confined space, as a coarse-grained bacterial chromosome. Our results suggest that in a wide parameter range of biological relevance crowding is essential for separating the two arms in the way observed with Escherichia coli chromosomes at fast-growth rates, in addition to maintaining the chromosome in an organized collapsed state. Under different conditions, however, the ring polymer is centrally condensed or adsorbed onto the cylindrical wall with the two arms laterally collapsed onto each other. We discuss the relevance of our results to chromosome-membrane interactions.
Collapse
|
45
|
Yang X, Luo MJ, Yeung ACM, Lewis PJ, Chan PKS, Ip M, Ma C. First-In-Class Inhibitor of Ribosomal RNA Synthesis with Antimicrobial Activity against Staphylococcus aureus. Biochemistry 2017; 56:5049-5052. [PMID: 28782938 DOI: 10.1021/acs.biochem.7b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the discovery of the first bacterial ribosomal RNA (rRNA) synthesis inhibitor that has specific antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). A pharmacophore model was constructed on the basis of the protein-protein interaction between essential bacterial rRNA transcription factors NusB and NusE and employed for an in silico screen to identify potential leads. One compound, (E)-2-{[(3-ethynylphenyl)imino]methyl}-4-nitrophenol (MC4), demonstrated antimicrobial activity against a panel of S. aureus strains, including MRSA, without significant toxicity to mammalian cells. MC4 resulted in a decrease in the rRNA level in bacteria, and the target specificity of MC4 was confirmed at the molecular level. Results obtained from this work validated the bacterial rRNA transcription machinery as a novel antimicrobial target. This approach may be extended to other factors in rRNA transcription, and MC4 could be applied as a chemical probe to dissect the relationship among MRSA infection, MRSA growth rate, and rRNA synthesis, in addition to its therapeutic potential.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin, Hong Kong
| | - Ming Jing Luo
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin, Hong Kong
| | - Apple C M Yeung
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin, Hong Kong
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle , Callaghan, NSW 2308, Australia
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin, Hong Kong.,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong , Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital , Shatin, Hong Kong
| | - Cong Ma
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University , Hung Hom, Hong Kong.,The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen, China
| |
Collapse
|
46
|
du Lac M, Scarpelli AH, Younger AKD, Bates DG, Leonard JN. Predicting the Dynamics and Heterogeneity of Genomic DNA Content within Bacterial Populations across Variable Growth Regimes. ACS Synth Biol 2017; 6:1131-1139. [PMID: 27689718 DOI: 10.1021/acssynbio.5b00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For many applications in microbial synthetic biology, optimizing a desired function requires careful tuning of the degree to which various genes are expressed. One challenge for predicting such effects or interpreting typical characterization experiments is that in bacteria such as E. coli, genome copy number varies widely across different phases and rates of growth, which also impacts how and when genes are expressed from different loci. While such phenomena are relatively well-understood at a mechanistic level, our quantitative understanding of such processes is essentially limited to ideal exponential growth. In contrast, common experimental phenomena such as growth on heterogeneous media, metabolic adaptation, and oxygen restriction all cause substantial deviations from ideal exponential growth, particularly as cultures approach the higher densities at which industrial biomanufacturing and even routine screening experiments are conducted. To meet the need for predicting and explaining how gene dosage impacts cellular functions outside of exponential growth, we here report a novel modeling strategy that leverages agent-based simulation and high performance computing to robustly predict the dynamics and heterogeneity of genomic DNA content within bacterial populations across variable growth regimes. We show that by feeding routine experimental data, such as optical density time series, into our heterogeneous multiphasic growth simulator, we can predict genomic DNA distributions over a range of nonexponential growth conditions. This modeling strategy provides an important advance in the ability of synthetic biologists to evaluate the role of genomic DNA content and heterogeneity in affecting the performance of existing or engineered microbial functions.
Collapse
Affiliation(s)
- Melchior du Lac
- Warwick
Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | - Declan G. Bates
- Warwick
Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
47
|
An RpoHI-Dependent Response Promotes Outgrowth after Extended Stationary Phase in the Alphaproteobacterium Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00249-17. [PMID: 28507242 DOI: 10.1128/jb.00249-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Under unfavorable growth conditions, bacteria enter stationary phase and can maintain cell viability over prolonged periods with no increase in cell number. To obtain insights into the regulatory mechanisms that allow bacteria to resume growth when conditions become favorable again (outgrowth), we performed global transcriptome analyses at different stages of growth for the alphaproteobacterium Rhodobacter sphaeroides The majority of genes were not differentially expressed across growth phases. After a short stationary phase (about 20 h after growth starts to slow down), only 7% of the genes showed altered expression (fold change of >1.6 or less than -1.6, corresponding to a log2 fold change of >0.65 or less than -0.65, respectively) compared to expression at exponential phase. Outgrowth induced a distinct response in gene expression which was strongly influenced by the length of the preceding stationary phase. After a long stationary phase (about 64 h after growth starts to slow down), a much larger number of genes (15.1%) was induced in outgrowth than after a short stationary phase (1.7%). Many of those genes are known members of the RpoHI/RpoHII regulons and have established functions in stress responses. A main effect of RpoHI on the transcriptome in outgrowth after a long stationary phase was confirmed. Growth experiments with mutant strains further support an important function in outgrowth after prolonged stationary phase for the RpoHI and RpoHII sigma factors.IMPORTANCE In natural environments, the growth of bacteria is limited mostly by lack of nutrients or other unfavorable conditions. It is important for bacterial populations to efficiently resume growth after being in stationary phase, which may last for long periods. Most previous studies on growth-phase-dependent gene expression did not address outgrowth after stationary phase. This study on growth-phase-dependent gene regulation in a model alphaproteobacterium reveals, for the first time, that the length of the stationary phase strongly impacts the transcriptome during outgrowth. The alternative sigma factors RpoHI and RpoHII, which are important regulators of stress responses in alphaproteobacteria, play a major role during outgrowth following prolonged stationary phase. These findings provide the first insight into the regulatory mechanisms enabling efficient outgrowth.
Collapse
|
48
|
Pandey DK, Kumar A, Rathore JS, Singh N, Chaudhary B. Recombinant overexpression of dihydroneopterin aldolase catalyst potentially regulates folate-biofortification. J Basic Microbiol 2017; 57:517-524. [PMID: 28418068 DOI: 10.1002/jobm.201600721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023]
Abstract
We aim to investigate the prospects of increased production of folate through the overexpression of heterologous dihydroneopterin aldolase catalyst. The gene encoding aldolase catalyst was cloned into an expression vector and the induced recombinant protein was purified through metal-affinity chromatography which appeared at 14 kDa position on polyacrylamide-gel. Remarkably, a periodic increase in the extracellular and intracellular folic acid concentration was observed at 4 h growth of induced recombinant DHNA samples than control in a pH-dependent manner. Maximum folate concentration was observed with at least twofold increase in induced recombinant samples at pH8.0 compared to the significant decline at 6 h growth. Consistently, heterologous overexpression of bacterial aldolase through Agrobacterium-mediated genetic transformation of tobacco led to more than 2.5-fold increase in the folate concentration in the transgenic leaves than control tissues. These data are veritable inspecting metabolic flux in both bacterial and plant systems, thus providing directions for future research on folate agri-fortification.
Collapse
Affiliation(s)
- Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Atul Kumar
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Jitendra S Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| |
Collapse
|
49
|
Cossar PJ, Ma C, Gordon CP, Ambrus JI, Lewis PJ, McCluskey A. Identification and validation of small molecule modulators of the NusB-NusE interaction. Bioorg Med Chem Lett 2017; 27:162-167. [PMID: 27964882 DOI: 10.1016/j.bmcl.2016.11.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
Formation of highly possessive antitermination complexes is crucial for the efficient transcription of stable RNA in all bacteria. A key step in the formation of these complexes is the protein-protein interaction (PPI) between N-utilisation substances (Nus) B and E and thus this PPI offers a novel target for a new antibiotic class. A pharmacophore developed via a secondary structure epitope approach was utilised to perform an in silico screen of the mini-Maybridge library (56,000 compounds) which identified 25 hits of which five compounds were synthetically tractable leads. Here we report the synthesis of these five leads and their biological evaluation as potential inhibitors of the NusB-NusE PPI. Two chemically diverse scaffolds were identified to be low micro molar potent PPI inhibitors, with compound (4,6-bis(2',4',3.4 tetramethoxyphenyl))pyrimidine-2-sulphonamido-N-4-acetamide 1 and N,N'-[1,4-butanediylbis(oxy-4,1-phenylene)]bis(N-ethyl)urea 3 exhibiting IC50 values of 6.1μM and 19.8μM, respectively. These inhibitors were also shown to be moderate inhibitors of Gram-positive Bacillus subtilis and Gram-negative Escherichia coli growth.
Collapse
Affiliation(s)
- Peter J Cossar
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Cong Ma
- Biology, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Christopher P Gordon
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Joseph I Ambrus
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Peter J Lewis
- Biology, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
50
|
Jin DJ, Mata Martin C, Sun Z, Cagliero C, Zhou YN. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Crit Rev Biochem Mol Biol 2016; 52:96-106. [PMID: 28006965 DOI: 10.1080/10409238.2016.1269717] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.
Collapse
Affiliation(s)
- Ding Jun Jin
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Carmen Mata Martin
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Zhe Sun
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Cedric Cagliero
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Yan Ning Zhou
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| |
Collapse
|