1
|
Pirscoveanu DFV, Olaru DG, Hermann DM, Doeppner TR, Ghinea FS, Popa-Wagner A. Immune genes involved in synaptic plasticity during early postnatal brain development contribute to post-stroke damage in the aging male rat brain. Biogerontology 2025; 26:60. [PMID: 39966204 PMCID: PMC12021737 DOI: 10.1007/s10522-025-10203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Stroke remains a leading cause of mortality and long-term disability worldwide, underscoring the urgent need to identify novel therapeutic targets to enhance brain circuitry repair and functional recovery. This study explores the concept of longevity assurance genes, which primarily function within genetic pathways responsible for repair and maintenance. These pathways encompass molecular and metabolic processes as well as organ- and system-level functions. To investigate this, we employed comparative transcriptomics to analyze gene expression patterns across three age groups with progressively decreasing brain plasticity: native postnatal day seven brains, and young and old naïve and lesioned rat male brains. Analysis revealed a highly symmetrical distribution of upregulated and downregulated genes in postnatal day 7 brains. In contrast, the gene expression profiles of post-stroke brains exhibited significant asymmetry, with a disproportionate increase in upregulated genes compared to downregulated ones in both young and old post-ischemic brains. Gene variance in juvenile brains predominantly reflected processes associated with brain plasticity (e.g., Dcx, Tubb2b, Dok4, Dpysl5) and cell proliferation (e.g., Bex4). Conversely, gene expression variance in young and aged post-stroke brains was largely linked to inflammatory pathways, driven by cytokine and chemokine signaling. Notably, several genes specifically upregulated in aged brains were identified, including Ehd4, Fut7, Lilrb4, Plek, Slfn13, Slc14a1, and Smpdl3a. Immune genes that facilitate synaptic plasticity during early postnatal brain development-through processes such as pruning and sprouting to establish new connections in response to external stimuli-also contribute to post-stroke damage, confirming the concept of antagonistic pleiotropy. Our results suggest that targeting age-related immune responses could be an effective therapeutic strategy for stroke recovery.
Collapse
Affiliation(s)
| | - Denissa Greta Olaru
- University of Medicine and Pharmacy Craiova, Doctoral School, 200349, Craiova, Romania
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
- University of Medicine and Pharmacy Craiova, Doctoral School, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Gottingen, Germany
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Flavia Semida Ghinea
- University of Medicine and Pharmacy Craiova, Doctoral School, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
- University of Medicine and Pharmacy Craiova, Doctoral School, 200349, Craiova, Romania.
| |
Collapse
|
2
|
Pluta R, Bogucka-Kocka A, Bogucki J, Kocki J, Czuczwar SJ. Apoptosis, Autophagy, and Mitophagy Genes in the CA3 Area in an Ischemic Model of Alzheimer's Disease with 2-Year Survival. J Alzheimers Dis 2024; 99:1375-1383. [PMID: 38759019 PMCID: PMC11191440 DOI: 10.3233/jad-240401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
Background Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECN1), and mitophagy (BNIP3) genes in the CA3 area after ischemia with long-term survival. Objective The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period of 6-24 months. Methods In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a rat ischemic model of Alzheimer's disease. Results First time, we demonstrated overexpression of the CASP3 gene in CA3 area after ischemia with survival ranging from 0.5 to 2 years. Overexpression of the CASP3 gene was accompanied by a decrease in the activity level of the BECN1 and BNIP3 genes over a period of 0.5 year. Then, during 1-2 years, BNIP3 gene expression increased significantly and coincided with an increase in CASP3 gene expression. However, BECN1 gene expression was variable, increased significantly at 1 and 2 years and was below control values 1.5 years post-ischemia. Conclusions Our observations suggest that ischemia with long-term survival induces neuronal death in CA3 through activation of caspase 3 in cooperation with the pro-apoptotic gene BNIP3. This study also suggests that the BNIP3 gene regulates caspase-independent pyramidal neuronal death post-ischemia. Thus, caspase-dependent and -independent death of neuronal cells occur post-ischemia in the CA3 area. Our data suggest new role of the BNIP3 gene in the regulation of post-ischemic neuronal death in CA3. This suggests the involvement of the BNIP3 together with the CASP3 in the CA3 in neuronal death post-ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Faculty of Medicine, Johon Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
3
|
cRel and Wnt5a/Frizzled 5 Receptor-Mediated Inflammatory Regulation Reveal Novel Neuroprotectin D1 Targets for Neuroprotection. Cell Mol Neurobiol 2023; 43:1077-1096. [PMID: 35622188 PMCID: PMC10006067 DOI: 10.1007/s10571-022-01231-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.
Collapse
|
4
|
Chupina I, Sierpowska J, Zheng XY, Dewenter A, Piastra M, Piai V. Time course of right-hemisphere recruitment during word production following left-hemisphere damage: A single case of young stroke. Eur J Neurosci 2022; 56:5235-5259. [PMID: 36028218 PMCID: PMC9826534 DOI: 10.1111/ejn.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Our understanding of post-stroke language function is largely based on older age groups, who show increasing age-related brain pathology and neural reorganisation. To illustrate language outcomes in the young-adult brain, we present the case of J., a 23-year-old woman with chronic aphasia from a left-hemisphere stroke affecting the temporal lobe. Diffusion MRI-based tractography indicated that J.'s language-relevant white-matter structures were severely damaged. Employing magnetoencephalography (MEG), we explored J.'s conceptual preparation and word planning abilities using context-driven and bare picture-naming tasks. These revealed naming deficits, manifesting as word-finding difficulties and semantic paraphasias about half of the time. Naming was however facilitated by semantically constraining lead-in sentences. Altogether, this pattern indicates disrupted lexical-semantic and phonological retrieval abilities. MEG revealed that J.'s conceptual and naming-related neural responses were supported by the right hemisphere, compared to the typical left-lateralised brain response of a matched control. Differential recruitment of right-hemisphere structures (330-440 ms post-picture onset) was found concurrently during successful naming (right mid-to-posterior temporal lobe) and word-finding attempts (right inferior frontal gyrus). Disconnection of the temporal lobes via corpus callosum was not critical for recruitment of the right hemisphere in visually guided naming, possibly due to neural activity right lateralising from the outset. Although J.'s right hemisphere responded in a timely manner during word planning, its lexical and phonological retrieval abilities remained modest.
Collapse
Affiliation(s)
- Irina Chupina
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands
| | - Joanna Sierpowska
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational PsychologyInstitut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Xiaochen Y. Zheng
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenThe Netherlands
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)University Hospital, LMU MunichMunichGermany
| | - Maria‐Carla Piastra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Department of Neuroinformatics, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands,Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Vitória Piai
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Department of Medical Psychology, Donders Centre for Medical NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
5
|
Alzheimer's Disease Connected Genes in the Post-Ischemic Hippocampus and Temporal Cortex. Genes (Basel) 2022; 13:genes13061059. [PMID: 35741821 PMCID: PMC9222545 DOI: 10.3390/genes13061059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/13/2022] Open
Abstract
It is considered that brain ischemia can be causative connected to Alzheimer’s disease. In the CA1 and CA3 regions of the hippocampus and temporal cortex, genes related to Alzheimer’s disease, such as the amyloid protein precursor (APP), β-secretase (BACE1), presenilin 1 (PSEN1) and 2 (PSEN2), are deregulated by ischemia. The pattern of change in the CA1 area of the hippocampus covers all genes tested, and the changes occur at all post-ischemic times. In contrast, the pattern of gene changes in the CA3 subfield is much less intense, does not occur at all post-ischemic times, and is delayed in time post-ischemia relative to the CA1 field. Conversely, the pattern of gene alterations in the temporal cortex appears immediately after ischemia, and does not occur at all post-ischemic times and does not affect all genes. Evidence therefore suggests that various forms of dysregulation of the APP, BACE1 and PSEN1 and PSEN2 genes are associated with individual neuronal cell responses in the CA1 and CA3 areas of the hippocampus and temporal cortex with reversible cerebral ischemia. Scientific data indicate that an ischemic episode of the brain is a trigger of amyloidogenic processes. From the information provided, it appears that post-ischemic brain injury additionally activates neuronal death in the hippocampus and temporal cortex in an amyloid-dependent manner.
Collapse
|
6
|
Krzyspiak J, Khodakhah K, Hébert JM. Potential Variables for Improved Reproducibility of Neuronal Cell Grafts at Stroke Sites. Cells 2022; 11:1656. [PMID: 35626693 PMCID: PMC9139220 DOI: 10.3390/cells11101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Interest is growing in using cell replacements to repair the damage caused by an ischemic stroke. Yet, the usefulness of cell transplants can be limited by the variability observed in their successful engraftment. For example, we recently showed that, although the inclusion of donor-derived vascular cells was necessary for the formation of large grafts (up to 15 mm3) at stroke sites in mice, the size of the grafts overall remained highly variable. Such variability can be due to differences in the cells used for transplantation or the host environment. Here, as possible factors affecting engraftment, we test host sex, host age, the extent of ischemic damage, time of transplant after ischemia, minor differences in donor cell maturity, and cell viability at the time of transplantation. We find that graft size at stroke sites correlates with the size of ischemic damage, host sex (females having graft sizes that correlate with damage), donor cell maturity, and host age, but not with the time of transplant after stroke. A general linear model revealed that graft size is best predicted by stroke severity combined with donor cell maturity. These findings can serve as a guide to improving the reproducibility of cell-based repair therapies.
Collapse
Affiliation(s)
- Joanna Krzyspiak
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (J.K.); (K.K.)
- Stem Cell Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Kamran Khodakhah
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (J.K.); (K.K.)
| | - Jean M. Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (J.K.); (K.K.)
- Stem Cell Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
7
|
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021; 9:1834. [PMID: 34944650 PMCID: PMC8698904 DOI: 10.3390/biomedicines9121834] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the physiological and structural properties of the blood-brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Linton AE, Weekman EM, Wilcock DM. Pathologic sequelae of vascular cognitive impairment and dementia sheds light on potential targets for intervention. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100030. [PMID: 36324710 PMCID: PMC9616287 DOI: 10.1016/j.cccb.2021.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is one of the leading causes of dementia along with Alzheimer's disease (AD) and, importantly, VCID often manifests as a comorbidity of AD(Vemuri and Knopman 2016; Schneider and Bennett 2010)(Vemuri and Knopman 2016; Schneider and Bennett 2010). Despite its common clinical manifestation, the mechanisms underlying VCID disease progression remains elusive. In this review, existing knowledge is used to propose a novel hypothesis linking well-established risk factors of VCID with the distinct neurodegenerative cascades of neuroinflammation and chronic hypoperfusion. It is hypothesized that these two synergistic signaling cascades coalesce to initiate aberrant angiogenesis and induce blood brain barrier breakdown trough a mechanism mediated by vascular growth factors and matrix metalloproteinases respectively. Finally, this review concludes by highlighting several potential therapeutic interventions along this neurodegenerative sequalae providing diverse opportunities for future translational study.
Collapse
Affiliation(s)
- Alexandria E. Linton
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Erica M. Weekman
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Donna M. Wilcock
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| |
Collapse
|
9
|
Decoding the Transcriptional Response to Ischemic Stroke in Young and Aged Mouse Brain. Cell Rep 2021; 31:107777. [PMID: 32553170 DOI: 10.1016/j.celrep.2020.107777] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is a well-recognized disease of aging, yet it is unclear how the age-dependent vulnerability occurs and what are the underlying mechanisms. To address these issues, we perform a comprehensive RNA-seq analysis of aging, ischemic stroke, and their interaction in 3- and 18-month-old mice. We assess differential gene expression across injury status and age, estimate cell type proportion changes, assay the results against a range of transcriptional signatures from the literature, and perform unsupervised co-expression analysis, identifying modules of genes with varying response to injury. We uncover downregulation of axonal and synaptic maintenance genetic program, and increased activation of type I interferon (IFN-I) signaling following stroke in aged mice. Together, these results paint a picture of ischemic stroke as a complex age-related disease and provide insights into interaction of aging and stroke on cellular and molecular level.
Collapse
|
10
|
Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190:111312. [PMID: 32663480 DOI: 10.1016/j.mad.2020.111312] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Age is the only one non-modifiable risk of cerebral ischemia. Advances in stroke medicine and behavioral adaptation to stroke risk factors and comorbidities was successful in decreasing stroke incidence and increasing the number of stroke survivors in western societies. Comorbidities aggravates the outcome after cerebral ischemia. However, due to the increased in number of elderly, the incidence of stroke has increased again paralleled by an increase in the number of stroke survivors, many with severe disabilities, that has led to an increased economic and social burden in society. Animal models of stroke often ignore age and comorbidities frequently associated with senescence. This might explain why drugs working nicely in animal models fail to show efficacy in stroke survivors. Since stroke afflicts mostly the elderly comorbid patients, it is highly desirable to test the efficacy of stroke therapies in an appropriate animal stroke model. Therefore, in this review, we make parallels between animal models of stroke und clinical data and summarize the impact of ageing and age-related comorbidities on stroke outcome.
Collapse
|
11
|
Askvig JM, Dalzell TS, Toumeh N, Kuball PT, Whiteman ST, Bye EW, Andersen MJ, McCarthy MG, Irmen RE, Bexell SH, Benolken MM, Maruska BL, Nordmann SE. Age-dependent increase in Thy-1 protein in the rat supraoptic nucleus. Heliyon 2020; 6:e03501. [PMID: 32181386 PMCID: PMC7066247 DOI: 10.1016/j.heliyon.2020.e03501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 11/29/2022] Open
Abstract
Mature mammalian CNS neurons often do not recover successfully following injury. To this point, unilateral lesion of the hypothalamo-neurohypophysial tract results in collateral sprouting from uninjured axons of the supraoptic nucleus (SON) in 35-day-old but not in 125-day-old rats. Thus, it appears that there are age-related changes within the SON that preclude the older rat from recovering following axotomy. We hypothesize that the intrinsic capacity for axon reorganization may depend, in part, on age-related alterations in cell adhesion molecules that allow normal astrocyte-neuron interactions in the SON. In support of our hypothesis, numerous reports have shown that Thy-1 is increased in neurons at the cessation of axon outgrowth. Therefore, we compared protein levels of Thy-1 and the Thy-1 interacting integrin subunits, alpha-v (αv), beta-3 (ß3), and beta-5 (ß5), in 35- and 125-day-old SON using western blot analysis. Our results demonstrated that there was significantly more Thy-1 protein in the 125-day-old SON compared to 35-day-old SON, but no change in the protein levels of the integrin subunits. Furthermore, we localized Thy-1-, αv integrin-, ß3 integrin-, and ß5 integrin-immunoreactivity to both neurons and astrocytes in the SON. Altogether, our results suggest that the observed increase in Thy-1 protein levels in the SON with age may contribute to an environment that prevents collateral axonal sprouting in the SON of the 125-day-old rat.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Talia S Dalzell
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Nadia Toumeh
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Phillip T Kuball
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Sara T Whiteman
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Erik W Bye
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | | | | | - Riley E Irmen
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Sydney H Bexell
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Molly M Benolken
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | - Brooke L Maruska
- Department of Biology, Concordia College, Moorhead, MN, 56562, USA
| | | |
Collapse
|
12
|
Sequential Transcriptome Changes in the Penumbra after Ischemic Stroke. Int J Mol Sci 2019; 20:ijms20246349. [PMID: 31888302 PMCID: PMC6940916 DOI: 10.3390/ijms20246349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/18/2023] Open
Abstract
To investigate the changes in the expression of specific genes that occur during the acute-to-chronic post-stroke phase, we identified differentially expressed genes (DEGs) between naive cortical tissues and peri-infarct tissues at 1, 4, and 8 weeks after photothrombotic stroke. The profiles of DEGs were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology analyses, followed by string analysis of the protein-protein interactions (PPI) of the products of these genes. We found 3771, 536, and 533 DEGs at 1, 4, and 8 weeks after stroke, respectively. A marked decrease in biological-process categories, such as brain development and memory, and a decrease in neurotransmitter synaptic and signaling pathways were observed 1 week after stroke. The PPI analysis showed the downregulation of Dlg4, Bdnf, Gria1, Rhoa, Mapk8, and glutamatergic receptors. An increase in biological-process categories, including cell population proliferation, cell adhesion, and inflammatory responses, was detected at 4 and 8 weeks post-stroke. The KEGG pathways of complement and coagulation cascades, phagosomes, antigen processing, and antigen presentation were also altered. CD44, C1, Fcgr2b, Spp1, and Cd74 occupied a prominent position in network analyses. These time-dependent changes in gene profiles reveal the unique pathophysiological characteristics of stroke and suggest new therapeutic targets for this disease.
Collapse
|
13
|
Aleithe S, Blietz A, Mages B, Hobusch C, Härtig W, Michalski D. Transcriptional Response and Morphological Features of the Neurovascular Unit and Associated Extracellular Matrix After Experimental Stroke in Mice. Mol Neurobiol 2019; 56:7631-7650. [PMID: 31089963 PMCID: PMC6815284 DOI: 10.1007/s12035-019-1604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Experimental stroke studies yielded insights into single reactions of the neurovascular unit (NVU) and associated extracellular matrix (ECM). However, the extent of simultaneous processes caused by ischemia and their underlying transcriptional changes are still poorly understood. Strictly following the NVU and ECM concept, this study explored transcriptional responses of cellular and non-cellular components as well as their morphological characteristics following ischemia. Mice were subjected to 4 or 24 h of unilateral middle cerebral artery occlusion. In the neocortex and the striatum, cytoskeletal and glial elements as well as blood-brain barrier and ECM components were analyzed using real-time PCR. Western blot analyses allowed characterization of protein levels and multiple immunofluorescence labeling enabled morphological assessment. Out of 37 genes analyzed, the majority exhibited decreased mRNA levels in ischemic areas, while changes occurred as early as 4 h after ischemia. Down-regulated mRNA levels were predominantly localized in the neocortex, such as the structural elements α-catenin 2, N-cadherin, β-catenin 1, and βIII-tubulin, consistently decreasing 4 and 24 h after ischemia. However, a few genes, e.g., claudin-5 and Pcam1, exhibited increased mRNA levels after ischemia. For several components such as βIII-tubulin, N-cadherin, and β-catenin 1, matching transcriptional and immunofluorescence signals were obtained, whereas a few markers including neurofilaments exhibited opposite directions. In conclusion, the variety in gene regulation emphasizes the complexity of interactions within the ischemia-affected NVU and ECM. These data might help to focus future research on a set of highly sensitive elements, which might prospectively facilitate neuroprotective strategies beyond the traditional single target perspective.
Collapse
Affiliation(s)
- Susanne Aleithe
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany.
| | - Alexandra Blietz
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Bianca Mages
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Constance Hobusch
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|
14
|
Askvig JM, Watt JA. Absence of axonal sprouting following unilateral lesion in 125-day-old rat supraoptic nucleus may be due to age-dependent decrease in protein levels of ciliary neurotrophic factor receptor alpha. J Comp Neurol 2019; 527:2291-2301. [PMID: 30861131 DOI: 10.1002/cne.24675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 02/04/2023]
Abstract
Within the supraoptic nucleus (SON) of a 35-day-old rat, we previously demonstrated a collateral sprouting response that reinnervates the partially denervated neural lobe (NL) after unilateral lesion of the hypothalamo-neurohypophysial tract. Others have shown a decreased propensity for axonal sprouting in an aged brain; therefore, to see if the SON exhibits a decreased propensity for axonal sprouting as the animal ages, we performed a unilateral lesion in the 125-day-old rat SON. Ultrastructural analysis of axon profiles in the NL of the 125-day-old rat demonstrated an absence of axonal sprouting following injury. We previously demonstrated that ciliary neurotrophic factor (CNTF) promotes process outgrowth from injured magnocellular neuron axons in vitro. Thus, we hypothesized that the lack of axonal sprouting in the 125-day-old rat SON may be due to a reduction in CNTF or the CNTF receptor components. To this point, we found that as the rat ages there is significantly less CNTF receptor alpha (CNTFRα) protein in the uninjured, 125-day-old rat compared to the uninjured, 35-day-old rat. We also observed that protein levels of CNTF and the CNTF receptor components were increased in the SON and NL following injury in the 35-day-old rat, but there was no difference in the protein levels in the 125-day-old rat. Altogether, the results presented herein demonstrate that the plasticity within the SON is highly dependent on the age of the rat, and that a decrease in CNTFRα protein levels in the 125-day-old rat may contribute to the loss of axonal sprouting following axotomy.
Collapse
Affiliation(s)
- Jason M Askvig
- Department of Biology, Concordia College, Moorhead, Minnesota
| | - John A Watt
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
15
|
Heimann G, Sirko S. Investigating Age-Related Changes in Proliferation and the Cell Division Repertoire of Parenchymal Reactive Astrocytes. Methods Mol Biol 2019; 1938:277-292. [PMID: 30617988 DOI: 10.1007/978-1-4939-9068-9_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive gliosis is a complicated process involving all types of glial cells and is the therapeutic target of efforts to treat several types of neuropathologies. Parenchymal astrocytes continuously survey their microenvironment to identify even tiny abnormalities in the central nervous system (CNS) homeostasis and react rapidly to brain damage, such as following ischemia, trauma, or neurodegenerative diseases, to prevent propagation of tissue damage. Aging can play causal roles in certain astroglial dysfunctions, however, still little is known to what extent the heterogeneous reaction of astrocytes at the injury site might be impaired over the course of aging. Based on our experience with both in vitro and in vivo experimental paradigms, we describe here in detail the analysis of age-related changes in (1) proliferative response of parenchymal astrocytes within the posttraumatic cerebral cortex grey matter (GM), and (2) repertoire of their cell divisions in adherent cell culture prepared from the injured GM of young and old double transgenic GFAP-mRFP1/(FUCCI)-S/G2/M-mAG-hGeminin mice by single cell time-lapse imaging.
Collapse
Affiliation(s)
- Gábor Heimann
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munch, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munch, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
16
|
Choi IA, Lee CS, Kim HY, Choi DH, Lee J. Effect of Inhibition of DNA Methylation Combined with Task-Specific Training on Chronic Stroke Recovery. Int J Mol Sci 2018; 19:ijms19072019. [PMID: 29997355 PMCID: PMC6073594 DOI: 10.3390/ijms19072019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
To develop new rehabilitation therapies for chronic stroke, this study examined the effectiveness of task-specific training (TST) and TST combined with DNA methyltransferase inhibitor in chronic stroke recovery. Eight weeks after photothrombotic stroke, 5-Aza-2'-deoxycytidine (5-Aza-dC) infusion was done on the contralesional cortex for four weeks, with and without TST. Functional recovery was assessed using the staircase test, the cylinder test, and the modified neurological severity score (mNSS). Axonal plasticity and expression of brain-derived neurotrophic factor (BDNF) were determined in the contralateral motor cortex. TST and TST combined with 5-Aza-dC significantly improved the skilled reaching ability in the staircase test and ameliorated mNSS scores and cylinder test performance. TST and TST with 5-Aza-dC significantly increased the crossing fibers from the contralesional red nucleus, reticular formation in medullar oblongata, and dorsolateral spinal cord. Mature BDNF was significantly upregulated by TST and TST combined with 5-Azd-dC. Functional recovery after chronic stroke may involve axonal plasticity and increased mature BDNF by modulating DNA methylation in the contralesional cortex. Our results suggest that combined therapy to enhance axonal plasticity based on TST and 5-Aza-dC constitutes a promising approach for promoting the recovery of function in the chronic stage of stroke.
Collapse
Affiliation(s)
- In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Cheol Soon Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Medical Science Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
17
|
Heimann G, Canhos LL, Frik J, Jäger G, Lepko T, Ninkovic J, Götz M, Sirko S. Changes in the Proliferative Program Limit Astrocyte Homeostasis in the Aged Post-Traumatic Murine Cerebral Cortex. Cereb Cortex 2018; 27:4213-4228. [PMID: 28472290 DOI: 10.1093/cercor/bhx112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis.
Collapse
Affiliation(s)
- Gábor Heimann
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Luisa L Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Jesica Frik
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Institute of Biotechnology and Molecular Biology (IBBM), Department of Biological Sciences, 1900 La Plata, Argentina
| | - Gabriele Jäger
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Jovica Ninkovic
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.,Synergy, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| |
Collapse
|
18
|
Dong X. Current Strategies for Brain Drug Delivery. Am J Cancer Res 2018; 8:1481-1493. [PMID: 29556336 PMCID: PMC5858162 DOI: 10.7150/thno.21254] [Citation(s) in RCA: 591] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
The blood-brain barrier (BBB) has been a great hurdle for brain drug delivery. The BBB in healthy brain is a diffusion barrier essential for protecting normal brain function by impeding most compounds from transiting from the blood to the brain; only small molecules can cross the BBB. Under certain pathological conditions of diseases such as stroke, diabetes, seizures, multiple sclerosis, Parkinson's disease and Alzheimer disease, the BBB is disrupted. The objective of this review is to provide a broad overview on current strategies for brain drug delivery and related subjects from the past five years. It is hoped that this review could inspire readers to discover possible approaches to deliver drugs into the brain. After an initial overview of the BBB structure and function in both healthy and pathological conditions, this review re-visits, according to recent publications, some questions that are controversial, such as whether nanoparticles by themselves could cross the BBB and whether drugs are specifically transferred to the brain by actively targeted nanoparticles. Current non-nanoparticle strategies are also reviewed, such as delivery of drugs through the permeable BBB under pathological conditions and using non-invasive techniques to enhance brain drug uptake. Finally, one particular area that is often neglected in brain drug delivery is the influence of aging on the BBB, which is captured in this review based on the limited studies in the literature.
Collapse
|
19
|
Ułamek-Kozioł M, Kocki J, Bogucka-Kocka A, Petniak A, Gil-Kulik P, Januszewski S, Bogucki J, Jabłoński M, Furmaga-Jabłońska W, Brzozowska J, Czuczwar SJ, Pluta R. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer's Disease. J Alzheimers Dis 2018; 54:113-21. [PMID: 27472881 PMCID: PMC5008226 DOI: 10.3233/jad-160387] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7-30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7-30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Lublin, Poland
| | | | - Judyta Brzozowska
- Department of Clinical Psychology, Medical University of Lublin, Lublin, Poland
| | | | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Popa-Wagner A, Glavan DG, Olaru A, Olaru DG, Margaritescu O, Tica O, Surugiu R, Sandu RE. Present Status and Future Challenges of New Therapeutic Targets in Preclinical Models of Stroke in Aged Animals with/without Comorbidities. Int J Mol Sci 2018; 19:ijms19020356. [PMID: 29370078 PMCID: PMC5855578 DOI: 10.3390/ijms19020356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
The aging process, comorbidities, and age-associated diseases are closely dependent on each other. Cerebral ischemia impacts a wide range of systems in an age-dependent manner. However, the aging process has many facets which are influenced by the genetic background and epigenetic or environmental factors, which can explain why some people age differently than others. Therefore, there is an urgent need to identify age-related changes in body functions or structures that increase the risk for stroke and which are associated with a poor outcome. Multimodal imaging, electrophysiology, cell biology, proteomics, and transcriptomics, offer a useful approach to link structural and functional changes in the aging brain, with or without comorbidities, to post-stroke rehabilitation. This can help us to improve our knowledge about senescence firstly, and in this context, aids in elucidating the pathophysiology of age-related diseases that allows us to develop therapeutic strategies or prevent diseases. These processes, including potential therapeutical interventions, need to be studied first in relevant preclinical models using aged animals, with and without comorbidities. Therefore, preclinical research on ischemic stroke should consider age as the most important risk factor for cerebral ischemia. Furthermore, the identification of effective therapeutic strategies, corroborated with successful translational studies, will have a dramatic impact on the lives of millions of people with cerebrovascular diseases.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Griffith University School of Medicine, Gold Coast Campus, QLD, Queensland Eye Institute, Brisbane, QLD 4101, Australia.
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela-Gabriela Glavan
- Psychiatry Clinic Hospital, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349 Craiova, Romania.
| | - Andrei Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | | | - Otilia Margaritescu
- Department of Neurosurgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Oana Tica
- Department of "Mother and Child", University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| |
Collapse
|
21
|
Belayev L, Mukherjee PK, Balaszczuk V, Calandria JM, Obenaus A, Khoutorova L, Hong SH, Bazan NG. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ 2017; 24:1091-1099. [PMID: 28430183 PMCID: PMC5442474 DOI: 10.1038/cdd.2017.55] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.
Collapse
Affiliation(s)
- Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Veronica Balaszczuk
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sung-Ha Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
22
|
Okoreeh AK, Bake S, Sohrabji F. Astrocyte-specific insulin-like growth factor-1 gene transfer in aging female rats improves stroke outcomes. Glia 2017; 65:1043-1058. [PMID: 28317235 DOI: 10.1002/glia.23142] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Middle aged female rats sustain larger stroke infarction and disability than younger female rats. This older group also shows age-related reduction of insulin like growth factor (IGF)-1 in serum and in astrocytes, a cell type necessary for poststroke recovery. To determine the impact of astrocytic IGF-1 for ischemic stroke, these studies tested the hypothesis that gene transfer of IGF-1 to astrocytes will improve stroke outcomes in middle aged female rats. Middle aged (10-12 month old), acyclic female rats were injected with recombinant adeno-associated virus serotype 5 (AAV5) packaged with the coding sequence of the human (h)IGF-1 gene downstream of an astrocyte-specific promoter glial fibrillary acidic protein (GFAP) (AAV5-GFP-hIGF-1) into the striatum and cortex. The AAV5-control consisted of an identical shuttle vector construct without the hIGF-1 gene (AAV5-GFAP-control). Six to eight weeks later, animals underwent transient (90 min) middle cerebral artery occlusion via intraluminal suture. While infarct volume was not altered, AAV5-GFAP-hIGF-1 treatment significantly improved blood pressure and neurological score in the early acute phase of stroke (2 days) and sensory-motor performance at both the early and late (5 days) acute phase of stroke. AAV5-GFAP-hIGF-1 treatment also reduced circulating serum levels of GFAP, a biomarker for blood brain barrier permeability. Flow cytometry analysis of immune cells in the brain at 24 hr poststroke showed that AAV5-GFAP-hIGF-1 altered the type of immune cells trafficked to the ischemic hemisphere, promoting an anti-inflammatory profile. Collectively, these studies show that targeted enhancement of IGF-1 in astrocytes of middle-aged females improves stroke-induced behavioral impairment and neuroinflammation.
Collapse
Affiliation(s)
- Andre K Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Shameena Bake
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| |
Collapse
|
23
|
Buga AM, Ciobanu O, Bădescu GM, Bogdan C, Weston R, Slevin M, Di Napoli M, Popa-Wagner A. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients. Oncotarget 2017; 7:17415-30. [PMID: 27013593 PMCID: PMC4951222 DOI: 10.18632/oncotarget.8277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke.
Collapse
Affiliation(s)
- Ana-Maria Buga
- Department of Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Ovidiu Ciobanu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania.,Vivantes Humboldt-Klinikum, Center for Affective Disorders, Berlin, Germany
| | - George Mihai Bădescu
- Psychiatry Clinical Hospital, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Catalin Bogdan
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Ria Weston
- Department of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Mark Slevin
- Department of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Mario Di Napoli
- Neurological Service, San Camillo de' Lellis General Hospital, Rieti, Italy.,Neurological Section, SMDN-Center for Cardiovascular Medicine and Cerebrovascular Disease Prevention, Sulmona, L'Aquila, Italy
| | - Aurel Popa-Wagner
- Department of Psychiatry and Psychotheraphy, University of Medicine Rostock, Rostock, Germany
| |
Collapse
|
24
|
Pluta R, Kocki J, Ułamek-Kozioł M, Petniak A, Gil-Kulik P, Januszewski S, Bogucki J, Jabłoński M, Brzozowska J, Furmaga-Jabłońska W, Bogucka-Kocka A, Czuczwar SJ. Discrepancy in Expression of β-Secretase and Amyloid-β Protein Precursor in Alzheimer-Related Genes in the Rat Medial Temporal Lobe Cortex Following Transient Global Brain Ischemia. J Alzheimers Dis 2016; 51:1023-31. [PMID: 26890784 DOI: 10.3233/jad-151102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain ischemia may be causally related with Alzheimer's disease. Presumably, β-secretase and amyloid-β protein precursor gene expression changes may be associated with Alzheimer's disease neuropathology. Consequently, we have examined quantitative changes in both β-secretase and amyloid-β protein precursor genes in the medial temporal lobe cortex with the use of quantitative rtPCR analysis following 10-min global brain ischemia in rats with survival of 2, 7, and 30 days. The greatest significant overexpression of β-secretase gene was noted on the 2nd day, while on days 7-30 the expression of this gene was only modestly downregulated. Amyloid-β protein precursor gene was downregulated on the 2nd day, but on days 7-30 postischemia, there was a significant reverse tendency. Thus, the demonstrated alterations indicate that the considerable changes of expression of β-secretase and amyloid-β protein precursor genes may be connected with a response of neurons in medial temporal lobe cortex to transient global brain ischemia. Finally, the ischemia-induced gene changes may play a key role in a late and slow onset of Alzheimer-type pathology.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Lublin, Poland
| | - Judyta Brzozowska
- Department of Clinical Psychology, Medical University of Lublin, Lublin, Poland
| | | | - Anna Bogucka-Kocka
- Department of Pharmaceutical Botany, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
25
|
England TJ, Sprigg N, Alasheev AM, Belkin AA, Kumar A, Prasad K, Bath PM. Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis. Sci Rep 2016; 6:36567. [PMID: 27845349 PMCID: PMC5109224 DOI: 10.1038/srep36567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked Investigators to share individual patient data on baseline characteristics, stroke severity and type, end-of-trial modified Rankin Scale (mRS), Barthel Index, haematological parameters, serious adverse events and death. Multiple variable analyses were adjusted for age, sex, baseline severity and time-to-treatment. Individual patient data were obtained for 6 of 10 RCTs comprising 196 stroke patients (116 G-CSF, 80 placebo), mean age 67.1 (SD 12.9), 92% ischaemic, median NIHSS 10 (IQR 5–15), randomised 11 days (interquartile range IQR 4–238) post ictus; data from three commercial trials were not shared. G-CSF did not improve mRS (ordinal regression), odds ratio OR 1.12 (95% confidence interval 0.64 to 1.96, p = 0.62). There were more patients with a serious adverse event in the G-CSF group (29.6% versus 7.5%, p = 0.07) with no significant difference in all-cause mortality (G-CSF 11.2%, placebo 7.6%, p = 0.4). Overall, G-CSF did not improve stroke outcome in this individual patient data meta-analysis.
Collapse
Affiliation(s)
- Timothy J England
- Vascular Medicine, Division of Medical Sciences and GEM, School of Medicine, University of Nottingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK
| | | | - Andrey A Belkin
- Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | - Amit Kumar
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Kameshwar Prasad
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK
| |
Collapse
|
26
|
Elliott CA, Gross DW, Wheatley BM, Beaulieu C, Sankar T. Progressive contralateral hippocampal atrophy following surgery for medically refractory temporal lobe epilepsy. Epilepsy Res 2016; 125:62-71. [DOI: 10.1016/j.eplepsyres.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/02/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022]
|
27
|
Biswal S, Sharma D, Kumar K, Nag TC, Barhwal K, Hota SK, Kumar B. Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging. Neurobiol Learn Mem 2016; 133:157-170. [PMID: 27246251 DOI: 10.1016/j.nlm.2016.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 01/10/2023]
Abstract
Both chronological aging and chronic hypoxia stress have been reported to cause degeneration of hippocampal CA3 neurons and spatial memory impairment through independent pathways. However, the possible occurrence of precocious biological aging on exposure to single episode of global hypoxia resulting in impairment of learning and memory remains to be established. The present study thus aimed at bridging this gap in existing literature on hypoxia induced biological aging. Male Sprague Dawley rats were exposed to simulated hypobaric hypoxia (25,000ft) for different durations and were compared with aged rats. Behavioral studies in Morris Water Maze showed decline in learning abilities of both chronologically aged as well as hypoxic rats as evident from increased latency and pathlength to reach target platform. These behavioral changes in rats exposed to global hypoxia were associated with deposition of lipofuscin and ultrastructural changes in the mitochondria of hippocampal neurons that serve as hallmarks of aging. A single episode of chronic hypobaric hypoxia exposure also resulted in the up-regulation of pro-aging protein, S100A9 and down regulation of Tau, SNAP25, APOE and Sod2 in the hippocampus similar to that in aged rats indicating hypoxia induced accelerated aging. The present study therefore provides evidence for role of biological aging of hippocampal neurons in hypoxia induced impairment of learning and memory.
Collapse
Affiliation(s)
- Suryanarayan Biswal
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Deepti Sharma
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Kushal Kumar
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Science, New Delhi, India
| | - Kalpana Barhwal
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Sunil Kumar Hota
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India.
| | - Bhuvnesh Kumar
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| |
Collapse
|
28
|
Jolkkonen J, Kwakkel G. Translational Hurdles in Stroke Recovery Studies. Transl Stroke Res 2016; 7:331-42. [PMID: 27000881 DOI: 10.1007/s12975-016-0461-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/11/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
Emerging understanding of brain plasticity has opened new avenues for the treatment of stroke. The promising preclinical evidence with neuroprotective drugs has not been confirmed in clinical trials, thus nowadays, researchers, pharmaceutical companies, and funding bodies hesitate to initiate these expensive trials with restorative therapies. Since many of the previous failures can be traced to low study quality, a number of guidelines such as STAIR and STEPS were introduced to rectify these shortcomings. However, these guidelines stem from the study design for neuroprotective drugs and one may question whether they are appropriate for restorative approaches, which rely heavily on behavioral testing. Most of the recovery studies conducted in stroke patients have been small-scale, proof-of-concept trials. Consequently, the overall effect sizes of pooled phase II trials have proved unreliable and unstable in most meta-analyses. Although the methodological quality of trials in humans is improving, most studies still suffer from methodological flaws and do not meet even the minimum of evidence-based standards for reporting randomized controlled trials. The power problem of most phase II trials is mostly attributable to a lack of proper stratification with robust prognostic factors at baseline as well as the incorrect assumption that all patients will exhibit the same proportional amount of spontaneous neurological recovery poststroke. In addition, most trials suffer from insufficient treatment contrasts between the experimental and control arm and the outcomes have not been sufficiently responsive to detect small but clinically relevant changes in neurological impairments and activities. This narrative review describes the main factors that bias recovery studies, both in experimental animals and stroke patients.
Collapse
Affiliation(s)
- Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland. .,Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland.
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Neurorehabilitation, Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
29
|
Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, Ladwig A, Luelling J, Neumaier B, Endepols H, Graf R, Hoehn M, Fink GR, Schroeter M, Rueger MA. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol 2016; 279:127-136. [PMID: 26923911 DOI: 10.1016/j.expneurol.2016.02.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Clinical data suggest that transcranial direct current stimulation (tDCS) may be used to facilitate rehabilitation after stroke. However, data are inconsistent and the neurobiological mechanisms underlying tDCS remain poorly explored, impeding its implementation into clinical routine. In the healthy rat brain, tDCS affects neural stem cells (NSC) and microglia. We here investigated whether tDCS applied after stroke also beneficially affects these cells, which are known to be involved in regeneration and repair. METHODS Focal cerebral ischemia was induced in rats by transient occlusion of the middle cerebral artery. Twenty-eight animals with comparable infarcts, as judged by magnetic resonance imaging, were randomized to receive a multi-session paradigm of either cathodal, anodal, or sham tDCS. Behaviorally, recovery of motor function was assessed by Catwalk. Proliferation in the NSC niches was monitored by Positron-Emission-Tomography (PET) employing the radiotracer 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT). Microglia activation was depicted with [(11)C]PK11195-PET. In addition, immunohistochemical analyses were used to quantify neuroblasts, oligodendrocyte precursors, and activation and polarization of microglia. RESULTS Anodal and cathodal tDCS both accelerated functional recovery, though affecting different aspects of motor function. Likewise, tDCS induced neurogenesis independently of polarity, while only cathodal tDCS recruited oligodendrocyte precursors towards the lesion. Moreover, cathodal stimulation preferably supported M1-polarization of microglia. CONCLUSIONS TDCS acts through multifaceted mechanisms that far exceed its primary neurophysiological effects, encompassing proliferation and migration of stem cells, their neuronal differentiation, and modulation of microglia responses.
Collapse
Affiliation(s)
- Ramona Braun
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Rebecca Klein
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Helene Luise Walter
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Maurice Ohren
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Lars Freudenmacher
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Kaleab Getachew
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Anne Ladwig
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Joachim Luelling
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Bernd Neumaier
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Rudolf Graf
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, University Hospital of Cologne, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany.
| |
Collapse
|
30
|
Viggiano E, Monda V, Messina A, Moscatelli F, Valenzano A, Tafuri D, Cibelli G, De Luca B, Messina G, Monda M. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5. Neuropsychiatr Dis Treat 2016; 12:1705-10. [PMID: 27468234 PMCID: PMC4946829 DOI: 10.2147/ndt.s107074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Depression of electrocorticogram propagating over the cortex surface results in cortical spreading depression (CSD), which is probably related to the pathophysiology of stroke, epilepsy, and migraine. However, preconditioning with CSD produces neuroprotection to subsequent ischemic episodes. Such effects require the expression or activation of several genes, including neuroprotective ones. Recently, it has been demonstrated that the expression of the uncoupling proteins (UCPs) 2 and 5 is amplified during brain ischemia and their expression exerts a long-term effect upon neuron protection. To evaluate the neuroprotective consequence of CSD, the expression of UCP-5 in the brain cortex was measured following CSD induction. CSD was evoked in four samples of rats, which were sacrificed after 2 hours, 4 hours, 6 hours, and 24 hours. Western blot analyses were carried out to measure UCP-5 concentrations in the prefrontal cortices of both hemispheres, and immunohistochemistry was performed to determine the localization of UCP-5 in the brain cortex. The results showed a significant elevation in UCP-5 expression at 24 hours in all cortical strata. Moreover, UCP-5 was triggered by CSD, indicating that UCP-5 production can have a neuroprotective effect.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples; Department of Medicine, University of Padua, Padua
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia
| | - Domenico Tafuri
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia
| | - Bruno De Luca
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples; Department of Clinical and Experimental Medicine, University of Foggia, Foggia
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples
| |
Collapse
|
31
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
32
|
Abstract
During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC), the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs), mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.
Collapse
|
33
|
Muche A, Bigl M, Arendt T, Schliebs R. Expression of vascular endothelial growth factor (VEGF) mRNA, VEGF receptor 2 (Flk-1) mRNA, and of VEGF co-receptor neuropilin (Nrp)-1 mRNA in brain tissue of aging Tg2576 mice by in situ hybridization. Int J Dev Neurosci 2015; 43:25-34. [PMID: 25797338 DOI: 10.1016/j.ijdevneu.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 01/23/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) has been characterized as a heparin binding angiogenic growth factor displaying high specificity for endothelial cells. It is profoundly accumulated and co-localized with amyloid beta (Aβ) plaques in the brain of Alzheimer's disease patients. In order to examine the effect of Aβ plaques on the expression level of VEGF mRNA and its receptors, brain tissue of both transgenic Tg2576 and wild type mice at ages ranging from 13 to 22 months was subjected to in situ hybridization followed by densitometric assessment using computer-assisted image analysis. Strong expression of VEGF mRNA, fetal liver kinase (Flk)-1 mRNA, and neuropilin (Nrp)-1 mRNA in the piriform, entorhinal, somatosensory, frontal cortex and hippocampal formation of both transgenic and non-transgenic mice brain was detected. Developmentally, only expression of VEGF mRNA was increased with age in the entorhinal, and somatosensory cortex of wild type mice. In 20-month-old transgenic Tg2576 mice, up-regulation of VEGF mRNA, Flk-1 mRNA, and Nrp-1 mRNA transcripts was observed in the entorhinal cortex compared to age-matched wild type mice. Our data suggest up-regulation of VEGF mRNA, Flk-1 mRNA and Nrp-1 mRNA, at least in the entorhinal cortex at ages when Aβ deposition in Tg2576 is typically increasing.
Collapse
Affiliation(s)
- Abebe Muche
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Ethiopia; Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | - Marina Bigl
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
PEKNY T, ANDERSSON D, WILHELMSSON U, PEKNA M, PEKNY M. Short general anaesthesia induces prolonged changes in gene expression in the mouse hippocampus. Acta Anaesthesiol Scand 2014; 58:1127-33. [PMID: 25039928 DOI: 10.1111/aas.12369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND The long-term molecular changes in the central nervous system constitute an important aspect of general anaesthesia, but little is known about to what extent these molecular changes are affected by anaesthesia duration. The aim of the present study was to evaluate the effects of short duration (20 min) general anaesthesia with isoflurane or avertin on the expression of 20 selected genes in the mouse hippocampus at 1 and 4 days after anaesthesia. METHODS Nine to eleven-weeks-old male mice received one of the following treatments: 20 min of avertin-induced anaesthesia (n=11), 20 min of isoflurane-induced anaesthesia (n=10) and no anaesthesia (n=5). One and four days after anaesthesia, gene expression in the hippocampus was determined with reverse transcription quantitative real-time polymerase chain reaction. RESULTS We found that anaesthesia led to the upregulation of six genes: Hspd1 (heat shock protein 1), Plat (tissue plasminogen activator) and Npr3 (natriuretic peptide receptor 3) were upregulated only 1 day after anaesthesia, whereas Thbs4 (thrombospondin 4) was upregulated only 4 days after anaesthesia. Syp (synaptophysin) and Mgst1 (microsomal glutathione S-transferase 1) were upregulated at both time points. Hspd1, Mgst1 and Syp expression was increased regardless of the anaesthetic used, Npr3 and Plat were increased only in mice exposed to avertin, and Thbs4 was upregulated only after isoflurane-induced anaesthesia. CONCLUSIONS This study shows that some of the effects of short general anaesthesia on gene expression in the mouse hippocampus persist for at least 4 days.
Collapse
Affiliation(s)
- T. PEKNY
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - D. ANDERSSON
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - U. WILHELMSSON
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - M. PEKNA
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
| | - M. PEKNY
- Center for Brain Repair and Rehabilitation; Department of Clinical Neuroscience and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
| |
Collapse
|
35
|
Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel neuroprotective factor in cerebral ischemia–reperfusion injury. Neuroscience 2014; 277:123-31. [DOI: 10.1016/j.neuroscience.2014.06.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/18/2022]
|
36
|
Buga AM, Margaritescu C, Scholz CJ, Radu E, Zelenak C, Popa-Wagner A. Transcriptomics of post-stroke angiogenesis in the aged brain. Front Aging Neurosci 2014; 6:44. [PMID: 24672479 PMCID: PMC3957426 DOI: 10.3389/fnagi.2014.00044] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 12/27/2022] Open
Abstract
Despite the obvious clinical significance of post-stroke angiogenesis in aged subjects, a detailed transcriptomic analysis of post-stroke angiogenesis has not yet been undertaken in an aged experimental model. In this study, by combining stroke transcriptomics with immunohistochemistry in aged rats and post-stroke patients, we sought to identify an age-specific gene expression pattern that may characterize the angiogenic process after stroke. We found that both young and old infarcted rats initiated vigorous angiogenesis. However, the young rats had a higher vascular density by day 14 post-stroke. “New-for-stroke” genes that were linked to the increased vasculature density in young animals included Angpt2, Angptl2, Angptl4, Cib1, Ccr2, Col4a2, Cxcl1, Lef1, Hhex, Lamc1, Nid2, Pcam1, Plod2, Runx3, Scpep1, S100a4, Tgfbi, and Wnt4, which are required for sprouting angiogenesis, reconstruction of the basal lamina (BL), and the resolution phase. The vast majority of genes involved in sprouting angiogenesis (Angpt2, Angptl4, Cib1, Col8a1, Nrp1, Pcam1, Pttg1ip, Rac2, Runx1, Tnp4, Wnt4); reconstruction of a new BL (Col4a2, Lamc1, Plod2); or tube formation and maturation (Angpt1, Gpc3, Igfbp7, Sparc, Tie2, Tnfsf10), had however, a delayed upregulation in the aged rats. The angiogenic response in aged rats was further diminished by the persistent upregulation of “inflammatory” genes (Cxcl12, Mmp8, Mmp12, Mmp14, Mpeg1, Tnfrsf1a, Tnfrsf1b) and vigorous expression of genes required for the buildup of the fibrotic scar (Cthrc1, Il6ra, Il13ar1, Il18, Mmp2, Rassf4, Tgfb1, Tgfbr2, Timp1). Beyond this barrier, angiogenesis in the aged brains was similar to that in young brains. We also found that the aged human brain is capable of mounting a vigorous angiogenic response after stroke, which most likely reflects the remaining brain plasticity of the aged brain.
Collapse
Affiliation(s)
- Ana Maria Buga
- Department of Psychiatry, University of Medicine Rostock , Rostock , Germany ; Center of Clinical and Experimental Medicine, University of Medicine Craiova , Craiova , Romania
| | - Claudiu Margaritescu
- Center of Clinical and Experimental Medicine, University of Medicine Craiova , Craiova , Romania
| | - Claus Juergen Scholz
- IZKF Lab for Microarray Applications, University of Würzburg , Würzburg , Germany
| | - Eugen Radu
- University of Medicine and Pharmacy Carol Davila , Bucharest , Romania
| | - Christine Zelenak
- Molecular Oncology, Department of Medicine, Lady Davis Institute for Medical Research, McGill University , Montreal, QC , Canada
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine Rostock , Rostock , Germany
| |
Collapse
|
37
|
Gubern C, Camós S, Hurtado O, Rodríguez R, Romera VG, Sobrado M, Cañadas R, Moro MA, Lizasoain I, Serena J, Mallolas J, Castellanos M. Characterization of Gcf2/Lrrfip1 in experimental cerebral ischemia and its role as a modulator of Akt, mTOR and β-catenin signaling pathways. Neuroscience 2014; 268:48-65. [PMID: 24637094 DOI: 10.1016/j.neuroscience.2014.02.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/03/2014] [Accepted: 02/27/2014] [Indexed: 01/27/2023]
Abstract
Leucine-rich repeat in Flightless-1 interaction protein 1 (Lrrfip1) is an up-regulated protein after cerebral ischemia whose precise role in the brain both in healthy and ischemic conditions is unclear. Different Lrrfip1 isoforms with distinct roles have been reported in human and mouse species. The present study aimed to analyze the Lrrfip1 transcriptional variants expressed in rat cortex, to characterize their expression patterns and subcellular location after ischemia, and to define their putative role in the brain. Five transcripts were identified and three of them (Lrrfip1, CRA_g and CRA_a' (Fli-I leucine-rich repeat associated protein 1 - Flap-1)) were analyzed by quantitative real-time polymerase chain reaction (qPCR). All the transcripts were up-regulated and showed differential expression patterns after in vivo and in vitro ischemia models. The main isoform, Lrrfip1, was found to be up-regulated from the acute to the late phases of ischemia in the cytoplasm of neurons and astrocytes of the peri-infarct area. This study demonstrates that Lrrfip1 activates β-catenin, Akt, and mammalian target of rapamycin (mTOR) proteins in astrocytes and positively regulates the expression of the excitatory amino acid transporter subtype 2 (GLT-1). Our findings point to Lrrfip1 as a key brain protein that regulates pro-survival pathways and proteins and encourages further studies to elucidate its role in cerebral ischemia as a potential target to prevent brain damage and promote functional recovery after stroke.
Collapse
Affiliation(s)
- C Gubern
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - S Camós
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - O Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Rodríguez
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - V G Romera
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M Sobrado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Cañadas
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - J Serena
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - J Mallolas
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - M Castellanos
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| |
Collapse
|
38
|
Sieber MW, Guenther M, Jaenisch N, Albrecht-Eckardt D, Kohl M, Witte OW, Frahm C. Age-specific transcriptional response to stroke. Neurobiol Aging 2014; 35:1744-54. [PMID: 24529500 DOI: 10.1016/j.neurobiolaging.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.
Collapse
Affiliation(s)
- Matthias W Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nadine Jaenisch
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Matthias Kohl
- Department of Mechanical and Process Engineering, Furtwangen University, Villingen-Schwenningen, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; CSCC, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
39
|
Neurovascular remodeling in the aged ischemic brain. J Neural Transm (Vienna) 2013; 122 Suppl 1:S25-33. [PMID: 24378703 DOI: 10.1007/s00702-013-1148-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022]
Abstract
Restorative strategies after stroke are focused on the remodeling of cerebral endothelial cells and brain parenchymal cells. The latter, i.e., neurons, neural precursor cells and glial cells, synergistically interact with endothelial cells in the ischemic brain, providing a neurovascular unit whose components can be used as target for stroke therapies. Following focal cerebral ischemia, brain capillary cells are enabled to sprout. Neural precursor cells proliferate and migrate along cerebral microvessels to the ischemic lesion. Glial cells promote the restoration of functional microvessels and at the same time control the buildup of the extracellular matrix, creating a favorable environment to neuronal plasticity both in the ischemic and contralesional brain hemiphere. Until now, a large majority of studies have been performed in young, otherwise healthy animals. Recent behavioral, histochemical and molecular biological studies have shown that restorative brain responses differ between young and old animals, and that they are also modulated by age-related vascular risk factors, i.e., atherosclerosis, diabetes and hyperlipidemia. We claim that age aspects should more carefully be taken into consideration in translational proof-of-concept studies.
Collapse
|
40
|
Moyanova SG, Mitreva RG, Kortenska LV, Nicoletti F, Ngomba RT. Age-dependence of sensorimotor and cerebral electroencephalographic asymmetry in rats subjected to unilateral cerebrovascular stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2013; 5:13. [PMID: 24245542 PMCID: PMC4176494 DOI: 10.1186/2040-7378-5-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/06/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND The human population mostly affected by stroke is more than 65 years old. This study was designed to meet the recommendation that models of cerebral ischemia in aged animals are more relevant to the clinical setting than young animal models. Until now the majority of the pre-clinical studies examining age effects on stroke outcomes have used rats of old age. Considering the increasing incidence of stroke among younger than old human population, new translational approaches in animal models are needed to match the rejuvenation of stroke. A better knowledge of alterations in stroke outcomes in middle-aged rats has important preventive and management implications providing clues for future investigations on effects of various neuroprotective and neurorestorative drugs against cerebrovascular accidents that may occur before late senescence. METHODS We evaluated the impact of transient focal ischemia, induced by intracerebral unilateral infusion of endothelin-1 (Et-1) near the middle cerebral artery of conscious rats, on volume of brain damage and asymmetry in behavioral and electroencephalographic (EEG) output measures in middle-aged (11-12 month-old) rats. RESULTS We did not find any age-dependent difference in the volume of ischemic brain damage three days after Et-1 infusion. However, age was an important determinant of neurological and EEG outcomes after stroke. Middle-aged ischemic rats had more impaired somatosensory functions of the contralateral part of the body than young ischemic rats and thus, had greater left-right reflex/sensorimotor asymmetry. Interhemispheric EEG asymmetry was more evident in middle-aged than in young ischemic rats, and this could tentatively explain the behavioral asymmetry. CONCLUSIONS With a multiparametric approach, we have validated the endothelin model of ischemia in middle-aged rats. The results provide clues for future studies on mechanisms underlying plasticity after brain damage and motivate investigations of novel neuroprotective strategies against cerebrovascular accidents that may occur before late senescence.
Collapse
Affiliation(s)
| | | | | | | | - Richard T Ngomba
- I,R,C,C,S,, NEUROMED, Localita Camerelle, 86077, Pozzilli, (IS), Italy.
| |
Collapse
|
41
|
Buga AM, Di Napoli M, Popa-Wagner A. Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation. Biogerontology 2013; 14:651-62. [PMID: 24057280 DOI: 10.1007/s10522-013-9465-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Abstract
Age is the principal nonmodifiable risk factor for stroke. Over the past 10 years, suitable models for stroke in aged rats have been established. At genetic and cellular level there are significant differences in behavioral, cytological and genomics responses to injury in old animals as compared with the young ones. Behaviorally, the aged rats have the capacity to recover after cortical infarcts albeit to a lower extent than the younger counterparts. Similarly, the increased vulnerability of the aged brain to stroke, together with a decreased interhemisphere synchrony after stroke, assessed by different experimental methods (MRI, fMRI, in vivo microscopy, EEG) leads to unfavorable recovery of physical and cognitive functions in aged people and may have a prognostic value for the recovery of stroke patients. Furthermore, in elderly, comorbidities like diabetes or arterial hypertension are associated with higher risk of stroke, increased mortality and disability, and poorer functional status and quality of life. Aging brain reacts strongly to ischemia-reperfusion injury with an early inflammatory response. The process of cellular senescence can be an important additional contributor to chronic post-stroke by creating a "primed" inflammatory environment in the brain. Overall, these pro-inflammatory reactions promote early scar formation associated with tissue fibrosis and reduce functional recovery. A better understanding of molecular factors and signaling pathways underlying the contribution of comorbidities to stroke-induced pathological sequelae, may be translated into successful treatment or prevention therapies for age-associated diseases which would improve lifespan and quality of life.
Collapse
Affiliation(s)
- A-M Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Craiova, Romania
| | | | | |
Collapse
|
42
|
Andersson D, Wilhelmsson U, Nilsson M, Kubista M, Ståhlberg A, Pekna M, Pekny M. Plasticity response in the contralesional hemisphere after subtle neurotrauma: gene expression profiling after partial deafferentation of the hippocampus. PLoS One 2013; 8:e70699. [PMID: 23936241 PMCID: PMC3723880 DOI: 10.1371/journal.pone.0070699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Neurotrauma or focal brain ischemia are known to trigger molecular and structural responses in the uninjured hemisphere. These responses may have implications for tissue repair processes as well as for the recovery of function. To determine whether the plasticity response in the uninjured hemisphere occurs even after a subtle trauma, we subjected mice to a partial unilateral deafferentation of the hippocampus induced by stereotactically performed entorhinal cortex lesion (ECL). The expression of selected genes was assessed by quantitative real-time PCR in the hippocampal tissue at the injured side and the contralesional side at day 4 and 14 after injury. We observed that expression of genes coding for synaptotagmin 1, ezrin, thrombospondin 4, and C1q proteins, that have all been implicated in the synapse formation, re-arrangement and plasticity, were upregulated both in the injured and the contralesional hippocampus, implying a plasticity response in the uninjured hemisphere. Several of the genes, the expression of which was altered in response to ECL, are known to be expressed in astrocytes. To test whether astrocyte activation plays a role in the observed plasticity response to ECL, we took advantage of mice deficient in two intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin (GFAP(-/-)Vim(-/-) ) and exhibiting attenuated astrocyte activation and reactive gliosis. The absence of GFAP and vimentin reduced the ECL-induced upregulation of thrombospondin 4, indicating that this response to ECL depends on astrocyte activation and reactive gliosis. We conclude that even a very limited focal neurotrauma triggers a distinct response at the contralesional side, which at least to some extent depends on astrocyte activation.
Collapse
Affiliation(s)
- Daniel Andersson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Nilsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Hunter Medical Research Institute, Newcastle, Australia
| | - Mikael Kubista
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and TATAA Biocenter, Gothenburg, Sweden
| | - Anders Ståhlberg
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
43
|
Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin 2013; 34:78-90. [PMID: 23064725 PMCID: PMC4086492 DOI: 10.1038/aps.2012.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.
Collapse
Affiliation(s)
- Pooya Dibajnia
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cindi M Morshead
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON M5S 3E1, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
44
|
Buga AM, Scholz CJ, Kumar S, Herndon JG, Alexandru D, Cojocaru GR, Dandekar T, Popa-Wagner A. Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS One 2012; 7:e50985. [PMID: 23251410 PMCID: PMC3521001 DOI: 10.1371/journal.pone.0050985] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/31/2012] [Indexed: 12/17/2022] Open
Abstract
Background Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. Methodology/Principal Findings We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc) may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. Conclusion/Significance We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure.
Collapse
Affiliation(s)
- Ana-Maria Buga
- Department of Psychiatry, University of Medicine, Rostock, Germany
- Department of Functional Sciences, University of Medicine, Craiova, Romania
| | - Claus Jürgen Scholz
- Interdisciplinary Center for Clinical Research, Lab for Microarray Applications, University of Würzburg, Würzburg, Germany
| | - Senthil Kumar
- Department of Biomedical Sciences, College of Veterinary Medicine, Ames, Iowa, United States of America
| | - James G. Herndon
- Yerkes National Primate Research Center of Emory University, Atlanta, Georgia, United States of America
| | - Dragos Alexandru
- Department of Functional Sciences, University of Medicine, Craiova, Romania
| | | | - Thomas Dandekar
- Department of Bioinformatics, Biocenter Am Hubland, Würzburg, Germany
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine, Rostock, Germany
- * E-mail:
| |
Collapse
|
45
|
Della-Morte D, Guadagni F, Palmirotta R, Ferroni P, Testa G, Cacciatore F, Abete P, Rengo F, Perez-Pinzon MA, Sacco RL, Rundek T. Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 2012; 13:1741-1757. [PMID: 23171338 DOI: 10.2217/pgs.12.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A subthreshold ischemic insult applied to an organ such as the heart and/or brain may help to reduce damage caused by subsequent ischemic episodes. This phenomenon is known as ischemic tolerance mediated by ischemic preconditioning (IPC) and represents the most powerful endogenous mechanism against ischemic injury. Various molecular pathways have been implicated in IPC, and several compounds have been proposed as activators or mediators of IPC. Recently, it has been established that the protective phenotype in response to ischemia depends on a coordinated response at the genomic, molecular, cellular and tissue levels by introducing the concept of 'genomic reprogramming' following IPC. In this article, we sought to review the genetic expression profiles found in cardiac and cerebral IPC studies, describe the differences between young and aged organs in IPC-mediated protection, and discuss the potential therapeutic application of IPC and pharmacological preconditioning based on the genomic response.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cerebrovascular disorders: role of aging. J Aging Res 2012; 2012:128146. [PMID: 22523684 PMCID: PMC3317098 DOI: 10.1155/2012/128146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 11/20/2011] [Indexed: 11/30/2022] Open
|
47
|
The transcriptome of cerebral ischemia. Brain Res Bull 2012; 88:313-9. [PMID: 22381515 DOI: 10.1016/j.brainresbull.2012.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/20/2011] [Accepted: 02/13/2012] [Indexed: 01/26/2023]
Abstract
The molecular causality and response to stroke is complex. Yet, much of the literature examining the molecular response to stroke has focused on targeted pathways that have been well-characterized. Consequently, our understanding of stroke pathophysiology has made little progress by way of clinical therapeutics since tissue plasminogen activator was approved for treatment nearly a decade ago. The lack of clinical translation is in part due to neuron-focused studies, preclinical models of cerebral ischemia and the paradoxical nature of neuro-inflammation. With the evolution of the Stroke Therapy Academic Industry Roundtable criteria streamlining research efforts and broad availability of genomic technologies, the ability to decipher the molecular fingerprint of ischemic stroke is on the horizon. This review highlights preclinical microarray findings of the ischemic brain, discusses the transcriptome of cerebral preconditioning and emphasizes the importance of further characterizing the role of the neurovascular unit and peripheral white blood cells in mediating stroke damage and repair within the penumbra.
Collapse
|
48
|
Sieber MW, Claus RA, Witte OW, Frahm C. Attenuated inflammatory response in aged mice brains following stroke. PLoS One 2011; 6:e26288. [PMID: 22028848 PMCID: PMC3196544 DOI: 10.1371/journal.pone.0026288] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022] Open
Abstract
Background Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory response following an ischemic injury is altered in aged organisms. Methods and Results To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1α, IL-1β, IL-6), anti-inflammatory cytokines (IL-10, TGFβ1), and chemokines (Mip-1α, MCP-1, RANTES) of adult (2 months) and aged (24 months) mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d) following transient occlusion of the middle cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1β) and the level of chemokines (Mip-1α, and MCP-1) were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFβ1, and IL-10) revealed no significant age dependency after ischemia. Aged mice brains tend to develop smaller infarcts. Conclusion The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke, and should be considered as a major prerequisite in the development of age-adjusted therapeutic interventions.
Collapse
Affiliation(s)
- Matthias W. Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
- Centre for Sepsis Control and Care, Jena University Hospital, Jena, Thuringia, Germany
| | - Ralf A. Claus
- Centre for Sepsis Control and Care, Jena University Hospital, Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
- * E-mail:
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
| |
Collapse
|
49
|
Popa-Wagner A, Buga AM, Kokaia Z. Perturbed cellular response to brain injury during aging. Ageing Res Rev 2011; 10:71-9. [PMID: 19900590 DOI: 10.1016/j.arr.2009.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 12/22/2022]
Abstract
Old age is associated with an enhanced susceptibility to stroke and poor recovery from brain injury, but the cellular processes underlying these phenomena are only partly understood. Therefore, studying the basic mechanisms underlying structural and functional recovery after brain injury in aged subjects is of considerable clinical interest. Behavioral and cytological analyses of rodents that have undergone experimental injury show that: (a) behaviorally, aged rodents are more severely impaired by ischemia than are young animals, and older rodents also show diminished functional recovery; (b) compared to young animals, aged animals develop a larger infarct area, as well as a necrotic zone characterized by a higher rate of cellular degeneration and a larger number of apoptotic cells; (c) both astrocytes and macrophages are activated strongly and early following stroke in aged rodents; (d) in older animals, the premature, intense cytoproliferative activity following brain injury leads to the precipitous formation of growth-inhibiting scar tissue, a phenomenon amplified by the persistent expression of neurotoxic factors; (e) though the timing is altered, the regenerative capability of the brain is largely preserved in rats, at least into early old age. Whether endogenous neurogenesis contributes to spontaneous recovery after stroke has not yet been established. If neurogenesis from endogenous neuronal stem cells is to be used therapeutically, an individual approach will be required to assess the possible extent of neurogenic response as well as the possibilities to alter this response for functional improvement or prevention of further loss of brain function.
Collapse
|
50
|
Wang Y, Cooke MJ, Lapitsky Y, Wylie RG, Sachewsky N, Corbett D, Morshead CM, Shoichet MS. Transport of epidermal growth factor in the stroke-injured brain. J Control Release 2010; 149:225-35. [PMID: 21035512 DOI: 10.1016/j.jconrel.2010.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022]
Abstract
Stroke is a neurological disorder that currently has no cure. Intrathecal delivery of growth factors, specifically recombinant human epidermal growth factor (rhEGF), stimulates endogenous neural precursor cells in the subventricular zone (SVZ) and promotes tissue regeneration in animal models of stroke. In this model, rhEGF is delivered with an invasive minipump/catheter system, which causes trauma to the brain. A less invasive strategy is to deliver rhEGF from the brain cortex; however, this requires the protein to diffuse through the brain, from the site of injection to the SVZ. Although this method of delivery has great potential, diffusion is limited by rapid removal from the extracellular space and hence for successful translation into the clinic strategies are needed to increase the diffusion distance. Using integrative optical imaging we investigate diffusion of rhEGF vs. poly(ethylene glycol)-modified rhEGF (PEG-rhEGF) in brain slices of both uninjured and stroke-injured animals. For the first time, we quantitatively show that PEG modification reduces the rate of growth factor elimination by over an order of magnitude. For rhEGF this corresponds to a two to threefold increase in predicted brain penetration distance, which we confirm with in vivo data.
Collapse
Affiliation(s)
- Yuanfei Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada M5S 3E5
| | | | | | | | | | | | | | | |
Collapse
|