1
|
Frank N, Dickinson D, Lovett G, Liu Y, Yu H, Cai J, Yao B, Jiang X, Hsu S. Evaluation of Novel Nasal Mucoadhesive Nanoformulations Containing Lipid-Soluble EGCG for Long COVID Treatment. Pharmaceutics 2024; 16:791. [PMID: 38931912 PMCID: PMC11206978 DOI: 10.3390/pharmaceutics16060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Following recovery from the acute infection stage of the SARS-CoV-2 virus (COVID-19), survivors can experience a wide range of persistent Post-Acute Sequelae of COVID-19 (PASC), also referred to as long COVID. According to the US National Research Action Plan on Long COVID 2022, up to 23.7 million Americans suffer from long COVID, and approximately one million workers may be out of the workforce each day due to these symptoms, leading to a USD 50 billion annual loss of salary. Neurological symptoms associated with long COVID result from persistent infection with SARS-CoV-2 in the nasal neuroepithelial cells, leading to inflammation in the central nervous system (CNS). As of today, there is no evidence that vaccines or medications can clear the persistent viral infection in olfactory mucosa. Recently published clinical data demonstrate that only 5% of long COVID anosmia patients have fully recovered during the past 2 years, and 10.4% of COVID patients are still symptomatic 18 months post-infection. Our group demonstrated that epigallocatechin-3-gallate-monopalmitate (EC16m) nanoformulations possess strong antiviral activity against human coronavirus, suggesting that this green-tea-derived compound in nanoparticle formulations could be developed as an intranasally delivered new drug targeting the persistent SARS-CoV-2 infection, as well as inflammation and oxidative stress in the CNS, leading to restoration of neurologic functions. The objective of the current study was to evaluate the mucociliary safety of the EC16m nasal nanoformulations and their efficacy against human coronavirus. METHODS Nanoparticle size and Zeta potential were measured using the ZetaView Nanoparticle Tracking Analysis system; mucociliary safety was determined using the MucilAir human nasal model; contact antiviral activity and post-infection inhibition against the OC43 viral strain were assessed by the TCID50 assay for cytopathic effect on MRC-5 cells. RESULTS The saline-based EC16 mucoadhesive nanoformulations containing 0.005 to 0.02% w/v EC16m have no significant difference compared to saline (0.9% NaCl) with respect to tissue integrity, cytotoxicity, and cilia beat frequency. A 5 min contact resulted in 99.9% inactivation of β-coronavirus OC43. OC43 viral replication was inhibited by >90% after infected MRC-5 cells were treated with the formulations. CONCLUSION The saline-based novel EC16m mucoadhesive nasal nanoformulations rapidly inactivated human coronavirus with mucociliary safety properties comparable to saline, a solution widely used for nasal applications.
Collapse
Affiliation(s)
- Nicolette Frank
- Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.F.); (G.L.)
| | | | - Garrison Lovett
- Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.F.); (G.L.)
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (H.Y.); (J.C.)
| | - Hongfang Yu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (H.Y.); (J.C.)
| | - Jingwen Cai
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.L.); (H.Y.); (J.C.)
| | - Bo Yao
- Hangzhou Shanju Biotech Co., Ltd., Hangzhou 310030, China; (B.Y.); (X.J.)
| | - Xiaocui Jiang
- Hangzhou Shanju Biotech Co., Ltd., Hangzhou 310030, China; (B.Y.); (X.J.)
| | - Stephen Hsu
- Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.F.); (G.L.)
- Camellix Research Laboratory, Augusta, GA 30912, USA;
| |
Collapse
|
2
|
Di Salvo E, Gangemi S, Genovese C, Cicero N, Casciaro M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. PLANTS (BASEL, SWITZERLAND) 2023; 12:3579. [PMID: 37896042 PMCID: PMC10609915 DOI: 10.3390/plants12203579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Polyphenols are a diverse class of natural compounds that are widely distributed in various fruits, vegetables, and herbs. They possess antioxidant and anti-inflammatory properties and bring benefits in the prevention and treatment of various diseases. Studies suggested that polyphenols may improve cardiovascular health and may have neuroprotective effects. The Mediterranean region is a vast area. Although the territory encompasses a wide variety of cultures and dietary patterns, there are some commonalities in terms of the plant-based foods and their polyphenol content. Such polyphenols have been studied for their potential photoprotective effects on the skin. We focused on nutraceutical effects of Mediterranean plants in skin photoprotection in atopic dermatitis, psoriasis, and chronic urticaria. Results highlight the importance of exploring natural compounds for therapeutic purposes. The wide variety of polyphenols found in different foods and plants allows for a diverse range of pharmacological effects. The Mediterranean diet, rich in polyphenol-containing foods, is associated with a lower incidence of various chronic diseases, including dermatological conditions. While more research is needed to fully understand the mechanisms of action and optimal dosing of polyphenols, there is initial evidence to support their potential use as adjunctive therapy for atopic dermatitis, psoriasis, and chronic urticaria.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.G.); (M.C.)
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
- Science4Life, Spin Off Company, University of Messina, 98168 Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.G.); (M.C.)
| |
Collapse
|
3
|
Sharp AK, Newman D, Libonate G, Borns-Stern M, Bevan DR, Brown AM, Anandakrishnan R. Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma. Biophys J 2022; 121:3706-3718. [PMID: 35538663 PMCID: PMC9617130 DOI: 10.1016/j.bpj.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and prevalent form of brain cancer, with an expected survival of 12-15 months following diagnosis. GBM affects the glial cells of the central nervous system, which impairs regular brain function including memory, hearing, and vision. GBM has virtually no long-term survival even with treatment, requiring novel strategies to understand disease progression. Here, we identified a somatic mutation in OR2T7, a G-protein-coupled receptor (GPCR), that correlates with reduced progression-free survival for glioblastoma (log rank p-value = 0.05), suggesting a possible role in tumor progression. The mutation, D125V, occurred in 10% of 396 glioblastoma samples in The Cancer Genome Atlas, but not in any of the 2504 DNA sequences in the 1000 Genomes Project, suggesting that the mutation may have a deleterious functional effect. In addition, transcriptome analysis showed that the p38α mitogen-activated protein kinase (MAPK), c-Fos, c-Jun, and JunB proto-oncogenes, and putative tumor suppressors RhoB and caspase-14 were underexpressed in glioblastoma samples with the D125V mutation (false discovery rate < 0.05). Molecular modeling and molecular dynamics simulations have provided preliminary structural insight and indicate a dynamic helical movement network that is influenced by the membrane-embedded, cytofacial-facing residue 125, demonstrating a possible obstruction of G-protein binding on the cytofacial exposed region. We show that the mutation impacts the "open" GPCR conformation, potentially affecting Gα-subunit binding and associated downstream activity. Overall, our findings suggest that the Val125 mutation in OR2T7 could affect glioblastoma progression by downregulating GPCR-p38 MAPK tumor-suppression pathways and impacting the biophysical characteristics of the structure that facilitates Gα-subunit binding. This study provides the theoretical basis for further experimental investigation required to confirm that the D125V mutation in OR2T7 is not a passenger mutation. With validation, the aforementioned mutation could represent an important prognostic marker and a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Amanda K Sharp
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia
| | - David Newman
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Gianna Libonate
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Mary Borns-Stern
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - David R Bevan
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Anne M Brown
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia.
| | - Ramu Anandakrishnan
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia; Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia; Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina.
| |
Collapse
|
4
|
Shu S, Kobayashi M, Marunaka K, Yoshino Y, Goto M, Katsuta Y, Ikari A. Magnesium Supplementation Attenuates Ultraviolet-B-Induced Damage Mediated through Elevation of Polyamine Production in Human HaCaT Keratinocytes. Cells 2022; 11:cells11152268. [PMID: 35892565 PMCID: PMC9332241 DOI: 10.3390/cells11152268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Magnesium ions (Mg2+) have favorable effects such as the improvement of barrier function and the reduction of inflammation reaction in inflammatory skin diseases. However, its mechanisms have not been fully understood. Microarray analysis has shown that the gene expressions of polyamine synthases are upregulated by MgCl2 supplementation in human HaCaT keratinocytes. Here, we investigated the mechanism and function of polyamine production. The mRNA and protein levels of polyamine synthases were dose-dependently increased by MgCl2 supplementation, which were inhibited by U0126, a MEK inhibitor; CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor; and Naphthol AS-E, a cyclic AMP-response-element-binding protein (CREB) inhibitor. Similarly, reporter activities of polyamine synthases were suppressed by these inhibitors, suggesting that MEK, GSK3, and CREB are involved in the transcriptional regulation of polyamine synthases. Cell viability was reduced by ultraviolet B (UVB) exposure, which was rescued by MgCl2 supplementation. The UVB-induced elevation of reactive oxygen species was attenuated by MgCl2 supplementation, which was inhibited by cysteamine, a polyamine synthase inhibitor. Our data indicate that the expression levels of polyamine synthases are upregulated by MgCl2 supplementation mediated through the activation of the MEK/GSK3/CREB pathway. MgCl2 supplementation may be useful in reducing the UVB-induced oxidative stress in the skin.
Collapse
Affiliation(s)
- Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
| | - Makiko Goto
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuji Katsuta
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama 220-0011, Japan; (M.G.); (Y.K.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (S.S.); (M.K.); (K.M.); (Y.Y.)
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|
5
|
Aljuffali IA, Lin CH, Yang SC, Alalaiwe A, Fang JY. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022; 23:187. [PMID: 35798907 DOI: 10.1208/s12249-022-02344-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022] Open
Abstract
Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.
Collapse
Affiliation(s)
- Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan. .,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Braegelmann C, Niebel D, Ferring-Schmitt S, Fetter T, Landsberg J, Hölzel M, Effern M, Glodde N, Steinbuch S, Bieber T, Wenzel J. Epigallocatechin-3-gallate exhibits anti-inflammatory effects in a human interface dermatitis model-implications for therapy. J Eur Acad Dermatol Venereol 2021; 36:144-153. [PMID: 34585800 DOI: 10.1111/jdv.17710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG) has been proven effective in treating viral warts. Since anticarcinogenic as well as anti-inflammatory properties are ascribed to the substance, its use has been evaluated in the context of different dermatoses. The effect of EGCG on interface dermatitis (ID), however, has not yet been explored. OBJECTIVES In this study, we investigated the effect of EGCG on an epidermal human in vitro model of ID. METHODS Via immunohistochemistry, lesional skin of lichen planus patients and healthy skin were analysed concerning the intensity of interferon-associated mediators, CXCL10 and MxA. Epidermal equivalents were stained analogously upon ID-like stimulation and EGCG treatment. Monolayer keratinocytes were treated likewise and supernatants were analysed via ELISA while cells were processed for vitality assay or transcriptomic analysis. RESULTS CXCL10 and MxA are strongly expressed in lichen planus lesions and induced in keratinocytes upon ID-like stimulation. EGCG reduces CXCL10 and MxA staining intensity in epidermis equivalents and CXCL10 secretion by keratinocytes upon stimulation. It furthermore minimizes the cytotoxic effect of the stimulus and downregulates a magnitude of typical pro-inflammatory cytokines that are crucial for the perpetuation of ID. CONCLUSIONS We provide evidence concerning anti-inflammatory effects of EGCG within a human in vitro model of ID. The capacity to suppress mediators that are centrally involved in disease perpetuation suggests EGCG as a potential topical therapeutic in lichen planus and other autoimmune skin diseases associated with ID.
Collapse
Affiliation(s)
- C Braegelmann
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - D Niebel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - S Ferring-Schmitt
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - T Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - J Landsberg
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - M Hölzel
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Bonn, Germany
| | - M Effern
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Bonn, Germany
| | - N Glodde
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Bonn, Germany
| | - S Steinbuch
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - T Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - J Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
The Effect of Antioxidant and Anti-Inflammatory Capacity of Diet on Psoriasis and Psoriatic Arthritis Phenotype: Nutrition as Therapeutic Tool? Antioxidants (Basel) 2021; 10:antiox10020157. [PMID: 33499118 PMCID: PMC7912156 DOI: 10.3390/antiox10020157] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and increased oxidative stress are contributing factors to many non-communicable diseases. A growing body of evidence indicates that dietary nutrients can activate the immune system and may lead to the overproduction of pro-inflammatory cytokines. Fatty acids as macronutrients are key players for immunomodulation, with n-3 polyunsaturated fatty acids having the most beneficial effect, while polyphenols and carotenoids seem to be the most promising antioxidants. Psoriasis is a chronic, immune-mediated inflammatory disease with multifactorial etiology. Obesity is a major risk factor for psoriasis, which leads to worse clinical outcomes. Weight loss interventions and, generally, dietary regimens such as gluten-free and Mediterranean diet or supplement use may potentially improve psoriasis’ natural course and response to therapy. However, data about more sophisticated nutritional patterns, such as ketogenic, very low-carb or specific macro- and micro-nutrient substitution, are scarce. This review aims to present the effect of strictly structured dietary nutrients, that are known to affect glucose/lipid metabolism and insulin responses, on chronic inflammation and immunity, and to discuss the utility of nutritional regimens as possible therapeutic tools for psoriasis and psoriatic arthritis.
Collapse
|
8
|
Abstract
Increasing evidence suggests that environmental stress, such as UV radiation, generates reactive oxygen and nitrogen species in skin cells, leading to histochemical changes including skin disorders and aging, hyper pigmentation, and increased formation of wrinkles. Besides the defensive system in skin composed of vitamins and intrinsic antioxidant enzymes, topical and skin conditioning products have been used commonly to eradicate or eliminate these skin ailments. Among various ingredients providing nourishing and moisturizing effect in skin, antioxidants have been reported to be a key ingredient to counteract skin aging processes and skin disorders. Derived from a patented extraction process, a polyphenol rich sugarcane concentrate (Officinol™) becomes the focus of this study due to its rich content of polyphenols known to be strong antioxidants. In this work, we carried out a series of cell-based in vitro studies to examine the use of Officinol™ in anti-aging and skin care functions. Our studies show that Officinol™ activated telomerase, a major biomarker that have been reported to be associated with slowed cellular aging process. When skin cells were under environmental stress such as UV radiation, Officinol™ inhibited MMP-1, an interstitial collagenase in skin cells, and deterred the breakdown of collagen that provides supple texture in skin. Officinol™ also inhibited cellular expression of melanin pigmentation and tyrosinase activity, two major biomarkers causing skin pigmentation and aging spots, and inhibited elastase, an enzyme that facilities the reduction of skin elasticity. At the end of the investigation, we carried out a 10-person, pilot study to examine the effect of Officinol™ on skin lightening and fine line and wrinkle reduction in human skin. The combination of the in vitro and the human pre-study indicates that Officinol™ could provide significant preventative and protective functions including antioxidant, anti-aging, wrinkle reduction, and skin brightening for human skin suffering from aging and other stress. These findings are to be confirmed with a larger scale clinical study at a later stage.
Collapse
|
9
|
Frasheri L, Schielein MC, Tizek L, Mikschl P, Biedermann T, Zink A. Great green tea ingredient? A narrative literature review on epigallocatechin gallate and its biophysical properties for topical use in dermatology. Phytother Res 2020; 34:2170-2179. [PMID: 32189392 DOI: 10.1002/ptr.6670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 11/09/2022]
Abstract
The purpose of this review is to examine epigallocatechin-3-gallate (EGCG) regarding its stability in different conditions (pH-value, concentration, temperature), its interactions with common cosmetic ingredients, and its application in the dermatological field. The literature research considered published journal articles (clinical trials and scientific reviews). Studies were identified by searching electronic databases (MEDLINE and PubMed) and reference lists of respective articles. Higher concentrations of EGCG were reported to correlate with better stability and the same can be said for low temperatures and pH values. The interaction between EGCG and hyaluronic acid strengthens its antioxidant activities. Titanium dioxide coated with EGCG proved a suitable ingredient in sunscreens. The polyphenol possesses antioxidant properties, which proved effective in the prevention of UV-induced skin damage and to alleviate the symptoms of Imiquimod-induced psoriasis. The three endpoints of this review not only showed interesting results but also highlighted some limitations of EGCG. Studies show that the molecule is unstable, which may hinder its dermatological and cosmetic applications. The reported interactions with cosmetic ingredients were limited. As the health aspects of EGCG are well-reported, ECGC has become a focus of interest for health professionals trying to treat common dermatological diseases.
Collapse
Affiliation(s)
- Lorenz Frasheri
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | | | - Linda Tizek
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | | | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Nguyen JK, Masub N, Jagdeo J. Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence. J Cosmet Dermatol 2020; 19:1555-1569. [DOI: 10.1111/jocd.13344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Julie K. Nguyen
- Department of Dermatology SUNY Downstate Medical Center Brooklyn NY USA
- Dermatology Service VA New York Harbor Healthcare System – Brooklyn Campus Brooklyn NY USA
| | - Natasha Masub
- Department of Dermatology SUNY Downstate Medical Center Brooklyn NY USA
- Dermatology Service VA New York Harbor Healthcare System – Brooklyn Campus Brooklyn NY USA
| | - Jared Jagdeo
- Department of Dermatology SUNY Downstate Medical Center Brooklyn NY USA
- Dermatology Service VA New York Harbor Healthcare System – Brooklyn Campus Brooklyn NY USA
| |
Collapse
|
11
|
Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. Int J Mol Sci 2020; 21:ijms21020523. [PMID: 31947635 PMCID: PMC7013965 DOI: 10.3390/ijms21020523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/26/2022] Open
Abstract
Hair loss is a disorder in which the hair falls out from skin areas such as the scalp and the body. Several studies suggest the use of herbal medicine to treat related disorders, including alopecia. Dermal microcirculation is essential for hair maintenance, and an insufficient blood supply can lead to hair follicles (HF) diseases. This work aims to provide an insight into the ethnohistorical records of some nutritional compounds containing flavonoids for their potential beneficial features in repairing or recovering from hair follicle disruption. We started from a query for “alopecia” OR “hair loss” AND “Panaxginseng C.A. Mey.“ (or other six botanicals) terms included in Pubmed and Web of Sciences articles. The activities of seven common botanicals introduced with diet (Panaxginseng C.A. Mey., Malus pumila Mill cultivar Annurca, Coffea arabica, Allium sativum L., Camellia sinensis (L.) Kuntze, Rosmarinum officinalis L., Capsicum annum L.) are discussed, which are believed to reduce the rate of hair loss or stimulate new hair growth. In this review, we pay our attention on the molecular mechanisms underlying the bioactivity of the aforementioned nutritional compounds in vivo, ex vivo and in vitro studies. There is a need for systematic evaluation of the most commonly used plants to confirm their anti-hair loss power, identify possible mechanisms of action, and recommend their best adoption.
Collapse
|
12
|
Choi SY, Kim MJ, Hong JY, Park KY, Seo SJ. Adiponectin Promotes Caspase-14 Expression in Normal Human Epidermal Keratinocytes. Ann Dermatol 2019; 31:352-355. [PMID: 33911608 PMCID: PMC7992720 DOI: 10.5021/ad.2019.31.3.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sun Young Choi
- Department of Dermatology, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Min Jeong Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ji Yeon Hong
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
|
14
|
Gulias-Cañizo R, Lagunes-Guillén A, González-Robles A, Sánchez-Guzmán E, Castro-Muñozledo F. (-)-Epigallocatechin-3-gallate, reduces corneal damage secondary from experimental grade II alkali burns in mice. Burns 2018; 45:398-412. [PMID: 30600126 DOI: 10.1016/j.burns.2018.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Since recent reports have shown that (-)-Epigallocatechin-3-gallate (EGCG) could be used for treating proliferative and inflammatory disorders, we explored its use for the management of corneal chemical burns. MATERIALS AND METHODS Initially, EGCG was assayed on the rabbit corneal epithelial cell line RCE1(5T5) to establish the best testing conditions, and to avoid unwanted outcomes in the experimental animals. Then, we studied its effects on cell proliferation, cell cycle progression and cell differentiation. Afterwards, we instilled EGCG in experimental grade II corneal alkali burns in mice, three times a day up to 21days, and evaluated by slit lamp examination and histological sections of corneal epithelial, corneal endothelial and stromal edema, as well as the presence of inflammatory cells and neovascularization. RESULTS EGCG reduced cell growth and led to a decline in the proportion of proliferative cells in a concentration dependent manner. At 10μM, EGCG promoted cell differentiation, an effect not related with apoptosis or cytotoxicity. When 10μM EGCG was instilled in corneal alkali burns in mice three times a day up to 21days, EGCG significantly reduced corneal opacity and neovascularization. The improved clinical appearance of the cornea was associated to a controlled epithelial growth; epithelial morphology was similar to that observed in normal epithelium and contrasted with the hyperproliferative, desquamating epithelium observed in control burn wounds. EGCG reduced corneal, stromal and endothelial edema, and wound inflammation. CONCLUSION This work constitutes the first evidence for the use of EGCG in the acute phase of a corneal alkali burn, representing a possible novel alternative to improve patient outcomes as an add-on therapy.
Collapse
Affiliation(s)
- Rosario Gulias-Cañizo
- Hospital "Luis Sánchez Bulnes" de la Asociación para Evitar la Ceguera en, México City, México; Departamento de Biología Celular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | - Anell Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | | |
Collapse
|
15
|
Sinha A, P. K. S. Enhanced Induction of Apoptosis in HaCaT Cells by Luteolin Encapsulated in PEGylated Liposomes—Role of Caspase-3/Caspase-14. Appl Biochem Biotechnol 2018; 188:147-164. [DOI: 10.1007/s12010-018-2907-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
|
16
|
Nagahara Y, Kawakami K, Sikandan A, Yagi D, Nishikawa R, Shinomiya T. Sphingoid Base-Upregulated Caspase-14 Expression Involves MAPK. Biol Pharm Bull 2018; 41:743-748. [PMID: 29709911 DOI: 10.1248/bpb.b17-00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingolipids are putative intracellular signal mediators in cell differentiation, growth inhibition, and apoptosis. Especially, sphingoid base-backbones of sphingolipids (sphingosine, sphinganine, and phytosphingosine) and their metabolites N-acyl-sphingoid bases (ceramides) are highly bioactive. In skin, one of the caspases, caspase-14, is expressed predominantly in cornifying epithelia, and caspase-14 plays an important role in keratinocyte differentiation. As ceramides were surrounding lipids in the keratinocytes and ceramides stimulate keratinocyte differentiation, we therefore examined the upregulation of caspase-14 by various sphingoid bases and ceramide. Sphingosine, sphinganine, phytosphingosine, and C2-ceramide treatment at the doses not damaging cells significantly increased caspase-14 mRNA and protein expression in dose-dependent manner on human keratinocyte HaCaT cells. These results indicated that sphingoid bases and ceramide upregulated caspase-14 mRNA to increase intracellular caspase-14 protein level. We next examined the caspase-14 upregulation mechanism by sphingoid bases. We used the most effective sphingoid base, phytosphingosine, and revealed that specific inhibitors of the mitogen-activated protein kinase, p38 and c-jun N-terminal protein kinase (JNK), blocked caspase-14 expression. This indicates that phytosphingosine upregulation of caspase-14 is involved of p38 and JNK activation. Moreover, phytosphingosine induced caspase-14 upregulation in vivo, suggesting that sphingoid bases were involved in keratinocyte differentiation by affecting caspase-14.
Collapse
Affiliation(s)
- Yukitoshi Nagahara
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Kei Kawakami
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Abudubari Sikandan
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Daiki Yagi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Ryo Nishikawa
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| | - Takahisa Shinomiya
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University
| |
Collapse
|
17
|
Chamcheu JC, Siddiqui IA, Adhami VM, Esnault S, Bharali DJ, Babatunde AS, Adame S, Massey RJ, Wood GS, Longley BJ, Mousa SA, Mukhtar H. Chitosan-based nanoformulated (-)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int J Nanomedicine 2018; 13:4189-4206. [PMID: 30057446 PMCID: PMC6059258 DOI: 10.2147/ijn.s165966] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Psoriasis is a chronic and currently incurable inflammatory skin disease characterized by hyperproliferation, aberrant differentiation, and inflammation, leading to disrupted skin barrier function. The use of natural agents that can abrogate these effects could be useful for the treatment of psoriasis. Earlier studies have shown that treatment of keratinocytes and mouse skin with the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) mitigated inflammation and increased the expression of caspase-14 while promoting epidermal differentiation and cornification. However, bioavailability issues have restricted the development of EGCG for the treatment of psoriasis. Materials and methods To overcome these limitations, we employed a chitosan-based polymeric nanoparticle formulation of EGCG (CHI-EGCG-NPs, hereafter termed nanoEGCG) suitable for topical delivery for treating psoriasis. We investigated and compared the efficacy of nanoEGCG versus native or free EGCG in vitro and in an in vivo imiquimod (IMQ)-induced murine psoriasis-like dermatitis model. The in vivo relevance and efficacy of nanoEGCG formulation (48 µg/mouse) were assessed in an IMQ-induced mouse psoriasis-like skin lesion model compared to free EGCG (1 mg/mouse). Results Like free EGCG, nanoEGCG treatment induced differentiation, and decreased proliferation and inflammatory responses in cultured keratinocytes, but with a 4-fold dose advantage. Topically applied nanoEGCG elicited a significant (p<0.01) amelioration of psoriasiform pathological markers in IMQ-induced mouse skin lesions, including reductions in ear and skin thickness, erythema and scales, proliferation (Ki-67), infiltratory immune cells (mast cells, neutrophils, macrophages, and CD4+ T cells), and angiogenesis (CD31). We also observed increases in the protein expression of caspase-14, early (keratin-10) and late (filaggrin and loricrin) markers of differentiation, and the activator protein-1 factor (JunB). Importantly, a significant modulation of several psoriasis-related inflammatory cytokines and chemokines was observed compared to the high dose of free EGCG (p<0.05). Taken together, topically applied nanoEGCG displayed a >20-fold dose advantage over free EGCG. Conclusion Based on these observations, our nanoEGCG formulation represents a promising drug-delivery strategy for treating psoriasis and possibly other inflammatory skin diseases.
Collapse
Affiliation(s)
- Jean Christopher Chamcheu
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA, .,School of Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA,
| | - Imtiaz A Siddiqui
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA,
| | - Vaqar M Adhami
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA,
| | - Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, The University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Abiola S Babatunde
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA, .,Department of Hematology, University of Ilorin, Ilorin, Nigeria
| | - Stephanie Adame
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA,
| | - Randall J Massey
- Electron Microscope Facility, Medical School Research Support Programs, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA
| | - Gary S Wood
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA,
| | - B Jack Longley
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA,
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, WI, USA,
| |
Collapse
|
18
|
Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed Pharmacother 2017; 95:1260-1275. [PMID: 28938517 DOI: 10.1016/j.biopha.2017.09.024] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China; Department of Urology Surgery, Aviation General Hospital, Beijing, 100012, China
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, 40100, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | - Robina Manzoor
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281 001, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu, 600051, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Chao Sun
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:334. [PMID: 27581210 PMCID: PMC5007807 DOI: 10.1186/s12906-016-1325-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023]
Abstract
Background Psoriasis is a chronic inflammatory immune disease with undefined pathogenesis. It is associated with T cells, and the IL-23/IL17 axis is believed to be crucial in the pathogenesis. The present treatments have side effects that influence the compliance of patients. Tea polyphenol is extracted from tea polyphenols, and its main active ingredient is Epigallocatechin-3-gallate (EGCG), which has been shown to have antioxidant, anti-tumor, and anti-ultraviolet radiation effects. Here, we aim to report that EGCG can inhibit imiquimod (IMQ)-induced psoriasis-like inflammation. Methods We used BALB/c mice, which were topically treated with IMQ for 6 consecutive days, as a psoriasis mouse model. Topical application of EGCG and treatment with EGCG were conducted in the experiments. Then observed the effects of the two methods on psoriasis-like mice dermatitis. Statistics are presented as the means ± standard error of mean (SEM) and compared using unpaired two-tailed Student’s t tests or one-way ANOVA. Results Topical application of EGCG alleviated psoriasiform dermatitis, improved the skin pathological structure by reduce the expression of epidermal PCNA, promoted the expression of caspase-14. Treatment with EGCG attenuated skin inflammation, accompanied by reduced infiltrations of T cells; reduced percentages of CD11c+ DC in the composition of immunocytes of spleens; reduced levels of interleukin (IL)-17A, IL-17F, IL-22, IL-23 and malondialdehyde (MDA) in plasma; increased percentages of CD4+ T cells in the composition of immunocytes of spleens; and increased bioactivities of superoxide dismutase (SOD) and catalase (CAT) in plasma. Conclusions All the results demonstrated that EGCG had anti-inflammatory, immune regulatory and antioxidant effects. It is a promising intervention in psoriasis in the future.
Collapse
|
20
|
Pal HC, Chamcheu JC, Adhami VM, Wood GS, Elmets CA, Mukhtar H, Afaq F. Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation. Br J Dermatol 2014; 172:354-64. [PMID: 25533330 DOI: 10.1111/bjd.13513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation and aberrant keratinocyte differentiation. We have shown that treatment of reconstituted human skin with delphinidin, an anthocyanidin, present in pigmented fruits and vegetables, increased the expression and processing of caspase-14, which is involved in cornification. Delphinidin also increases the expression of epidermal differentiation marker proteins. OBJECTIVES To determine whether topical application of delphinidin can modulate pathological markers of psoriasiform lesions in flaky skin mice and if this is associated with increased epidermal differentiation and a reduction in proliferation and inflammation. METHODS Five-week-old female homozygous flaky skin mice (fsn/fsn) were treated topically with delphinidin (0·5 mg cm(-2) and 1 mg cm(-2) skin areas, respectively), five times a week, up to 14 weeks of age. RESULTS Treatment of flaky skin mice with delphinidin resulted in a reduction in (i) pathological markers of psoriasiform lesions; (ii) infiltration of inflammatory cells; and (iii) mRNA and protein expression of inflammatory cytokines. Delphinidin treatment also increased the expression and processing of caspase-14, and expression of filaggrin, loricrin, keratin-1 and keratin-10. Furthermore, there was a decrease in the expression of markers for cell proliferation (proliferating cell nuclear antigen and keratin-14) and modulation of tight junction proteins (occludin and claudin-1). In addition, delphinidin treatment increased the expression of activator protein-1 transcription factor proteins (JunB, JunD, Fra1 and Fra2). CONCLUSIONS Delphinidin could be a promising agent for treatment of psoriasis and other hyperproliferative skin disorders.
Collapse
Affiliation(s)
- H C Pal
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, 35294, AL, U.S.A
| | | | | | | | | | | | | |
Collapse
|
21
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 929] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
22
|
Joehlin-Price AS, Elkins CT, Stephens JA, Cohn DE, Knobloch TJ, Weghorst CM, Suarez AA. Comprehensive evaluation of caspase-14 in vulvar neoplasia: an opportunity for treatment with black raspberry extract. Gynecol Oncol 2014; 135:503-9. [PMID: 25256208 DOI: 10.1016/j.ygyno.2014.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study is to determine the expression of caspase-14, a key protein in maturation of squamous epithelia, in archival malignant and premalignant vulvar squamous lesions and examine in-vitro effects of a black raspberry extract (BRB-E) on a vulvar squamous cell carcinoma (VSCC) cell line. METHODS VSCC cell cultures were exposed to different BRB-E concentrations and used to create cell blocks. Immunohistochemistry for caspase-14 was performed on cell block sections, whole tissue sections, and a tissue microarray consisting of normal vulvar skin, lichen sclerosus (LS), classic and differentiated vulvar intraepithelial neoplasia (cVIN and dVIN respectively), and VSCC. RESULTS LS demonstrated abnormal full thickness (5/11) or absent (1/11) caspase-14 staining. dVIN often showed markedly reduced expression (4/7), and cVIN occasionally demonstrated either absent or reduced caspase-14 (6/22). VSCC predominantly had absent or markedly reduced caspase-14 (26/28). VSCC cell cultures demonstrated a significant increase in caspase-14 (p=0.013) after BRB-E treatment: 7.3% (±2.0%) of untreated cells showed caspase-14 positivity, while 21.3% (±8.9%), 21.7% (±4.8%), and 22.6% (±5.3%) of cells were positive for caspase-14 after treatment with 200, 400, and 800 μg/mL BRB-E, respectively. Pair-wise comparisons between the treatment groups and the control demonstrated significant differences between no treatment with BRB-E and each of these treatment concentrations (Dunnett's adjusted p-values: 0.024, 0.021, and 0.014, respectively). CONCLUSIONS Caspase-14 is frequently decreased in premalignant and malignant vulvar squamous lesions, and is upregulated in VSCC cell culture by BRB-E. BRB-E should be further explored and may ultimately be incorporated in topical preparations.
Collapse
Affiliation(s)
- Amy S Joehlin-Price
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Camille T Elkins
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Julie A Stephens
- Center for Biostatistics, The Ohio State University, 2012 Kenny Rd, Columbus, OH 43221, USA
| | - David E Cohn
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Thomas J Knobloch
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, 300 W 10th Ave, Columbus, OH 43210, USA
| | - Christopher M Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, 300 W 10th Ave, Columbus, OH 43210, USA
| | - Adrian A Suarez
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Martin-Benlloch X, Elhabiri M, Lanfranchi DA, Davioud-Charvet E. A Practical and Economical High-Yielding, Six-Step Sequence Synthesis of a Flavone: Application to the Multigram-Scale Synthesis of Ladanein. Org Process Res Dev 2014. [DOI: 10.1021/op4003642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xavier Martin-Benlloch
- Laboratory of Bioorganic
and Medicinal Chemistry, UMR7509 CNRS-University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- Laboratory of Bioorganic
and Medicinal Chemistry, UMR7509 CNRS-University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Don Antoine Lanfranchi
- Laboratory of Bioorganic
and Medicinal Chemistry, UMR7509 CNRS-University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Laboratory of Bioorganic
and Medicinal Chemistry, UMR7509 CNRS-University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
24
|
Dickinson D, DeRossi S, Yu H, Thomas C, Kragor C, Paquin B, Hahn E, Ohno S, Yamamoto T, Hsu S. Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells. Autoimmunity 2014; 47:177-84. [PMID: 24444391 DOI: 10.3109/08916934.2013.879470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sjogren's syndrome (SS) and type-1 diabetes are prevalent autoimmune diseases in the USA. We reported previously that epigallocatechin-3-gallate (EGCG) prevented and delayed the onset of autoimmune disease in non-obese diabetic (NOD) mice, a model for both SS and type-1 diabetes. EGCG also normalized the levels of proteins related to DNA repair and anti-oxidant activity in NOD.B10.Sn-H2 mice, a model for primary SS, prior to disease onset. The current study examined the effect of EGCG on the expression of anti-oxidant enzymes in the submandibular salivary gland and the pancreas of NOD mice and cultured human salivary gland acinar cells. NOD mice consuming 0.2% EGCG daily dissolved in water showed higher protein levels of peroxiredoxin 6 (PRDX6), a major anti-oxidant defense protein, and catalase, while the untreated NOD mice exhibited significantly lowered levels of PRDX6. Similarly, pancreas samples from water-fed NOD mice were depleted in PRDX6 and superoxide dismutase, while EGCG-fed mice showed high levels of these anti-oxidant enzymes. In cultured HSG cells EGCG increased PRDX6 levels significantly, and this was inhibited by p38 and JNK inhibitors, suggesting that the EGCG-mediated increase in protective anti-oxidant capacity is regulated in part through mitogen-activated protein kinase pathway signaling. This mechanism may explain the higher levels of PRDX6 found in EGCG-fed NOD mice. These preclinical observations warrant future preclinical and clinical studies to determine whether EGCG or green tea polyphenols could be used in novel preventive and therapeutic approaches against autoimmune diseases and salivary dysfunction involving oxidative stress.
Collapse
|
25
|
|
26
|
Murakami H, Okamura K, Aoki S, Sakagami R, Yamazaki J. Association of caspase-14 and filaggrin expression with keratinization of the oral mucosa and reconstruction culture rat models. J Periodontal Res 2013; 49:703-10. [DOI: 10.1111/jre.12152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- H. Murakami
- Department of Odontology; Fukuoka Dental College; 2-15-1 Tamura, Sawara-ku Fukuoka 814-0193 Japan
| | - K. Okamura
- Department of Morphological Biology; Fukuoka Dental College; Fukuoka Japan
| | - S. Aoki
- Department of Pathology and Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | - R. Sakagami
- Department of Odontology; Fukuoka Dental College; 2-15-1 Tamura, Sawara-ku Fukuoka 814-0193 Japan
| | - J. Yamazaki
- Department of Physiological Science & Molecular Biology; Fukuoka Dental College; Fukuoka Japan
| |
Collapse
|
27
|
Jiang YJ, Kim P, Uchida Y, Elias PM, Bikle DD, Grunfeld C, Feingold KR. Ceramides stimulate caspase-14 expression in human keratinocytes. Exp Dermatol 2013; 22:113-8. [PMID: 23362869 DOI: 10.1111/exd.12079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/30/2022]
Abstract
Caspase-14 is an enzyme that is expressed predominantly in cornifying epithelia and catalyses the degradation of profilaggrin. Additionally, caspase-14 plays an important role in the terminal differentiation of keratinocytes. However, how caspase-14 expression is regulated remains largely unknown. Here we demonstrate that ceramides (C(2) -Cer and C(6) -Cer), but not other sphingolipids (C(8) -glucosylceramides, sphinganine, sphingosine-1-phosphate or ceramide-1-phosphate), increase caspase-14 expression (mRNA and protein) in cultured human keratinocytes in a dose- and time-dependent manner. Inhibitors of glucosylceramide synthase and ceramidase increase endogenous ceramide levels and also increase caspase-14 expression, indicating an important regulatory role for ceramides and suggesting that the conversion of ceramides to other metabolites is not required. The increase in caspase-14 expression induced by ceramides is first seen at 16 h and requires new protein synthesis, suggesting that the ceramide-induced increase is likely an indirect effect. Furthermore, ceramides increase caspase-14 gene expression primarily by increasing transcription. Blocking de novo synthesis of ceramides does not affect caspase-14 expression, suggesting that basal expression is not dependent on ceramide levels. These studies show that ceramides, an important structural lipid, stimulate caspase-14 expression providing a mechanism for coordinately regulating the formation of lipid lamellar membranes with the formation of corneocytes.
Collapse
Affiliation(s)
- Yan J Jiang
- Metabolism Section, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California at San Francisco, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kataoka S, Hattori K, Date A, Tamura H. Human keratinocyte caspase-14 expression is altered in human epidermal 3D models by dexamethasone and by natural products used in cosmetics. Arch Dermatol Res 2013; 305:683-9. [DOI: 10.1007/s00403-013-1359-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/24/2013] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
|
29
|
Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 2013; 138:1-17. [PMID: 23159372 PMCID: PMC4153856 DOI: 10.1016/j.pharmthera.2012.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022]
Abstract
In the last two decades, the study of epigenetic modification emerged as one of the major areas of cancer treatment targeted by dietary phytochemicals. Recent studies with various types of cancers revealed that the epigenetic modifications are associated with the food source corresponds to dietary phytochemicals. The dietary phytochemicals have been used in Asian countries for thousands of years to cure several diseases including cancer. They have been reported to modulate the several biological processes including histone modification, DNA methylation and non-coding microRNA expression. These events play a vital role in carcinogenesis. Various studies suggest that a number of dietary compounds present in vegetables, spices and other herbal products have epigenetic targets in cancer cells. Dietary phytochemicals have been reported to repair DNA damage by enhancing histone acetylation that helps to restrain cell death, and also alter DNA methylation. These phytochemicals are able to modulate epigenetic modifications and their targets to cure several cancers. Epigenetic aberrations dynamically contribute to cancer pathogenesis. Given the individualized traits of epigenetic biomarkers, the personalized nutrition will help us to prevent various types of cancer. In this review, we will discuss the effect of dietary phytochemicals on genetic and epigenetic modifications and how these modifications help to prevent various types of cancers and improve health outcomes.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Dhruv Kumar
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Medical Center, The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Medical Center, The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| |
Collapse
|
30
|
D'Angelo S, La Porta R, Napolitano M, Galletti P, Quagliuolo L, Boccellino M. Effect of Annurca Apple Polyphenols on Human HaCaT Keratinocytes Proliferation. J Med Food 2012; 15:1024-31. [DOI: 10.1089/jmf.2012.0076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stefania D'Angelo
- Department of Studies of Institutions and Territorial Systems (DiSIST), School of Movement Sciences, Parthenope University, Naples, Italy
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Raffaele La Porta
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Maria Napolitano
- National Cancer Institute, “G. Pascale” Foundation, Naples, Italy
| | - Patrizia Galletti
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Lucio Quagliuolo
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | | |
Collapse
|
31
|
Hoste E, Denecker G, Gilbert B, Van Nieuwerburgh F, van der Fits L, Asselbergh B, De Rycke R, Hachem JP, Deforce D, Prens EP, Vandenabeele P, Declercq W. Caspase-14-deficient mice are more prone to the development of parakeratosis. J Invest Dermatol 2012; 133:742-750. [PMID: 23014340 DOI: 10.1038/jid.2012.350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Caspase-14 is an important protease in the proper formation of a fully functional skin barrier. Newborn mice that are deficient in caspase-14 exhibit increased transepidermal water loss and are highly sensitive to UVB-induced photodamage. Decreased caspase-14 expression and incomplete caspase-14 processing in lesional psoriatic parakeratotic stratum corneum has been reported previously. In this study, we show that caspase-14-deficient skin frequently displays incompletely cornified cells in the transitional zone between the granular and the cornified layers, pointing to a delay in cornification. We also demonstrate that after challenge of epidermal permeability barrier function by repetitive acetone treatment, a higher incidence of large parakeratotic plaques was observed in caspase-14-deficient skin. Furthermore, caspase-14-deficient mice are more prone than control mice to the development of parakeratosis upon induction of psoriasis-like dermatitis by imiquimod treatment. These results show that lack of caspase-14 expression predisposes to the development of parakeratosis and that caspase-14 has an important role in keratinocyte terminal differentiation and the maintenance of normal stratum corneum, especially in conditions causing epidermal hyperproliferation.
Collapse
Affiliation(s)
- Esther Hoste
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geertrui Denecker
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Barbara Gilbert
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Leslie van der Fits
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bob Asselbergh
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jean-Pierre Hachem
- Department of Dermatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Errol P Prens
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
32
|
The many faces of p38 mitogen-activated protein kinase in progenitor/stem cell differentiation. Biochem J 2012; 445:1-10. [DOI: 10.1042/bj20120401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of stem cells is essential for development and adult tissue homoeostasis. The proper control of stem cell self-renewal and differentiation maintains organ physiology, and disruption of such a balance results in disease. There are many mechanisms that have been established as stem cell regulators, such as Wnt or Notch signals. However, the intracellular mechanisms that mediate and integrate these signals are not well understood. A new intracellular pathway that has been reported to be involved in the regulation of many stem cell types is that of p38 MAPK (mitogen-activated protein kinase). In particular, p38α is essential for the proper differentiation of many haematopoietic, mesenchymal and epithelial stem/progenitor cells. Many reports have shown that disruption of this kinase pathway has pathological consequences in many organs. Understanding the extracellular cues and downstream targets of p38α in stem cell regulation may help to tackle some of the pathologies associated with improper differentiation and regulation of stem cell function. In the present review we present a vision of the current knowledge on the roles of the p38α signal as a regulator of stem/progenitor cells in different tissues in physiology and disease.
Collapse
|
33
|
Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch Dermatol Res 2012; 304:755-64. [PMID: 22684780 DOI: 10.1007/s00403-012-1250-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/27/2022]
Abstract
The use of microalgae in the skin care market is already established although the scientific rationale for their benefit was not clearly defined. In this work, the biological activities of dermatologic interest of the water extract from the microalga Botryococcus braunii (BBWE) were evaluated by a battery of in vitro assays. At concentrations ranging from 0.1 to 0.001 % (w/v) BBWE promoted adipocytes differentiation by inhibiting hormone-sensitive lipase, thus promoting triglyceride accumulation in the cells. BBWE also induced gene expression of proteins involved in the maintenance of skin cells water balance such as aquaporin-3 (AQP3), filaggrin (FLG) and involucrin (INV). 0.1 % BBWE increased the gene expression of AQP3 of 2.6-folds, that of FLG and INV of 1.5- and 1.9-folds, respectively. Moreover, it induced the biosynthesis of collagen I and collagen III by 80 and 40 %, respectively, compared to the untreated control. BBWE antioxidant activity, evaluated by oxygen radical absorbance capacity (ORAC) assay, was of 43.5 μmol Trolox per gram of extract: a quite high value among those found for other microalgae extracts. BBWE inhibited the inducible nitric oxide synthase (iNOS) gene expression and the consequent nitrite oxide (NO) production under oxidative stress. At a concentration of 0.02 % BBWE reduced by 50 % the expression of iNOS and by about 75 % the NO production. Taken together, the results demonstrated that B. braunii water extract exerted an array of biological activities concurring with the skin health maintenance; therefore, it is a potential bioactive ingredient to be included in cosmetic products.
Collapse
|
34
|
Schönefuss A, Wendt W, Schattling B, Schulten R, Hoffmann K, Stuecker M, Tigges C, Lübbert H, Stichel C. Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol 2011; 19:e80-8. [PMID: 19849712 DOI: 10.1111/j.1600-0625.2009.00990.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cathepsin S (CATS) is a cysteine protease, well known for its role in MHC class II-mediated antigen presentation and extracellular matrix degradation. Disturbance of the expression or metabolism of this protease is a concomitant feature of several diseases. Given this importance we studied the localization and regulation of CATS expression in normal and pathological human/mouse skin. In normal human skin CATS-immunostaining is mainly present in the dermis and is localized in macrophages, Langerhans, T- and endothelial cells, but absent in keratinocytes. In all analyzed pathological skin biopsies, i.e. atopic dermatitis, actinic keratosis and psoriasis, CATS staining is strongly increased in the dermis. But only in psoriasis, CATS-immunostaining is also detectable in keratinocytes. We show that cocultivation with T-cells as well as treatment with cytokines can trigger expression and secretion of CATS, which is involved in MHC II processing in keratinocytes. Our data provide first evidence that CATS expression (i) is selectively induced in psoriatic keratinocytes, (ii) is triggered by T-cells and (iii) might be involved in keratinocytic MHC class II expression, the processing of the MHC class II-associated invariant chain and remodeling of the extracellular matrix. This paper expands our knowledge on the important role of keratinocytes in dermatological disease.
Collapse
|
35
|
Monobe M, Ema K, Tokuda Y, Maeda-Yamamoto M. Enhancement of phagocytic activity of macrophage-like cells by pyrogallol-type green tea polyphenols through caspase signaling pathways. Cytotechnology 2010; 62:201-3. [PMID: 20502963 PMCID: PMC2932908 DOI: 10.1007/s10616-010-9280-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/12/2010] [Indexed: 02/04/2023] Open
Abstract
We investigated the phagocytosis-enhancing activity of green tea polyphenols, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) catechin (+C) and strictinin, using VD3-differentiated HL60 cells. EGCG, EGC, ECG and strictinin, but not EC and +C, increased the phagocytic activity of macrophage-like cells, and a caspase inhibitor significantly inhibited phagocytic activities. These results suggest that the pyrogallol-type structure in green tea polyphenols may be important for enhancement of the phagocytic activity through caspase signaling pathways.
Collapse
Affiliation(s)
- Manami Monobe
- National Institute of Vegetable and Tea Science, NARO, 2769 Kanaya, Shimada, Shizuoka, 428-8501, Japan,
| | | | | | | |
Collapse
|
36
|
Camouse MM, Domingo DS, Swain FR, Conrad EP, Matsui MS, Maes D, Declercq L, Cooper KD, Stevens SR, Baron ED. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp Dermatol 2009; 18:522-6. [PMID: 19492999 DOI: 10.1111/j.1600-0625.2008.00818.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tea polyphenols have been found to exert beneficial effects on the skin via their antioxidant properties. AIMS We sought to determine whether topical application of green tea or white tea extracts would prevent simulated solar radiation-induced oxidative damages to DNA and Langerhans cells that may lead to immune suppression and carcinogenesis. METHODS Skin samples were analysed from volunteers or skin explants treated with white tea or green tea after UV irradiation. In another group of patients, the in vivo immune protective effects of green and white tea were evaluated using contact hypersensitivity to dinitrochlorobenzene. RESULTS Topical application of green and white tea offered protection against detrimental effects of UV on cutaneous immunity. Such protection is not because of direct UV absorption or sunscreen effects as both products showed a sun protection factor of 1. There was no significant difference in the levels of protection afforded by the two agents. Hence, both green tea and white tea are potential photoprotective agents that may be used in conjunction with established methods of sun protection.
Collapse
Affiliation(s)
- Melissa M Camouse
- Department of Dermatology, University Hospitals Case Medical Center Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Grether-Beck S, Mühlberg K, Brenden H, Felsner I, Brynjólfsdóttir Á, Einarsson S, Krutmann J. Bioactive molecules from the Blue Lagoon:in vitroandin vivoassessment of silica mud and microalgae extracts for their effects on skin barrier function and prevention of skin ageing. Exp Dermatol 2008; 17:771-9. [DOI: 10.1111/j.1600-0625.2007.00693.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int Immunopharmacol 2008; 8:1172-82. [DOI: 10.1016/j.intimp.2008.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 03/30/2008] [Accepted: 04/04/2008] [Indexed: 11/23/2022]
|
39
|
Gupta J, Siddique Y, Beg T, Ara G, Afzal M. A Review on the Beneficial Effects of Tea Polyphenols on Human Health. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2008.314.338] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Transcription of the caspase-14 gene in human epidermal keratinocytes requires AP-1 and NFκB. Biochem Biophys Res Commun 2008; 371:261-6. [DOI: 10.1016/j.bbrc.2008.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 12/14/2022]
|
41
|
Denecker G, Ovaere P, Vandenabeele P, Declercq W. Caspase-14 reveals its secrets. J Cell Biol 2008; 180:451-8. [PMID: 18250198 PMCID: PMC2234247 DOI: 10.1083/jcb.200709098] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/02/2007] [Indexed: 12/13/2022] Open
Abstract
Caspase-14 is a unique member of the evolutionarily conserved family of cysteinyl aspartate-specific proteinases, which are mainly involved in inflammation and apoptosis. However, recent evidence also implicates these proteases in proliferation and differentiation. Although most caspases are ubiquitously expressed, caspase-14 expression is confined mainly to cornifying epithelia, such as the skin. Moreover, caspase-14 activation correlates with cornification, indicating that it plays a role in terminal keratinocyte differentiation. The determination of in vitro conditions for caspase-14 activity paved the way to identifying its substrates. The recent development of caspase-14-deficient mice underscored its importance in the correct degradation of (pro)filaggrin and in the formation of the epidermal barrier that protects against dehydration and UVB radiation. Here, we review the current knowledge on caspase-14 in skin homeostasis and disease.
Collapse
Affiliation(s)
- Geertrui Denecker
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium
| | | | | | | |
Collapse
|