1
|
Demirel KJ, Neves Guimaraes A, Demirel I. The Role of Caspase-1 and Caspase-4 in Modulating Gingival Epithelial Cell Responses to Aggregatibacter actinomycetemcomitans Infection. Pathogens 2025; 14:295. [PMID: 40137780 PMCID: PMC11945752 DOI: 10.3390/pathogens14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by bacterial infection and immune dysregulation. Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a key pathogen linked to disease progression. Caspase-1 and caspase-4 regulate inflammasome activation and cytokine release, yet their roles in gingival epithelial immunity remain unclear. The aim of this study was to elucidate the involvement of caspase-1 and caspase-4 in regulating the immune response to A. actinomycetemcomitans infection in gingival epithelial cells. Human gingival epithelial cells (Ca9-22) and caspase-1- and caspase-4-deficient cells were infected with A. actinomycetemcomitans for 24 h. Inflammatory mediator release was analyzed using Olink proteomics. Bacterial colonization and invasion were assessed using fluorescence-based assays and gentamicin protection assays. Caspase-1- and caspase-4-deficient cells showed significantly altered cytokine and chemokine profiles after infection with A. actinomycetemcomitans, showing reduced IL-17C and IL-18 release. We also found an increased release of TGF-α and LIF from caspase-4-deficient cells, along with elevated levels of the chemokines IL-8, CXCL9, and CXCL10. Additionally, both caspase-1- and caspase-4-deficient cells showed increased bacterial colonization and invasion, particularly in caspase-4-deficient cells. These findings suggest that caspase-1 and caspase-4 play distinct yet essential roles in gingival epithelial immunity, regulating cytokine release, barrier integrity, and defense against A. actinomycetemcomitans colonization.
Collapse
Affiliation(s)
- Kartheyaene Jayaprakash Demirel
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden;
| | - Alessandra Neves Guimaraes
- Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden;
- Department of Periodontology and Implantology, Public Dental Service, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden;
| |
Collapse
|
2
|
Brahmbhatt Y, Alqaderi H, Chinipardaz Z. Association Between Severe Periodontitis and Cognitive Decline in Older Adults. Life (Basel) 2024; 14:1589. [PMID: 39768299 PMCID: PMC11678878 DOI: 10.3390/life14121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Periodontal disease, a progressive inflammatory condition, disrupts the oral microbiome and releases inflammatory cytokines, leading to systemic issues, including cognitive decline. This study investigates the association between severe periodontitis and cognitive decline, exploring the role of alkaline phosphatase (ALP), an enzyme linked to systemic inflammation, as an effect modifier. (2) Methods: We analyzed cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Severe periodontitis was defined using the Centers for Disease Control and Prevention (CDC) and the American Academy of Pediatrics (AAP) case definition. A weighted multivariable logistic regression model assessed the association between severe periodontitis and cognitive decline. An interaction term examined ALP's role as an effect modifier. (3) Results: This study included 1265 participants aged 65 and older. After adjusting for confounders, each one-point increase in cognitive function score was associated with a 2% decrease in the odds of severe periodontitis (OR = 0.98; 95% CI = 0.97-0.99; p = 0.008). ALP was a significant effect modifier in the relationship between severe periodontitis and cognitive decline. (4) Conclusions: This study, using a representative U.S. adult population aged 65 and over, suggests that lower cognitive performance correlates with higher likelihood of severe periodontitis. ALP enhances the association between severe periodontitis and cognitive decline.
Collapse
Affiliation(s)
- Yash Brahmbhatt
- Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| | - Hend Alqaderi
- Department of Public Health, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Zahra Chinipardaz
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| |
Collapse
|
3
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
4
|
Ojha M, Amrita, Gupta D, Verma V. The chronicles of green complex bacteria. J Oral Maxillofac Pathol 2024; 28:633-640. [PMID: 39949690 PMCID: PMC11819641 DOI: 10.4103/jomfp.jomfp_121_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 02/16/2025] Open
Abstract
Periodontal pathogens have always captivated the attention of periodontists and microbiologists as it account for causing periodontal disease in 90% of the population globally. Clinical and experimental studies have confirmed that destructive activity on the periodontium is due to certain strains of bacteria that occupy a relatively small portion of dental biofilm. Among them, the green and the red complex bacteria enjoy the popularity of being the most notorious strain in disease initiation and progression. The genera of green complex bacteria comprise three pathogens- Aggregatibacter actinomyecetecomitans, Capnocytophaga, and Eikenella corrodens. The group possesses several stratagems and key elements that aid them in escaping the immune surveillance and creating a harsh environment for the periodontium. The review focuses on defining the green complex bacteria and their role in periodontitis.
Collapse
Affiliation(s)
- Moitri Ojha
- Department of Periodontology, SMBT Dental College, Sangamner, Maharashtra, India
| | - Amrita
- Department of Periodontology, Teerthanker Mahaveer Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Disha Gupta
- Department of Periodontology, Teerthanker Mahaveer Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Vartika Verma
- Department of Periodontology, Kalka Dental College and Hospital, Meerut, Uttar Pradesh, India
| |
Collapse
|
5
|
Razooqi Z, Tjellström I, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Johansson A, Oscarsson J. Association of Filifactor alocis and its RTX toxin gene ftxA with periodontal attachment loss, and in synergy with Aggregatibacter actinomycetemcomitans. Front Cell Infect Microbiol 2024; 14:1376358. [PMID: 38596650 PMCID: PMC11002136 DOI: 10.3389/fcimb.2024.1376358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The Gram-positive bacterium, Filifactor alocis is an oral pathogen, and approximately 50% of known strains encode a recently identified repeat-in-toxin (RTX) protein, FtxA. By assessing a longitudinal Ghanaian study population of adolescents (10-19 years of age; mean age 13.2 years), we recently discovered a possible correlation between deep periodontal pockets measured at the two-year follow-up, presence of the ftxA gene, and a high quantity of F. alocis. To further understand the contribution of F. alocis and FtxA in periodontal disease, we used qPCR in the present study to assess the carriage loads of F. alocis and the prevalence of its ftxA gene in subgingival plaque specimens, sampled at baseline from the Ghanaian cohort (n=500). Comparing these results with the recorded clinical attachment loss (CAL) longitudinal progression data from the two-year follow up, we concluded that carriers of ftxA-positive F. alocis typically exhibited higher loads of the bacterium. Moreover, high carriage loads of F. alocis and concomitant presence of the ftxA gene were two factors that were both associated with an enhanced prevalence of CAL progression. Interestingly, CAL progression appeared to be further promoted upon the simultaneous presence of F. alocis and the non-JP2 genotype of Aggregatibacter actinomycetemcomitans. Taken together, our present findings are consistent with the notion that F. alocis and its ftxA gene promotes CAL during periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Brovst, Denmark
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Fernández Forné Á, García Anaya MJ, Segado Guillot SJ, Plaza Andrade I, de la Peña Fernández L, Lorca Ocón MJ, Lupiáñez Pérez Y, Queipo-Ortuño MI, Gómez-Millán J. Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review. Oral Oncol 2023; 144:106488. [PMID: 37399707 DOI: 10.1016/j.oraloncology.2023.106488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.
Collapse
Affiliation(s)
- África Fernández Forné
- Department of Radiation Oncology. Punta Europa University Hospital. Algeciras, Cádiz, Spain
| | - María Jesús García Anaya
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | | | - Isaac Plaza Andrade
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain
| | | | - María Jesús Lorca Ocón
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Yolanda Lupiáñez Pérez
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain; Department of Surgical Specialties, Biochemical and Immunology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain.
| | - Jaime Gómez-Millán
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| |
Collapse
|
7
|
ARAÚJO LL, LOURENÇO TGB, COLOMBO APV. Periodontal disease severity is associated to pathogenic consortia comprising putative and candidate periodontal pathogens. J Appl Oral Sci 2023; 31:e20220359. [PMID: 36629716 PMCID: PMC9828885 DOI: 10.1590/1678-7757-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Based on a holistic concept of polymicrobial etiology, we have hypothesized that putative and candidate periodontal pathogens are more frequently detected in consortia than alone in advanced forms of periodontal diseases (PD). OBJECTIVE To correlate specific consortia of periodontal pathogens with clinical periodontal status and severity of periodontitis. METHODOLOGY Subgingival biofilm was obtained from individuals with periodontal health (113, PH), gingivitis (91, G), and periodontitis (209, P). Genomic DNA was purified and the species Aggregatibacter actinomycetemcomitans (Aa), Aa JP2-like strain, Porphyromonas gingivalis (Pg), Dialister pneumosintes (Dp), and Filifactor alocis (Fa) were detected by PCR. Configural frequency and logistic regression analyses were performed to correlate microbial consortia and PD. RESULTS Aa + Pg in the presence of Dp (phi=0.240; χ2=11.9, p<0.01), as well as Aa JP2 + Dp + Fa (phi=0.186, χ2=4.6, p<0.05) were significantly more associated in advanced stages of P. The consortium Aa + Fa + Dp was strongly associated with deep pocketing and inflammation (p<0.001). The best predictors of disease severity (80% accuracy) included older age (OR 1.11 [95% CI 1.07 - 1.15], p<0.001), Black/African-American ancestry (OR 1.89 [95% CI 1.19 - 2.99], p=0.007), and high frequency of Aa + Pg + Dp (OR 3.04 [95% CI 1.49 - 6.22], p=0.002). CONCLUSION Specific microbial consortia of putative and novel periodontal pathogens, associated with demographic parameters, correlate with severe periodontitis, supporting the multifactorial nature of PD.
Collapse
Affiliation(s)
- Lélia Lima ARAÚJO
- Universidade Federal do Rio de JaneiroFaculdade de OdontologiaPrograma de Pós-Graduação em OdontologiaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Faculdade de Odontologia, Programa de Pós-Graduação em Odontologia (Periodontia), Rio de Janeiro, Brasil.,Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| | - Talita Gomes Baêta LOURENÇO
- Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| | - Ana Paula Vieira COLOMBO
- Universidade Federal do Rio de JaneiroFaculdade de OdontologiaPrograma de Pós-Graduação em OdontologiaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Faculdade de Odontologia, Programa de Pós-Graduação em Odontologia (Periodontia), Rio de Janeiro, Brasil.,Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| |
Collapse
|
8
|
Carriage of the JP2 Genotype of Aggregatibacter actinomycetemcomitans by Periodontitis Patients of Various Geographic Origin, Living in Sweden. Pathogens 2022; 11:pathogens11111233. [PMID: 36364984 PMCID: PMC9697931 DOI: 10.3390/pathogens11111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The JP2 genotype of Aggregatibacter actinomycetemcomitans serotype b is associated with aggressive forms of periodontitis and was initially identified as affecting adolescents in North and West Africa. The dissemination of this genotype follows the migration routes and can today be detected in samples from periodontitis patients in a high number of countries. In the present study, we aim to describe findings of the JP2 genotype A. actinomycetemcomits in a clinical laboratory at the Dental School, Odontology, Umeå University, Sweden. The findings of JP2 carriers are documented during a 21-year period, and the age and geographic origin of the sampled individuals are described. In addition, the collected JP2 isolates were separated into North or West African origin by analyses of the presence of a point mutation in the hbpA2 pseudogene of the bacterium. In a total of 2296 sampled individuals during this period in this Swedish population of periodontitis patients, 32 JP2 carriers were detected by cultivation and PCR. The geographic background of these individuals was diverse, including sixteen with African origin, ten with a Swedish origin and six additional ones with a non-African origin. The JP2 genotypes of A. actinomycetemcomitans were mainly isolated from young individuals (<35 years of age), and seven out of the 32 isolates were of a West African origin based on the sequence of hbpA2. We conclude that the JP2 genotype of A. actinomycetemcomitans can be detected world-wide in subgingival plaque samples from adolescents affected by periodontitis.
Collapse
|
9
|
Genomic Islands Shape the Genetic Background of Both JP2 and Non-JP2 Aggregatibacter actinomycetemcomitans. Pathogens 2022; 11:pathogens11091037. [PMID: 36145469 PMCID: PMC9506275 DOI: 10.3390/pathogens11091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen associated with periodontitis. This species exhibits substantial variations in gene content among different isolates and has different virulence potentials. This study examined the distribution of genomic islands and their insert sites among genetically diverse A. actinomycetemcomitans strains by comparative genomic analysis. The results showed that some islands, presumably more ancient, were found across all genetic clades of A. actinomycetemcomitans. In contrast, other islands were specific to individual clades or a subset of clades and may have been acquired more recently. The islands for the biogenesis of serotype-specific antigens comprise distinct genes located in different loci for serotype a and serotype b–f strains. Islands that encode the same cytolethal distending toxins appear to have been acquired via distinct mechanisms in different loci for clade b/c and for clade a/d/e/f strains. The functions of numerous other islands remain to be elucidated. JP2 strains represent a small branch within clade b, one of the five major genetic clades of A. actinomycetemcomitans. In conclusion, the complex process of genomic island acquisition, deletion, and modification is a significant force in the genetic divergence of A. actinomycetemcomitans. Assessing the genetic distinctions between JP2 and non-JP2 strains must consider the landscape of genetic variations shaped by evolution.
Collapse
|
10
|
Hashai K, Chapple IL, Shapira L, Assadi W, Dadon S, Polak D. CD18 Mediates Neutrophil Imperviousness to the Aggregatibacter actinomycetemcomitans JP2 Clone in Molar-Incisor Pattern Periodontitis. Front Immunol 2022; 13:847372. [PMID: 35663998 PMCID: PMC9159298 DOI: 10.3389/fimmu.2022.847372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Molar-incisor pattern periodontitis (MIPP) in the absence of significant local risk factors or systemic disease, is a rare, early onset periodontal disease phenotype, with 0.5% to 2.5% global prevalence. The condition is characterized by impaired neutrophil function and persistent Aggregatibacter actinomycetemcomitans (JP2 clone) infection. The aim of this study was to characterize neutrophil functional responses to JP2 and to investigate the neutrophil receptors involved. Materials and Methods Neutrophils were obtained from whole blood samples of periodontally healthy and MIPP subjects and incubated with the JP2 clone or a non-JP2 clone of A. actinomycetemcomitans. Bacterial survival was tested by blood agar culture; neutrophil death was tested with propidium iodide and flow cytometry; Reactive oxygen production (ROS) was measured with 2',7'-dichlorofluorescein diacetate and a fluorescence plate reader; the cytokinome was analysed using an array profiler, ELISA and RT-PCR. Receptors binding to JP2 were isolated using a novel immunoprecipitation assay and validated functionally using specific blocking antibodies. Results JP2 and non-JP2 survival was comparable between all the neutrophil groups. Resistance to neutrophil necrosis following exposure to JP2 was significantly lower in the MIPP group, than in all the other groups (p<0.0001). Conversely, MIPP neutrophils showed lower levels of ROS production in response to JP2 infection compared with that of healthy neutrophils (p<0.001). Furthermore, significantly lower levels of cytokines, such as IL8, IL10 and TNFα, were observed during JP2 incubation with MIPP neutrophils than upon incubation with periodontally healthy neutrophils. Various proteins expressed on neutrophils bind to JP2. Of these, CD18 was found to mediate neutrophil necrosis. The CD18 receptor on MIPP neutrophils acts differently from that on periodontally healthy patients neutrophils, and appears to reflect differential neutrophil reactions to JP2. Conclusion This study portrays a fundamental difference in neutrophil response to JP2 infection between periodontally healthy and MIPP patients. This was evident in the resistance to necrosis, and lower ROS and cytokine production, despite the persistent presence of viable JP2. Whilst in periodontally healthy neutrophils, JP2 binds to CD18 on cell surfaces, this is not the case in MIPP neutrophils, suggesting a potential role for CD18 in the periodontal susceptibility of MIPP patients.
Collapse
Affiliation(s)
- Koren Hashai
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Ian L. Chapple
- Institute of Clinical Sciences, College of Medical and Dental Sciences, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
- Birmingham Community Healthcare National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Lior Shapira
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Walaa Assadi
- Department of Orthodontics, Rambam Medical Center, Haifa, Israel
| | - Stav Dadon
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Orthodontics, Hadassah Medical Center, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Granlund M, Åberg CH, Johansson A, Claesson R. Discrepancies in Antimicrobial Susceptibility between the JP2 and the Non-JP2 Genotype of Aggregatibacter actinomycetemcomitans. Antibiotics (Basel) 2022; 11:antibiotics11030317. [PMID: 35326780 PMCID: PMC8944592 DOI: 10.3390/antibiotics11030317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans JP2 genotype is associated with high leukotoxin production and severe (aggressive) periodontitis. The aim of this study was to compare the antimicrobial susceptibility of JP2 and non-JP2 genotype strains. Minimal inhibitory concentrations (MICs) of 11 antimicrobials were determined for 160 A. actinomycetemcomitans of serotype a, b, or c, mostly isolated in Sweden or Ghana. MIC distributions for benzylpenicillin and fusidic acid revealed a more susceptible subpopulation for 38 serotype b strains, including the 32 of the JP2 genotype, with a benzylpenicillin MIC range of 0.125−0.5 mg/L. In contrast, benzylpenicillin MIC ≤ 16 mg/L was the estimated 99.5% epidemiological cutoff (ECOFF) of all strains. Beta-lactamase production was not detected. The fusidic acid MIC distribution of 11 strains of Aggregatibacter aphrophilus agreed with that found in non-JP2 strains. Cefotaxime, meropenem, levofloxacin, and trimethoprim−sulfamethoxazole MICs were all ≤0.25 mg/L, while MIC90 values for amoxicillin, azithromycin and tetracycline were 1 mg/L. Metronidazole MICs varied between 0.5 and >256 mg/L. The discrepant findings indicate that A. actinomycetemcomitans may be divided into two separate wild types, with a suggested intrinsic reduced susceptibility for benzylpenicillin in the majority of non-JP2 genotype strains. Possible implications for the treatment of A. actinomycetemcomitans infections are discussed.
Collapse
Affiliation(s)
- Margareta Granlund
- Department of Clinical Microbiology, Umeå University, S-90187 Umeå, Sweden;
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (C.H.Å.); (A.J.)
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (C.H.Å.); (A.J.)
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden
- Correspondence: ; Tel.:+76-70-3090126
| |
Collapse
|
12
|
Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: From Basic to Advanced Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:45-67. [DOI: 10.1007/978-3-030-96881-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Claesson R, Johansson A, Höglund Åberg C, Esberg A, Haubek D, Oscarsson J. Multilocus Sequence Typing of Non-JP2 Serotype b Aggregatibacter actinomycetemcomitans Strains of Ghanaian and Swedish Origin. Front Cell Infect Microbiol 2022; 11:769671. [PMID: 34970507 PMCID: PMC8712761 DOI: 10.3389/fcimb.2021.769671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
Objective and Methods The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans is associated with periodontitis affecting young individuals. The geographic dissemination of the highly leukotoxic JP2 genotype of serotype b of this species was previously studied by multilocus sequence typing (MLST). Here, we have used MLST to genetically characterize non-JP2 genotype strains of serotype b, isolated from individuals living in Ghana (n=41), and in Sweden (n=13), respectively. Results The MLST analysis revealed a total of nine sequence types (ST). Both Ghanaian and Swedish isolates were distributed in ST 1-3. ST 5 and 6 were only identified among the Ghanaian strains, whereas ST 4, 7, 8 and 9 were uniquely represented among the Swedish strains. Previously, we characterized these non-JP2 genotype strains of A. actinomycetemcomitans serotype b by arbitrarily-primed (AP)-PCR, which distributed them into three groups, AP-PCR type 1, 2, and 3, respectively. AP-PCR type 1 strains are generally highly leukotoxic, and are associated with progression of periodontal attachment loss. As AP-PCR type 1 includes both JP2 genotype strains and a proportion of non-JP2 genotype strains of serotype b, a straightforward diagnostic procedure has been sought. This has revealed a gene, cagE, which appears to be conserved only in this AP-PCR type. According to our results, MLST was not a highly discriminatory method to identify AP-PCR type 1, as strains of this AP-PCR type could be found within three different ST: ST 2, ST 3 and ST 8. Conclusion According to MLST, a geographic dissemination of non-JP2 genotype A. actinomycetemcomitans serotype b appears to exist. However, aiming to identify carriers of AP-PCR type 1, non-JP2 genotype serotype b, PCR with cagE-specific primers is likely the most efficient diagnostic procedure known today.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Paediatric Dentistry, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Prevalence of JP2 and Non-JP2 Genotypes of Aggregatibacter actinomycetemcomitans and Oral Hygiene Practice of Kenyan Adolescents in Maasai Mara. Pathogens 2021; 10:pathogens10040488. [PMID: 33920549 PMCID: PMC8073413 DOI: 10.3390/pathogens10040488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in the etiology of periodontitis that affects adolescents. The monitoring and mapping of the geographic dissemination pattern of JP2 and non-JP2 genotypes of A. actinomycetemcomitans are of interest. In Africa, the highly leukotoxic JP2 genotype is known to be prevalent, particularly in north-west Africa. The aims of this study were to determine the prevalence of JP2 and non-JP2 genotypes and investigate the oral hygiene practices among adolescents living in Maasai Mara, Kenya. A total of 284 adolescents (mean age: 15.0 yrs; SD 1.1) were interviewed regarding their age, gender, medical history, and oral hygiene practice, and the number of teeth present was recorded. One subgingival pooled plaque sample from all the first molars of each participant was analyzed by conventional PCR. The mean number of permanent teeth present was 27.9 (SD: 2.0; range: 22–32; 95% CI: 27.7–28.1). Sixteen (5.6%) and two (0.7%) adolescents were positive for non-JP2 and JP2 genotypes, respectively. For the vast majority of the adolescents, the use of a toothbrush (99.3%) and toothpaste (80.1%), as well as some kind of toothpick (>60.2%), were part of their oral hygiene practice, with dental floss (0.4%) and/or mouth rinses (0.4%) rarely being used. We have, for the first time, identified Kenyan adolescents colonized with the JP2 genotype. The prevalence of the JP2 genotype of A. actinomycetemcomitans is low, a possible indicator that spreading through human migration from North and West Africa to East Africa is a rare occasion.
Collapse
|
15
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
16
|
Yoshida A, Bouziane A, Erraji S, Lakhdar L, Rhissassi M, Miyazaki H, Ansai T, Iwasaki M, Ennibi O. Etiology of aggressive periodontitis in individuals of African descent. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:20-26. [PMID: 33737991 PMCID: PMC7946349 DOI: 10.1016/j.jdsr.2020.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Aggressive periodontitis (AgP) is a form of periodontitis that affects adolescents and has a significantly higher prevalence in individuals of African descent. AgP typically shows familial aggregation, suggesting a genetic predisposition. Young age, good health status, rapid attachment loss, and familial aggregation are the primary features of this disease. AgP has been closely linked to specific bacterial strains of Aggregatibacter actinomycetemcomitans. A. actinomycetemcomitans strains isolated from patients with AgP produce leukotoxin (LtxA), which specifically affects polymorphonuclear leukocytes in primates, especially humans. High-throughput 16S rRNA gene sequencing and bioinformatics analyses revealed differences in the subgingival microbiota between patients with AgP and those with chronic periodontitis (ChP). The genera Atopobium and Prevotella show increased prevalences in AgP than in ChP. According to AgP susceptibility, several single nucleotide polymorphisms have been detected in different genes in individuals of African descent. Interleukin (IL)-1α and IL-1β genetic polymorphisms may be associated with the severity of both ChP and AgP. An elevated serum level of IL-17 produced by Th17 cells may be a characteristic of AgP. Analyses of the relationships among bacteria, host defenses, genetic predisposition, and numerous other factors are required to understand the progression of this disease.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Oral Microbiology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Amal Bouziane
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Samir Erraji
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Leila Lakhdar
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Meryem Rhissassi
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Hideo Miyazaki
- Department of Dental Technology, Meirin College, Niigata, Japan
| | - Toshihiro Ansai
- Division of Community Oral Health Development, Kyushu Dental University, Kitakyushu, Japan
| | | | - Oumkeltoum Ennibi
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| |
Collapse
|
17
|
Ishikawa KH, Bueno MR, Kawamoto D, Simionato MRL, Mayer MPA. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2021; 36:92-102. [PMID: 33372378 DOI: 10.1111/omi.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107 CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.
Collapse
Affiliation(s)
- Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria R L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Parents with periodontitis impact the subgingival colonization of their offspring. Sci Rep 2021; 11:1357. [PMID: 33446688 PMCID: PMC7809442 DOI: 10.1038/s41598-020-80372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Early acquisition of a pathogenic microbiota and the presence of dysbiosis in childhood is associated with susceptibility to and the familial aggregation of periodontitis. This longitudinal interventional case-control study aimed to evaluate the impact of parental periodontal disease on the acquisition of oral pathogens in their offspring. Subgingival plaque and clinical periodontal metrics were collected from 18 parents with a history of generalized aggressive periodontitis and their children (6-12 years of age), and 18 periodontally healthy parents and their parents at baseline and following professional oral prophylaxis. 16S rRNA amplicon sequencing revealed that parents were the primary source of the child's microbiome, affecting their microbial acquisition and diversity. Children of periodontitis parents were preferentially colonized by Filifactor alocis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, Fusobacterium nucleatum and several species belonging to the genus Selenomonas even in the absence of periodontitis, and these species controlled inter-bacterial interactions. These pathogens also emerged as robust discriminators of the microbial signatures of children of parents with periodontitis. Plaque control did not modulate this pathogenic pattern, attesting to the microbiome's resistance to change once it has been established. This study highlights the critical role played by parental disease in microbial colonization patterns in their offspring and the early acquisition of periodontitis-related species and underscores the need for greater surveillance and preventive measures in families of periodontitis patients.
Collapse
|
19
|
Monteiro MF, Casati MZ, Sallum EA, Silvério KG, Nociti-Jr FH, Casarin RCV. The familial trend of the local inflammatory response in periodontal disease. Oral Dis 2020; 28:202-209. [PMID: 33252790 DOI: 10.1111/odi.13738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The imbalanced host response in front of a dysbiotic biofilm is one of the major aspects of severe periodontitis, which also presents a strong familial aggregation related to the susceptibility factors transmission within family members. This study hypothesized that aggressive periodontitis (GAgP) patients and their descendants could present a similar trend of a local inflammatory response that is different from healthy controls. METHODS Fifteen GAgP subjects and their children and fifteen healthy subjects and their children were clinically assessed, and the concentration of interferon (IFN)-γ, interleukin (IL)-10, IL-17, IL-1β, IL-4, IL-6, IL-8, and tumor necrosis factor (TNF)-α was evaluated in the gingival fluid using the multiplexed bead immunoassay. RESULTS Children from the GAgP group presented lower IL-10 and IFN-γ subgingival concentration than Health children, despite no difference in the clinical parameters. GAgP parents showed a lower IFN-γ, IL-10, and IL-6 than healthy subjects. IL-10/IL-1β and IFN-γ/IL-4 ratios were reduced in GAgP dyads, suggesting a familial trend in the subgingival cytokine's profile. The cytokines correlated to the clinical data and were predictors of probing depth increase. CONCLUSION GAgP parents and their children presented a similar cytokine profile and an imbalance in the subgingival response characterized by decreased IFN-γ/IL-4 and IL10/IL-1β ratios.
Collapse
Affiliation(s)
- Mabelle Freitas Monteiro
- Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Márcio Zaffalon Casati
- Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Enilson Antonio Sallum
- Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Karina Gonzales Silvério
- Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Francisco Humberto Nociti-Jr
- Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Renato Corrêa Viana Casarin
- Department of Prosthodontics and Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
20
|
Amado PPP, Kawamoto D, Albuquerque-Souza E, Franco DC, Saraiva L, Casarin RCV, Horliana ACRT, Mayer MPA. Oral and Fecal Microbiome in Molar-Incisor Pattern Periodontitis. Front Cell Infect Microbiol 2020; 10:583761. [PMID: 33117737 PMCID: PMC7578221 DOI: 10.3389/fcimb.2020.583761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
In order to improve our understanding on the microbial complexity associated with Grade C/molar-incisor pattern periodontitis (GC/MIP), we surveyed the oral and fecal microbiomes of GC/MIP and compared to non-affected individuals (Control). Seven Afro-descendants with GC/MIP and seven age/race/gender-matched controls were evaluated. Biofilms from supra/subgingival sites (OB) and feces were collected and submitted to 16S rRNA sequencing. Aggregatibacter actinomycetemcomitans (Aa) JP2 clone genotyping and salivary nitrite levels were determined. Supragingival biofilm of GC/MIP presented greater abundance of opportunistic bacteria. Selenomonas was increased in subgingival healthy sites of GC/MIP compared to Control. Synergistetes and Spirochaetae were more abundant whereas Actinobacteria was reduced in OB of GC/MIP compared to controls. Aa abundance was 50 times higher in periodontal sites with PD≥ 4 mm of GC/MIP than in controls. GC/MIP oral microbiome was characterized by a reduction in commensals such as Kingella, Granulicatella, Haemophilus, Bergeyella, and Streptococcus and enrichment in periodontopathogens, especially Aa and sulfate reducing Deltaproteobacteria. The oral microbiome of the Aa JP2-like+ patient was phylogenetically distant from other GC/MIP individuals. GC/MIP presented a higher abundance of sulfidogenic bacteria in the feces, such as Desulfovibrio fairfieldensis, Erysipelothrix tonsillarum, and Peptostreptococcus anaerobius than controls. These preliminary data show that the dysbiosis of the microbiome in Afro-descendants with GC/MIP was not restricted to affected sites, but was also observed in supragingival and subgingival healthy sites, as well as in the feces. The understanding on differences of the microbiome between healthy and GC/MIP patients will help in developing strategies to improve and monitor periodontal treatment.
Collapse
Affiliation(s)
- Pâmela Pontes Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Diego Castillo Franco
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, Brazil.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Luciana Saraiva
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Renato Corrêa Viana Casarin
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Pahumunto N, Basic A, Östberg AK, Teanpaisan R, Dahlen G. Oral Lactobacillus strains reduce cytotoxicity and cytokine release from peripheral blood mononuclear cells exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. BMC Microbiol 2020; 20:279. [PMID: 32917132 PMCID: PMC7488720 DOI: 10.1186/s12866-020-01959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023] Open
Abstract
Background This study evaluated the effect of oral lactobacilli on the cytotoxicity and cytokine release from peripheral blood mononuclear cells (PBMCs) when exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. The supernatants and cell wall extracts (CWEs) of eight A. actinomycetemcomitans strains, representing different subtypes, and three Lactobacillus strains were used. The PBMCs from six blood donors were exposed to supernatants and CWEs of A. actinomycetemcomitans or Lactobacillus strains alone or combinations and untreated cells as control. The cytotoxicity was determined by trypan blue exclusion method and IL-1β secretion by ELISA. TNF-α, IL-6, and IL-8 secretions were measured using Bioplex Multiplex Immunoassay. Results Supernatants or CWEs from all bacterial strains showed cytotoxicity and IL-1β secretion and the subtypes of A. actinomycetemcomitans showed generally a significantly higher effect on PBMCs than that of the Lactobacillus strains. Two highly toxic A. actinomycetemcomitans strains (JP2 and JP2-like) induced a higher response than all other strains. When combined, Lactobacillus significantly reduced the toxicity and the IL-1β secretion induced by A. acinomycetemcomitans. The effect varied between the subtypes and the reduction was highest for the JP2 and JP2-like strains. The Lactobacillus paracasei strain SD1 had a higher reducing effect than the other Lactobacillus strains. This strain had a consistent reducing effect on all subtypes of A. actinomycetemcomitans cytotoxicity, and release of IL-1β, IL-6, IL-8, and TNF-α from PBMCs of the blood donors. A strong and significant variation in cytokine release between the six blood donors was noticed. Conclusions Lactobacillus spp. and L. paracasei SD1 in particular, showed a limited but statistically significant reducing interaction with A. actinomycetemcomitans toxicity and release of cytokines in vitro.
Collapse
Affiliation(s)
- Nuntiya Pahumunto
- Common Oral Diseases and Epidemiology Research Center and Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Amina Basic
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Östberg
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiology Research Center and Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
JP2 Genotype of Aggregatibacter actinomycetemcomitans in Caucasian Patients: A Presentation of Two Cases. Pathogens 2020; 9:pathogens9030178. [PMID: 32121596 PMCID: PMC7157654 DOI: 10.3390/pathogens9030178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a key pathogen that has been associated with periodontal disease. Its most important virulence factor is a leukotoxin capable of inactivating immune cells. The JP2 genotype of Aggregatibacter actinomycetemcomitans shows enhanced leukotoxic activity and is mostly present in individuals of North and West African origin with severe periodontitis. In this paper, two cases of Caucasians diagnosed with the JP2 genotype are presented. A 50-year-old female patient had three approximal sites with ≥ 6 mm clinical attachment loss (CAL) and eight sites with probing depth (PD) ≥ 5 mm. Microbiological diagnostics revealed A. actinomycetemcomitans JP2 genotype, but not Porphyromonas gingivalis. This JP2 genotype was highly leukotoxic to monocytic cells. The second case was a 55-year-old female patient with CAL of > 5 mm at all molars and PD of up to 12 mm. A. actinomycetemcomitans JP2 was identified, but not P. gingivalis. Her husband originated from North-Africa. In him, no A. actinomycetemcomitans was detected, but their 17-year-old daughter was diagnosed with periodontitis and was found to be positive for the JP2 genotype. Both patients were successfully treated with adjunctive antibiotics and the JP2 genotype was eliminated. In summary, here, the microbiological diagnosis was key for the treatment with adjunctive antibiotics.
Collapse
|
23
|
Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020; 8:microorganisms8020308. [PMID: 32102216 PMCID: PMC7074908 DOI: 10.3390/microorganisms8020308] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract: The human oral cavity is home to an abundant and diverse microbial community (i.e., the oral microbiome), whose composition and roles in health and disease have been the focus of intense research in recent years. Thanks to developments in sequencing-based approaches, such as 16S ribosomal RNA metabarcoding, whole metagenome shotgun sequencing, or meta-transcriptomics, we now can efficiently explore the diversity and roles of oral microbes, even if unculturable. Recent sequencing-based studies have charted oral ecosystems and how they change due to lifestyle or disease conditions. As studies progress, there is increasing evidence of an important role of the oral microbiome in diverse health conditions, which are not limited to diseases of the oral cavity. This, in turn, opens new avenues for microbiome-based diagnostics and therapeutics that benefit from the easy accessibility of the oral cavity for microbiome monitoring and manipulation. Yet, many challenges remain ahead. In this review, we survey the main sequencing-based methodologies that are currently used to explore the oral microbiome and highlight major findings enabled by these approaches. Finally, we discuss future prospects in the field.
Collapse
Affiliation(s)
- Jesse R. Willis
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
24
|
Triclosan toothpaste as an adjunct therapy to plaque control in children from periodontitis families: a crossover clinical trial. Clin Oral Investig 2020; 24:1421-1430. [PMID: 31907625 DOI: 10.1007/s00784-019-03121-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/09/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Studies have demonstrated that children from aggressive periodontitis (AgP) parents presented precocious alterations in their periodontal condition, and the use of chemical agents in association to plaque control could be useful to control these alterations. This study aimed to evaluate the effect of Triclosan toothpaste to modulate the clinical and subgingival condition in children from AgP parents. METHODS Fifteen children from AgP parents and 15 from periodontally healthy parents were included in this crossover placebo study. Children were randomly allocated into triclosan or placebo therapy, using selected toothpaste for 45 days. After 15 days of wash-out, groups were crossed, changing the used toothpaste. Clinical examination and saliva, crevicular gingival fluid (GCF), and subgingival biofilm collection were performed at baseline and 45 days of each phase. GCF cytokines' levels were analyzed by Luminex/MAGpix platform and subgingival and salivary periodontal pathogens' levels by qPCR. RESULTS At baseline, AgP group presented higher plaque index (PI), gingival index (GI), and bleeding on probing (BoP), higher Aggregatibacter actinomycetemcomitans (Aa) abundance in saliva and subgingival biofilm, and lower levels of INF-ɣ, IL-4, and IL-17 in GCF. Placebo therapy only reduced PI in both groups. Triclosan toothpaste reduced PI and GI in both groups. Triclosan promoted reduction of BoP and probing depth (PD), Aa salivary, and IL-1β levels in AgP group. In health group, triclosan reduced INF-ɣ and IL-4 concentration. CONCLUSION Triclosan toothpaste demonstrated to be more effective than placebo toothpaste to control the periodontal condition in children from AgP parents, by reducing the BoP, PD, salivary Aa, and IL-1β. CLINICAL RELEVANCE Triclosan toothpaste can improve oral conditions in higher-risk population for AgP. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov with the identifier NCT03642353.
Collapse
|
25
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
26
|
Ennibi OK, Claesson R, Akkaoui S, Reddahi S, Kwamin F, Haubek D, Johansson A. High salivary levels of JP2 genotype of Aggregatibacter actinomycetemcomitans is associated with clinical attachment loss in Moroccan adolescents. Clin Exp Dent Res 2019; 5:44-51. [PMID: 30847232 PMCID: PMC6392844 DOI: 10.1002/cre2.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022] Open
Abstract
It has previously been shown that the presence of Aggregatibacter actinomycetemcomitans in subgingival plaque is significantly associated with increased risk for clinical attachment loss. The highly leukotoxic JP2 genotype of this bacterium is frequently detected in adolescents with aggressive forms of periodontitis. The aims of the study were to quantify the levels of JP2 and non-JP2 genotypes of A. actinomycetemcomitans in saliva of Moroccan adolescents with the JP2 genotype earlier detected in the subgingival plaque. The salivary concentrations of inflammatory proteins were quantified and linked to the clinical parameters and microbial findings. Finally, a mouth rinse with leukotoxin-neutralizing effect was administrated and its effect on the levels the biomarkers and A. actinomycetemcomitans examined. The study population consisted of 22 adolescents that previously were found to be positive for the JP2 genotype in subgingival plaque. Periodontal registration and sampling of stimulated saliva was performed at baseline. A mouth rinse (active/placebo) was administrated, and saliva sampling repeated after 2 and 4 weeks rinse. The salivary levels of JP2 and non-JP2 were analyzed by quantitative PCR and inflammatory proteins by ELISA. Both the JP2 and the non-JP2 genotype were detected in all individuals with significantly higher levels of the non-JP2. Enhanced levels of the JP2 genotype of A. actinomycetemcomitans was significantly correlated to the presence of attachment loss (≥3 mm). Salivary concentrations of inflammatory biomarkers did not correlate to periodontal condition or levels of A. actinomycetemcomitans. The use of active or placebo leukotoxin-neutralizing mouth rinse did not significantly interfered with the levels of these biomarkers. Saliva is an excellent source for detection of A. actinomycetemcomitans on individual basis, and high levels of the JP2 genotype were significantly associated with the presence of clinical attachment loss.
Collapse
Affiliation(s)
- Oum Keltoum Ennibi
- Department of Periodontology, School of DentistryMohammed V UniversityMorocco
- Laboratory of Oral Microbiology and BiotechnologySchool of Dentistry, Mohammed V University in RabatMorocco
| | | | - Sanae Akkaoui
- Laboratory of Oral Microbiology and BiotechnologySchool of Dentistry, Mohammed V University in RabatMorocco
| | - Sarah Reddahi
- Department of Periodontology, School of DentistryMohammed V UniversityMorocco
| | | | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry and Oral HealthAarhus UniversityDenmark
| | - Anders Johansson
- Division of Molecular Periodontology, Department of OdontologyUmeå UniversitySweden
| |
Collapse
|
27
|
Ghotloo S, Motedayyen H, Amani D, Saffari M, Sattari M. Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity. J Periodontal Res 2018; 54:27-32. [PMID: 30328616 DOI: 10.1111/jre.12538] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE MicroRNA-146a (miR-146a) is a small noncoding RNA that plays a critical role in the negative regulation of the innate immune response, and the dysregulation of miR-146a has been associated with several inflammatory disorders. In generalized aggressive periodontitis (GAgP) the degree of clinical inflammation appears to be similar to that of chronic periodontitis, and, in this situation, age of onset and family history are important additional criteria for diagnosis. This study was performed to evaluate the level of miR-146a expressed in gingival tissues of patients with GAgP and its association with disease severity. MATERIAL AND METHODS Gingival samples from 18 patients with GAgP and 10 healthy subjects were collected and the level of miR-146a and its targets, including necrosis factor-alpha, interleukin-1beta, and interleukin-6, were assessed using real-time PCR. Clinical parameters, including probing depth and clinical attachment loss, were measured and their correlations with the level of miR-146a were determined. RESULTS Our results demonstrated an elevation in the level of miR-146a expressed in patients with GAgP compared with healthy controls (P < .001), which was directly associated with disease severity (P < .05). Overexpression of miR-146a was accompanied by a reduction in the levels of pro-inflammatory cytokines. CONCLUSIONS Our findings suggest that there is an association between miR-146a and GAgP and imply that miR-146a may serve as an indicator of periodontal disease severity. However, further studies and additional information are required to confirm this relationship and the precise role of miR-146a in the development and/or progression of periodontitis.
Collapse
Affiliation(s)
- S Ghotloo
- Department of Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - H Motedayyen
- Department of Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - D Amani
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Saffari
- Department of Microbiology and Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - M Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Tsai CC, Ho YP, Chou YS, Ho KY, Wu YM, Lin YC. Aggregatibacter (Actinobacillus) actimycetemcomitans leukotoxin and human periodontitis - A historic review with emphasis on JP2. Kaohsiung J Med Sci 2018; 34:186-193. [PMID: 29655406 DOI: 10.1016/j.kjms.2018.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022] Open
Abstract
Aggregatibacter (Actinobacillus) actimycetemcomitans (Aa) is a gram-negative bacterium that colonizes the human oral cavity and is causative agent for localized aggressive (juvenile) periodontitis (AgP). In the middle of 1990s, a specific JP2 clone of belonging to the cluster of serotype b strains of Aa with highly leukotoxicity (leukotoxin, LtxA) able to kill human immune cells was isolated. JP2 clone of Aa was strongly associated with in particularly in rapidly progressing forms of aggressive periodontitis. The JP2 clone of Aa is transmitted through close contacts. Therefore, AgP patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontitis lesions are relatively high. Furthermore, timely periodontal treatment, including periodontal surgery supplemented by the use of antibiotics, is warranted. More importantly, periodontal attachment loss should be prevented by early detection of the JP2 clone of Aa by microbial diagnosis testing and/or preventive means.
Collapse
Affiliation(s)
- Chi-Cheng Tsai
- School of Dentistry, College of Oral Medicine, University Hospital, Chung Shan Medical University, Taichung City, Taiwan.
| | - Ya-Ping Ho
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Yu-Shian Chou
- Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Kun-Yen Ho
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Yi-Min Wu
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Ying-Chu Lin
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
29
|
Konig MF, Abusleme L, Reinholdt J, Palmer RJ, Teles RP, Sampson K, Rosen A, Nigrovic PA, Sokolove J, Giles JT, Moutsopoulos NM, Andrade F. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med 2017; 8:369ra176. [PMID: 27974664 DOI: 10.1126/scitranslmed.aaj1921] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/09/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022]
Abstract
A bacterial etiology of rheumatoid arthritis (RA) has been suspected since the beginnings of modern germ theory. Recent studies implicate mucosal surfaces as sites of disease initiation. The common occurrence of periodontal dysbiosis in RA suggests that oral pathogens may trigger the production of disease-specific autoantibodies and arthritis in susceptible individuals. We used mass spectrometry to define the microbial composition and antigenic repertoire of gingival crevicular fluid in patients with periodontal disease and healthy controls. Periodontitis was characterized by the presence of citrullinated autoantigens that are primary immune targets in RA. The citrullinome in periodontitis mirrored patterns of hypercitrullination observed in the rheumatoid joint, implicating this mucosal site in RA pathogenesis. Proteomic signatures of several microbial species were detected in hypercitrullinated periodontitis samples. Among these, Aggregatibacter actinomycetemcomitans (Aa), but not other candidate pathogens, induced hypercitrullination in host neutrophils. We identified the pore-forming toxin leukotoxin A (LtxA) as the molecular mechanism by which Aa triggers dysregulated activation of citrullinating enzymes in neutrophils, mimicking membranolytic pathways that sustain autoantigen citrullination in the RA joint. Moreover, LtxA induced changes in neutrophil morphology mimicking extracellular trap formation, thereby releasing the hypercitrullinated cargo. Exposure to leukotoxic Aa strains was confirmed in patients with RA and was associated with both anticitrullinated protein antibodies and rheumatoid factor. The effect of human lymphocyte antigen-DRB1 shared epitope alleles on autoantibody positivity was limited to RA patients who were exposed to Aa These studies identify the periodontal pathogen Aa as a candidate bacterial trigger of autoimmunity in RA.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Loreto Abusleme
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesper Reinholdt
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Robert J Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ricardo P Teles
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA 02142, USA
| | - Kevon Sampson
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Antony Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jon T Giles
- Division of Rheumatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Niki M Moutsopoulos
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
30
|
Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog 2017; 113:303-311. [DOI: 10.1016/j.micpath.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
31
|
Joshi VM, Bhat KG, Kugaji MS, Shirahatti R. Characterization and serotype distribution of Aggregatibacter actinomycetemcomitans: Relationship of serotypes to herpesvirus and periodontal status in Indian subjects. Microb Pathog 2017; 110:189-195. [PMID: 28668607 DOI: 10.1016/j.micpath.2017.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND The virulence of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in any individual depends on the type of strain of this bacterium. To our knowledge, there have been no studies reported in Indian subjects about A. actinomycetemcomitans serotype occurrence, co-existence with herpes virus and the possible influence of such co-existence on periodontal pathology. METHODS Subjects for this study were a subset of a larger study to identify the prevalence of A. actinomycetemcomitans in chronic periodontitis. A total of 63 subjects (12 periodontally healthy and 51 with chronic periodontitis) who were positive for A. actinomycetemcomitans were serotyped for strain-level identification. The presence of Human Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) was tested in subgingival plaque samples by polymerase chain reaction. RESULTS All five serotypes a to e were detected. Of the samples analyzed 38.09% harbored a single serotype, 36.5% had two serotypes, 6.3% demonstrated three and 4.7% demonstrated four serotypes. None of the samples showed presence of JP2 strain. Serotypes b, c, and e were most frequently identified in these individuals (46.03%, 36.5% and 38.09% respectively). Presence of serotypes b and c and absence of serotype d was associated with increased PD and CAL. Among 63 samples analyzed, 11 samples had CMV, four samples had EBV and nine samples had both these viruses. The PD and CAL were significantly higher (p = 0.04) when a combination of CMV and one of the serotypes was present indicating a pathological role of the coexistence. CONCLUSION Multiple serotypes are associated with chronic periodontitis in Indians, however, JP2 strains are not detectable in this cohort. Presence of multiple serotypes and a combination of any serotype with herpesvirus is associated with greater severity of the disease.
Collapse
Affiliation(s)
- Vinayak M Joshi
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi, Karnataka, India.
| | - Kishore G Bhat
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi, Karnataka, India
| | - Manohar S Kugaji
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi, Karnataka, India
| | - Ravi Shirahatti
- Department of Public Health Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belagavi, Karnataka, India
| |
Collapse
|
32
|
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative microbe involved in periodontitis. Strains with varying degrees of virulence have been identified, in healthy and periodontally compromised individuals alike. Hosts mount differential immune responses to its various serotypes and virulence factors. Studies have explored host immune response in terms of antibody titers, leukocyte responses, and specific inflammatory mediators, questioning the ways in which the infectious microorganism survives. This mini-review will identify the key themes in immune response patterns of individuals both affected by and free from aggressive periodontal disease, thereby using it to understand various forms of periodontitis.
Collapse
Affiliation(s)
- Nishat Shahabuddin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA; Departments of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
33
|
Porto AN, Cortelli SC, Borges AH, Matos FZ, Aquino DR, Miranda TB, Oliveira Costa F, Aranha AF, Cortelli JR. Oral and endotracheal tubes colonization by periodontal bacteria: a case-control ICU study. Eur J Clin Microbiol Infect Dis 2016; 35:343-51. [PMID: 26810057 DOI: 10.1007/s10096-015-2518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Periodontal infection is a possible risk factor for respiratory disorders; however, no studies have assessed the colonization of periodontal pathogens in endotracheal tubes (ET). This case-control study analyzed whether periodontal pathogens are able to colonize ET of dentate and edentulous patients in intensive care units (ICU) and whether oral and ET periodontal pathogen profiles have any correlation between these patients. We selected 18 dentate and 18 edentulous patients from 78 eligible ICU patients. Oral clinical examination including probing depth, clinical attachment level, gingival index , and plaque index was performed by a single examiner, followed by oral and ET sampling and processing by quantitative polymerase chain reaction (total bacterial load, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia). Data were statistically analyzed by Mann-Whitney U, two-way analysis of variance (p < 0.05). Among dentate, there was no correlation between clinical parameters and ET bacterial levels. Both dentate and edentulous patients showed similar ET bacterial levels. Dentate patients showed no correlation between oral and ET bacterial levels, while edentulous patients showed positive correlations between oral and ET levels of A. actinomycetemcomitans, P. gingivalis, and T. forsythia. Periodontal pathogens can colonize ET and the oral cavity of ICU patients. Periodontal pathogen profiles tend to be similar between dentate and edentulous ICU patients. In ICU patients, oral cavity represents a source of ET contamination. Although accompanied by higher oral bacterial levels, teeth do not seem to influence ET bacterial profiles.
Collapse
Affiliation(s)
- A N Porto
- Dental School, University of Cuiaba, Avenida Beira Rio, Cuiabá, Mato Grosso, 78000, Brazil.
| | - S C Cortelli
- Nucleus of Periodontal Research, Dental School, University of Taubate, São Paulo, Brazil
| | - A H Borges
- Dental School, University of Cuiaba, Avenida Beira Rio, Cuiabá, Mato Grosso, 78000, Brazil
| | - F Z Matos
- Dental School, University of Cuiaba, Avenida Beira Rio, Cuiabá, Mato Grosso, 78000, Brazil
| | - D R Aquino
- Nucleus of Periodontal Research, Dental School, University of Taubate, São Paulo, Brazil
| | - T B Miranda
- Nucleus of Periodontal Research, Dental School, University of Taubate, São Paulo, Brazil
| | - F Oliveira Costa
- Periodontal Department, Dental School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A F Aranha
- Dental School, University of Cuiaba, Avenida Beira Rio, Cuiabá, Mato Grosso, 78000, Brazil
| | - J R Cortelli
- Nucleus of Periodontal Research, Dental School, University of Taubate, São Paulo, Brazil
| |
Collapse
|
34
|
Åberg CH, Kelk P, Johansson A. Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence 2016; 6:188-95. [PMID: 25494963 PMCID: PMC4601274 DOI: 10.4161/21505594.2014.982428] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an infection-induced inflammatory disease that causes loss of the tooth supporting tissues. Much focus has been put on comparison of the microbial biofilm in the healthy periodontium with the diseased one. The information arising from such studies is limited due to difficulties to compare the microbial composition in these two completely different ecological niches. A few longitudinal studies have contributed with information that makes it possible to predict which individuals who might have an increased risk of developing aggressive forms of periodontitis, and the predictors are either microbial or/and host-derived factors. The most conspicuous condition that is associated with disease risk is the presence of Aggregatibacter actinomycetemcomitans at the individual level. This Gram-negative bacterium has a great genetic variation with a number of virulence factors. In this review we focus in particular on the leukotoxin that, based on resent knowledge, might be one of the most important virulence factors of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- a Division of Molecular Periodontology; Department of Odontology; Faculty of Medicine; Umeå University ; Umeå , Sweden
| | | | | |
Collapse
|
35
|
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been considered the most likely etiologic agent in aggressive periodontitis. Implementation of DNA-based microbiologic methodologies has considerably improved our understanding of the composition of subgingival biofilms, and advanced open-ended molecular techniques even allow for genome mapping of the whole bacterial spectrum in a sample and characterization of both the cultivable and not-yet-cultivable microbiota associated with periodontal health and disease. Currently, A. actinomycetemcomitans is regarded as a minor component of the resident oral microbiota and as an opportunistic pathogen in some individuals. Its specific JP2 clone, however, shows properties of a true exogenous pathogen and has an important role in the development of aggressive periodontitis in certain populations. Still, limited data exist on the impact of other microbes specifically in aggressive periodontitis. Despite a wide heterogeneity of bacteria, especially in subgingival samples collected from patients, bacteria of the red complex in particular, and those of the orange complex, are considered as potential pathogens in generalized aggressive periodontitis. These types of bacterial findings closely resemble those found for chronic periodontitis, representing a mixed polymicrobial infection without a clear association with any specific microorganism. In aggressive periodontitis, the role of novel and not-yet-cultivable bacteria has not yet been elucidated. There are geographic and ethnic differences in the carriage of periodontitis-associated microorganisms, and they need to be taken into account when comparing study reports on periodontal microbiology in different study populations. In the present review, we provide an overview on the colonization of potential periodontal pathogens in childhood and adolescence, and on specific microorganisms that have been suspected for their role in the initiation and progression of aggressive forms of periodontal disease.
Collapse
|
36
|
Monteiro MDF, Casati MZ, Taiete T, do Vale HF, Nociti FH, Sallum EA, Silvério KG, Casarin RCV. Periodontal clinical and microbiological characteristics in healthyversusgeneralized aggressive periodontitis families. J Clin Periodontol 2015; 42:914-21. [DOI: 10.1111/jcpe.12459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 01/20/2023]
Affiliation(s)
| | - Marcio Z. Casati
- Division of Periodontics; State University of Campinas; Piracicaba São Paulo Brazil
| | - Tiago Taiete
- Division of Periodontics; State University of Campinas; Piracicaba São Paulo Brazil
| | - Hugo F. do Vale
- Division of Periodontics; State University of Campinas; Piracicaba São Paulo Brazil
| | | | | | - Karina G. Silvério
- Division of Periodontics; State University of Campinas; Piracicaba São Paulo Brazil
| | | |
Collapse
|
37
|
Kieselbach T, Zijnge V, Granström E, Oscarsson J. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles. PLoS One 2015; 10:e0138591. [PMID: 26381655 PMCID: PMC4575117 DOI: 10.1371/journal.pone.0138591] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.
Collapse
Affiliation(s)
| | - Vincent Zijnge
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
38
|
Pahumunto N, Ruangsri P, Wongsuwanlert M, Piwat S, Dahlen G, Teanpaisan R. Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes in Thai adults with chronic periodontitis. Arch Oral Biol 2015; 60:1789-96. [PMID: 26475998 DOI: 10.1016/j.archoralbio.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the distribution of Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes among isolates from Thai chronic periodontitis patients. DESIGN Forty-four adult Thai periodontitis patients were assessed by a full mouth recording for CAL, PPD, and BOP. Seventy-nine strains of A. actinomycetemcomitans were isolated from deep pockets on selective TSBV agar and 17 strains were isolated from shallow pockets. The strains were serotyped using PCR and subtyped using DGGE. RESULTS The prevalence of A. actinomycetemcomitans was 84.1%. Non-serotypeable A. actinomycetemcomitans strains occurred equally frequent as serotypeable (54.5%); serotype a 18.2%, serotype c 15.9%, serotype e 9.1%, and serotype f 11.4%. Serotype b and d were not detected. A JP2 like strain but serotyped as c was isolated from two patients, and another two strains showed an 886bp insertion on the ltx promoter of their A. actinomycetemcomitans isolates. DGGE typing disclosed 16 different subtypes among the non-serotypeable strains. Two of them (NS1 and NS2) were more common (12.7 and 10.1%) among the strains than the other 14 subtypes (˂5.1%). Most patients showed only one subtype (32.4%) but 29.7% had 2 and 3 different subtypes while 8.1% revealed 4 subtypes in one and the same deep pocket. CONCLUSION This study showed a greater subtype diversity of A. actinomycetemcomitans predominated by non-serotypeable strains than previously reported in an adult Thai population. It was also revealed for the first time that isolates with a 530bp deletion or 886bp insertion of the ltx promoter were serotyped as serotype c.
Collapse
Affiliation(s)
- Nuntiya Pahumunto
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Praphansri Ruangsri
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Mutita Wongsuwanlert
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Supatcharin Piwat
- Common Oral Diseases and Epidemiology Research Center and the Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand.
| |
Collapse
|
39
|
Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 2014; 162:22-38. [PMID: 25447398 DOI: 10.1016/j.imlet.2014.08.017] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/22/2022]
Abstract
The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Porphyromonas gingivalis appear in greater proportion than in health. As a keystone pathogen, P. gingivalis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus mutans. Contemporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In periodontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory IgA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineralization of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis.
Collapse
Affiliation(s)
- Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, United States; Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN 55417, United States
| |
Collapse
|
40
|
Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6:23980. [PMID: 25206940 PMCID: PMC4139931 DOI: 10.3402/jom.v6.23980] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023] Open
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2 clone, are likely to share this clone with several family members because the clone is transmitted through close contacts. This is a challenge to the clinicians. The patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontal lesions are relatively high. Furthermore, timely periodontal treatment, in some cases including periodontal surgery supplemented by the use of antibiotics, is warranted. Preferably, periodontal attachment loss should be prevented by early detection of the JP2 clone of A. actinomycetemcomitans by microbial diagnostic testing and/or by preventive means.
Collapse
Affiliation(s)
- Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Department of Molecular Periodontology, Umea University, Umea, Sweden
| |
Collapse
|
41
|
Höglund Åberg C, Haubek D, Kwamin F, Johansson A, Claesson R. Leukotoxic activity of Aggregatibacter actinomycetemcomitans and periodontal attachment loss. PLoS One 2014; 9:e104095. [PMID: 25093857 PMCID: PMC4122431 DOI: 10.1371/journal.pone.0104095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative periodontitis-associated bacterium that expresses a toxin that selectively affects leukocytes. This leukotoxin is encoded by an operon belonging to the core genome of this bacterial species. Variations in the expression of the leukotoxin have been reported, and a well-characterized specific clonal type (JP2) of this bacterium with enhanced leukotoxin expression has been isolated. In particular, the presence of the JP2 genotype significantly increases the risk for the progression of periodontal attachment loss (AL). Based on these findings we hypothesized that variations in the leukotoxicity are linked to disease progression in infected individuals. In the present study, the leukotoxicity of 239 clinical isolates of A. actinomycetemcomitans was analysed with different bioassays, and the genetic peculiarities of the isolates were related to their leukotoxicity based on examination with molecular techniques. The periodontal status of the individuals sampled for the presence of A. actinomycetemcomitans was examined longitudinally, and the importance of the observed variations in leukotoxicity was evaluated in relation to disease progression. Our data show that high leukotoxicity correlates with an enhanced risk for the progression of AL. The JP2 genotype isolates were all highly leukotoxic, while the isolates with an intact leukotoxin promoter (non-JP2 genotypes) showed substantial variation in leukotoxicity. Genetic characterization of the non-JP2 genotype isolates indicated the presence of highly leukotoxic genotypes of serotype b with similarities to the JP2 genotype. Based on these results, we conclude that A. actinomycetemcomitans harbours other highly virulent genotypes besides the previously described JP2 genotype. In addition, the results from the present study further highlight the importance of the leukotoxin as a key virulence factor in aggressive forms of periodontitis.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Rolf Claesson
- Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
42
|
Dahlén G, Claesson R, Aberg CH, Haubek D, Johansson A, Kwamin F. Subgingival bacteria in Ghanaian adolescents with or without progression of attachment loss. J Oral Microbiol 2014; 6:23977. [PMID: 24834145 PMCID: PMC4013489 DOI: 10.3402/jom.v6.23977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE This study describes subgingival bacterial profiles associated with clinical periodontal status in Ghanaian adolescents with or without progression of attachment loss. MATERIALS AND METHODS Among 500 adolescents included in a cohort study, 397 returned 2 years later for a periodontal re-examination, including full-mouth CAL measurements. At follow-up, a subgroup of 98 adolescents was also subjected to bacterial sampling with paper points at four periodontal sites (mesial aspect of 11, 26, 31, and 46) and analyzed with the checkerboard DNA-DNA hybridization technique against DNA-probes from nine periodontitis-associated bacterial species. RESULTS The 98 Ghanaian adolescents examined in the present study were similar to the entire group examined at the 2-year follow-up with respect to age, gender, and CAL ≥3 mm. A high detection frequency of Fusobacterium nucleatum and Prevotella intermedia (>99%) using checkerboard analysis was found, while for Aggregatibacter actinomycetemcomitans the detection frequency was <50%. A strong correlation was found at the individual level between the presence of P. intermedia and the total CAL change, and P. intermedia and Porphyromonas gingivalis were strongly correlated with a change in CAL and probing pocket depth (PPD) at the sampled sites. In a linear regression model, a significant discriminating factor for the total CAL change in the dentition during the 2-year follow-up period was obtained for P. intermedia and public school. CONCLUSION This study indicates that subgingival bacterial species other than A. actinomycetemcomitans, for example, P. intermedia, have a significant association with periodontal breakdown (change in CAL) in Ghanaian adolescents with progression of periodontal attachment loss.
Collapse
Affiliation(s)
- Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Carola Höglund Aberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section of Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
43
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
44
|
Höglund Åberg C, Kwamin F, Claesson R, Dahlén G, Johansson A, Haubek D. Progression of attachment loss is strongly associated with presence of the JP2 genotype of Aggregatibacter actinomycetemcomitans: a prospective cohort study of a young adolescent population. J Clin Periodontol 2014; 41:232-41. [PMID: 24304011 DOI: 10.1111/jcpe.12209] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 01/27/2023]
Abstract
AIM To assess the progression of attachment loss (AL) during a 2-year period according to the presence of JP2 and non-JP2 genotypes of Aggregatibacter actinomycetemcomitans in a Ghanaian adolescent population. METHODS A total of 500 adolescents (mean age 13.2 years, SD ± 1.5) were enrolled in the study. After 2 years, 397 (79.4%) returned for a periodontal re-examination, including the measurement of AL. The carrier status of the JP2 and non-JP2 genotypes of A. actinomycetemcomitans was evaluated in a baseline examination 2 years earlier. RESULTS Individuals who carried the JP2 genotype of A. actinomycetemcomitans had a significantly increased risk [relative risk (RR) = 7.3] of developing AL ≥ 3 mm. The mean AL at the follow-up and the mean 2-year progression of AL were significantly higher in the JP2 genotype-positive group (n = 38) compared with the group positive for the non-JP2 genotypes of A. actinomycetemcomitans (n = 169), and the group of A. actinomycetemcomitans-negative individuals (n = 190). The JP2 genotype was strongly associated with the progression of AL ≥ 3 mm (OR = 14.3). The non-JP2 genotypes of A. actinomycetemcomitans were also, however, less pronounced, associated with the progression of AL ≥ 3 mm (OR = 3.4). CONCLUSION The JP2 genotype of A. actinomycetemcomitans is strongly associated with the progression of AL.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Gonçalves PF, Klepac-Ceraj V, Huang H, Paster BJ, Aukhil I, Wallet SM, Shaddox LM. Correlation of Aggregatibacter actinomycetemcomitans detection with clinical/immunoinflammatory profile of localized aggressive periodontitis using a 16S rRNA microarray method: a cross-sectional study. PLoS One 2013; 8:e85066. [PMID: 24376864 PMCID: PMC3871691 DOI: 10.1371/journal.pone.0085066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The objective of this study was to determine whether the detection of Aggregatibacter actinomycetemcomitans (Aa) correlates with the clinical and immunoinflammatory profile of Localized Aggressive Periodontitis (LAP), as determined by by 16S rRNA gene-based microarray. SUBJECTS AND METHODS Subgingival plaque samples from the deepest diseased site of 30 LAP patients [PD ≥ 5 mm, BoP and bone loss] were analyzed by 16S rRNA gene-based microarrays. Gingival crevicular fluid (GCF) samples were analyzed for 14 cyto/chemokines. Peripheral blood was obtained and stimulated in vitro with P.gingivalis and E.coli to evaluate inflammatory response profiles. Plasma lipopolysaccharide (LPS) levels were also measured. RESULTS Aa was detected in 56% of LAP patients and was shown to be an indicator for different bacterial community structures (p<0.01). Elevated levels of pro-inflammatory cyto/chemokines were detected in LPS-stimulated blood samples in both Aa-detected and Aa-non-detected groups (p>0.05). Clinical parameters and serum LPS levels were similar between groups. However, Aa-non-detected GCF contained higher concentration of IL-8 than Aa-detected sites (p<0.05). TNFα and IL1β were elevated upon E.coli LPS stimulation of peripheral blood cells derived from patients with Aa-detected sites. CONCLUSIONS Our findings demonstrate that the detection of Aa in LAP affected sites, did not correlate with clinical severity of the disease at the time of sampling in this cross-sectional study, although it did associate with lower local levels of IL-8, a different subgingival bacterial profile and elevated LPS-induced levels of TNFα and IL1β.
Collapse
Affiliation(s)
- Patricia F Gonçalves
- Department of Dentistry, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil ; Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Vanja Klepac-Ceraj
- Department of Microbial Ecology and Pathogenesis, The Fortsyth Institute, Cambridge, Massachusetts, United States of America ; Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Hong Huang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Bruce J Paster
- Department of Microbial Ecology and Pathogenesis, The Fortsyth Institute, Cambridge, Massachusetts, United States of America ; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Ikramuddin Aukhil
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Shannon M Wallet
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Luciana M Shaddox
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
46
|
Wang Q, Wright CJ, Dingming H, Uriarte SM, Lamont RJ. Oral community interactions of Filifactor alocis in vitro. PLoS One 2013; 8:e76271. [PMID: 24098460 PMCID: PMC3789735 DOI: 10.1371/journal.pone.0076271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity F. alocis colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between F. alocis and other oral biofilm bacteria. Here we investigate the community interactions of two strains of F. alocis with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, organisms with differing pathogenic potential in the oral cavity. In an in vitro community development model, S. gordonii was antagonistic to the accumulation of F. alocis into a dual species community. In contrast, F. nucleatum and the type strain of F. alocis formed a synergistic partnership. Accumulation of a low passage isolate of F. alocis was also enhanced by F. nucleatum. In three species communities of S. gordonii, F. nucleatum and F. alocis, the antagonistic effects of S. gordonii superseded the synergistic effects of F. nucleatum toward F. alocis. The interaction between A. actinomycetemcomitans and F. alocis was strain specific and A. actinomycetemcomitans could either stimulate F. alocis accumulation or have no effect depending on the strain. P. gingivalis and F. alocis formed heterotypic communities with the amount of P. gingivalis greater than in the absence of F. alocis. However, while P. gingivalis benefited from the relationship, levels of F. alocis in the dual species community were lower compared to F. alocis alone. The inhibitory effect of P. gingivalis toward F. alocis was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by P. gingivalis helped maintain levels of F. alocis. Collectively, these results show that the pattern of F. alocis colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in F. nucleatum.
Collapse
Affiliation(s)
- Qian Wang
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Christopher J. Wright
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Huang Dingming
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Silvia M. Uriarte
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Richard J. Lamont
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
47
|
Nissen L, Sgorbati B, Biavati B, Belibasakis GN. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression. ANN MICROBIOL 2013; 64:611-617. [PMID: 24860281 PMCID: PMC4028514 DOI: 10.1007/s13213-013-0694-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/11/2013] [Indexed: 12/17/2022] Open
Abstract
Beneficial microbes, such as lactobacilli establish a symbiosis with the host and confer health-associated effects, by limiting the growth of indigenous pathogens and challenging microbes introduced by altered foods. Nevertheless, there is scarce information on the effects of beneficial microbes on the virulence properties of bacterial species associated with oral diseases, such as periodontitis. Aggregatibacter actinomycetemcomitans is a Gram-negative species highly implicated in the etiology of localized aggressive periodontitis. The objective of this study was to investigate the effect of lactobacilli on the expression of the two major virulence factors of A. actinomycetemcomitans. Lactobacillus salivarius and L. gasseri were selected as beneficial species. The gene expressions of leukotoxin (LtxA) and cytolethal distending toxin (CdtB) by A. actinomycetemcomitans were analyzed in response to challenge by lactobacilli cell-free supernatants. Neither lactobacilli affected the growth, but strongly attenuated the expressions of both CdtB and LtxA in the two A. actinomycetemcomitans strains tested. This reduction of the expression of these two exotoxins was time-dependent. These fundamental findings may indicate that lactobacilli can reduce the virulence of putative opportunistic oral pathogens, and may provide insights to future therapeutic approaches for the respective diseases.
Collapse
Affiliation(s)
- Lorenzo Nissen
- />Microbiology Area, Department. Agricultural Sciences, Alma Mater Studiorum, Università di Bologna, V.le Fanin 44, 40127 Bologna, Italy
| | - Barbara Sgorbati
- />Microbiology Area, Department. Agricultural Sciences, Alma Mater Studiorum, Università di Bologna, V.le Fanin 44, 40127 Bologna, Italy
| | - Bruno Biavati
- />Microbiology Area, Department. Agricultural Sciences, Alma Mater Studiorum, Università di Bologna, V.le Fanin 44, 40127 Bologna, Italy
| | - Georgios N. Belibasakis
- />Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland
| |
Collapse
|
48
|
Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression. PLoS One 2013; 8:e65781. [PMID: 23922633 PMCID: PMC3683020 DOI: 10.1371/journal.pone.0065781] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). MATERIALS AND METHODS A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. RESULTS Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], p<0.001). CONCLUSION A. actinomycetemcomitans isolated from the Ghanaian adolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Georgios Antonoglou
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
49
|
Olsen I, Tribble GD, Fiehn NE, Wang BY. Bacterial sex in dental plaque. J Oral Microbiol 2013; 5:20736. [PMID: 23741559 PMCID: PMC3672468 DOI: 10.3402/jom.v5i0.20736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/14/2022] Open
Abstract
Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.
Collapse
Affiliation(s)
- Ingar Olsen
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Gena D. Tribble
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nils-Erik Fiehn
- Faculty of Health Sciences, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bing-Yan Wang
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
50
|
|