1
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Ghassemifard L, Hasanlu M, Parsamanesh N, Atkin SL, Almahmeed W, Sahebkar A. Cell Therapies and Gene Therapy for Diabetes: Current Progress. Curr Diabetes Rev 2025; 21:e130524229899. [PMID: 38747221 DOI: 10.2174/0115733998292392240425122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2025]
Abstract
The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.
Collapse
Affiliation(s)
- Leila Ghassemifard
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Naqvi RA, Naqvi A. Co-transplantation with mesenchymal stem cells and endothelial cells improvise islet engraftment and survival in STZ treated hyperglycemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525444. [PMID: 36747732 PMCID: PMC9900768 DOI: 10.1101/2023.01.24.525444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Though intra-portal islet transplantation demonstrated as best suited strategy for the reversal of hyperglycemia without the threat of iatrogenic hyperglycemia in type 1 diabetes (T1D) in patients, the inferior quality of post-transplantation (tx) vascularization needs to be addressed for the maximization of post-tx islet survival. Therefore, in this study, we have first generated MSCs and endothelial progenitor cells (EPC) from mice bone marrow by in house optimized protocol and then 3-D co-cultured them with mice islets. Secretion of in the culture supernatant suggested the pro-angiogenic nature of 3D cultured mice islets. After 5 days post-tx of these pro-angiogenic islets in the omental pouch of syngeneic mice led to: 1) restoration of normoglycemia, 2) secretion of mouse C-peptide and 3) induction of angiogenic factors after 3 days of post-tx. The induction of angiogenic factors was done by RT-qPCR of omental biopsies. Importantly, pro-angiogenic islet recipient mice also demonstrated the clearance of glucose within 75 min, reflecting their efficient function and engraftment. Our results highlights needs of 3-D co-culture islets for superior quality post-tx islet vasculature and better engraftment â€" crux to improvise the challenges associated with post-tx islet vascularization and functions.
Collapse
|
4
|
Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic Implications of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Autoimmune Diseases: From Biology to Clinical Applications. Int J Mol Sci 2021; 22:10132. [PMID: 34576296 PMCID: PMC8468750 DOI: 10.3390/ijms221810132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are perivascular multipotent stem cells originally identified in the bone marrow (BM) stroma and subsequently in virtually all vascularized tissues. Because of their ability to differentiate into various mesodermal lineages, their trophic properties, homing capacity, and immunomodulatory functions, MSCs have emerged as attractive candidates in tissue repair and treatment of autoimmune disorders. Accumulating evidence suggests that the beneficial effects of MSCs may be primarily mediated via a number of paracrine-acting soluble factors and extracellular vesicles (EVs). EVs are membrane-coated vesicles that are increasingly being acknowledged as playing a key role in intercellular communication via their capacity to carry and deliver their cargo, consisting of proteins, nucleic acids, and lipids to recipient cells. MSC-EVs recapitulate the functions of the cells they originate, including immunoregulatory effects but do not seem to be associated with the limitations and concerns of cell-based therapies, thereby emerging as an appealing alternative therapeutic option in immune-mediated disorders. In the present review, the biology of MSCs will be outlined and an overview of their immunomodulatory functions will be provided. In addition, current knowledge on the features of MSC-EVs and their immunoregulatory potential will be summarized. Finally, therapeutic applications of MSCs and MSC-EVs in autoimmune disorders will be discussed.
Collapse
Affiliation(s)
- Angelos Matheakakis
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Helen A. Papadaki
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Charalampos G. Pontikoglou
- Department of Hematology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.M.); (H.A.P.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
5
|
Zhang S, Wang Q, Ji H, Lu H, Yang Q, Yin J, Guan W. Porcine pancreas mesenchymal cell characterization and functional differentiation into insulin‑producing cells in vitro. Mol Med Rep 2021; 24:737. [PMID: 34414446 PMCID: PMC8404098 DOI: 10.3892/mmr.2021.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is a promising treatment strategy for patients with type 1 diabetes. Porcine pancreas-derived mesenchymal stromal cells (PMSCs) have emerged as one of the most widely used cell resources owing to their high proliferative capacity and multi-lineage differentiation potential. Although the induction efficiency and insulin production of induced insulin-producing cells (IPCs) derived from PMSCs have been estimated, these have primarily focused on the function of induced cells and alterations in related gene expression levels. However, morphological analyses and biological characterization of PMSCs and induced IPCs have not been conducted. Therefore, the present study aimed to optimize an induction protocol, resulting in a 78.92% induction rate. The present study investigated the biological characteristics of PMSCs and optimized a simple but functional three-step protocol to transform PMSCs into IPCs. PMSCs were isolated from 2–3-month-old Bama miniature pig embryos, which were then subcultured to passage 16. The surface markers pancreatic and duodenal homeobox 1, NK6 homeobox 1, Vimentin, Nestin, CD73, CD90, neurogenin 3, CD45 and CD34 were detected by immunofluorescence staining or flow cytometry. Proliferative capacity was evaluated by constructing growth curves of cells at three different passages. Functional differentiation was assessed by morphological observation, dithizone staining, and immunofluorescence staining of C-peptide, insulin, NK6 homeobox 1 and glucagon. The production of insulin by differentiated cells was also analyzed by performing ELISAs. The results demonstrated that differentiated cells were distributed with an islet-like structure, expressed specific markers C-peptide and insulin, and displayed glucose responsiveness. The results of the present study demonstrated that PMSCs were functionally induced into IPCs with the optimized three-step protocol, which may serve as a potential cell therapy strategy to widen the availability and promote the clinical application of cell therapy.
Collapse
Affiliation(s)
- Shang Zhang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qi Wang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hongbing Ji
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Huidi Lu
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qin Yang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jiahui Yin
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
6
|
Nagaya M, Hasegawa K, Uchikura A, Nakano K, Watanabe M, Umeyama K, Matsunari H, Osafune K, Kobayashi E, Nakauchi H, Nagashima H. Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes. World J Diabetes 2021; 12:306-330. [PMID: 33889282 PMCID: PMC8040081 DOI: 10.4239/wjd.v12.i4.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is among the top 10 causes of death in adults and caused approximately four million deaths worldwide in 2017. The incidence and prevalence of diabetes is predicted to increase. To alleviate this potentially severe situation, safer and more effective therapeutics are urgently required. Mice have long been the mainstay as preclinical models for basic research on diabetes, although they are not ideally suited for translating basic knowledge into clinical applications. To validate and optimize novel therapeutics for safe application in humans, an appropriate large animal model is needed. Large animals, especially pigs, are well suited for biomedical research and share many similarities with humans, including body size, anatomical features, physiology, and pathophysiology. Moreover, pigs already play an important role in translational studies, including clinical trials for xenotransplantation. Progress in genetic engineering over the past few decades has facilitated the development of transgenic animals, including porcine models of diabetes. This article discusses features that attest to the attractiveness of genetically modified porcine models of diabetes for testing novel treatment strategies using recent technical advances.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki 261-8511, Kanagawa, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Ayuko Uchikura
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Kyoto, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Shinjuku 160-8582, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato 108-8639, Tokyo, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
7
|
Höving AL, Sielemann K, Greiner JFW, Kaltschmidt B, Knabbe C, Kaltschmidt C. Transcriptome Analysis Reveals High Similarities between Adult Human Cardiac Stem Cells and Neural Crest-Derived Stem Cells. BIOLOGY 2020; 9:biology9120435. [PMID: 33271866 PMCID: PMC7761507 DOI: 10.3390/biology9120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
For the identification of a stem cell population, the comparison of transcriptome data enables the simultaneous analysis of tens of thousands of molecular markers and thus enables the precise distinction of even closely related populations. Here, we utilized global gene expression profiling to compare two adult human stem cell populations, namely neural crest-derived inferior turbinate stem cells (ITSCs) of the nasal cavity and human cardiac stem cells (hCSCs) from the heart auricle. We detected high similarities between the transcriptomes of both stem cell populations, particularly including a range of neural crest-associated genes. However, global gene expression likewise reflected differences between the stem cell populations with regard to their niches of origin. In a broader analysis, we further identified clear similarities between ITSCs, hCSCs and other adherent stem cell populations compared to non-adherent hematopoietic progenitor cells. In summary, our observations reveal high similarities between adult human cardiac stem cells and neural crest-derived stem cells from the nasal cavity, which include a shared relation to the neural crest. The analyses provided here may help to understand underlying molecular regulators determining differences between adult human stem cell populations.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence: (A.L.H.); (C.K.)
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- AG Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Correspondence: (A.L.H.); (C.K.)
| |
Collapse
|
8
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
9
|
Rostami Z, Khorashadizadeh M, Ghoncheh M, Naseri M. Effect of Pomegranate Extract in Mesenchymal Stem Cells by Modulation of microRNA-155, microRNA-21, microRNA-23b, microRNA-126a, and PI3K\AKT1\NF-
κ
B Expression. DNA Cell Biol 2020; 39:1779-1788. [PMID: 32865424 DOI: 10.1089/dna.2020.5775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Today, mesenchymal stem cells (MSCs) are candidates for various autoimmune disease treatments due to immunomodulatory activity in these cells. Much research has recently been done to improve the immunomodulatory activity of MSCs. Genetic variation is one of these methods. microRNAs (miRNAs) are small noncoding RNAs that control most of the cell's biological activities. Recent studies have shown that miRNAs play a significant role in the regulation of MSC immunomodulatory activity. Pomegranate is a fruit that has antioxidant, anti-inflammatory, and anticancer properties and has been used for many years for therapeutic purposes. The objective of this research is to evaluate the immunoregulatory-related miRNAs level of adipose-derived MSCs (Ad-MSCs) obtained from adipose tissue in the presence or lack of pomegranate (Punica granatum) extract (PGE). Our results showed that miRNA-23 and miRNA-126 were upregulated by PGE treatment in MSCs, and in contrast, miRNA-21 and miRNA-155 were downregulated by PGE treatment in MSCs. In addition this research shows that PGE can downregulate the expression of PI3K\AKT1\NF-κ B in Ad-MSCs. Our bioinformatics data have shown that the target of these four miRNAs and the signaling pathways, in which these targets are involved, can play an important role in regulating the immunomodulation function of stem cells. In conclusion, PGE can inhibit the expression of PI3K\AKT1\NF-κ B genes involved in inflammatory pathways via miRNA-23 and miRNA-126 overexpression or miRNA-21 and miRNA-155 downregulation that plays a role in the pathways of immune modulation in Ad-MSCs. These results may provide insight into the mechanism underlying the regulation of the immunomodulatory activity of Ad-MSCs by PGE.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology and Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Ghoncheh
- Department of Plastic and Reconstructive Surgery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology and Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
10
|
Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 2020; 28:585-601. [PMID: 31741175 DOI: 10.1007/s10787-019-00661-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease destroying the insulin-producing beta cells. Recently, stem cell therapy has been tested to treat T1D. In the present study, we aim to investigate the effects of intraperitoneal and intravenous infusion of multipotent mesenchymal stem/stromal cells (MSCs) and MSC-conditioned medium (MSC-CM) in an experimental model of diabetes, induced by multiple injections of Streptozotocin (STZ). The adipose tissue-derived MSC and MSC-CM were isolated from C57Bl/6 male mice and characterized. Later, MSC and MSC-CM were injected intraperitoneally or intravenously into mice. The blood glucose, urinary glucose, and body weight were measured, and the percentages of CD4+ CD25+ FOXP3+ T cells as well as the levels of IFN-γ, TGF-β, IL-4, IL-17, and IL-10 were evaluated. Our results showed that both intraperitoneal and intravenous infusions of MSC and MSC-CM could decrease the blood glucose, recover pancreatic islets, and increase the levels of insulin-producing cells. Furthermore, the percentage of CD4+ CD25+ FOXP3+ T cells was increased after intraperitoneal injection of MSC or MSC-CM and intravenous injection of MSCs. After intraperitoneal injection of the MSC and MSC-CM, the levels of inflammatory cytokines reduced, while the levels of anti-inflammatory cytokines increased. Together current data showed that although both intraperitoneal and intravenous administration had beneficial effects on T1D animal model, but intraperitoneal injection of AD-MSC and AD-MSC-CM was more effective than systemic administration.
Collapse
Affiliation(s)
- Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Rashed S, Gabr M, Abdel-Aziz AA, Zakaria M, Khater S, Ismail A, Fouad A, Refaie A. Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:1-13. [PMID: 32195201 DOI: 10.22088/ijmcm.bums.8.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous diseases and disorders. Recent phenotypic analysis has shown heterogeneity of MSCs. Nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone marrow MSCs, and differentiate these cells into functional insulin producing cells (IPCs) compared with nestin (-) cells. Manual magnetic separation was performed to obtain nestin (+) cells from MSCs. Approximately 91±3.3% of nestin (+) cells were positive for anti-nestin antibody. Pluripotent genes were overexpressed in nestin (+) cells compared with nestin (-) cells as revealed by quantitative real time-PCR (qRT-PCR). Following in vitro differentiation, flow cytometric analysis showed that 2.7±0.5% of differentiated nestin (+) cells were positive for anti-insulin antibody in comparison with 0.08±0.02% of nestin (-) cells. QRT-PCR showed higher expression of insulin and other endocrine genes in comparison with nestin (-) cells. While immunofluorescence technique showed the presence of insulin and C-peptide granules in nestin (+) cells. Therefore, our results introduced nestin (+) cells as a pluripotent subpopulation within human MSCs which is capable to differentiate and produce functional IPCs.
Collapse
Affiliation(s)
- Sahar Rashed
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mahmoud Gabr
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Abdel-Aziz Abdel-Aziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mahmoud Zakaria
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry Khater
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amani Ismail
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ali Fouad
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ayman Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Examining the therapeutic potential of various stem cell sources for differentiation into insulin-producing cells to treat diabetes. ANNALES D'ENDOCRINOLOGIE 2019; 80:47-53. [DOI: 10.1016/j.ando.2018.06.1084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
|
13
|
Zhao S, Tao L, Tian Y, Tai D, Liu P, Liu D. Isolation and characterization of ovine umbilical cord-derived mesenchymal stem cells. Cytotechnology 2019; 71:277-286. [PMID: 30603926 DOI: 10.1007/s10616-018-0284-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are able to self-renew and have multi-lineage differentiation potential. However, studies on ovine umbilical cord-derived MSCs (UC-MSCs) are limited. Our study aimed to isolate and characterize ovine UC-MSCs. We successfully isolated ovine UC-MSCs and defined their surface marker profile using immunofluorescence analysis. Ovine UC-MSCs were found to be positive for cell surface markers CD13, CD29, CD44, CD90, and CD106, and negative for cell surface marker CD45. Assessment of the proliferation potential of ovine UC-MSCs showed that from day 3 of cultivation a plateau phase was reached. And compare to passage 10, 15, 20 cells, passage 5 cells proliferating the fastest. Differentiation of ovine UC-MSCs into adipocytes, osteocytes, and chondrocytes was also demonstrated by staining for tissue-specific markers and using quantitative real-time polymerase chain reaction for specific marker gene expression. This study demonstrates the existence of a MSC population within the ovine umbilical cord, which maintained a normal karyotype up to passage 20.
Collapse
Affiliation(s)
- Sirguleng Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Li Tao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Yunyun Tian
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Dapeng Tai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China
| | - Pengxia Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China.
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, P.R. China.
| |
Collapse
|
14
|
Gamble A, Pawlick R, Pepper AR, Bruni A, Adesida A, Senior PA, Korbutt GS, Shapiro AMJ. Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. PLoS One 2018; 13:e0206449. [PMID: 30419033 PMCID: PMC6231609 DOI: 10.1371/journal.pone.0206449] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation is an established clinical procedure for select patients with type 1 diabetes and severe hypoglycemia to stabilize glycemic control. Post-transplant, substantial beta cell mass is lost, necessitating multiple donors to maintain euglycemia. A potential strategy to augment islet engraftment is the co-transplantation of islets with multipotent mesenchymal stem cells to capitalize upon their pro-angiogenic and anti-inflammatory properties. Herein, we examine the in vitro and in vivo effect of co-culturing murine islets with human adipose-derived mesenchymal stem cells (Ad-MSCs). Islets co-cultured with Ad-MSCs for 48 hours had decreased cell death, superior viability as measured by membrane integrity, improved glucose stimulated insulin secretion and reduced apoptosis compared to control islets. These observations were recapitulated with human islets, albeit tested in a limited capacity. Recipients of marginal mouse islet mass grafts, co-transplanted with Ad-MSCs without a co-culture period, did not reverse to normoglycemia as efficiently as islets alone. However, utilizing a 48-hour co-culture period, marginal mouse islets grafts with Ad-MSCs achieved a superior percent euglycemia rate when compared to islets cultured and transplanted alone. A co-culture period of human islets with human Ad-MSCs may have a clinical benefit improving engraftment outcomes.
Collapse
Affiliation(s)
- Anissa Gamble
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Adetola Adesida
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A. Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Zou W, Liu G, Zhang J. Secretome from bone marrow mesenchymal stem cells: A promising, cell-free therapy for allergic rhinitis. Med Hypotheses 2018; 121:124-126. [PMID: 30396464 DOI: 10.1016/j.mehy.2018.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022]
Abstract
Allergic rhinitis (AR), characterized by the symptoms of sneezing, rhinorrhea, itchiness and nasal blockage, is a type I allergic disease of nasal mucosa, which is mainly mediated by IgE after exposure to allergens. At present, general drug therapy is limited to alleviating allergic symptoms but fails to regulate the allergic reaction; the recurrence of symptoms and the side effects of the drugs make many patients with AR resist treatments and bring serious impacts on the quality of life. Bone marrow mesenchymal stem cells (BMSCs) are a population of adult stem cells with multipotential differentiation capability, low immunogenicity, and immunoregulatory effects. The unique immunoregulatory properties of BMSCs make them hold great promise in the treatment of chronic inflammation and immune disorders through a paracrine mechanism of anti-inflammatory and anti-allergic effects. The stem cell secretome is defined as the set of molecules secreted to the extracellular space. The secretome such as conditioned media (CM) obtained from BMSCs contains various bioactive molecules and vesicular elements, which may act as therapeutic mediators to support their immunoregulatory effects. Therefore, we hypothesize that the BMSCs secretome may represent a promising treatment for AR by anti-allergic effects via the paracrine mechanism.
Collapse
Affiliation(s)
- Wentao Zou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiaxiong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
16
|
Gamble A, Pepper AR, Bruni A, Shapiro AMJ. The journey of islet cell transplantation and future development. Islets 2018; 10:80-94. [PMID: 29394145 PMCID: PMC5895174 DOI: 10.1080/19382014.2018.1428511] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.
Collapse
Affiliation(s)
- Anissa Gamble
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Canada
| |
Collapse
|
17
|
Fan D, Xia Q, Wu S, Ye S, Liu L, Wang W, Guo X, Liu Z. Mesenchymal stem cells in the treatment of Cesarean section skin scars: study protocol for a randomized, controlled trial. Trials 2018; 19:155. [PMID: 29499740 PMCID: PMC5834835 DOI: 10.1186/s13063-018-2478-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
Background Cesarean delivery has already become a very common method of delivery around the world, especially in low-income countries. Hypertrophic scars and wound infections have affected younger mothers and frustrated obstetricians for a long time. Mesenchymal stem cells (MSCs) have strong potential for self-renewal and differentiation to multilineage cells. Previous studies have demonstrated that MSCs are involved in enhancing diabetic wound healing. Therefore, this study is designed to investigate the safety and efficacy of using MSCs in the treatment of Cesarean section skin scars. Methods This trial is a prospective, randomized, double-blind, placebo-controlled, single-center trial with three parallel groups. Ninety eligible participants will be randomly allocated to placebo, low-dose (transdermal hydrogel MSCs; 3 × 106 cells) or high-dose (transdermal hydrogel MSCs; 6 × 106 cells) groups at a 1:1:1 allocation ratio according to a randomization list, once a day for six consecutive days. Study duration will last for 6 months, comprising a 1 week run-in period and 24 weeks of follow-up. The primary aim of this trial is to compare the difference in Vancouver Scar Scale rating among the three groups at the 6th month. Adverse events, including severe and slight signs or symptoms, will be documented in case report forms. The study will be conducted at the Department of Obstetric of Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan. Discussion This trial is the first investigation of the potential for therapeutic use of MSCs for the management of women’s skin scar after Cesarean delivery. The results will give us an effective therapeutic strategy to combat Cesarean section skin scars, even with uterine scarring. Trial registration ClinicalTrials.gov, NCT02772289. Registered on 10 May 2016. Electronic supplementary material The online version of this article (10.1186/s13063-018-2478-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dazhi Fan
- Department of Obstetrics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan, Guangdong, 528000, China.,Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qing Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China.,Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Shuzhen Wu
- Department of Obstetrics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan, Guangdong, 528000, China.,Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Shaoxin Ye
- Department of Obstetrics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan, Guangdong, 528000, China.,Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China.,First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wen Wang
- Department of Obstetrics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan, Guangdong, 528000, China.,Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Xiaoling Guo
- Department of Obstetrics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan, Guangdong, 528000, China. .,Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Zhengping Liu
- Department of Obstetrics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, 11 Renminxi Road, Foshan, Guangdong, 528000, China. .,Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China.
| |
Collapse
|
18
|
Thakkar UG, Vanikar AV, Trivedi HL. Stem cells: An emerging novel therapeutic for type-1 diabetes mellitus. Diabetes Res Clin Pract 2017; 130:130-132. [PMID: 28618324 DOI: 10.1016/j.diabres.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/18/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023]
Abstract
Stem cell based strategies are therapeutically potent for treating type-1 diabetes mellitus owing to their intrinsic regenerative capacity and immunomodulatory properties to arrest autoimmune β-cell destruction, preserve residual β-cell mass, facilitate endogenous regeneration, ameliorate innate/ alloimmune graft rejection, restore β-cell-specific unresponsiveness in absence of chronic immunosuppression and to reverse hyperglycemia.
Collapse
Affiliation(s)
- Umang G Thakkar
- Department of Regenerative Medicine and Stem Cell Therapy and Pediatrics, G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS), India.
| | - Aruna V Vanikar
- Department of Regenerative Medicine and Stem Cell Therapy and Pediatrics, G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS), India; Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS), India
| | - Hargovind L Trivedi
- Department of Regenerative Medicine and Stem Cell Therapy and Pediatrics, G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS), India; Department of Nephrology and Transplantation Medicine, G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC), Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS), India
| |
Collapse
|
19
|
Cheng SK, Park EY, Pehar A, Rooney AC, Gallicano GI. Current progress of human trials using stem cell therapy as a treatment for diabetes mellitus. AMERICAN JOURNAL OF STEM CELLS 2016; 5:74-86. [PMID: 27853629 PMCID: PMC5107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Diabetes mellitus affects millions of people worldwide, and is associated with serious complications that affect nearly all body systems. Because of the severity of this global health concern, there is a great deal of research being performed on alternative treatments and possible cures. Previous treatments for diabetes have included exogenous insulin injection and pancreatic islet transplantations. These treatment methods have several limitations; thus, the use of stem cells in treating diabetes is currently a significant area of research. This review outlines current research on stem cell therapy for diabetes mellitus. Numerous studies have been performed on animals using various types of stem cells, including mesenchymal stem cells and embryonic stem cells. Moreover, results and limitations of animal studies have been confirmed in various clinical trials. Overall, stem cell treatment shows prospective advantages over insulin injections and other current treatment options, and ongoing clinical trials suggest that this therapy may be a viable treatment option for diabetics in the near future.
Collapse
Affiliation(s)
- Shuk Kei Cheng
- Georgetown University School of Medicine, Georgetown University Medical CenterWashington DC, USA
| | - Elisse Y Park
- Georgetown University School of Medicine, Georgetown University Medical CenterWashington DC, USA
| | - Andjela Pehar
- Georgetown University School of Medicine, Georgetown University Medical CenterWashington DC, USA
| | - Alexandra C Rooney
- Georgetown University School of Medicine, Georgetown University Medical CenterWashington DC, USA
| | - G. Ian Gallicano
- Georgetown University School of Medicine, Georgetown University Medical CenterWashington DC, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical CenterWashington DC, USA
| |
Collapse
|
20
|
Mehrfarjam Z, Esmaeili F, Shabani L, Ebrahimie E. Induction of pancreatic β cell gene expression in mesenchymal stem cells. Cell Biol Int 2016; 40:486-500. [DOI: 10.1002/cbin.10567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Zahra Mehrfarjam
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; P.O. Box 681499468 Khorramabad Iran
| | - Fariba Esmaeili
- Faculty of Basic Sciences; Department of Biology; University of Isfahan; P.O. Box 8174673441 Isfahan Iran
- Research Institute of Biotechnology; Shahrekord University; P.O. Box 115 Shahrekord Iran
| | - Leila Shabani
- Research Institute of Biotechnology; Shahrekord University; P.O. Box 115 Shahrekord Iran
| | - Esmaeil Ebrahimie
- Institute of Biotechnology; Shiraz University; Shiraz Iran
- Division of Information Technology, Engineering & Environment; School of Information Technology and Mathematical Sciences; University of South Australia; Adelaide Australia
- Department of Genetics and Evolution; The University of Adelaide; Adelaide Australia
- Faculty of Science and Engineering; School of Biological Sciences; Flinders University; Adelaide Australia
| |
Collapse
|
21
|
Pan XH, Zhu L, Yao X, Liu JF, Li ZA, Yang JY, Pang RQ, Ruan GP. Development of a tree shrew metabolic syndrome model and use of umbilical cord mesenchymal stem cell transplantation for treatment. Cytotechnology 2016; 68:2449-2467. [PMID: 27000263 DOI: 10.1007/s10616-016-9966-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to establish a tree shrew metabolic syndrome model and demonstrate the utility of MSCs in treating metabolic syndrome. We used tree shrew umbilical cord mesenchymal stem cell (TS-UC-MSC) transplantation for the treatment of metabolic syndrome to demonstrate the clinical application of these stem cells and to provide a theoretical basis and reference methods for this treatment. Tree shrew metabolic syndrome model showed significant insulin resistance, high blood sugar, lipid metabolism disorders, and hypertension, consistent with the diagnostic criteria. TS-UC-MSC transplantation at 16 weeks significantly reduced blood sugar and lipid levels, improved insulin resistance and the regulation of insulin secretion, and reduced the expression levels of the pro-inflammatory cytokines IL-1 and IL-6 (P < 0.05). The transplanted TS-UC-MSCs targeted the liver, kidney and pancreas; reduced liver cell degeneration, necrosis, and inflammatory exudation; mitigated bleeding congestion and inflammatory cell infiltration in the kidney; and reduced islet cell degeneration and necrosis. We successfully developed a tree shrew metabolic syndrome model and showed that MSC migrate in diseased organs and can attenuate metabolic syndrome severity in a tree shrew model.
Collapse
Affiliation(s)
- Xing-Hua Pan
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Lu Zhu
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Xiang Yao
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Ju-Fen Liu
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Zi-An Li
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Jian-Yong Yang
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Rong-Qing Pang
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China.,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China.,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China
| | - Guang-Ping Ruan
- The Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Command, Kunming, 650032, China. .,Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions (Yunnan Province), Kunming, 650032, China. .,Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
22
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
23
|
Dao LTM, Park EY, Lim SM, Choi YS, Jung HS, Jun HS. Transplantation of insulin-producing cells differentiated from human periosteum-derived progenitor cells ameliorate hyperglycemia in diabetic mice. Transplantation 2015; 98:1040-7. [PMID: 25208321 DOI: 10.1097/tp.0000000000000388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Periosteum-derived progenitor cells (PDPCs) isolated from the adult periosteum can differentiate into several specific cell types. In this study, we examined the characteristics of human PDPCs and insulin-producing cells (IPCs) differentiated from PDPCs and their ability to ameliorate hyperglycemia when transplanted into streptozotocin-induced nonobese diabetic-severe combined immunodeficiency diabetic mice. METHODS Periosteum-derived progenitor cells were isolated from patients, expanded in culture, and subjected to a three-step differentiation protocol to produce IPCs. The expression of immunogenic, pluripotent, and pancreatic markers was examined, and glucose-stimulated insulin release in vitro was also assessed. Insulin-producing cells that differentiated from PDPCs were transplanted under the kidney capsule of streptozotocin-induced diabetic mice, and glucose levels and glucose tolerance were measured. RESULTS We found that PDPCs expressed the mesenchymal stem cell markers CD73, CD90, and CD105 and the pluripotent markers, octamer-binding transcription factor 4 and Nanog, but not sex-determining region Y-box 2 or Rex1. Periosteum-derived progenitor cells expressed human leukocyte antigen-ABC but did not express human leukocyte antigen-DR or the costimulatory molecules CD80 and CD86. Differentiated IPCs expressed pancreatic hormones (insulin, glucagon, somatostatin, and glucose transporter 2), hormone processing, and secretion molecules (prohormone convertase-1 and convertase-2, Kir6.2), and pancreatic transcription factors (neurogenin 3, pancreatic and duodenal homeobox 1, sex-determining region Y-box 17). When IPCs were stimulated with glucose in vitro, insulin secretion was elevated. Transplantation of IPCs under the kidney capsules of diabetic mice improved hyperglycemia and glucose tolerance. Human insulin was detected in the serum and kidney sections of mice transplanted with IPCs differentiated from PDPCs. CONCLUSION These results suggest that IPCs differentiated from PDPCs might be an alternative source of β cells for treating diabetes.
Collapse
Affiliation(s)
- Lan T M Dao
- 1 College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon, South Korea. 2 Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-ku, Incheon, South Korea. 3 Department of Biological Engineering, Inha University, Incheon, South Korea. 4 Department of Applied Bioscience, CHA University, Seoul, South Korea. 5 Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea. 6 Gachon Medical Research Institute, Gil Hospital, Incheon, South Korea. 7 Address correspondence to: Hee-Sook Jun, Ph.D., College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015; 2015:394917. [PMID: 25961059 PMCID: PMC4417567 DOI: 10.1155/2015/394917] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD).
Collapse
|
25
|
Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. INTERNATIONAL ORTHOPAEDICS 2015; 39:1639-43. [PMID: 25795249 DOI: 10.1007/s00264-015-2738-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE Clinical studies in diabetic patients have demonstrated that there is a high incidence of complications in distal tibia and ankle fracture treatments. One strategy to mitigate issues with wound healing and infection in diabetic patients is to use a percutaneous technique in which autologous, bone marrow-derived, concentrated cells are injected at the site of non-unions. METHODS Eighty-six ankle non-union in diabetic patients were treated with bone marrow mesenchymal stem cells (BM-MSCs) delivered in an autologous bone marrow concentrate (BMC). Clinical outcomes of the 86 diabetic non-union patients treated with BMC were compared with 86 diabetic matched non-unions treated with a standard bone iliac crest autograft. RESULTS Treatment with BMC promoted non-union healing in 70 among 86 diabetic patients (82.1 %) with a low number of complications. Of the 86 diabetic patients treated with iliac bone graft, 53 (62.3 %) had healing; major complications were observed: 5 amputations, 11 osteonecroses of the fracture wound edge and 17 infections. CONCLUSIONS In diabetic patients with ankle non-unions, treatment with BM-MSCs from bone marrow concentrate may be preferable in view of the high risks of major complications after open surgery and iliac bone grafting, and improved healing rates compared with standard iliac bone autograft treatment.
Collapse
|
26
|
Hashemian SJ, Kouhnavard M, Nasli-Esfahani E. Mesenchymal Stem Cells: Rising Concerns over Their Application in Treatment of Type One Diabetes Mellitus. J Diabetes Res 2015; 2015:675103. [PMID: 26576437 PMCID: PMC4630398 DOI: 10.1155/2015/675103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/17/2015] [Accepted: 01/18/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes.
Collapse
Affiliation(s)
- Seyed Jafar Hashemian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Seyed Jafar Hashemian:
| | - Marjan Kouhnavard
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Dave S. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes. Adv Biomed Res 2014; 3:266. [PMID: 25625105 PMCID: PMC4298883 DOI: 10.4103/2277-9175.148247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/21/2013] [Indexed: 12/31/2022] Open
Abstract
The pathophysiology of type 1 diabetes mellitus (T1DM) is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs) offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs) can be targeted. To date, the role of MSCs-derived IPC in T1DM–a unique approach with some positive findings–have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized.
Collapse
Affiliation(s)
- Shruti Dave
- Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, Stem Cell Lab and Transplant Biology Research Centre, G. R. Doshi and K. M. Mehta Institute of Kidney Diseases and Research Centre-Dr. H. L. Trivedi Institute of Transplantation Sciences, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
| |
Collapse
|
28
|
Xie H, Wang Y, Zhang H, Qi H, Zhou H, Li FR. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells. PLoS One 2013; 8:e76056. [PMID: 24058711 PMCID: PMC3776851 DOI: 10.1371/journal.pone.0076056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/24/2013] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs.
Collapse
Affiliation(s)
- Hongbin Xie
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Yunshuai Wang
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Hui Zhang
- Laboratory of Cancer Cell Proteomics, Nevada Cancer Institute, Las Vegas, Nevada, United States of America
| | - Hui Qi
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Hanxin Zhou
- Department of General Surgery, First Hospital (Shenzhen second People’s Hospital) of Shenzhen University, Shenzhen, China
| | - Fu-Rong Li
- The Key Laboratory of stem cell and cellular therapy, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
- Shenzhen Institute of Gerontology, Shenzhen, China
- * E-mail:
| |
Collapse
|
29
|
Transient Alteration of Gene Expression in Adipose-Derived Stem Cells Using Liposomal-Driven Protein Extracts. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
Zhang L, Xiang J, Li G. The uncertain role of unmodified mesenchymal stem cells in tumor progression: what master switch? Stem Cell Res Ther 2013; 4:22. [PMID: 23510751 PMCID: PMC3707017 DOI: 10.1186/scrt170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as promising gene vectors for cancer therapy because of their unique characteristics, including the ease of their expansion and genetic modification and their remarkable tumor-tropic properties. However, there remains a concern that MSCs may promote cancer progression. Surprisingly, there are conflicting reports within the literature describing both the promotion and inhibition of cancer progression by MSCs. The reasons for this discrepancy are still unknown. The surface markers, differentiation ability, and tumorigenic roles of MSCs, as well as their effect on immunoregulation, produce heterogeneity. In this review, we describe the heterogeneity of MSCs by the species from which they are derived, the methodology for their isolation and the context of their interactions with cancer cells. The conflicting roles of MSCs in tumor progression may be attributable to the bimodal effect of unmodified MSCs on immunoregulation. MSCs have been reported to suppress T-cell function and inhibit graft-versus-host disease (GVHD). On the other hand, MSCs elicit the graft-versus-tumor (GVT) effect in some cases. Selective allodepletion may be used to dissociate GVHD from the GVT effect. Understanding the conditions that balance GVHD and the GVT effect of MSCs may be crucial to advance cancer therapy research with respect to MSCs.
Collapse
Affiliation(s)
- Liyang Zhang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, PR China
| | - Juanjuan Xiang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, PR China
| | - Guiyuan Li
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, PR China
| |
Collapse
|
31
|
Liu Y, He CS, Liu Y, Zhang LF, Zeng W, Chen Q. Superselective peripancreatic arterial catheterization for infusion of autologous bone stem cells in diabetic patients: An analysis of 24 cases. Shijie Huaren Xiaohua Zazhi 2013; 21:272-277. [DOI: 10.11569/wcjd.v21.i3.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the safety and feasibility of superselective peripancreatic arterial catheterization for infusion of autologous bone marrow stem cells in diabetic patients.
METHODS: A total of 24 patients with diabetes mellitus underwent celiac trunk, hepatic artery and splenic artery angiography, and peripancreatic arteries, which origin from these arteries, were carefully evaluated. One of these peripancreatic arteries was superselectively catheterized with a coaxial microcatheter. After the microcatheter reached the peripancreatic artery, autologous bone marrow stem cells were slowly injected into the artery transcatheterly. For distorted or small peripancreatic arteries that made catheterization difficult, balloon-assisted infusion of autologous bone marrow stem cells was utilized. Success rate, time required for the procedure and complications were evaluated.
RESULTS: Superselective peripancreatic arterial catheterization was successful in 23 of 24 patients, with a success rate of 95.8%. Superselective catheterization of the dorsal pancreatic artery was performed in 7 cases, the great pancreatic artery in 8 cases, the caudal pancreatic artery in 4 cases and the pancreatic artery supplying pancreatic head in 4 cases. The patient with the failed procedure was converted to balloon-assisted infusion of stem cells. Complications such as spasm, perforation, dissection, vascular occlusion and thrombosis were not observed. The time required for the procedure ranged from 25 to 190 min, with a median value of 55 min.
CONCLUSION: Superselective peripancreatic arterial catheterization is a safe and feasible method for infusion of autologous bone marrow stem cells in diabetic patients.
Collapse
|
32
|
Sayyar B, Dodd M, Wen J, Ma S, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Encapsulation of factor IX-engineered mesenchymal stem cells in fibrinogen-alginate microcapsules enhances their viability and transgene secretion. J Tissue Eng 2012; 3:2041731412462018. [PMID: 23316273 PMCID: PMC3540750 DOI: 10.1177/2041731412462018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell microencapsulation holds significant promise as a strategy for cellular therapies; however, inadequate survival and functionality of the enclosed cells limit its application in hemophilia treatment. Here, we evaluated the use of alginate-based microcapsules to enhance the viability and transgene secretion of human cord blood–derived mesenchymal stem cells in three-dimensional cultures. Given the positive effects of extracellular matrix molecules on mesenchymal stem cell growth, we tested whether fibrinogen-supplemented alginate microcapsules can improve the efficiency of encapsulated factor IX–engineered mesenchymal stem cells as a treatment of hemophilia B. We found that fibrinogen-supplemented alginate microcapsules (a) significantly enhanced the viability and proliferation of factor IX–engineered mesenchymal stem cells and (b) increased factor IX secretion by mesenchymal stem cells compared to mesenchymal stem cells in nonsupplemented microcapsules. Moreover, we observed the osteogenic, but not chondrogenic or adipogenic, differentiation capability of factor IX–engineered cord blood mesenchymal stem cells and their efficient factor IX secretion while encapsulated in fibrinogen-supplemented alginate microcapsules. Thus, the use of engineered mesenchymal stem cells encapsulated in fibrinogen-modified microcapsules may have potential application in the treatment of hemophilia or other protein deficiency diseases.
Collapse
Affiliation(s)
- Bahareh Sayyar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Pedraza E, Brady AC, Fraker CA, Molano RD, Sukert S, Berman DM, Kenyon NS, Pileggi A, Ricordi C, Stabler CL. Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transplant 2012; 22:1123-35. [PMID: 23031502 DOI: 10.3727/096368912x657440] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinical islet transplantation has demonstrated success in treating type 1 diabetes. A current limitation is the intrahepatic portal vein transplant site, which is prone to mechanical stress and inflammation. Transplantation of pancreatic islets into alternative sites is preferable, but challenging, as it may require a three-dimensional vehicle to confer mechanical protection and to confine islets to a well-defined, retrievable space where islet neovascularization can occur. We have fabricated biostable, macroporous scaffolds from poly(dimethylsiloxane) (PDMS) and investigated islet retention and distribution, metabolic function, and glucose-dependent insulin secretion within these scaffolds. Islets from multiple sources, including rodents, nonhuman primates, and humans, were tested in vitro. We observed high islet retention and distribution within PDMS scaffolds, with retention of small islets (< 100 µm) improved through the postloading addition of fibrin gel. Islets loaded within PDMS scaffolds exhibited viability and function comparable to standard culture conditions when incubated under normal oxygen tensions, but displayed improved viability compared to standard two-dimensional culture controls under low oxygen tensions. In vivo efficacy of scaffolds to support islet grafts was evaluated after transplantation in the omental pouch of chemically induced diabetic syngeneic rats, which promptly achieved normoglycemia. Collectively, these results are promising in that they indicate the potential for transplanting islets into a clinically relevant, extrahepatic site that provides spatial distribution of islets as well as intradevice vascularization.
Collapse
Affiliation(s)
- Eileen Pedraza
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Verrijn Stuart AA, de Jager W, Klein MR, Teklenburg G, Nuboer R, Hoorweg JJG, de Vroede MAMJ, de Kruijff I, Fick M, Schroor EJ, van der Vlist GJ, Meerding J, Kamphuis S, Prakken BJ. Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab Res Rev 2012; 28:527-34. [PMID: 22492505 DOI: 10.1002/dmrr.2306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Treatment with a specific HSP60 epitope in new onset of type 1 diabetes (T1D) patients has been shown to preserve endogenous insulin production. Previously, recognition of pan HLA-DR-binding HSP60 epitopes in various autoimmune diseases was found; this study investigated recognition of these epitopes in newly diagnosed T1D patients and correlated findings to the occurrence of a partial remission. METHODS Peripheral blood mononuclear cells of 18 children with T1D were prospectively collected at disease onset and a few months after diagnosis. Epitope-specific T-cell proliferation and cytokine production (intracellular and in culture supernatants) were measured. Results were compared with 31 longstanding T1D patients and ten healthy controls. RESULTS Although HSP60 epitope-specific T-cell proliferative responses were detected, overall proliferative responses were low. At onset, epitope-specific intracellular IFN-γ production was higher in T1D patients compared with healthy controls (p < 0.05). At follow-up, both IL-10 and IFN-γ production were higher in those without a partial remission than in those with a partial remission (both p < 0.05). Also, IL-10 and IFN-γ production were higher compared with onset for patients without a PR (both p < 0.01). In supernatants of HSP60 epitope-specific T-cell cultures, no substantial differences in cytokine production were found between T1D patients with and without a partial remission, either at onset or a few months after onset. As patient numbers were small, results should be interpreted with caution. CONCLUSIONS Pan-DR-binding HSP60 peptides induced low peptide-specific proliferative responses and peptide-specific production of some, mainly intracellular, cytokines in T1D patients. Recognition did not differ significantly between patient groups and various time points.
Collapse
Affiliation(s)
- A A Verrijn Stuart
- Department of Paediatric Endocrinology, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhu D, Chen L, Hong T. Position Statement of the Chinese Diabetes Society regarding stem cell therapy for diabetes. J Diabetes 2012; 4:18-21. [PMID: 22040058 DOI: 10.1111/j.1753-0407.2011.00166.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Dalong Zhu
- Division of Endocrinology, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
36
|
Ghosh K, Kanapathipillai M, Korin N, McCarthy JR, Ingber DE. Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. NANO LETTERS 2012; 12:203-8. [PMID: 22196766 PMCID: PMC3280082 DOI: 10.1021/nl203334c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Here we report a proof-of-concept for development of pancreatic islet-targeting nanoparticles for immunomodulatory therapy of autoimmune type 1 diabetes. Modified with a unique islet-homing peptide, these polymeric nanomaterials exhibit 3-fold greater binding to islet endothelial cells and a 200-fold greater anti-inflammatory effect through targeted islet endothelial cell delivery of an immunosuppressant drug. Our findings also underscore the need to carefully tailor drug loading and nanoparticle dosage to achieve maximal vascular targeting and immunosuppression.
Collapse
Affiliation(s)
- Kaustabh Ghosh
- Vascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Netanel Korin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Donald E. Ingber
- Vascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- To whom correspondence should be sent ()
| |
Collapse
|
37
|
Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med 2011; 5:94-100. [PMID: 21681681 DOI: 10.1007/s11684-011-0116-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/13/2011] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PDMSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22-1.51) × 10(6)/kg, with an average of 1.35 × 10(6)/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7±18.7 to 34.7±13.4 IU (P<0.01), and the C-peptide level was increased from 4.1 ±3.7 ng/mL to 5.6 ±3.8 ng/mL (P<0.05) respectively after therapy. In 4 of 10 responders their insulin doses reduced more than 50% after infusion. The mean levels of insulin and C-peptide at each time point in a total of 10 patients was higher after treatment (P<0.05). No fever, chills, liver damage and other side effects were reported. The renal function and cardiac function were improved after infusion. The results obtained from this pilot clinical trial indicate that transplantation of PD-MSC represents a simple, safe and effective therapeutic approach for T2D patients with islet cell dysfunction. Further large-scale, randomized and well-controlled clinical studies will be required to substantiate these observations.
Collapse
|
38
|
Jiang R, Han Z, Zhuo G, Qu X, Li X, Wang X, Shao Y, Yang S, Han ZC. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med 2011. [PMID: 21681681 DOI: 10.1007/s11684-011-011-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PDMSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22-1.51) × 10(6)/kg, with an average of 1.35 × 10(6)/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7±18.7 to 34.7±13.4 IU (P<0.01), and the C-peptide level was increased from 4.1 ±3.7 ng/mL to 5.6 ±3.8 ng/mL (P<0.05) respectively after therapy. In 4 of 10 responders their insulin doses reduced more than 50% after infusion. The mean levels of insulin and C-peptide at each time point in a total of 10 patients was higher after treatment (P<0.05). No fever, chills, liver damage and other side effects were reported. The renal function and cardiac function were improved after infusion. The results obtained from this pilot clinical trial indicate that transplantation of PD-MSC represents a simple, safe and effective therapeutic approach for T2D patients with islet cell dysfunction. Further large-scale, randomized and well-controlled clinical studies will be required to substantiate these observations.
Collapse
Affiliation(s)
- Ranhua Jiang
- Liaoyang Diabetic Hospital, Liaoyang, 111000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Shen W, Hua J, Lei A, Lv C, Wang H, Yang C, Gao Z, Dou Z. Pancreatic islet-like clusters from bone marrow mesenchymal stem cells of human first-trimester abortus can cure streptozocin-induced mouse diabetes. Rejuvenation Res 2011; 13:695-706. [PMID: 21204652 DOI: 10.1089/rej.2009.1016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been reported to possess low immunogenicity and cause immunosuppression of recipients when allografted. They can differentiate into insulin-producing cells and may be a valuable source for islet formation. However, the extremely low differentiating rate of adult BMSCs toward insulin-producing cells and the insufficient insulin secretion of the differentiated BMSCs in vitro prevent their clinical use in diabetes treatment. Little is known about the potential of cell replacement therapy with human BMSCs. Previously, we isolated and identified human first-trimester fetal BMSCs (hfBMSCs). Under a novel four-step induction procedure established in this study, the hfBMSCs effectively differentiated into functional pancreatic islet-like cell clusters that contained 62 ± 14% insulin-producing cells, expressed a broad gene profile related to pancreatic islet β-cell development, and released high levels of insulin (2.245 ± 0.222 pmol/100 clusters per 30 min) and C-peptide (2.200 ± 0.468 pmol/100 clusters per 30 min) in response to 25 mmol/L glucose stimulus in vitro. The pancreatic islet-like cell clusters normalized the blood glucose level of diabetic model mice for at least 9 weeks when xenografted; blood glucose levels in these mice rose abnormally again when the grafts were removed. Examination of the grafts indicated that the transplanted cells survived in recipients and produced human insulin and C-peptide in situ. These results demonstrate that hfBMSCs derived from a human first-trimester abortus can differentiate into pancreatic islet-like cell clusters following an established four-step induction. The insulin-producing clusters present advantages in cell replacement therapy of type 1 diabetic model mice.
Collapse
Affiliation(s)
- Yihua Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 126:153-94. [DOI: 10.1007/10_2011_115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori H, Hanaoka J, Iwahashi S, Saito Y, Iwaguro H. Human adipose-derived stem cells: potential clinical applications in surgery. Surg Today 2010; 41:18-23. [PMID: 21191687 DOI: 10.1007/s00595-010-4415-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/05/2010] [Indexed: 12/18/2022]
Abstract
Regenerative medicine is emerging as a rapidly evolving field of research and therapeutics. Stem cells hold great promise for future translational research and clinical applications in many fields. Much research has focused on mesenchymal stem cells isolated from bone marrow in vitro and in vivo; however, bone marrow procurement causes considerable discomfort to the patient and yields a relatively small number of harvested cells. By contrast, adipose tissue represents an abundant and easily accessible source of adult stem cells, termed adipose-derived stem cells (ADSCs), with the ability to equally differentiate along multiple lineage pathways. These stem cells have angiogenic properties, possibly because of their secretion of cytokines. They may also play a role in healing acute and chronic tissue damage. Subsequently, they have a wide range of potential clinical implications. This article reviews the potential preclinical and clinical applications of mesenchymal stem cells, especially ADSCs, in surgery.
Collapse
Affiliation(s)
- Tohru Utsunomiya
- Cancer Clinical Cooperation Center, Tokushima University Hospital, 3-18-15 kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kocaefe Ç, Balcı D, Balcı Hayta B, Can A. Reprogramming of Human Umbilical Cord Stromal Mesenchymal Stem Cells for Myogenic Differentiation and Muscle Repair. Stem Cell Rev Rep 2010; 6:512-22. [DOI: 10.1007/s12015-010-9177-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Lin HY, Tsai CC, Chen LL, Chiou SH, Wang YJ, Hung SC. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK. J Biomed Sci 2010; 17:56. [PMID: 20624296 PMCID: PMC2915967 DOI: 10.1186/1423-0127-17-56] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 07/12/2010] [Indexed: 12/11/2022] Open
Abstract
Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs) offer renewable cells for generating insulin-producing cells (IPCs). Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM) such as fibronectin (FN) or laminin (LAM) enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor), PD98059 (MEK specific inhibitor) or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.
Collapse
Affiliation(s)
- Hsiao-Yun Lin
- Stem Cell Laboratory, Department of Medical Research and Education, Veterans General Hospital-Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, Lin CS. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 2010; 18:1399-406. [PMID: 19245309 DOI: 10.1089/scd.2009.0010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Due to the limited supply of donor pancreas, it is imperative that we identify alternative cell sources that can be used to treat diabetes mellitus (DM). Multipotent adipose tissue-derived stem cells (ADSC) can be abundantly and safely isolated for autologous transplantation and therefore are an ideal candidate. Here, we report the derivation of insulin-producing cells from human or rat ADSC by transduction with the pancreatic duodenal homeobox 1 (Pdx1) gene. RT-PCR analyses showed that native ADSC expressed insulin, glucagon, and NeuroD genes that were up-regulated following Pdx1 transduction. ELISA analyses showed that the transduced cells secreted increasing amount of insulin in response to increasing concentration of glucose. Transplantation of these cells under the renal capsule of streptozotocin-induced diabetic rats resulted in lowered blood glucose, higher glucose tolerance, smoother fur, and less cataract. Histological examination showed that the transplanted cells formed tissue-like structures and expressed insulin. Thus, ADSC-expressing Pdx1 appear to be suitable for treatment of DM.
Collapse
Affiliation(s)
- Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Eberhard D, Lammert E. The pancreatic beta-cell in the islet and organ community. Curr Opin Genet Dev 2009; 19:469-75. [PMID: 19713099 DOI: 10.1016/j.gde.2009.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/22/2009] [Indexed: 12/19/2022]
Abstract
The endocrine pancreas consists of highly vascularized and innervated endocrine mini-organs--the islets of Langerhans. These contain multiple types of hormone-producing cells, including the insulin-secreting beta-cell. The major task of the fully differentiated beta-cell is the tight regulation of blood glucose levels by secreting insulin into the blood stream. This requires molecular features to measure glucose and produce, process, and release insulin by exocytosis. Now multiple interactions with endocrine and nonendocrine islet cells as well as with other organs have been shown to affect the developing as well as the mature beta-cell. Therefore, failure of any of these interactions can inhibit beta-cell differentiation and glucohomeostasis. Here we review recent reports on intrapancreatic cell-cell interactions as well as signals derived from extrapancreatic organs that affect the pancreatic beta-cell.
Collapse
Affiliation(s)
- Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich-Heine-University of Duesseldorf, Gebäude 26.12, Ebene 00, Raum 78, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | |
Collapse
|
46
|
Bouffi C, Djouad F, Mathieu M, Noël D, Jorgensen C. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford) 2009; 48:1185-9. [PMID: 19561159 DOI: 10.1093/rheumatology/kep162] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have raised interest mainly because of cartilage/bone differentiation potential which is now partly eclipsed by their capacity to counteract inflammation and suppress host immune responses as well as to prevent fibrosis. MSCs have been identified within joint tissues including synovium, cartilage, subchondral bone, periosteum or adipose tissue. They are characterized by their phenotype and their ability to differentiate into three lineages, chondrocytes, osteoblasts and adipocytes. MSCs have also paracrine effects through the secretion of a number of cytokines and growth factors. This may explain the trophic effects that may be of therapeutic value for rheumatic diseases including OA and RA. On the other hand, MSCs have been associated with tumour growth. MSCs migrate to the tumour stroma, express chemokines involved in the attraction of carcinoma cells in metastasis. Indeed, the aim of this review is not only to focus on new potential therapeutic applications in osteo-articular diseases, but also to assess the potential risk of MSC-based cell therapy.
Collapse
Affiliation(s)
- Carine Bouffi
- Inserm U844, CHU Saint-Eloi, Bâtiment INM, 80 avenue Augustin Fliche, Montpellier F-34295, France
| | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The differentiation of pluripotent and multipotent stem cells into insulin-producing cells has the potential to create a renewable supply of replacement beta cells with tremendous utility in the treatment of diabetes. The purpose of this review is to summarize recent advancements in the field, with emphasis on the limitations of this technology as it relates to the beta cell. RECENT FINDINGS Multiple groups have developed successful in-vitro protocols to differentiate human embryonic stem cells and selected tissue specific stem cells into progenitors capable of insulin production and glucose-stimulated insulin secretion. The resulting cells are immature beta cell-like cells that coexpress multiple islet hormones and lack the full complement of genes necessary for normal function. Protocols that include in-vivo maturation in immune-compromised mice produce cells with a more mature phenotype. SUMMARY Although tremendous progress has been made in differentiating stem cells into insulin-producing cells, there is still more research needed to produce a fully functional adult beta cell.
Collapse
|
48
|
Abstract
We review progress towards the goal of utilizing stem cells as a source of engineered pancreatic beta-cells for therapy of diabetes. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental cues have generated beta-like cells that produce high levels of insulin, albeit at low efficiency and without full responsiveness to extracellular levels of glucose. Induced pluripotent stem (iPS) cells also can yield insulin-producing cells following similar approaches. An important recent report shows that when transplanted into mice, human ES-derived cells with a phenotype corresponding to pancreatic endoderm matured to yield cells capable of maintaining near-normal regulation of blood sugar [Kroon et al., 2008]. Major hurdles that must be overcome to enable the broad clinical translation of these advances include teratoma formation by ES and iPS cells, and the need for immunosuppressive drugs. Classes of stem cells that can be expanded extensively in culture but do not form teratomas, such as amniotic fluid-derived stem cells and hepatic stem cells, offer possible alternatives for the production of beta-like cells, but further evidence is required to document this potential. Generation of autologous iPS cells should prevent transplant rejection, but may prove prohibitively expensive. Banking strategies to identify small numbers of stem cell lines homozygous for major histocompatibility loci have been proposed to enable beneficial genetic matching that would decrease the need for immunosuppression.
Collapse
Affiliation(s)
- Mark E Furth
- Department of Urology and Wake Forest, Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
49
|
Pittenger GL, Taylor-Fishwick D, Vinik AI. A role for islet neogenesis in curing diabetes. Diabetologia 2009; 52:735-8. [PMID: 19271208 DOI: 10.1007/s00125-009-1322-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Affiliation(s)
- G L Pittenger
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.
| | | | | |
Collapse
|
50
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|