1
|
Hadavifar M, Mohammadnia E, Rasaeifar S, Heidarian Miri H, Rastakhiz M, Souvizi B, Mohammad-Zadeh M, Akrami R, Kazemi A. Determination of toxic metal burden and related risk factors in pregnant women: a biological monitoring in Sabzevar, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78901-78912. [PMID: 35699879 DOI: 10.1007/s11356-022-20510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the adverse effect of toxic metals on humans is well known, especially in the fetal period such as preventing cognitive development and congenital abnormalities of the central nervous system. Hence, this study aims to evaluate the toxic metal burden in mothers and newborns in Sabzevar. Obtained data can be useful for authorities in public health issues. To determine heavy metals in placental blood and umbilical cord blood, one hundred eighty blood samples were taken from ninety mothers referred to Shahidan Mobini Hospital for delivery. The amount of metals in samples was analyzed using inductively coupled plasma optical emission spectrometry (ICP OES). The results of this study revealed that 21.52%, 26.19%, and 60.71% of maternal blood samples (placental blood) and 16.47%, 56.47%, and 20% of umbilical cord blood samples were higher than the US center for disease control (CDC) recommended levels for Pb, Cd, and As respectively. According to the multiple linear regression analysis, the Pb (p = 0.054), As (p < 0.001), and Se (p < 0.001) levels had an association with the mother's living area. Also, there was a significant association between Se (0.021) and the age of the mother. However, the Se values in its optimum concentrations in the blood (60-140 μg/L) can decrease the adverse effects of toxic metals, 72.5% of the pregnant women had Se values below the 60 μg/L and only 6% of pregnant women had Se levels higher than 140 μg/L. We concluded that the mothers inhabiting the rural areas need more Se sources in their diets.
Collapse
Affiliation(s)
- Mojtaba Hadavifar
- Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran
| | - Esmail Mohammadnia
- Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran
| | | | - Hamid Heidarian Miri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Behnaz Souvizi
- Department of Obstetrics and Gynecology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammad-Zadeh
- Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rahim Akrami
- Department of Epidemiology and Biostatistics, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| |
Collapse
|
2
|
Verma PK, Singh P, Sharma P, Sood S, Raina R. Dose-Dependent Oxidative Damage in Erythrocytes and Hepatic Tissue of Wistar Rats Concurrently Exposed with Arsenic and Quinalphos: a Subacute Study. Biol Trace Elem Res 2022; 200:2160-2173. [PMID: 34189676 DOI: 10.1007/s12011-021-02807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Concurrent exposure to a multitude of environmental toxicants pose serious health hazard to humans and animals. The present investigation was conceptualized to determine deleterious effects of concomitant subacute arsenic and quinalphos exposure on antioxidant responses of liver and erythrocytes of Wistar rats. Fifty-four Wistar rats were divided into nine groups with six animals in each. Animals were exposed to either quinalphos (1/100th and 1/10th of LD50) through oral gavage daily or arsenic (50 and 100 ppb) in drinking water alone and in combination for 28 days. While treatment with different toxicants alone also significantly reduced hemoglobin concentration, hepatic biomarkers and levels of antioxidant parameters as compared with control values, concomitant exposure significantly (P < 0.05) elevated levels of hepatic transaminases and alkaline phosphatase. Moreover, along with significant depletion in activities of SOD, CAT, TTH, AChE, and enzymes of glutathione complex, a significant enhancement of lipid peroxidation was also recorded in liver and erythrocytes in co-exposed animals in a dose-dependent manner when compared with exposure to individual toxicant. More severe alterations occurred in hepatic histo-architecture of rats receiving combined treatment as compared with those treated with either toxicant. Results indicated that oxidative damage in erythrocytes was more than that of the liver of rats on concomitant exposure of arsenic and quinalphos in a dose-dependent manner. In nutshell, our results revealed that combined treatment of quinalphos with arsenic potentiated toxic effects of either toxicant on antioxidant machinery of liver and erythrocytes and hepatic histomorphology of exposed Wistar rats.
Collapse
Affiliation(s)
- Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India.
| | - Parvinder Singh
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, 181102, Jammu & Kashmir, India
| |
Collapse
|
3
|
Wan F, Zhong G, Wu S, Jiang X, Liao J, Zhang X, Zhang H, Mehmood K, Tang Z, Hu L. Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112442. [PMID: 34166936 DOI: 10.1016/j.ecoenv.2021.112442] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl3) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 μM), SbCl3 (25 μM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Rahaman MS, Banik S, Akter M, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Curcumin alleviates arsenic-induced toxicity in PC12 cells via modulating autophagy/apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110756. [PMID: 32464442 DOI: 10.1016/j.ecoenv.2020.110756] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a recognized highly toxic contaminant, responsible for numerous human diseases and affecting many millions of people in different parts of the world. Contrarily, curcumin is a natural dietary polyphenolic compound and the main active ingredient in turmeric. Recently it has drawn great attention due to its diverse biological activities, strong antioxidant properties and therapeutic potential against many human ailments. In this study, we aimed to explore the protective effects and the regulatory role of curcumin on arsenic-induced toxicity and gain insights into biomolecular mechanism/s. Arsenic (10 μM) treatment in PC12 cells for 24 h induced cytotoxicity by decreasing cell viability and intracellular glutathione level and increasing lactate dehydrogenase activity and DNA fragmentation. In addition, arsenic caused apoptotic cell death in PC12 cells, which were confirmed from flow cytometry results. Moreover, arsenic (10 μM) treatment significantly down-regulated the inhibition factors of autophagy/apoptosis; mTOR, Akt, Nrf2, ERK1, Bcl-x, Xiap protein expressions, up-regulated the enhanced factors of autophagy/apoptosis; ULK, LC3, p53, Bax, cytochrome c, caspase 9, cleaved caspase 3 proteins and eventually caused autophagic and apoptotic cell death. However, curcumin (2.5 μM) pretreatment with arsenic (10 μM) effectively saves PC12 cells against arsenic-induced cytotoxicity through increasing cell viability, intracellular GSH level and boosting the antioxidant defense system, and limiting the LDH activity and DNA damage. Furthermore, pretreatment of curcumin with arsenic expressively alleviated arsenic-induced toxicity and cell death by reversing the expressions of proteins; mTOR, Akt, Nrf2, ERK1, Bcl-x, Xiap, ULK, LC3, p53, Bax, cytochrome c, caspase 9 and cleaved caspase 3. Our findings indicated that curcumin showed antioxidant properties through the Nrf2 antioxidant signaling pathway and alleviates arsenic-triggered toxicity in PC12 cells by regulating autophagy/apoptosis.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
5
|
Liu J, Wang Y, Zhao H, Mu M, Guo M, Nie X, Sun Y, Xing M. Arsenic (III) or/and copper (II) exposure induce immunotoxicity through trigger oxidative stress, inflammation and immune imbalance in the bursa of chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110127. [PMID: 31896471 DOI: 10.1016/j.ecoenv.2019.110127] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The environmental hazards of arsenic (As) and copper (Cu) contamination have swept through quite a few districts worldwide. Whereas, molecular mechanisms involved in As- and Cu-induced immunotoxicity in Gallus gallus bursa of Fabricius (BF) are complex and elusive. Male Hy-line chickens were exposed to arsenic trioxide (As2O3; 30 mg/kg) and copper sulfate (CuSO4; 300 mg/kg) alone or in combination, respectively, to examine the potential ecotoxicity of them. The ions homeostasis and BF index of chicken had distinct changes after As or/and Cu exposure. Moreover, As or/and Cu treatment significantly increased the MDA content and NOS activity, and simultaneously resulted in reductions in CAT and AHR activities. Subsequently, it was further exhibited up-regulations of nuclear factor-κB (NF-κB), inflammatory mediators and pro-inflammation cytokines accompanied by depletion of anti-inflammatory cytokines and severe pathological conditions. Moreover, decreased ratio of IFN-γ/IL-4 and increased level of IL-17 illustrated an imbalance of the immune response. Meanwhile, incremental mRNA transcription and protein levels of heat shock proteins (HSPs) alleviated toxicity caused by As or/and Cu. Importantly, exposure to both contaminants significantly soared the BF injury in comparison with exposure to As or Cu alone. All these results illustrated that exposure to As2O3 or/and CuSO4 elicited BF tissue damage and ions changes, and its severity was associated with prolonged persistence of oxidative damage, accompanied by a dysregulated immune response which played a vital role in inflammatory injury. Additionally, combined management of As2O3 and CuSO4 could exacerbate BF injury.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ying Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
6
|
Hu H, Chen E, Li Y, Zhu X, Zhang T, Zhu X. Effects of Arsenic Trioxide on INF-gamma Gene Expression in MRL/lpr Mice and Human Lupus. Biol Trace Elem Res 2018; 184:391-397. [PMID: 29159556 DOI: 10.1007/s12011-017-1206-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023]
Abstract
Arsenic trioxide (As2O3; ATO), a traditional Chinese medicine, is used to treat patients with acute promye-locytic leukemia, while its application for treatment of systemic lupus erythematosus (SLE) is still under evaluation. The high expression of INF-gamma (INF-γ) is a primary pathogenic factor in SLE. It is found that ATO can reduce INF-γ expression levels in lupus-prone mice, whereas it is not clear whether ATO has the same effect on SLE patients. Therefore, this study was to investigate the underlying mechanism of the effects of ATO on the expression of INF-γ in splenocytes of MRL/lpr mice and PBMCs of human lupus. The mRNA and protein expression levels of INF-γ were assessed by real-time RT-PCR and ELISA, respectively. The histone acetylation status of the INF-γ promoter and the binding of RNA polymerase II (RNA Pol II) to the INF-γ promoter were detected using a chromatin immunoprecipitation (ChIP) technique. The mRNA and protein expression levels of INF-γ decreased in both splenocytes of MRL/lpr mice and PBMCs of SLE patients with ATO treatment, which were accompanied by reduced histone H4 and H3 acetylation in INF-γ promoter and decreased combination of RNA Pol II to the INF-γ promoter. Therefore, ATO may reduce the expression level of the INF-γ by altering the levels of INF-γ promoter acetylation and the combination of RNA Pol II to the INF-γ promoter in splenocytes of MRL/lpr mice and PBMCs of SLE patients.
Collapse
Affiliation(s)
- Hongye Hu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Enjiu Chen
- Department of Pneumology, The People Hospital of Pingyang, Wenzhou, Zhejiang Province, China
| | - Yongji Li
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China
| | - Xiaofang Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
7
|
Siefring ML, Lu D, States JC, Van Hoang M. Rapid onset of multiple concurrent squamous cell carcinomas associated with the use of an arsenic-containing traditional medicine for chronic plaque psoriasis. BMJ Case Rep 2018; 2018:bcr-2017-222645. [PMID: 29602886 PMCID: PMC5884260 DOI: 10.1136/bcr-2017-222645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We report a case of a 46-year-old Vietnamese man who developed widespread, numerous and concurrent cutaneous squamous cell carcinomas (SCCs) in non-sun exposed skin areas after taking a traditional medicine (TM) formulation for chronic plaque psoriasis. The SCC lesions began to develop within 12–15 months after beginning the arsenic-containing TM. The patient experienced both acute and chronic symptoms consistent with arsenic exposure. Laboratory investigation of a collected hair sample showed a significant arsenic level. The TM formulation used by the patient was tested and demonstrated an extremely high concentration of arsenic.
Collapse
Affiliation(s)
| | - Doanh Lu
- Department of Dermatology, Stamford Skin Centre, Ho Chi Minh City, Vietnam
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Minh Van Hoang
- Department of Dermatology, University of Medicine and Pharmacy of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Xiao T, Xue J, Shi M, Chen C, Luo F, Xu H, Chen X, Sun B, Sun Q, Yang Q, Dai X, Zhang A, Tang H, Liu Q. Circ008913,viamiR-889 regulation of DAB2IP/ZEB1, is involved in the arsenite-induced acquisition of CSC-like properties by human keratinocytes in carcinogenesis. Metallomics 2018; 10:1328-1338. [DOI: 10.1039/c8mt00207j] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circ008913,viamiR-889 regulation of DAB2IP/ZEB1, is involved in the arsenite-induced acquisition of CSC-like properties and the neoplastic transformation.
Collapse
|
9
|
Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9251303. [PMID: 28163822 PMCID: PMC5253485 DOI: 10.1155/2017/9251303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 01/27/2023]
Abstract
Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.
Collapse
|
10
|
Zhang Z, Ju E, Bing W, Wang Z, Ren J, Qu X. Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions. Chem Commun (Camb) 2017; 53:8415-8418. [DOI: 10.1039/c7cc03794e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A chemically engineered mesoporous silica armour is developed for simultaneously improving bioreporter bacterial vitality and shielding infectivity.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Wei Bing
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
11
|
Zhang K, Zhao P, Guo G, Guo Y, Tian L, Sun X, Li S, He Y, Sun Y, Chai H, Zhang W, Xing M. Arsenic Trioxide Attenuates NF-κB and Cytokine mRNA Levels in the Livers of Cocks. Biol Trace Elem Res 2016; 170:432-7. [PMID: 26276563 DOI: 10.1007/s12011-015-0455-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/22/2015] [Indexed: 01/03/2023]
Abstract
Arsenic (As) is a trace element widely found in nature. It exists in several forms, including organic arsenic, inorganic arsenic, and trivalent arsenic, the most toxic. Arsenic trioxide (As2O3) is widespread in nature. This form tends to accumulate in animals and humans and therefore has a potential harm for them. Cytokines play essential roles in the immune response and inflammation. Although the importance of cytokines in the responses to arsenic exposure has been demonstrated in many types of mammals, the function of these in poultry, especially in chickens, remains unclear. The purpose of the present study was to examine the effect of As2O3 exposure on cytokines in cock livers. In this study, 72 1-day-old male Hy-line cocks were randomly divided into four groups including the control group, low-As group, middle-As group, and high-As group. The livers were collected on days 30, 60, and 90 of the experiment. The levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 beta (IL-12β), and interleukin-1 beta (IL-1β) mRNA in the livers of the cocks were measured using real-time PCR. The results showed that the expression levels of IL-6, IL-8, TNF-α, and NF-κB which seemed to be a critical mediator in the inflammatory response tended to increase in the birds chronically treated with As2O3. However, the mRNA expression levels of IL-4, IL-12β, and IL-1β were decreased in the experiment. The information regarding the effects of As2O3 on cytokine mRNA expression generated in this study will be important information for arsenic toxicology evaluation.
Collapse
Affiliation(s)
- Kexin Zhang
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Panpan Zhao
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Guangyang Guo
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Ying Guo
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Li Tian
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Siwen Li
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Ying Sun
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China
| | - Wen Zhang
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
12
|
Song L, Mao K, Zhou X, Hu J. A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 2016; 146:285-90. [DOI: 10.1016/j.talanta.2015.08.052] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/16/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
|
13
|
Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:412-21. [PMID: 25626053 PMCID: PMC4421764 DOI: 10.1289/ehp.1307894] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/23/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to arsenic is one of the major global health problems, affecting > 300 million people worldwide, but arsenic's effects on human reproduction are uncertain. OBJECTIVES We conducted a systematic review and meta-analysis to examine the association between arsenic and adverse pregnancy outcomes/infant mortality. METHODS We searched PubMed and Ovid MEDLINE (from 1946 through July 2013) and EMBASE (from 1988 through July 2013) databases and the reference lists of reviews and relevant articles. Studies satisfying our a priori eligibility criteria were evaluated independently by two authors. RESULTS Our systematic search yielded 888 articles; of these, 23 were included in the systematic review. Sixteen provided sufficient data for our quantitative analysis. Arsenic in groundwater (≥ 50 μg/L) was associated with increased risk of spontaneous abortion (6 studies: OR = 1.98; 95% CI: 1.27, 3.10), stillbirth (9 studies: OR = 1.77; 95% CI: 1.32, 2.36), moderate risk of neonatal mortality (5 studies: OR = 1.51; 95% CI: 1.28, 1.78), and infant mortality (7 studies: OR = 1.35; 95% CI: 1.12, 1.62). Exposure to environmental arsenic was associated with a significant reduction in birth weight (4 studies: β = -53.2 g; 95% CI: -94.9, -11.4). There was paucity of evidence for low-to-moderate arsenic dose. CONCLUSIONS Arsenic is associated with adverse pregnancy outcomes and infant mortality. The interpretation of the causal association is hampered by methodological challenges and limited number of studies on dose response. Exposure to arsenic continues to be a major global health issue, and we therefore advocate for high-quality prospective studies that include individual-level data to quantify the impact of arsenic on adverse pregnancy outcomes/infant mortality.
Collapse
Affiliation(s)
- Reginald Quansah
- Centre for Environmental and Respiratory Health Research, Faculty of Medicine, University Of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Das J, Sarkar P, Panda J, Pal P. Low-cost field test kits for arsenic detection in water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:108-115. [PMID: 24117090 DOI: 10.1080/10934529.2013.824764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arsenic, a common contaminant of groundwater, affects human health adversely. According to the World Health Organization (WHO), the maximum recommended contamination level of arsenic in drinking water is 10 μg/L. The purpose of this research was to develop user-friendly kits for detection of arsenic to measure at least up to 10 μg/L in drinking water, so that a preventive measure could be taken. Two different kits for detection of total arsenic in water are reported here. First, the arsenic in drinking water was converted to arsine gas by a strong reducing agent. The arsine produced was then detected by paper strips via generation of color due to reaction with either mercuric bromide (KIT-1) or silver nitrate (KIT-2). These were previously immobilized on the detector strip. The first one gave a yellow color and the second one grey. Both of these kits could detect arsenic contamination within a range of 10 μg/L-250 μg/L. The detection time for both the kits was only 7 min. The kits exhibited excellent performance compared to other kits available in the market with respect to detection time, ease of operation, cost and could be easily handled by a layman. The field trials with these kits gave very satisfactory results. A study on interference revealed that these kits could be used in the presence of 24 common ions present in the arsenic contaminated water. Though the kits were meant for qualitative assay, the results with unknown concentrations of real samples, when compared with atomic absorption spectrophotometer (AAS) were in good agreement as revealed by the t-test.
Collapse
Affiliation(s)
- Joyati Das
- a Biosensor Laboratory, Department of Polymer Science and Technology , University of Calcutta , Kolkata , India
| | | | | | | |
Collapse
|
15
|
Leslie EM. Arsenic-glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem 2011; 108:141-9. [PMID: 22197475 DOI: 10.1016/j.jinorgbio.2011.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
Millions of people world-wide are chronically exposed to inorganic forms of the environmental toxicant arsenic in drinking water. This has led to a public health crisis because arsenic is a human carcinogen, and causes a myriad of other adverse health effects. In order to prevent and treat arsenic-induced toxicity it is critical to understand the cellular handling of this metalloid. A large body of literature describes the importance of the cellular tripeptide glutathione (γ-Glu-Cys-Gly,GSH/GS) in the excretion of arsenic. The triglutathione conjugate of arsenite [As(III)(GS)(3)] and the diglutathione conjugate of monomethylarsonous acid [MMA(III)(GS)(2)] have been isolated from rat bile and mouse urine, and account for the majority of excreted arsenic, suggesting these are important transportable forms. The ATP-binding cassette (ABC) transporter proteins, multidrug resistance protein 1 (MRP1/ABCC1) and the related protein MRP2 (ABCC2), are thought to play an important role in arsenic detoxification through the cellular efflux of arsenic-GSH conjugates. Current knowledge on the cellular handling of arsenic with a special emphasis on the transport pathways of the arsenic-GSH conjugates As(III)(GS)(3), MMA(III)(GS)(2), and dimethylarsenic glutathione DMA(III)(GS), as well as, the seleno-bis(S-glutathionyl) arsinium ion [(GS)(2)AsSe](-) are reviewed.
Collapse
Affiliation(s)
- Elaine M Leslie
- Department of Physiology, University of Alberta, Edmonton, AB, Canada,
| |
Collapse
|
16
|
Sarkar P, Banerjee S, Bhattacharyay D, Turner APF. Electrochemical sensing systems for arsenate estimation by oxidation of L-cysteine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1495-1501. [PMID: 20650533 DOI: 10.1016/j.ecoenv.2010.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 06/29/2010] [Accepted: 07/04/2010] [Indexed: 05/29/2023]
Abstract
In this study, rapid electrochemical sensing systems for detection of arsenate by oxidation of L-cysteine are proposed. Three different sensing systems comprising of screen-printed electrode and standard electrodes were used for this study. The detector element i.e. L-cysteine was immobilized on the working electrodes of the transducers by in-situ polymerization of acylamide. The electrocatalytic oxidation of L-cysteine was performed by cyclic voltammentry and amperometry. All the systems presented linear response range up to 30 microgL(-1) of arsenic. The sensors were able to estimate arsenic below 10 microgL(-1) with a detection limit of 1.2-4.6 microgL(-1).
Collapse
Affiliation(s)
- Priyabrata Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata-700009, West Bengal, India.
| | | | | | | |
Collapse
|
17
|
Kim M, Um HJ, Bang S, Lee SH, Oh SJ, Han JH, Kim KW, Min J, Kim YH. Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:9335-9340. [PMID: 20000526 DOI: 10.1021/es902407g] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Single-stranded DNA aptamers were generated from a random library to remove arsenic from Vietnamese groundwater. On the basis of significant arsenic contamination levels, three areas in Ha Nam province (Vinh Tru, Bo De, and Hoa Hau) and five areas near the Mekong River Delta (MR1-5) were selected as study areas. The aptamers were in vitro selected using an arsenic aptamer affinity column created by immobilizing arsenic on Affi-gel 10 resin. Quantitative analyses of the aptamer candidates Ars-1 to Ars-8 by surface plasmon resonance (SPR) revealed the Ars-3 aptamer to have the highest affinity to arsenate [(As(V)] and arsenite [As(III)] with a dissociation constant (K(d)) of 4.95 +/- 0.31 and 7.05 +/- 0.91 nM, respectively. The specific affinity interactions of the Ars-3 aptamer to arsenic were verified against other heavy metals. After obtaining successful removal results with a laboratory-prepared aqueous arsenic solution, Ars-3 was applied for removal of any arsenic present in the groundwater samples collected from the studied areas in Vietnam. Field results were also successful: various arsenic concentrations ranging from 28.1 to 739.2 microg/L were completely removed after 5 min of incubation with the arsenic-binding aptamer Ars-3.
Collapse
Affiliation(s)
- Mina Kim
- Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang T, Huang Z, Chan JY, Zhang DD. Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicol Appl Pharmacol 2009; 240:8-14. [PMID: 19538980 DOI: 10.1016/j.taap.2009.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 02/07/2023]
Abstract
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Arsenic elicits its toxic efforts through many mechanisms, including generation of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls expression of a main cellular antioxidant response, which is required for neutralizing ROS and thus defending cells from exogenous insults. Previously, we demonstrated a protective role of Nrf2 against arsenic-induced toxicity using a cell culture model. In this report, we present evidence that Nrf2 protects against liver and bladder injury in response to six weeks of arsenic exposure in a mouse model. Nrf2(-/-) mice displayed more severe pathological changes in the liver and bladder, compared to Nrf2(+/+) mice. Furthermore, Nrf2(-/-) mice were more sensitive to arsenic-induced DNA hypomethylation, oxidative DNA damage, and apoptotic cell death. These results indicate a protective role of Nrf2 against arsenic toxicity in vivo. Hence, this work demonstrates the feasibility of using dietary compounds that target activation of the Nrf2 signaling pathway to alleviate arsenic-induced damage.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel St., Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
19
|
Arsenic Exposure through Drinking Water and its Effect on Pregnancy Outcome in Bengali Women. Arh Hig Rada Toksikol 2008; 59:271-5. [DOI: 10.2478/10004-1254-59-2008-1871] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arsenic Exposure through Drinking Water and its Effect on Pregnancy Outcome in Bengali WomenTwelve districts of the state of West Bengal, India are affected by arsenic (As) and millions of individuals are consuming As-contaminated groundwater. The probable adverse effects of As on pregnancy outcome (stillbirth and miscarriage) are yet to be properly studied. The present investigation is an attempt to understand the effects of As exposure on the pregnancy outcome in Bengali women exposed to As through drinking water and residing in different villages in North 24 Parganas District of West Bengal. The results show a significantly higher rate of stillbirths and miscarriages than those in the unexposed population.
Collapse
|
20
|
Posey T, Weng T, Chen Z, Chintagari NR, Wang P, Jin N, Stricker H, Liu L. Arsenic-induced changes in the gene expression of lung epithelial L2 cells: implications in carcinogenesis. BMC Genomics 2008; 9:115. [PMID: 18315880 PMCID: PMC2292705 DOI: 10.1186/1471-2164-9-115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 03/03/2008] [Indexed: 11/21/2022] Open
Abstract
Background Arsenic is a carcinogen that is known to induce cell transformation and tumor formation. Although studies have been performed to examine the modulation of signaling molecules caused by arsenic exposure, the molecular mechanisms by which arsenic causes cancer are still unclear. We hypothesized that arsenic alters gene expression leading to carcinogenesis in the lung. Results In this study, we examined global gene expression in response to 0.75 μM arsenic treatment for 1–7 days in a rat lung epithelial cell line (L2) using an in-house 10 k rat DNA microarray. One hundred thirty one genes were identified using the one-class statistical analysis of microarray (SAM) test. Of them, 33 genes had a fold change of ≥ 2 between at least two time points. These genes were then clustered into 5 groups using K-means cluster analysis based on their expression patterns. Seven selected genes, all associated with cancer, were confirmed by real-time PCR. These genes have functions directly or indirectly related to metabolism, glycolysis, cell proliferation and differentiation, and regulation of transcription. Conclusion Our findings provide important insight for the future studies of arsenic-mediated lung cancer.
Collapse
Affiliation(s)
- Tisha Posey
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | |
Collapse
|