1
|
Ezedinma U, Jones E, Ring A, Miller S, Ladhams A, Fjaagesund S, Downer T, Campbell G, Oprescu F. Short report on a distinct electroencephalogram endophenotype for MTHFR gene variation co-occurring in autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2025; 29:1080-1086. [PMID: 39673442 DOI: 10.1177/13623613241305721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Anecdotal reports link a distinct, bilateral, parieto-temporally generated 4.5-Hz rhythm on an electroencephalogram to a methylenetetrahydrofolate reductase gene variant co-occurring in autism spectrum disorder, but the validation of its precision is needed. The electroencephalograms of children with autism spectrum disorder showing the distinct bilateral parieto-temporally generated 4.5-Hz rhythm and their clinical chart report on polymerase chain reaction screening for methylenetetrahydrofolate reductase gene variants, 677C>T and 1298A>C, were retrieved from an outpatient clinic between February 2019 and April 2024. Twenty-five cases were identified. Patients were between 2 and 12 (7 ± 3) years old from Asian (n = 16, 64%), European (n = 5, 20%), African (n = 1, 4%) and mixed (n = 3, 12%) ethnicities. Twenty patients (80%) were positive for 677 C>Theterozygous (n = 3, 15%), 1298A>Cheterozygous (n = 8, 40%) or both (n = 9, 45%). The polymerase chain reaction testing detected neither variant in 5 (20%) patients. Therefore, the electroencephalogram-endophenotype showed 80% precision in identifying methylenetetrahydrofolate reductase gene variant within the sample. This preliminary data support the precision of the proposed distinct, bilateral, parieto-temporally generated 4.5-Hz rhythm in identifying methylenetetrahydrofolate reductase gene variants and its potential clinical applications as a valuable, non-invasive and objective measure within the population.Lay abstractMethylenetetrahydrofolate reductase mutations refer to genetic variations in the methylenetetrahydrofolate reductase enzyme, which plays an important role in folate metabolism. Folate is essential for neural development and signalling. Children with autism spectrum disorder have atypical neural signals compared with control. This study used a non-invasive method to identify a distinct neural signal that may be useful in future screening for methylenetetrahydrofolate reductase mutation in children with autism spectrum disorder. Given that the underlying causes of autism spectrum disorder have multiple genetic factors and often require subjective assessment, this study introduces a potential non-invasive screening method for methylenetetrahydrofolate reductase gene mutation. This method could provide valuable biomarkers for screening and personalised treatments, offering hope for improved risk stratification and bespoke nutritional support and supplements to mitigate the impact on affected individuals and their descendants.
Collapse
Affiliation(s)
- Uchenna Ezedinma
- Brain Treatment Centre Australia, Australia
- University of the Sunshine Coast, Australia
| | - Evan Jones
- Brain Treatment Centre Australia, Australia
- University of the Sunshine Coast, Australia
- Health Developments Corporation, Australia
| | | | - Spencer Miller
- Baylor Scott & White Health, USA
- Brain Treatment Center Dallas, USA
| | | | - Shauna Fjaagesund
- University of the Sunshine Coast, Australia
- Health Developments Corporation, Australia
- The University of Queensland, Australia
| | | | | | | |
Collapse
|
2
|
Wang T, He W, Chen Y, Gou Y, Ma Y, Du X, Wang Y, Yan W, Zhou H. Differential One-Carbon Metabolites among Children with Autism Spectrum Disorder: A Case-Control Study. J Nutr 2024; 154:3346-3352. [PMID: 39270851 DOI: 10.1016/j.tjnut.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Driven by the complex multifactorial etiopathogenesis of autism spectrum disorder (ASD), a growing interest surrounds the disturbance in folate-dependent one-carbon metabolism (OCM) in the pathology of ASD, whereas the evidence remained inconclusive. OBJECTIVES The study aims to investigate the association of OCM metabolism and ASD and characterize differential OCM metabolites among children with ASD. METHODS Plasma OCM metabolites were investigated in 59 children with ASD and 40 neurotypical children using ultra-performance liquid chromatography tandem mass spectrometry technology. Differences (significance level < 0.001) were tested in each OCM metabolite between cases and controls. Multivariable models were also performed after adjusting for covariates. RESULTS Ten out of 22 examined OCM metabolites were significantly different in children with ASD, compared with neurotypical controls. Specifically, S-adenosylmethionine (SAM), oxidized glutathione (GSSG), and glutathione (GSH) levels were increased, whereas S-adenosylhomocysteine (SAH), choline, glycine, L-serine, cystathionine, L-cysteine, and taurine levels were significantly decreased. Children with ASD showed significantly higher SAM/SAH ratio (3.87 ± 0.93 compared with 2.00 ± 0.76, P = 0.0001) and lower GSH/GSSG ratio [0.58 (0.46, 0.81) compared with 1.71 (0.93, 2.99)] compared with the neurotypical controls. Potential interactive effects between SAM/SAH ratio, taurine, L-serine, and gastrointestinal syndromes were further observed. CONCLUSIONS OCM disturbance was observed among children with ASD, particularly in methionine methylation and trans-sulfuration pathways. The findings add valuable insights into the mechanisms underlying ASD and the potential of ameliorating OCM as a promising therapeutic of ASD, which warrant further validation.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wennan He
- Department of Clinical Epidemiology & Clinical Trial Unit (CTU), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun Chen
- Department of Neurological Rehabilitation, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Guiyang, China
| | - Yuxun Gou
- Guizhou Medical University, Guiyang, China
| | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Weili Yan
- Department of Clinical Epidemiology & Clinical Trial Unit (CTU), Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Hao Zhou
- Department of Neurological Rehabilitation, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Guiyang, China; Department of Rehabilitation, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Indika NLR, Senarathne UD, Malvaso A, Darshana D, Owens SC, Mansouri B, Semenova Y, Bjørklund G. Abnormal Porphyrin Metabolism in Autism Spectrum Disorder and Therapeutic Implications. Mol Neurobiol 2024; 61:3851-3866. [PMID: 38032468 DOI: 10.1007/s12035-023-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Autism spectrum disorder (ASD) is a mosaic of neurodevelopmental conditions composed of early-onset social interaction and communication deficits, along with repetitive and/or restricted patterns of activities, behavior, and interests. ASD affects around 1% of children worldwide, with a male predominance. Energy, porphyrin, and neurotransmitter homeostasis are the key metabolic pathways affected by heavy metal exposure, potentially implicated in the pathogenesis of ASD. Exposure to heavy metals can lead to an altered porphyrin metabolism due to enzyme inhibition by heavy metals. Heavy metal exposure, inborn genetic susceptibility, and abnormal thiol and selenol metabolism may play a significant role in the urinary porphyrin profile anomalies observed in ASD. Altered porphyrin metabolism in ASD may also be associated with, vitamin B6 deficiency, hyperoxalemia, hyperhomocysteinemia, and hypomagnesemia. The present review considers the abnormal porphyrin metabolism in ASD in relation to the potential pathogenic mechanism and discusses the possible metabolic therapies such as vitamins, minerals, cofactors, and antioxidants that need to be explored in future research. Such targeted therapeutic therapies would bring about favorable outcomes such as improvements in core and co-occurring symptoms.
Collapse
Affiliation(s)
- Neluwa-Liyanage R Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Udara D Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Chemical Pathology, Monash Health Pathology, Monash Health, Clayton, Victoria, Australia
| | - Antonio Malvaso
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Dhanushka Darshana
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Susan C Owens
- Autism Oxalate Project, Autism Research Institute, San Diego, CA, USA
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
4
|
Yamasue H. Is the efficacy of oxytocin for autism diminished at higher dosages or repeated doses?: Potential mechanisms and candidate solutions. Peptides 2024; 171:171133. [PMID: 38072084 DOI: 10.1016/j.peptides.2023.171133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
No approved pharmacological intervention currently exists to address the core symptoms of autism spectrum disorder, a prevalent neurodevelopmental condition. However, there is a growing body of empirical evidence highlighting oxytocin's modulatory effects on social and communicative behaviors. Numerous single-dose trials have consistently demonstrated the efficacy of oxytocin in ameliorating behavioral and neural measurements associated with the core symptoms of autism spectrum disorder. Nevertheless, prior investigations involving the repeated administration of oxytocin have yielded disparate findings concerning its effectiveness, particularly in relation to clinical measures of the core symptoms of autism spectrum disorder. Recent studies have also raised the possibility of diminishing efficacy of oxytocin over time, particularly when higher or recurrent dosages of oxytocin are administered. This review article aims to provide an overview of previous studies examining this issue. Furthermore, it aims to discuss the potential mechanisms underlying these effects, including the interaction between oxytocin and vasopressin, as well as potential strategies for addressing the challenges mentioned. This review's overall objective is to provide insights into the potential development of innovative therapeutics to mitigate the core symptoms of autism spectrum disorder, representing potential breakthroughs in the treatment of this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
5
|
Fang Y, Cui Y, Yin Z, Hou M, Guo P, Wang H, Liu N, Cai C, Wang M. Comprehensive systematic review and meta-analysis of the association between common genetic variants and autism spectrum disorder. Gene 2023; 887:147723. [PMID: 37598788 DOI: 10.1016/j.gene.2023.147723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is neurodevelopmental disorder characterized by stereotyped behavior and deficits in communication and social interactions. To date, numerous studies have investigated the associations between genetic variants and ASD risk. However, the results of these published studies lack a clear consensus. In the present study, we performed a systematic review on the association between genetic variants and ASD risk. Meanwhile, we conducted a meta-analysis on available data to identify the association between the single nucleotide polymorphisms (SNPs) of candidate genes and ASD risk. METHODS We systematically searched public databases including English and Chinese from their inception to August 1, 2022. Two independent reviewers extracted data and assessed study quality. Odds ratio and 95 % confidence interval were used as effect indexes to evaluate the association between the SNPs of candidate genes and the risk of ASD. Heterogeneity was explored through subgroup, sensitivity, and meta-regression analyses. Publication bias was assessed by using Egger's and Begg's tests for funnel plot asymmetry. In addition, TSA analysis were performed to confirm the study findings. RESULTS We summarized 84 SNPs of 32 candidate genes from 81 articles included in the study. Subsequently, we analyzed 16 SNPs of eight genes by calculating pooled ORs, and identified eight significant SNPs of contactin associated protein 2 (CNTNAP2), methylentetrahydrofolate reductase (MTHFR), oxytocin receptor (OXTR), and vitamin D receptor (VDR). Results showed that seven SNPs, including the CNTNAP2 rs2710102 (homozygote, heterozygote, dominant and allelic models) and rs7794745 (heterozygote and dominant models), MTHFR C677T (homozygote, heterozygote, dominant, recessive and allelic models) and A1298C (dominant and allelic models), OXTR rs2254298 (homozygote and recessive models), VDR rs731236 (homozygote, dominant, recessive and allelic models) and rs2228570 (homozygote and recessive models), were showed to be correlated with an increased ASD risk. By contrast, the VDR rs7975232 was correlated with a decreased the risk of ASD under the homozygote and allelic models. CONCLUSION Our study summarized research evidence on the genetic variants of ASD and provides a broad and detailed overview of ASD risk genes. The C677T and A1298C polymorphisms of MTHFR, rs2710102 and rs7794745 polymorphisms of CNTNAP2, rs2254298 polymorphism of OXTR, and rs731236 and rs2228570 polymorphisms of VDR were genetic risk factors. The rs7975232 polymorphism of VDR was a genetic protective factor for ASD. Our study provides novel clues to clinicians and healthcare decision-makers to predict ASD susceptibility.
Collapse
Affiliation(s)
- Yulian Fang
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mengzhu Hou
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Nan Liu
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute of Environment and Health, South China Hospital, Medical School, Shenzhen 518116, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Mingbang Wang
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong 518116, China; Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
6
|
Tan Y, Zhou L, Gu K, Xie C, Wang Y, Cha L, Wu Y, Wang J, Song X, Chen X, Hu H, Yang Q. Correlation between Vitamin B12 and Mental Health in Children and Adolescents: A Systematic Review and Meta-analysis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:617-633. [PMID: 37859436 PMCID: PMC10591166 DOI: 10.9758/cpn.22.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 10/21/2023]
Abstract
To conduct the association between vitamin B12 and mental health in children and adolescents. Five databases were searched for observational studies in any language reporting on mental health and vitamin B12 levels or intake in children and adolescents from inception to March 18, 2022. Two authors independently extracted data and assessed study quality. Qualitative and quantitative analysis of data were performed. The review was registered in the PROSPERO database (CRD42022345476). Fifty six studies containing 37,932 participants were identified in the review. Vitamin B12 levels were lower in participants with autism spectrum disorders (ASD) (standardized mean difference [SMD], -1.61; 95% confidence interval [95% CI], -2.44 to -0.79; p < 0.001), attention deficit hyperactivity disorders (SMD, -0.39; 95% CI, -0.78 to -0.00; p = 0.049) compared with control group. Vitamin B12 intake were lower in participants with ASDs (SMD, -0.86; 95% CI, -1.48 to -0.24; p = 0.006) compared with control group, but showed no difference between depression group (SMD, -0.06; 95% CI, -0.15 to 0.03; p = 0.17) and the control group. Higher vitamin B12 intake were associated with lower risk of depression (odds ratio [OR], 0.79; 95% CI, 0.63-0.98; p = 0.034) and behavioral problems (OR, 0.83; 95% CI, 0.69-0.99; p = 0.04). The vast majority of included studies supported potential positive influence of vitamin B12 on mental health, and vitamin B12 deficiency may be a reversible cause for some mental health disorders in children and adolescents.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiqi Gu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caihong Xie
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijun Cha
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Hu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Carpita B, Massoni L, Battaglini S, Palego L, Cremone IM, Massimetti G, Betti L, Giannaccini G, Dell'Osso L. IL-6, homocysteine, and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr 2023; 28:620-628. [PMID: 36690583 DOI: 10.1017/s1092852923000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The importance of recognizing different kinds of autism spectrum presentations among adults, including subthreshold forms and the broad autism phenotype (BAP), has been increasingly highlighted in recent studies. Meanwhile, the possible involvement of immune system deregulation and altered methylation/trans-sulfuration processes in autism spectrum disorder (ASD) is gaining growing attention, but studies in this field are mainly focused on children. In this framework, the aim of this study was to compare plasmatic concentrations of IL-6 and homocysteine (HCY) among adults with ASD, their first-degree relatives, and healthy controls (CTLs), investigating also possible correlations with specific autism symptoms. METHODS Plasma concentrations of IL-6 and HCY were measured in a group of adult subjects with ASD, their first-degree relatives (BAP group), and healthy controls (CTL). All participants were also evaluated with psychometric instruments. RESULTS IL-6 and HCY concentrations were significantly higher in the ASD group than in CTLs, while BAP subjects reported intermediate results. Significant correlations were reported between biochemical parameters and psychometric scales, particularly for the dimension of ruminative thinking. CONCLUSIONS These findings support the hypothesis of a key involvement of HCY-related metabolism and immune system alteration in autism spectrum pathophysiology. HCY and IL-6 seem to show different associations with specific autism dimensions.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Battaglini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ivan M Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Prades N, Varela E, Flamarique I, Deulofeu R, Baeza I. Water-soluble vitamin insufficiency, deficiency and supplementation in children and adolescents with a psychiatric disorder: a systematic review and meta-analysis. Nutr Neurosci 2023; 26:85-107. [PMID: 35034564 DOI: 10.1080/1028415x.2021.2020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nutrition is fundamental for brain development, but relatively little is known about water-soluble vitamin (WSV) levels and the effect of supplementation on psychiatry symptoms in children and adolescents (CAD) with psychiatric disorders. Our team systematically reviewed all studies concerning WSV abnormalities or supplementation in CAD with any psychiatric disorder. We searched for original studies published between 1990 and 15/05/2020 which were not based on retrospective chart review and which included WSV blood level measurements or investigated the effect of WSV supplementation on psychiatric symptoms in psychiatric patients aged 18 or under. Forty-two articles were included, 69% of which (N = 29) examined Autism Spectrum Disorders (ASD), with most of these assessing folate or vitamin B12 supplementation (N = 22, 75.9% of ASD studies). Meta-analyses showed significantly lower vitamin B12 levels in ASD and ADHD patients vs. healthy controls (HC), while folate levels were higher in ADHD patients vs. HC. Most of the studies (9/10, 90%) showed a decrease in symptoms as measured by clinical scales after supplementation. There was significant heterogeneity between the studies, however many found different types of vitamin abnormalities in CAD with psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Itziar Flamarique
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clínic of Neurosciences, Hospital Clinic Universitari of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Ramon Deulofeu
- Department of Biochemistry and Molecular Genetics, Centre de Diagnostic Biomèdic Hospital Clínic of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clínic of Neurosciences, Hospital Clinic Universitari of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi Sunyer IDIBAPS, Barcelona, Spain.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Nakhal MM, Aburuz S, Sadek B, Akour A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022; 27:7174. [PMID: 36364000 PMCID: PMC9653623 DOI: 10.3390/molecules27217174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
10
|
Li B, Xu Y, Pang D, Zhao Q, Zhang L, Li M, Li W, Duan G, Zhu C. Interrelation between homocysteine metabolism and the development of autism spectrum disorder in children. Front Mol Neurosci 2022; 15:947513. [PMID: 36046711 PMCID: PMC9421079 DOI: 10.3389/fnmol.2022.947513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Evidence is emerging that dysregulation of circulating concentrations of homocysteine, an important intermediate in folate and vitamin B12 metabolism, is associated with autism spectrum disorder (ASD), but comprehensive assessments and correlations with disease characteristics have not been reported. Multivariate ordinal regression and restricted cubic spline (RCS) models were used to estimate independent correlations between serum homocysteine, folate, and vitamin B12 levels and clinical outcomes and severity of children with ASD. After adjusting for confounding factors, serum homocysteine levels were significantly higher in children with ASD than in healthy controls (β: 0.370; 95% CI: 0.299~0.441, p < 0.001). Moreover, homocysteine had a good diagnostic ability for distinguishing children with ASD from healthy subjects (AUC: 0.899, p < 0.001). The RCS model indicated a positive and linear association between serum homocysteine and the risk of ASD. The lowest quartile of folate was positively associated with ASD severity (OR: 4.227, 95% CI: 1.022~17.488, p = 0.041) compared to the highest quartile, and serum folate showed a negative and linear association with ASD severity. In addition, decreased concentrations of folate and vitamin B12 were associated with poor adaptive behavior developmental quotients of the Gesell Developmental Schedules (p < 0.05). Overall, an increased homocysteine level was associated with ASD in a linear manner and is thus a novel diagnostic biomarker for ASD. Decreased concentrations of folate and vitamin B12 were associated with poor clinical profiles of children with ASD. These findings suggest that homocysteine-lowering interventions or folate and vitamin B12 supplementation might be a viable treatment strategy for ASD.
Collapse
Affiliation(s)
- Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Dizhou Pang
- Center for Child Behavioral Development, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Zhao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Ming Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Guiqin Duan
- Center for Child Behavioral Development, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- *Correspondence: Changlian Zhu ;
| |
Collapse
|
11
|
Implications of Genetic Factors and Modifiers in Autism Spectrum Disorders: a Systematic Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Kushak RI, Sengupta A, Winter HS. Interactions between the intestinal microbiota and epigenome in individuals with autism spectrum disorder. Dev Med Child Neurol 2022; 64:296-304. [PMID: 34523735 DOI: 10.1111/dmcn.15052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by variable impairment of cognitive function and interpersonal relationships. Furthermore, some individuals with ASD have gastrointestinal disorders that have been correlated with impairments in intestinal microbiota. Gut microbiota are important not only for intestinal health, but also for many other functions including food digestion, energy production, immune system regulation, and, according to current data, behavior. Disruption of the indigenous microbiota, microbial dysbiosis (imbalance between microorganisms present in the gut), overgrowth of potentially pathogenic microorganisms, a less diverse microbiome, or lower levels of beneficial bacteria in children with ASD can affect behavior. Metabolome analysis in children with ASD has identified perturbations in multiple metabolic pathways that might be associated with cognitive functions. Recent studies have shown that the intestinal microbiome provides environmental signals that can modify host response to stimuli by modifying the host epigenome, which affects DNA methylation, histone modification, and non-coding RNAs. The most studied microbiota-produced epigenetic modifiers are short-chain fatty acids, although other products of intestinal microbiota might also cause epigenetic modifications in the host's DNA. Here we review evidence suggesting that epigenetic alterations caused by modification of gene expression play an important role in understanding ASD.
Collapse
Affiliation(s)
- Rafail I Kushak
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashok Sengupta
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harland S Winter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Alachkar A, Agrawal S, Baboldashtian M, Nuseir K, Salazar J, Agrawal A. L-methionine enhances neuroinflammation and impairs neurogenesis: Implication for Alzheimer's disease. J Neuroimmunol 2022; 366:577843. [DOI: 10.1016/j.jneuroim.2022.577843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
|
14
|
The potential use of folate and its derivatives in treating psychiatric disorders: A systematic review. Biomed Pharmacother 2021; 146:112541. [PMID: 34953391 DOI: 10.1016/j.biopha.2021.112541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To examine the strengths and limitations of existing data to provide guidance for the use of folate supplements as treatment, with or without other psychotropic medications, in various psychiatric disorders. To identify area for further research in terms of the biosynthesis of mechanism of folate and genetic variants in metabolic pathway in human. METHODS A systematic review of published literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess whether folate supplements are beneficial in certain psychiatric disorders (depression, bipolar disorder, schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder). Methodology of this review is registered with Prospero (Registration number CRD 42021266605). DATA SOURCES Eligible studies were identified using a systematic search of four electronic databases: Embase, Pubmed, PsycINFO, and Cochrane. The search strategy covered the time period from 1974 to August 16th, 2021. Therefore, this review examines randomized control trials or open-label trials completed during this period. RESULTS We identified 23 studies of folate supplements in various psychiatric disorders for critical review. Of these, 9 studies investigated the efficacy of folate supplements in major depressive disorders, 5 studies in schizophrenia, 6 studies in autism spectrum disorder, 2 studies in bipolar affective disorder and 1 study in attention deficit hyperactive disorder. The most consistent finding association of oral levomefolic acid or 5-methylfolate with improvement in clinical outcomes in mental health conditions as mentioned above, especially in major depressive disorder (including postpartum and post-menopausal depression), schizophrenia, autism spectrum disorder, attention deficit hyperactivity disorder and bipolar affective disorder. Folate supplements were well tolerated. LIMITATION Our results are not representative of all types of studies such as case reports or case series studies, nor are they representative of the studies conducted in languages that are not in English or not translated in English. CONCLUSION Increasing evidence from clinical trials consistently demonstrate folate supplements, especially levomefolic acid or 5-methylfolate, may improve clinical outcomes for certain psychiatric diseases, especially as an adjunct pharmacotherapy with minimal side effects.
Collapse
|
15
|
Dhanjal DS, Bhardwaj S, Chopra C, Singh R, Patocka J, Plucar B, Nepovimova E, Valis M, Kuca K. Millennium Nutrient N,N-Dimethylglycine (DMG) and its Effectiveness in Autism Spectrum Disorders. Curr Med Chem 2021; 29:2632-2651. [PMID: 34823458 DOI: 10.2174/0929867328666211125091811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Autism is a neurodevelopmental disorder belonging to the autism spectrum disorder (ASD). In ASDs, the individuals show substantial impairments in social communication, repetitive behaviours, and sensory behaviours deficits in the early stages of their life. Globally, the prevalence of autism is estimated to be less than 1%, especially in high-income countries. In recent decades, there has been a drastic increase in the incidence of ASD, which has put ASD into the category of epidemics. Presently, two US Food and Drug Administration-approved drugs, aripiprazole and risperidone are used to treat symptoms of agitation and irritability in autistic children. However, to date, no medication has been found to treat the core symptoms of ASD. The adverse side effects of conventional medicine and limited treatment options have led families and parents of autistic children to turn to complementary and alternative medicine (CAM) treatments, which are perceived as relatively safe compared to conventional medicine. Recently, N,N-dimethylglycine (DMG), a dietary supplement, has emerged as a useful supplement to improve the mental and physical state of children with ASD. The current review discusses ASD, the prevalence of ASD, CAM approach and efficacy of CAM treatment in children with ASD. Moreover, it highlights the chemistry, pharmacological effect, and clinical studies of DMG, highlighting its potential for improving the lifestyle of children with ASD.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Sonali Bhardwaj
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Chirag Chopra
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Reena Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara. India
| | - Jiri Patocka
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice. Czech Republic
| | - Bohumir Plucar
- Reflex Therapy Laboratory, Udolni 393/18, 602 00 Brno. Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove. Czech Republic
| | - Martin Valis
- University Hospital Hradec Kralove, Hradec Kralove. Czech Republic
| | - Kamil Kuca
- University Hospital Hradec Kralove, Hradec Kralove. Czech Republic
| |
Collapse
|
16
|
Saha S, Saha T, Rajamma U, Sinha S, Mukhopadhyay K. Analysis of association between components of the folate metabolic pathway and autism spectrum disorder in eastern Indian subjects. Mol Biol Rep 2021; 49:1281-1293. [PMID: 34792727 DOI: 10.1007/s11033-021-06956-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Folate has a pivotal role in maintaining different cellular processes including DNA integrity and neurotransmitter levels. Further, folate deficiency was reported in subjects with neuropsychiatric disorders including autism spectrum disorder (ASD). METHODS AND RESULTS We recruited ASD probands following the Diagnostic and Statistical Manual of Mental Disorder-IV/-5. Severity was assessed by the Childhood Autism Rating Scale2-Standard Test (CARS2-ST). Functional SNPs in reduced folate carrier1 (rs1051266), methylenetetrahydrofolate dehydrogenase (rs2236225), methylenetetrahydrofolate methyltransferase (rs1805087), methylenetetrahydrofolate reductase (rs1801133 and rs1801131), cystathionine-beta- synthase (rs5742905), and serine hydroxymethyltransferase (rs1979277) genes were analyzed in the ASD probands (N = 203), their parents and controls (N = 250) by PCR/TaqMan based methods. Plasma homocysteine and vitamin B12 levels were examined by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis revealed higher frequencies of rs1051266 and rs1805087 "A" alleles (P = 8.233e-005 and P = 0.010 respectively) and rs1051266 "AA" genotype (P = 0.02) in the ASD probands. Gender based stratified analysis revealed higher frequency of rs1051266 "AA" in the male probands (P = 0.001) while frequencies of rs1805087 "A" (P = 0.001) and "AA" (P < 0.05), and rs2236225 "CC" (P = 0.03) were higher in the females. The case-control analysis also exhibited a significant difference in the occurrence of biallelic and triallelic haplotypes. rs1051266 "A", rs1979277 "T" and rs5742905 "C" alleles showed biased parental transmission (P = 0.02). CARS2-ST scores were higher in the presence of rs5742905 "T" while scores were lower in the presence of rs1979277 "T" and rs1051266 "A". ASD probands showed vitamin B12 deficiency. CONCLUSION Based on these observations, we infer that components needed for proper folate metabolism may influence ASD severity in this population.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Tanusree Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.,Department of Microbiology, University of Alabama, Birmingham, USA
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
17
|
Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis. J Neural Transm (Vienna) 2021; 128:717-734. [PMID: 34115189 DOI: 10.1007/s00702-021-02360-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Based on recent evidence, more than 200 susceptibility genes have been identified to be associated with autism until now. Correspondingly, cytogenetic abnormalities have been reported for almost every chromosome. While the results of multiple genes associated with risk factors for autism are still incomplete, this paper systematically reviews published meta-analyses and systematic reviews of evidence related to autism occurrence. METHOD Literature search was conducted in the PubMed system, and the publication dates were limited between January 2000 and July 2020. We included a meta-analysis and systematic review that assessed the impact of related gene variants on the development of autism. After screening, this comprehensive literature search identified 31 meta-analyses and ten systematic reviews. We arranged the genes related to autism in the published studies according to the order of the chromosomes, and based on the results of a meta-analysis and systematic review, we selected 6 candidate genes related to ASD, namely MTHFR C677T, SLC25A12, OXTR, RELN, 5-HTTLPR, SHANK, including basic features and functions. In addition to these typical genes, we have also listed candidate genes that may exist on almost every chromosome that are related to autism. RESULTS We found that the results of several literature reviews included in this study showed that the MTHFR C667T variant was a risk factor for the occurrence of ASD, and the results were consistent. The results of studies on SLC25A12 variation (rs2056202 and rs2292813) and ASD risk were inconsistent but statistically significant. No association of 5-HTTLPR was found with autism, but when subgroup analysis was performed according to ethnicity, the association was statistically significant. RELN variants (rs362691 and rs736707) were consistent with ASD risk studies, but some of the results were not statistically significant. CONCLUSION This review summarized the well-known ASD candidate genes and listed some new genes that need further study in larger sample sets to improve our understanding of the genetic basis of ASD, but sample size and heterogeneity remain major limiting factors in some genome-wide association studies. We also found that common genetic variants in some genes may be co-risk factors for autism or other neuropsychiatric disorders when we collated these results. It is worth considering screening for these mutations in clinical applications.
Collapse
|
18
|
Indika NLR, Deutz NEP, Engelen MPKJ, Peiris H, Wijetunge S, Perera R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie 2021; 184:143-157. [PMID: 33675854 DOI: 10.1016/j.biochi.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.
Collapse
Affiliation(s)
- Neluwa-Liyanage R Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Hemantha Peiris
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Swarna Wijetunge
- Child and Adolescent Mental Health Service, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
19
|
Kato Y, Kuwabara H, Okada T, Munesue T, Benner S, Kuroda M, Kojima M, Yassin W, Eriguchi Y, Kameno Y, Murayama C, Nishimura T, Tsuchiya K, Kasai K, Ozaki N, Kosaka H, Yamasue H. Oxytocin-induced increase in N,N-dimethylglycine and time course of changes in oxytocin efficacy for autism social core symptoms. Mol Autism 2021; 12:15. [PMID: 33622389 PMCID: PMC7903697 DOI: 10.1186/s13229-021-00423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oxytocin is expected as a novel therapeutic agent for autism spectrum disorder (ASD) core symptoms. However, previous results on the efficacy of repeated administrations of oxytocin are controversial. Recently, we reported time-course changes in the efficacy of the neuropeptide underlying the controversial effects of repeated administration; however, the underlying mechanisms remained unknown. Methods The current study explored metabolites representing the molecular mechanisms of oxytocin’s efficacy using high-throughput metabolomics analysis on plasma collected before and after 6-week repeated intranasal administration of oxytocin (48 IU/day) or placebo in adult males with ASD (N = 106) who participated in a multi-center, parallel-group, double-blind, placebo-controlled, randomized controlled trial. Results Among the 35 metabolites measured, a significant increase in N,N-dimethylglycine was detected in the subjects administered oxytocin compared with those given placebo at a medium effect size (false discovery rate (FDR) corrected P = 0.043, d = 0.74, N = 83). Furthermore, subgroup analyses of the participants displaying a prominent time-course change in oxytocin efficacy revealed a significant effect of oxytocin on N,N-dimethylglycine levels with a large effect size (PFDR = 0.004, d = 1.13, N = 60). The increase in N,N-dimethylglycine was significantly correlated with oxytocin-induced clinical changes, assessed as changes in quantifiable characteristics of autistic facial expression, including both of improvements between baseline and 2 weeks (PFDR = 0.006, r = − 0.485, N = 43) and deteriorations between 2 and 4 weeks (PFDR = 0.032, r = 0.415, N = 37). Limitations The metabolites changes caused by oxytocin administration were quantified using peripheral blood and therefore may not directly reflect central nervous system changes. Conclusion Our findings demonstrate an association of N,N-dimethylglycine upregulation with the time-course change in the efficacy of oxytocin on autistic social deficits. Furthermore, the current findings support the involvement of the N-methyl-D-aspartate receptor and neural plasticity to the time-course change in oxytocin’s efficacy. Trial registration: A multi-center, parallel-group, placebo-controlled, double-blind, confirmatory trial of intranasal oxytocin in participants with autism spectrum disorders (the date registered: 30 October 2014; UMIN Clinical Trials Registry: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017703) (UMIN000015264).
Collapse
Affiliation(s)
- Yasuhiko Kato
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Chihiro Murayama
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Tomoko Nishimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kenji Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan. .,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan.
| |
Collapse
|
20
|
Zhang J, Ma X, Su Y, Wang L, Shang S, Yue W. Association Study of MTHFR C677T Polymorphism and Birth Body Mass With Risk of Autism in Chinese Han Population. Front Psychiatry 2021; 12:560948. [PMID: 33716803 PMCID: PMC7947295 DOI: 10.3389/fpsyt.2021.560948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with birth body mass and risk of autism in Chinese Han population. Methods: A total 1,505 Chinese Han autism patients were recruited, using the Diagnostic and Statistical Manual of Mental Disorders, 4th revised version (DSM-IV-R) diagnostic criteria for autism, and 1,308 sex-matched healthy controls were also enrolled for the study. All the participants' birth body masses were counted according to the medical records. The MTHFR C677T genotypes were detected using the polymerase chain reaction-restrict fragment length polymorphism (PCR-RFLP) method. The association between C677T polymorphism, birth body mass, and risk of autism were analyzed using the chi-square tests. Results: The present study found that the MTHFR 677T was significantly associated with risk of autism [P = 0.004, odds ratio (OR) = 1.18, 95% CI = 1.02-1.29). The autism children more frequently showed low birth body mass (<2.5 kg) than healthy control subjects (8.6 vs. 5.3%, P = 0.001, OR = 1.67, 95% CI = 1.24-2.26). The interactive effects between MTHFR 677T and low birth body mass (P = 0.0001, OR = 2.18, 95% CI = 1.44-3.32) were also significantly associated with risk of autism. Conclusions: The MTHFR C677T polymorphism and low birth body mass may be associated with risk of autism in Chinese Han population.
Collapse
Affiliation(s)
- Jishui Zhang
- Department of Mental Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Xueqian Ma
- School of Nursing & Sixth Hospital, Peking University, Beijing, China.,Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Su
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Shaomei Shang
- School of Nursing, Peking University, Beijing, China
| | - Weihua Yue
- School of Nursing & Sixth Hospital, Peking University, Beijing, China.,Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
21
|
Esnafoglu E, Ozturan DD. The relationship of severity of depression with homocysteine, folate, vitamin B12, and vitamin D levels in children and adolescents. Child Adolesc Ment Health 2020; 25:249-255. [PMID: 32304285 DOI: 10.1111/camh.12387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Depression is a heterogeneous disorder and is thought to develop as a result of complex interactions between genetic and environmental factors. One-carbon metabolism that includes vitamin B12, folic acid, and homocysteine has been investigated in psychiatric disorders like depression. In recent years, vitamin D has also been considered to contribute to psychiatric disorders. In this study, serum levels of folate, vitamin B12, and homocysteine related to one-carbon metabolism and vitamin D were investigated in children and adolescents with depression and to assess possible roles in depression pathogenesis. METHODS The study included 89 children and adolescents with depression (69 female, 20 male; mean age ± SD = 15.08 ± 1.46) and 43 control subjects (31 female, 12 male; mean age ± SD = 14.41 ± 2.32) without any DSM-5 diagnosis. Each subject completed a sociodemographic form, Childhood Depression Inventory, State-Trait Anxiety Inventory 1-2 and measured serum folate, vitamin B12, homocysteine, and 25-OH vitamin D levels. RESULTS There was no significant difference between the groups in terms of folate levels (p = .052). In the patient group, the vitamin B12 and vitamin D levels were clearly low (p values for both levels were <.001), while homocysteine levels were found to be remarkably high (p < .001). In addition, there was a negative correlation between depression severity and vitamin B12 and vitamin D, while a positive correlation was found with homocysteine. CONCLUSIONS The results of the study show that vitamin B12 deficiency or insufficiency and elevated homocysteine may contribute to the etiopathogenesis of depression. Additionally, it was shown that lower vitamin D levels may be associated with depression. KEY PRACTITIONER MESSAGE Depression of children and adolescents is associated with the interaction of environmental and genetic factors. Homocysteine, vitamin B12, and folate related to one-carbon metabolism are associated with psychiatric disorders such as depression in adulthood. Vitamin D also contributes to psychiatric disorders pathogenesis. There are not enough studies in the literature about these parameters in children with depression. Low vitamin B12 and vitamin D levels and increased homocysteine levels may play a role in the pathogenesis of depression in children and adolescents. Investigation of vitamin B12, folate, homocysteine, and vitamin D levels are recommended in children and adolescents with depression.
Collapse
Affiliation(s)
- Erman Esnafoglu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Deniz Deniz Ozturan
- Department of Psychiatry, Faculty of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
22
|
Frye RE, Rossignol DA, Scahill L, McDougle CJ, Huberman H, Quadros EV. Treatment of Folate Metabolism Abnormalities in Autism Spectrum Disorder. Semin Pediatr Neurol 2020; 35:100835. [PMID: 32892962 PMCID: PMC7477301 DOI: 10.1016/j.spen.2020.100835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that currently has no approved medical therapy to address core symptoms or underling pathophysiological processes. Several compounds are under development that address both underlying pathophysiological abnormalities and core ASD symptoms. This article reviews one of these treatments, d,l-leucovorin calcium (also known as folinic acid) for treatment of folate pathway abnormalities in children with ASD. Folate is a water-soluble B vitamin that is essential for normal neurodevelopment and abnormalities in the folate and related pathways have been identified in children with ASD. One of these abnormalities involves a partial blockage in the ability of folate to be transported into the brain utilizing the primary transport mechanism, the folate receptor alpha. Autoantibodies which interfere with the function of the folate receptor alpha called folate receptor alpha autoantibodies have been identified in 58%-76% of children with ASD and independent studies have demonstrated that blood titers of these autoantibodies correlate with folate levels in the cerebrospinal fluid. Most significantly, case-series, open-label, and single and double-blind placebo-controlled studies suggest that d,l-leucovorin, a reduced folate that can bypass the blockage at the folate receptor alpha by using the reduced folate carrier, an alternate pathway, can substantially improve particular symptoms in children with ASD, especially those positive for folate receptor alpha autoantibodies. This article reviews the current evidence for treating core and associated symptoms and underlying pathophysiological mechanisms in children with ASD with d,l-leucovorin.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | | | - Lawrence Scahill
- Department of Pediatrics, Emory University and Marcus Autism Center, Atlanta, GA
| | - Christopher J. McDougle
- Department of Psychiatry, Harvard Medical School, Boston MA and Lurie Center for Autism, Lexington, MA
| | - Harris Huberman
- Departments of Pediatrics, State University of New York – Downstate, Brooklyn, NY
| | - Edward V. Quadros
- Departments of Medicine, State University of New York – Downstate, Brooklyn, NY
| |
Collapse
|
23
|
Li Y, Qiu S, Shi J, Guo Y, Li Z, Cheng Y, Liu Y. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr 2020; 20:449. [PMID: 32972375 PMCID: PMC7517654 DOI: 10.1186/s12887-020-02330-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/03/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is becoming increasingly prevalent of late. Methylenetetrahydrofolate reductase (MTHFR) has a significant role in folate metabolism. Owing to the inconsistencies and inconclusiveness on the association between MTHFR single nucleotide polymorphism (SNP) and ASD susceptibilities, a meta-analysis was conducted to settle the inconsistencies. METHODS For this meta-analysis, a total of 15 manuscripts published up to January 26, 2020, were selected from PubMed, Google Scholar, Medline, WangFang, and CNKI databases using search terms "MTHFR" OR "methylenetetrahydrofolate reductase" AND "ASD" OR "Autism Spectrum Disorders" OR "Autism" AND "polymorphism" OR "susceptibility" OR "C677T" OR "A1298C". RESULTS The findings of the meta-analysis indicated that MTHFR C677T polymorphism is remarkably associated with ASD in the five genetic models, viz., allelic, dominant, recessive, heterozygote, and homozygote. However, the MTHFR A1298C polymorphism was not found to be significantly related to ASD in the five genetic models. Subgroup analyses revealed significant associations of ASD with the MTHFR (C677T and A1298C) polymorphism. Sensitivity analysis showed that this meta-analysis was stable and reliable. No publication bias was identified in the associations between MTHFRC677T polymorphisms and ASD in the five genetic models, except for the one with regard to the associations between MTHFRA1298C polymorphisms and ASD in the five genetic models. CONCLUSION This meta-analysis showed that MTHFR C677T polymorphism is a susceptibility factor for ASD, and MTHFR A1298C polymorphism is not associated with ASD susceptibility.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
24
|
Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis. Psychiatry Res 2020; 291:113283. [PMID: 32763544 DOI: 10.1016/j.psychres.2020.113283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Results of studies on peripheral blood levels of homocysteine (Hcy) in children with autism spectrum disorder (ASD) are inconsistent, and conclusions from two previous meta-analyses on this subject published in 2012 are already outdated. Therefore, we conducted an updated systematic review and meta-analysis to quantitatively summarize the peripheral blood Hcy data in children with ASD compared with healthy controls (HC). We searched PubMed, EMBASE, PsycINFO, PsycARTICLES, Web of Science, and Cochrane Library databases from inception to September 2019 for eligible studies, with no language restriction. Using random-effects model, we computed summary statistics. Thirty-one studies (3304 participants including 1641 cases) were included. The pooled results showed that the peripheral blood Hcy levels were significantly elevated in children with ASD when compared to HC (Hedges's g = 0.56, 95% CI = 0.36 to 0.76, P < 0.001). By sensitivity analyses, we confirmed that our results were quite robust. Additionally, no publication bias was observed in this meta-analysis. In conclusion, our study support the association of increased circulating Hcy levels with ASD in children, and the involvement of Hcy in the occurrence of ASD. However, in view of the significant between-study heterogeneity, the conclusions should be interpreted cautiously and more investigation is required.
Collapse
|
25
|
Karhu E, Zukerman R, Eshraghi RS, Mittal J, Deth RC, Castejon AM, Trivedi M, Mittal R, Eshraghi AA. Nutritional interventions for autism spectrum disorder. Nutr Rev 2020; 78:515-531. [PMID: 31876938 DOI: 10.1093/nutrit/nuz092] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder with considerable clinical heterogeneity. With no cure for the disorder, treatments commonly center around speech and behavioral therapies to improve the characteristic social, behavioral, and communicative symptoms of ASD. Gastrointestinal disturbances are commonly encountered comorbidities that are thought to be not only another symptom of ASD but to also play an active role in modulating the expression of social and behavioral symptoms. Therefore, nutritional interventions are used by a majority of those with ASD both with and without clinical supervision to alleviate gastrointestinal and behavioral symptoms. Despite a considerable interest in dietary interventions, no consensus exists regarding optimal nutritional therapy. Thus, patients and physicians are left to choose from a myriad of dietary protocols. This review, summarizes the state of the current clinical and experimental literature on nutritional interventions for ASD, including gluten-free and casein-free, ketogenic, and specific carbohydrate diets, as well as probiotics, polyunsaturated fatty acids, and dietary supplements (vitamins A, C, B6, and B12; magnesium and folate).
Collapse
Affiliation(s)
- Elisa Karhu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ryan Zukerman
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rebecca S Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | |
Collapse
|
26
|
Guo BQ, Ding SB, Li HB. Blood biomarker levels of methylation capacity in autism spectrum disorder: a systematic review and meta-analysis. Acta Psychiatr Scand 2020; 141:492-509. [PMID: 32173856 DOI: 10.1111/acps.13170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To compare the peripheral blood levels of methionine (Met), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and the SAM/SAH ratio (the most core and predictive indices of cellular methylation ability) between patients with autism spectrum disorder (ASD) and control subjects. METHODS PubMed, Embase, PsycINFO, Web of Science, and Cochrane Library were searched from inception to August 2, 2019, without language restriction. The random-effects model was used to summarize effect sizes. RESULTS We retrieved 1,493 records, of which 22 studies met inclusion criteria. Our overall analyses revealed that individuals with ASD had significantly decreased levels of Met (22 studies; Hedges' g = -0.62; 95% confidence interval [CI]: -0.89, -0.35), SAM (8 studies; Hedges' g = -0.60; 95% CI: -0.86, -0.34), and the SAM/SAH ratio (8 studies; Hedges' g = -0.98; 95% CI: -1.30, -0.66) and significantly increased levels of SAH (8 studies; Hedges' g = 0.69; 95% CI: 0.43, 0.94). The findings of the overall analyses were quite stable after being verified by sensitivity analyses and in agreement with the corresponding outcomes of subgroup analyses. Additionally, our results from meta-analytic techniques confirmed that the effect estimates of this meta-analysis did not originate from publication bias. CONCLUSION Individuals with ASD have substantially aberrant peripheral blood levels of Met, SAM, SAH, and the SAM/SAH ratio, which supports the association between impaired methylation capacity and ASD. Therefore, further investigations into these indices as potential biomarkers for diagnosis and therapeutic targets of ASD are warranted.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- Department of Child and Adolescent Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shi-Bin Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hong-Bin Li
- Department of Child and Adolescent Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
27
|
Thorsen M. Oxidative stress, metabolic and mitochondrial abnormalities associated with autism spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:331-354. [PMID: 32711815 DOI: 10.1016/bs.pmbts.2020.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by impaired development and by abnormal function in regards to social interaction, communication and restricted, repetitive behavior. It affects approximately 1% of the worldwide population. Like other psychiatric disorders the diagnosis is based on observation of, and interview with the patient and next of kin, and diagnostic tests. Many genes have been associated with autism, but only few highly penetrant. Some researchers have instead focused on oxidative stress, metabolic abnormalities and mitochondrial dysfunction as an explanation of the disorder. Currently no cure exists for the disorder, making these abnormalities interesting as they are possibly correctable with supplements or treatment. These various processes cannot be seen independently as they are influencing and interacting with each other. Furthermore many of the metabolic changes seen in autism have also been shown in other psychiatric disorders such as attention deficit hyperactivity disorder, schizophrenia and bipolar disorder along with often comorbid disorders like epilepsy and intellectual disability. As such some of these abnormalities are not specific, however, could indicate a similar mechanism for the development of these disorders, with symptomatology and severity varying according to the location and the amount of damage done to proteins, cells and DNA. Clinical studies trying to treat these abnormalities, have widely been successful in correcting the metabolic abnormalities seen, but only some studies have also shown bettering of autistic symptoms. Hopefully with increased knowledge of the pathophysiology of the disorder, future preventive measures or treatment can be developed.
Collapse
Affiliation(s)
- Morten Thorsen
- Department of Child and Adolescent Psychiatry, Aalborg, Denmark.
| |
Collapse
|
28
|
Arab AH, Elhawary NA. Methylenetetrahydrofolate Reductase Gene Variants Confer Potential Vulnerability to Autism Spectrum Disorder in a Saudi Community. Neuropsychiatr Dis Treat 2019; 15:3569-3581. [PMID: 31920317 PMCID: PMC6938732 DOI: 10.2147/ndt.s230348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Several interacting genes or single nucleotide polymorphisms (SNPs) are vulnerable to the risk of autism spectrum disorder (ASD). Here we explored associations between SNPs in the methylenetetrahydrofolate reductase (MTHFR) gene or combined genotypes and the risk of ASD in a Saudi community. SUBJECTS AND METHODS ASD severity symptoms were assessed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) criteria and scores on the childhood autism rating scale (CARS). Genomic DNA from buccal cells was analyzed for 112 cases and 104 healthy controls using TaqMan genotyping assays of 677C>T rs1801133 and 1298A>C rs1801131 SNPs in the MTHFR gene. SNPStats software was utilized to determine the best interactive model of inheritance of genotypic data. RESULTS Controls were consistent with Hardy-Weinberg equilibrium in the examined SNPs. Our data showed associations between the 677C>T and 1298A>C SNPs and ASD risk (odds ratio [OR]= 5.2; 95% confidence interval [CI], 3.1-9.8 and OR= 22.2; 95% CI, 7.9-62.3, respectively). Genotype associations of 677C>T and 1298A>C were identified in cases compared with controls (P= 0.0012 and P= 0.0008, respectively). The examined SNPs were significantly associated with ASD cases having ≥37 scores (codominant and recessive models; P= 0.001 and P= 0.0005, respectively). Six combined genotypes-C/C-A/A (42.9%), C/T-A/A (17.9%), C/T-C/C (14.5%), C/T-A/C (10.9%), T/T-C/C (10.9%), and T/T-A/A (3.6%)-were found in ASD cases. Global haplotype analysis showed a significant difference in haplotype distribution between cases and controls (P= 0.00057). The two SNPs were found to be in relatively strong linkage disequilibrium (D`= 0.63, r 2= 0.260). CONCLUSION Our findings suggest that the 677C>T and 1298A>C SNPs add to each other for potential vulnerability to increase the risk of ASD, particularly if they can be confirmed in larger cohorts along with other genetic/environmental factors. Our study could create reference data for future genetic association studies in the Saudi population and for use by government and health experts to develop regional health management programs.
Collapse
Affiliation(s)
- Arwa H Arab
- Department of Psychology, Faculty of Arts and Humanities, King Abdul-Aziz University, Jeddah21589, Saudi Arabia
| | - Nasser A Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca21955, Saudi Arabia
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo11566, Egypt
| |
Collapse
|
29
|
Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian J Psychiatr 2019; 46:54-61. [PMID: 31614268 DOI: 10.1016/j.ajp.2019.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 12/30/2022]
Abstract
Several studies have investigated association of MTHFR 677C > T and 1298A > C polymorphisms with risk of autism, but they have reported controversial and inconclusive results. The present meta-analysis was designed to evaluate association of MTHFR 677C > T and 1298A > C polymorphisms with risk of autism. A comprehensive literature search was done in PubMed, EMBASE, and CNKI databases to identify all eligible publications up to April 01, 2019. Finally, 25 case-control studies including 18 studies on MTHFR 677C > T and 7 studies on MTHFR 1298A > C polymorphism were selected. Overall, a significant association was found between MTHFR 677C > T and an increased risk of autism under all five genetic models (T vs. C: OR = 1.483, 95% CI 1.188-1.850, p ≤ 0.001; TT vs. CC: OR = 1.834, 95% CI 1.155-2.913, p = 0.010; TC vs. CC: OR = 1.512, 95% CI 1.101-2.078, p = 0.011; TT + TC vs. CC: OR = 1.632, 95% CI 1.261-2.113, p ≤ 0.001; and TT vs. TC + CC: OR = 1.427, 95% CI 1.002-2.032, p = 0.049). However, no significant association was found between MTHFR 1298A > C and autism risk. Stratified analyses showed that MTHFR 677C > T and 1298A > C polymorphisms are involved in genetic susceptibility of autism by ethnicity. Results of this meta-analysis indicated that MTHFR 677C > T polymorphism may be associated with increased risk of autism in overall and by ethnicity, while MTHFR 1298A > C was reported to be significantly associated with the risk of autism only in Caucasians. MTHFR polymorphisms could be used as a diagnostic marker for autism with respect to ethnicity background.
Collapse
|
30
|
Orozco JS, Hertz-Picciotto I, Abbeduto L, Slupsky CM. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome. Transl Psychiatry 2019; 9:243. [PMID: 31582732 PMCID: PMC6776514 DOI: 10.1038/s41398-019-0578-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Although developmental delays affect learning, language, and behavior, some evidence suggests the presence of disturbances in metabolism are associated with psychiatric disorders. Here, the plasma metabolic phenotype of children with autism spectrum disorder (ASD, n = 167), idiopathic-developmental delay (i-DD, n = 51), and Down syndrome (DS, n = 31), as compared to typically developed (TD, n = 193) controls was investigated in a subset of children from the case-control Childhood Autism Risk from Genetics and the Environment (CHARGE) Study. Metabolome profiles were obtained using nuclear magnetic resonance spectroscopy and analyzed in an untargeted manner. Forty-nine metabolites were identified and quantified in each sample that included amino acids, organic acids, sugars, and other compounds. Multiple linear regression analysis revealed significant associations between 11 plasma metabolites and neurodevelopmental outcome. Despite the varied origins of these developmental disabilities, we observed similar perturbation in one-carbon metabolism pathways among DS and ASD cases. Similarities were also observed in the DS and i-DD cases in the energy-related tricarboxylic acid cycle. Other metabolites and pathways were uniquely associated with DS or ASD. By comparing metabolic signatures between these conditions, the current study expands on extant literature demonstrating metabolic alterations associated with developmental disabilities and provides a better understanding of overlapping vs specific biological perturbations associated with these disorders.
Collapse
Affiliation(s)
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, 95616, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, 95616, USA
- MIND Institute, University of California, Davis, CA, 95817, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
31
|
The Effects of Functional Progressive Strength and Power Training in Children With Unilateral Cerebral Palsy. Pediatr Phys Ther 2019; 31:286-295. [PMID: 31220015 DOI: 10.1097/pep.0000000000000628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of a novel functional strength and power-training program on gait and gross motor function in participants with unilateral cerebral palsy. METHODS This 12-week trial of functional strength and power training included 30 participants with cerebral palsy, randomly assigned to the experimental or comparison group. The primary outcomes, 1-minute walk test, muscle power, and the Gross Motor Function Measure, were assessed at baseline and 12 weeks after the intervention. Secondary outcomes included dynamic balance as measured by Timed Up and Go, muscle strength, and 1-repetition maximum measures. RESULTS Significantly greater improvements were seen in the experimental group for muscle power, Gross Motor Function Measure E score, and 1-minute walk test (P < .05), as well as for dynamic balance, 1-repetition maximum, and muscle strength. CONCLUSION Functional strength training combined with plyometric exercises improved gait and gross motor function, dynamic balance, muscle strength, and power. VIDEO ABSTRACT For more insights from the authors, access Supplemental Digital Content 1, available at: http://links.lww.com/PPT/A254.
Collapse
|
32
|
Ismail S, Senna AA, Behiry EG, Ashaat EA, Zaki MS, Ashaat NA, Salah DM. Study of C677T variant of methylene tetrahydrofolate reductase gene in autistic spectrum disorder Egyptian children. Am J Med Genet B Neuropsychiatr Genet 2019; 180:305-309. [PMID: 31033224 DOI: 10.1002/ajmg.b.32729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) is a heterogeneous neurodevelopmental disease, various articles reported that dysfunctional folate-methionine pathway enzymes might assume a paramount part in the pathophysiology of autism. Methylene tetrahydrofolate reductase (MTHFR) is a basic catalyst for this pathway, also MTHFR gene C677T variant accounted as a risk factor of autism. OBJECTIVE The present study aimed to investigate the association of MTHFR gene rs1801133(C677T) variant among Egyptian autistic children. METHODS The study included 78 autistic children, and 80 matched healthy control children. Full clinical and radiological examinations were conducted. MTHFR genetic variant, rs1801133(C677T) was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods followed by direct sequencing technique. RESULTS MTHFR (C677T) allele frequency was found to be higher significantly in ASD cases compared with nonautistic children. Also, we had a higher distribution of combined CT + TT genotypes among autistic patients with consanguinity and family history of psychological disease. In Gastrointestinal tract (GIT) and sleep disorders showed a higher distribution of hetero CT genotype as well as combined CT + TT genotypes. CONCLUSION This study demonstrated a role of MTHFR gene (C667T) variant with the increased risk for ASD.
Collapse
Affiliation(s)
- Samira Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Azza Abo Senna
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Eman G Behiry
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Neveen A Ashaat
- Genetics-Zoology Department, Faculty of women for science, Ain Shams University, Cairo, Egypt
| | - Dina M Salah
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
33
|
Saha S, Saha T, Sinha S, Rajamma U, Mukhopadhyay K. Autistic traits and components of the folate metabolic system: an explorative analysis in the eastern Indian ASD subjects. Nutr Neurosci 2019; 23:860-867. [PMID: 30676283 DOI: 10.1080/1028415x.2019.1570442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Proper metabolism of the folate is crucial for maintaining DNA integrity, chromosome structure, methylation, as well as gene expression, and thus, folate is speculated to contribute to the etiology of different disorders. Since the etiology of autism spectrum disorder (ASD) is believed to be influenced by both genetic and environmental factors, we hypothesized that functional single nucleotide polymorphisms (SNPs) affecting folate metabolic pathway may have a causal role in the etiology of ASD. Methods: We analyzed three SNPs, rs2071010, rs2298444 and rs1801198 (in the folate receptor 1, folate receptor 2 and transcobalamin 2, respectively), in 867 ethnically matched subjects including 206 ASD probands and 286 controls. Plasma vitamin B6 and folate were measured in age-matched probands and controls. Results: ASD probands showed a higher frequency of rs2298444 'A' allele (P = 0.01) and genotypes with 'A' allele (P = 0.03) when compared with the controls. rs1801198 'C' allele and 'CG' genotype also showed higher occurrence in the probands (P = 0.009 and 0.005, respectively). Gender-based stratified analysis revealed a significant higher frequency of rs2298444 'A' allele (P = 0.003), genotypes with rs2298444 'A' allele (P = 0.003) and rs1801198 CG (P = 0.001) in the male probands. Studied variants also showed statistically significant associations with ASD-associated traits measured by the Childhood Autism Rating Scale. ASD subjects exhibited gross deficiency in vitamin B6 level when compared with age-matched controls (P < 0.001), which correlated with risk genetic variants. Discussion: We infer from this pioneering study on eastern Indian subjects that vitamin B6 deficiency, along with risk gene variants, may affect ASD-associated symptoms, warranting further investigation in large cohorts.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Tanusree Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India.,Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| |
Collapse
|
34
|
Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry 2018; 8:242. [PMID: 30397195 PMCID: PMC6218441 DOI: 10.1038/s41398-018-0276-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme for the critical process of one-carbon metabolism involving folate and homocysteine metabolisms. It is known that some polymorphism of MTHFR would result in reduction of MTHFR enzyme activity as well as DNA methylation process, later shown to have significant impacts in various psychiatric diseases. However, it is unclear whether the polymorphism of MTHFR could be an independent or an add-on risk factor for specific psychiatric symptoms, such as anxiety, depression, positive, or negative symptoms of schizophrenia, or acts as risk factor for specific psychiatric disorders, such as schizophrenia, major depression, autisms, and bipolar disorders. It is also understudied on whether folate supplements could be an effective treatment for psychiatric patients with defect MTHFR activity. In this review, we not only gathered the most recent discoveries on MTHFR polymorphism and related DNA methylation in various psychiatric disorders, but also highlighted the potential relationships between MTHFR activity and implication of folate-related function in specific mental diseases.
Collapse
Affiliation(s)
- Lin Wan
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, 100069, China
| | - Yuhong Li
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, 100069, China
| | - Zhengrong Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Rena Li
- Center for Brain Disorders Research, Capital Medical University & Beijing Institute of Brain Disorders, Beijing, 100069, China.
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, 34243, USA.
| |
Collapse
|
35
|
Lintas C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 2018; 95:241-252. [PMID: 30047142 DOI: 10.1111/cge.13421] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
There is growing evidence that epigenetic dysregulation plays a role in neurodevelopmental disorders. In humans, folate is one of the main donors of the methyl group required for the synthesis of S-adenosylmethionine, which in turn is needed for DNA and histone methylation as key neurodevelopment processes. Folate deficiency during pregnancy has been correlated with neural tube defects and with a higher incidence of neurocognitive and/or neurobehavioral deficits. A similar outcome may be exerted by gene polymorphisms in folate or folate-related pathways. This has been documented by numerous case/control association studies performed on neurodevelopmental disorders such as autism spectrum disorder and attention deficit hyperactivity disorder. In this regard, the folate cycle represents a "perfect model" of how genetics influences epigenetics. Gene variants in folate and folate-related pathways can be considered risk factors for neurodevelopmental disorders and should therefore be assessed by genetic testing in pregnant women. High-risk women should be considered for folate supplementation during pregnancy. Here, we review all published case/control association studies on gene polymorphisms in folate and folate-related pathways performed on neurodevelopmental disorders, provide an overview of neurodevelopment and DNA methylation changes occurring at this time, and describe the biological basis of neurodevelopmental disorders and recent evidence of their epigenetic dysregulation.
Collapse
Affiliation(s)
- C Lintas
- Service for Neurodevelopmental Disorders, Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
36
|
Frye RE. Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs 2018; 32:713-734. [PMID: 30105528 PMCID: PMC6105175 DOI: 10.1007/s40263-018-0556-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is defined by two core symptoms: a deficit in social communication and the presence of repetitive behaviors and/or restricted interests. Currently, there is no US Food and Drug Administration-approved drug for these core symptoms. This article reviews the biological origins of the social function deficit associated with autism spectrum disorder and the drug therapies with the potential to treat this deficit. A review of the history of autism demonstrates that a deficit in social interaction has been the defining feature of the concept of autism from its conception. Abnormalities identified in early social skill development and an overview of the pathophysiology abnormalities associated with autism spectrum disorder are discussed as are the abnormalities in brain circuits associated with the social function deficit. Previous and ongoing clinical trials examining agents that have the potential to improve social deficits associated with autism spectrum disorder are discussed in detail. This discussion reveals that agents such as oxytocin and propranolol are particularly promising and undergoing active investigation, while other agents such as vasopressin agonists and antagonists are being activity investigated but have limited published evidence at this time. In addition, agents such as bumetanide and manipulation of the enteric microbiome using microbiota transfer therapy appear to have promising effects on core autism spectrum disorder symptoms including social function. Other pertinent issues associated with developing treatments in autism spectrum disorder, such as disease heterogeneity, high placebo response rates, trial design, and the most appropriate way of assessing effects on social skills (outcome measures), are also discussed.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
37
|
Waye MMY, Cheng HY. Genetics and epigenetics of autism: A Review. Psychiatry Clin Neurosci 2018; 72:228-244. [PMID: 28941239 DOI: 10.1111/pcn.12606] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Autism is a developmental disorder that starts before age 3 years, and children with autism have impairment in both social interaction and communication, and have restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. There is a strong heritable component of autism and autism spectrum disorder (ASD) as studies have shown that parents who have a child with ASD have a 2-18% chance of having a second child with ASD. The prevalence of autism and ASD have been increasing during the last 3 decades and much research has been carried out to understand the etiology, so as to develop novel preventive and treatment strategies. This review aims at summarizing the latest research studies related to autism and ASD, focusing not only on the genetics but also some epigenetic findings of autism/ASD. Some promising areas of research using transgenic/knockout animals and some ideas related to potential novel treatment and prevention strategies will be discussed.
Collapse
Affiliation(s)
- Mary M Y Waye
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yu Cheng
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
38
|
da Silva VC, de Oliveira AC, D’Almeida V. Homocysteine and Psychiatric Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817701471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr Genet 2016; 26:281-286. [DOI: 10.1097/ypg.0000000000000152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis 2016; 31:727-735. [PMID: 26956130 DOI: 10.1007/s11011-016-9815-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023]
Abstract
Autism (MIM 209850) is a heterogeneous neurodevelopmental disease that manifests within the first 3 years of life. Numerous articles reported that dysfunctional folate-methionine pathway enzymes may play an important role in the pathophysiology of autism. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme of this pathway and MTHFR C677T polymorphism reported as risk factor for autism in several case control studies. However, controversial reports were also published. Hence the present meta-analysis was designed to investigate the relationship of the MTHFR C677T polymorphism with the risk of autism. Electronic databases were searched for case control studies with following search terms - 'MTHFR', 'C677T', in combination with 'Autism'. Pooled OR with its corresponding 95 % CI was calculated and used as association measure to investigate the association between MTHFR C677T polymorphism and risk of autism. Total of thirteen studies were found suitable for the inclusion in the present meta-analysis, which comprises 1978 cases and 7257 controls. Meta-analysis using all four genetic models showed significant association between C677T polymorphism and autism (ORTvs.C = 1.48; 95 % CI: 1.18-1.86; P = 0.0007; ORTT + CT vs. CC = 1.70, 95 % CI = 0.96-2.9, p = 0.05; ORTT vs. CC = 1.84, 95 % CI = 1.12-3.02, p = 0.02; ORCT vs.CC = 1.60, 95 % CI = 1.2-2.1, p = 0.003; ORTT vs.CT+CC = 1.5, 95 % CI = 1.02-2.2, p = 0.03). In total 13 studies, 9 studies were from Caucasian population and 4 studies were from Asian population. The association between C677T polymorphism and autism was significant in Caucasian (ORTvs.C = 1.43; 95 % CI = 1.1-1.87; p = 0.009) and Asian population (ORTvs.C = 1.68; 95 % CI = 1.02-2.77; p = 0.04) using allele contrast model. In conclusion, present meta-analysis strongly suggested a significant association of the MTHFR C677T polymorphism with autism.
Collapse
Affiliation(s)
- Vandana Rai
- VBS Purvanchal University, Jaunpur, 222003, UP, India.
| |
Collapse
|
41
|
Frye RE, Rossignol DA. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2016; 10:43-56. [PMID: 27330338 PMCID: PMC4910649 DOI: 10.4137/cmped.s38337] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA.; Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
42
|
Sun C, Zou M, Zhao D, Xia W, Wu L. Efficacy of Folic Acid Supplementation in Autistic Children Participating in Structured Teaching: An Open-Label Trial. Nutrients 2016; 8:nu8060337. [PMID: 27338456 PMCID: PMC4924178 DOI: 10.3390/nu8060337] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are recognized as a major public health issue. Here, we evaluated the effects of folic acid intervention on methylation cycles and oxidative stress in autistic children enrolled in structured teaching. Sixty-six autistic children enrolled in this open-label trial and participated in three months of structured teaching. Forty-four children were treated with 400 μg folic acid (two times/daily) for a period of three months during their structured teaching (intervention group), while the remaining 22 children were not given any supplement for the duration of the study (control group). The Autism Treatment Evaluation Checklist (ATEC) and Psychoeducational Profile-third edition (PEP-3) were measured at the beginning and end of the treatment period. Folic acid, homocysteine, and glutathione metabolism in plasma were measured before and after treatment in 29 autistic children randomly selected from the intervention group and were compared with 29 age-matched unaffected children (typical developmental group). The results illustrated folic acid intervention improved autism symptoms towards sociability, cognitive verbal/preverbal, receptive language, and affective expression and communication. Furthermore, this treatment also improved the concentrations of folic acid, homocysteine, and normalized glutathione redox metabolism. Folic acid supplementation may have a certain role in the treatment of children with autism.
Collapse
Affiliation(s)
- Caihong Sun
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China.
| | - Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China.
| | - Dong Zhao
- Zhejiang Provincial Center For Disease Prevention and Control, Hangzhou 310009, China.
| | - Wei Xia
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China.
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
43
|
Kondolot M, Ozmert EN, Ascı A, Erkekoglu P, Oztop DB, Gumus H, Kocer-Gumusel B, Yurdakok K. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:149-158. [PMID: 26991849 DOI: 10.1016/j.etap.2016.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Phthalates and bisphenol A (BPA) are endocrine disruting chemicals (EDCs) that are suggested to exert neurotoxic effects. This study aimed to determine plasma phthalates and BPA levels along with oxidant/antioxidant status in autistic children [n=51; including 12 children were diagnosed with "Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS)]. Plasma levels of BPA, di (2-ethylhexyl)-phthalate (DEHP) and its main metabolite mono (2-ethylhexyl)-phthalate (MEHP); thiobarbituric acid reactive substance (TBARS) and carbonyl groups; erythrocyte glutathione peroxidase (GPx1), thioredoxin reductase (TrxR), catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) activities and glutathione (GSH) and selenium levels were measured. Plasma BPA levels of children with PDD-NOS were significantly higher than both classic autistic children and controls (n=50). Carbonyl, selenium concentrations and GPx1, SOD and GR activities were higher (p<0.05); CAT activity was markedly lower in study group. BPA exposure might be associated with PDD-NOS. Intracellular imbalance between oxidant and antioxidant status might facilitate its neurotoxicity.
Collapse
Affiliation(s)
- Meda Kondolot
- Erciyes University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Kayseri 38039, Turkey.
| | - Elif N Ozmert
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Developmental Pediatrics Unit, Ankara 06100, Turkey
| | - Ali Ascı
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey
| | - Pınar Erkekoglu
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey
| | - Didem B Oztop
- Erciyes University Faculty of Medicine, Department of Child Psychiatry, Kayseri 38039, Turkey
| | - Hakan Gumus
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Kayseri 38039, Turkey
| | - Belma Kocer-Gumusel
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey.
| | - Kadriye Yurdakok
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Developmental Pediatrics Unit, Ankara 06100, Turkey
| |
Collapse
|
44
|
Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6143753. [PMID: 26989453 PMCID: PMC4775819 DOI: 10.1155/2016/6143753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 12/05/2022]
Abstract
The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl) or the combination of hydroxocobalamin (OHCbl) and S-adenosylmethionine (SAM). OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH) but could be rescued by provision of either glutathionylcobalamin (GSCbl) or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action.
Collapse
|
45
|
Zhang Y, Hodgson NW, Trivedi MS, Abdolmaleky HM, Fournier M, Cuenod M, Do KQ, Deth RC. Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS One 2016; 11:e0146797. [PMID: 26799654 PMCID: PMC4723262 DOI: 10.1371/journal.pone.0146797] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Surgery, Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, 02215, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, 33328, United States of America
| | - Hamid M. Abdolmaleky
- Department of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA, 02118, United States of America
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Quang Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, United States of America
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, 33328, United States of America
- * E-mail:
| |
Collapse
|
46
|
Trivedi MS, Hodgson NW, Walker SJ, Trooskens G, Nair V, Deth RC. Epigenetic effects of casein-derived opioid peptides in SH-SY5Y human neuroblastoma cells. Nutr Metab (Lond) 2015; 12:54. [PMID: 26664459 PMCID: PMC4673759 DOI: 10.1186/s12986-015-0050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Background Casein-free, gluten-free diets have been reported to mitigate some of the inflammatory gastrointestinal and behavioral traits associated with autism, but the mechanism for this palliative effect has not been elucidated. We recently showed that the opioid peptide beta-casomorphin-7, derived from bovine (bBCM7) milk, decreases cysteine uptake, lowers levels of the antioxidant glutathione (GSH) and decreases the methyl donor S-adenosylmethionine (SAM) in both Caco-2 human GI epithelial cells and SH-SY5Y human neuroblastoma cells. While human breast milk can also release a similar peptide (hBCM-7), the bBCM7 and hBCM-7 vary greatly in potency; as the bBCM-7 is highly potent and similar to morphine in it's effects. Since SAM is required for DNA methylation, we wanted to further investigate the epigenetic effects of these food-derived opioid peptides. In the current study the main objective was to characterize functional pathways and key genes responding to DNA methylation effects of food-derived opioid peptides. Methods SH-SY5Y neuroblastoma cells were treated with 1 μM hBCM7 and bBCM7 and RNA and DNA were isolated after 4 h with or without treatment. Transcriptional changes were assessed using a microarray approach and CpG methylation status was analyzed at 450,000 CpG sites. Functional implications from both endpoints were evaluated via Ingenuity Pathway Analysis 4.0 and KEGG pathway analysis was performed to identify biological interactions between transcripts that were significantly altered at DNA methylation or transcriptional levels (p < 0.05, FDR <0.1). Results Here we show that hBCM7 and bBCM7, as well as morphine, cause epigenetic changes affecting gene pathways related to gastrointestinal disease and inflammation. These epigenetic consequences exhibited the same potency order as opiate inhibition of cysteine uptake insofar as hBCM7 was less potent than bBCM7, which was less potent than morphine. Conclusion Our findings indicate that epigenetic effects of milk-derived opiate peptides may contribute to GI dysfunction and inflammation in sensitive individuals. While the current study was performed using SH-SY5Y neuronal cellular models, similar actions on other cells types might combine to cause symptoms of intolerance. These actions may provide a potential contributing mechanism for the beneficial effects of a casein-free diet in alleviating gastrointestinal symptoms in neurological conditions including autism and other conditions. Lastly, our study also contributes to the evolving awareness of a “gut-brain connection”. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0050-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malav S Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, Rm # 3103, HPD building, Fort Lauderdale, FL USA
| | - Nathaniel W Hodgson
- Department of Molecular and Cellular Biology, Harvard Medical School, Boston, MA USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston Salem, NC USA
| | - Geert Trooskens
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent, Belgium
| | - Vineeth Nair
- Department of Pharmaceutical Sciences, Nova Southeastern University, Rm # 3103, HPD building, Fort Lauderdale, FL USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Rm # 3103, HPD building, Fort Lauderdale, FL USA
| |
Collapse
|
47
|
Hua R, Wei M, Zhang C. The complex genetics in autism spectrum disorders. SCIENCE CHINA-LIFE SCIENCES 2015; 58:933-45. [PMID: 26335739 DOI: 10.1007/s11427-015-4893-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders (ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants (CNVs), linkage regions, and microRNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - MengPing Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
48
|
Frye RE. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav 2015; 47:147-57. [PMID: 25440829 DOI: 10.1016/j.yebeh.2014.08.134] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/07/2023]
Abstract
Autism spectrum disorder (ASD) affects a significant number of individuals in the United States, with the prevalence continuing to grow. A significant proportion of individuals with ASD have comorbid medical conditions such as epilepsy. In fact, treatment-resistant epilepsy appears to have a higher prevalence in children with ASD than in children without ASD, suggesting that current antiepileptic treatments may be suboptimal in controlling seizures in many individuals with ASD. Many individuals with ASD also appear to have underlying metabolic conditions. Metabolic conditions such as mitochondrial disease and dysfunction and abnormalities in cerebral folate metabolism may affect a substantial number of children with ASD, while other metabolic conditions that have been associated with ASD such as disorders of creatine, cholesterol, pyridoxine, biotin, carnitine, γ-aminobutyric acid, purine, pyrimidine, and amino acid metabolism and urea cycle disorders have also been associated with ASD without the prevalence clearly known. Interestingly, all of these metabolic conditions have been associated with epilepsy in children with ASD. The identification and treatment of these disorders could improve the underlying metabolic derangements and potentially improve behavior and seizure frequency and/or severity in these individuals. This paper provides an overview of these metabolic disorders in the context of ASD and discusses their characteristics, diagnostic testing, and treatment with concentration on mitochondrial disorders. To this end, this paper aims to help optimize the diagnosis and treatment of children with ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".
Collapse
Affiliation(s)
- Richard E Frye
- Autism Research Program, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
49
|
Gatt JM, Burton KLO, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res 2015; 60:1-13. [PMID: 25287955 DOI: 10.1016/j.jpsychires.2014.09.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Major efforts have been directed at family-based association and case-control studies to identify the involvement of candidate genes in the major disorders of mental health. What remains unknown is whether candidate genes are associated with multiple disorders via pleiotropic mechanisms, and/or if other genes are specific to susceptibility for individual disorders. Here we undertook a review of genes that have been identified in prior meta-analyses examining specific genes and specific mental disorders that have core disruptions to emotional and cognitive function and contribute most to burden of illness- major depressive disorder (MDD), anxiety disorders (AD, including panic disorder and obsessive compulsive disorder), schizophrenia (SZ) and bipolar disorder (BD) and attention deficit hyperactivity disorder (ADHD). A literature review was conducted up to end-March 2013 which included a total of 1519 meta-analyses across 157 studies reporting multiple genes implicated in one or more of the five disorders studied. A total of 134 genes (206 variants) were identified as significantly associated risk variants for MDD, AD, ADHD, SZ or BD. Null genetic effects were also reported for 195 genes (426 variants). 13 genetic variants were shared in common between two or more disorders (APOE e4, ACE Ins/Del, BDNF Val66Met, COMT Val158Met, DAOA G72/G30 rs3918342, DAT1 40-bp, DRD4 48-bp, SLC6A4 5-HTTLPR, HTR1A C1019G, MTHR C677T, MTHR A1298C, SLC6A4 VNTR and TPH1 218A/C) demonstrating evidence for pleiotrophy. Another 12 meta-analyses of GWAS studies of the same disorders were identified, with no overlap in genetic variants reported. This review highlights the progress that is being made in identifying shared and unique genetic mechanisms that contribute to the risk of developing several major psychiatric disorders, and identifies further steps for progress.
Collapse
Affiliation(s)
- Justine M Gatt
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Karen L O Burton
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Leanne M Williams
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, 94305-5717, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
50
|
Abstract
The fifth edition of the diagnostic and statistical manual of mental disorders (DSM-5) (APA in diagnostic and statistical manual of mental disorders, Author, Washington, 2013) has decided to merge the subtypes of pervasive developmental disorders into a single category of autism spectrum disorder (ASD) on the assumption that they cannot be reliably differentiated from one another. The purpose of this review is to analyze the basis of this assumption by examining the comparative studies between Asperger's disorder (AsD) and autistic disorder (AD), and between pervasive developmental disorder not otherwise specified (PDDNOS) and AD. In all, 125 studies compared AsD with AD. Of these, 30 studies concluded that AsD and AD were similar conditions while 95 studies found quantitative and qualitative differences between them. Likewise, 37 studies compared PDDNOS with AD. Nine of these concluded that PDDNOS did not differ significantly from AD while 28 reported quantitative and qualitative differences between them. Taken together, these findings do not support the conceptualization of AD, AsD and PDDNOS as a single category of ASD. Irrespective of the changes proposed by the DSM-5, future research and clinical practice will continue to find ways to meaningfully subtype the ASD.
Collapse
|