1
|
Leung JH, Karmakar R, Mukundan A, Lin WS, Anwar F, Wang HC. Technological Frontiers in Brain Cancer: A Systematic Review and Meta-Analysis of Hyperspectral Imaging in Computer-Aided Diagnosis Systems. Diagnostics (Basel) 2024; 14:1888. [PMID: 39272675 PMCID: PMC11394276 DOI: 10.3390/diagnostics14171888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Brain cancer is a substantial factor in the mortality associated with cancer, presenting difficulties in the timely identification of the disease. The precision of diagnoses is significantly dependent on the proficiency of radiologists and neurologists. Although there is potential for early detection with computer-aided diagnosis (CAD) algorithms, the majority of current research is hindered by its modest sample sizes. This meta-analysis aims to comprehensively assess the diagnostic test accuracy (DTA) of computer-aided design (CAD) models specifically designed for the detection of brain cancer utilizing hyperspectral (HSI) technology. We employ Quadas-2 criteria to choose seven papers and classify the proposed methodologies according to the artificial intelligence method, cancer type, and publication year. In order to evaluate heterogeneity and diagnostic performance, we utilize Deeks' funnel plot, the forest plot, and accuracy charts. The results of our research suggest that there is no notable variation among the investigations. The CAD techniques that have been examined exhibit a notable level of precision in the automated detection of brain cancer. However, the absence of external validation hinders their potential implementation in real-time clinical settings. This highlights the necessity for additional studies in order to authenticate the CAD models for wider clinical applicability.
Collapse
Affiliation(s)
- Joseph-Hang Leung
- Department of Radiology, Ditmanson Medical Foundation Chia-yi Christian Hospital, Chia Yi 60002, Taiwan;
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.)
| | - Wen-Shou Lin
- Neurology Division, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung City 80284, Taiwan
| | - Fathima Anwar
- Faculty of Allied Health Sciences, The University of Lahore, 1-Km Defense Road, Lahore 54590, Punjab, Pakistan;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.)
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chia Yi 62247, Taiwan
- Department of Technology Development, Hitspectra Intelligent Technology Co., Ltd., 8F.11-1, No. 25, Chenggong 2nd Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
| |
Collapse
|
2
|
Li J, Zhong J, Tang A, Yin J, Li S. PRAMEF12, a novel cancer/testis gene, regulates proliferation and apoptosis to promote progression of glioma. Biomark Med 2024; 18:385-397. [PMID: 38913622 PMCID: PMC11285353 DOI: 10.2217/bmm-2023-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/17/2023] [Indexed: 06/26/2024] Open
Abstract
Aim: To evaluate whether PRAMEF12 can serve as a diagnostic biomarker for glioma. Methods: We examined PRAMEF12 expression in multiple normal and glioma tissues. The diagnostic value of PRAMEF12 was evaluated using receiver operating characteristic curve analysis. The effect of PRAMEF12 ablation on proliferation, cell cycle and apoptosis was investigated. Database analyses were utilized for functional enrichment analysis. Results: PRAMEF12 expression in normal tissue was restricted to the human testis. PRAMEF12 displayed significant diagnostic value in glioma. PRAMEF12 knockdown inhibited cell proliferation, induced apoptosis and resulted in induction of S-phase cell cycle arrest. Pathway enrichment analysis indicated that PRAMEF12 may participate in cancer. Conclusion: PRAMEF12, a novel cancer/testis gene, may be a potential new diagnostic biomarker for glioma.
Collapse
Affiliation(s)
- Jiaqiang Li
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| | - Jianhua Zhong
- Department of Science & Education, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Aifa Tang
- Department of Science & Education, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Jianchun Yin
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| | - Shoulin Li
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| |
Collapse
|
3
|
Amin T, Hossain A, Jerin N, Mahmud I, Rahman MA, Rafiqul Islam SM, Islam SMBUL. Immunoediting Dynamics in Glioblastoma: Implications for Immunotherapy Approaches. Cancer Control 2024; 31:10732748241290067. [PMID: 39353594 PMCID: PMC11459535 DOI: 10.1177/10732748241290067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that poses many therapeutic difficulties because of the high rate of proliferation, genetic variability, and its immunosuppressive microenvironment. The theory of cancer immunoediting, which includes the phases of elimination, equilibrium, and escape, offers a paradigm for comprehending interactions between the immune system and glioblastoma. Immunoediting indicates the process by which immune cells initially suppress tumor development, but thereafter select for immune-resistant versions leading to tumor escape and progression. The tumor microenvironment (TME) in glioblastoma is particularly immunosuppressive, with regulatory T cells and myeloid-derived suppressor cells being involved in immune escape. To achieve an efficient immunotherapy for glioblastoma, it is crucial to understand these mechanisms within the TME. Existing immunotherapeutic modalities such as chimeric antigen receptor T cells and immune checkpoint inhibitors have been met with some level of resistance because of the heterogeneous nature of the immune response to glioblastoma. Solving these issues is critical to develop novel strategies capable of modulating the TME and re-establishing normal immune monitoring. Further studies should be conducted to identify the molecular and cellular events that underlie the immunosuppressive tumor microenvironment in glioblastoma. Comprehending and modifying the stages of immunoediting in glioblastoma could facilitate the development of more potent and long-lasting therapies.
Collapse
Affiliation(s)
- Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Amana Hossain
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Nusrat Jerin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Imteaz Mahmud
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC, USA
| | - SM Rafiqul Islam
- Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, USA
| | - S M Bakhtiar UL Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Das A, Ding S, Liu R, Huang C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers (Basel) 2023; 15:3614. [PMID: 37509277 PMCID: PMC10377296 DOI: 10.3390/cancers15143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting the eventual volume of tumor cells, that might proliferate from a given tumor, can help in cancer early detection and medical procedure planning to prevent their migration to other organs. In this work, a new statistical framework is proposed using Bayesian techniques for detecting the eventual volume of cells expected to proliferate from a glioblastoma (GBM) tumor. Specifically, the tumor region was first extracted using a parallel image segmentation algorithm. Once the tumor region was determined, we were interested in the number of cells that could proliferate from this tumor until its survival time. For this, we constructed the posterior distribution of the tumor cell numbers based on the proposed likelihood function and a certain prior volume. Furthermore, we extended the detection model and conducted a Bayesian regression analysis by incorporating radiomic features to discover those non-tumor cells that remained undetected. The main focus of the study was to develop a time-independent prediction model that could reliably predict the ultimate volume a malignant tumor of the fourth-grade severity could attain and which could also determine if the incorporation of the radiomic properties of the tumor enhanced the chances of no malignant cells remaining undetected.
Collapse
Affiliation(s)
- Anisha Das
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Shengxian Ding
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Huisman SI, van der Boog ATJ, Cialdella F, Verhoeff JJC, David S. Quantifying the post-radiation accelerated brain aging rate in glioma patients with deep learning. Radiother Oncol 2022; 175:18-25. [PMID: 35963398 DOI: 10.1016/j.radonc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND AND PURPOSE Changes of healthy appearing brain tissue after radiotherapy (RT) have been previously observed. Patients undergoing RT may have a higher risk of cognitive decline, leading to a reduced quality of life. The experienced tissue atrophy is similar to the effects of normal aging in healthy individuals. We propose a new way to quantify tissue changes after cranial RT as accelerated brain aging using the BrainAGE framework. MATERIALS AND METHODS BrainAGE was applied to longitudinal MRI scans of 32 glioma patients. Utilizing a pre-trained deep learning model, brain age is estimated for all patients' pre-radiotherapy planning and follow-up MRI scans to acquire a quantification of the changes occurring in the brain over time. Saliency maps were extracted from the model to spatially identify which areas of the brain the deep learning model weighs highest for predicting age. The predicted ages from the deep learning model were used in a linear mixed effects model to quantify aging of patients after RT. RESULTS The linear mixed effects model resulted in an accelerated aging rate of 2.78 years/year, a significant increase over a normal aging rate of 1 (p < 0.05, confidence interval = 2.54-3.02). Furthermore, the saliency maps showed numerous anatomically well-defined areas, e.g.: Heschl's gyrus among others, determined by the model as important for brain age prediction. CONCLUSION We found that patients undergoing RT are affected by significant post-radiation accelerated aging, with several anatomically well-defined areas contributing to this aging. The estimated brain age could provide a method for quantifying quality of life post-radiotherapy.
Collapse
Affiliation(s)
- Selena I Huisman
- Department of Radiation Oncology, UMC Utrecht, 3584 CX Utrecht, The Netherlands.
| | | | - Fia Cialdella
- Department of Radiation Oncology, UMC Utrecht, 3584 CX Utrecht, The Netherlands; Department of Medical Oncology, UMC Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Joost J C Verhoeff
- Department of Radiation Oncology, UMC Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Szabolcs David
- Department of Radiation Oncology, UMC Utrecht, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
6
|
Blobner J, Kilian M, Tan CL, Aslan K, Sanghvi K, Meyer J, Fischer M, Jähne K, Breckwoldt MO, Sahm F, von Deimling A, Bendszus M, Wick W, Platten M, Green E, Bunse L. Comparative evaluation of T-cell receptors in experimental glioma-draining lymph nodes. Neurooncol Adv 2021; 3:vdab147. [PMID: 34738084 PMCID: PMC8562732 DOI: 10.1093/noajnl/vdab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T-cell responses can be generated. Therefore, we investigated whether glioma-draining lymph nodes (TDLN) may constitute a reservoir of tumor-reactive T cells. Methods We addressed our hypothesis by flow cytometric analyses of chicken ovalbumin (OVA)-specific CD8+ T cells as well as T-cell receptor beta (TCRβ) next-generation-sequencing (TCRβ-NGS) of T cells from tumor tissue, TDLN, spleen, and inguinal lymph nodes harvested from experimental mouse GL261 glioma models. Results Longitudinal dextramer-based assessment of specific CD8+ T cells from TDLN did not show tumor model antigen reactivity. Unbiased immunogenomic analysis revealed a low overlap of TCRβ sequences from glioma-infiltrating CD8+ T cells between mice. Enrichment scores, calculated by the ratio of productive frequencies of the different TCRβ-CDR3 amino-acid (aa) rearrangements of CD8+ T cells derived from tumor, TDLN, inguinal lymph nodes, and spleen demonstrated a higher proportion of tumor-associated TCR in the spleen compared to TDLN. Conclusions In experimental glioblastoma, our data did not provide evidence that glioma-draining cervical lymph nodes are a robust reservoir for spontaneous glioma-specific T cells highlighting the requirement for detailed analyses of glioma-infiltrating T cells for the discovery of tumor-specific TCR.
Collapse
Affiliation(s)
- Jens Blobner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Michael Kilian
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chin Leng Tan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Katrin Aslan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Khwab Sanghvi
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen Meyer
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Michael O Breckwoldt
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Felix Sahm
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Andreas von Deimling
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HI-TRON), Mainz, Germany
| | - Edward Green
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Saulters E, Woolley JF, Varadarajan S, Jones TM, Dahal LN. STINGing Viral Tumors: What We Know from Head and Neck Cancers. Cancer Res 2021; 81:3945-3952. [PMID: 33903123 DOI: 10.1158/0008-5472.can-21-0785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
It has now become increasingly clear that viruses, which may not be directly oncogenic, can affect the biology of tumors as well as immune behavior against tumors. This has led to a fundamental question: Should tumors associated with viral infection be considered distinct from those without? Typically, viruses activate the host innate immune responses by stimulating pathogen recognition receptors and DNA-sensing pathways, including the stimulator of interferon genes (STING) pathway. However, regulation of the STING pathway in a virus-associated tumor microenvironment is poorly understood. Human papillomavirus (HPV) infection within a subset of head and neck squamous cell carcinomas (HNSCC) promotes a unique etiology and clinical outcome. For reasons currently not well understood, patients with HPV+ tumors have a better outcome in terms of both overall survival and reduced risk of recurrence compared with HPV- HNSCC. This observation may reflect a greater intrinsic immunogenicity associated with HPV infection, pertaining to innate immune system pathways activated following recognition of viral nucleotides. Here we discuss how HNSCC provides a unique model to study the STING pathway in the context of viral-induced tumor type as well as recent advances in our understanding of this pathway in HSNCC.
Collapse
Affiliation(s)
- Emma Saulters
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Terence M Jones
- Liverpool Head and Neck Cancer Centre, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Otorhinolaryngology-Head and Neck Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
8
|
Zheng L, Yu M, Zhang S. Prognostic value of pretreatment circulating basophils in patients with glioblastoma. Neurosurg Rev 2021; 44:3471-3478. [PMID: 33765226 DOI: 10.1007/s10143-021-01524-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence demonstrated that atopic diseases were inversely related to glioma susceptibility and associated with improved prognosis of patients with glioma. This study aimed to elucidate the impacts of basophils, one of the important effector cells in the pathobiology of atopic disease, on prognosis of patients with glioblastoma (GBM). A total of 268 patients were newly diagnosed with GBM and treated with operation at our institution from January 2010 to December 2017. The association between pre-operation circulating eosinophil, basophil, neutrophil, lymphocyte, monocyte count and GBM progression free survival (PFS) was investigated. Moreover, based on the results of multivariate analysis, a prognostic nomogram was established and evaluated. Kaplan-Meier method showed that basophils ≥0.015 × 109/L (p = 0.015) and lymphocytes ≥1.555 × 109/L (p = 0.005) were correlated with better PFS. Cox regression model showed that basophils ≥0.015 × 109/L were an independent prognostic factor for PFS. Prognostic nomogram was established and the concordance index (C-index) for PFS prediction was 0.629. The calibration plots for the probability of 0.5-, 1- and 3-year PFS showed optimal consistency between the prediction by nomogram and actual observation. Increased pre-operation circulating basophils portend better PFS, which might be a useful and novel marker for the prognosis of GBM patients.
Collapse
Affiliation(s)
- Lingnan Zheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, China
| | - Min Yu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Crotty EE, Downey KM, Ferrerosa LM, Flores CT, Hegde B, Raskin S, Hwang EI, Vitanza NA, Okada H. Considerations when treating high-grade pediatric glioma patients with immunotherapy. Expert Rev Neurother 2021; 21:205-219. [PMID: 33225764 PMCID: PMC7880880 DOI: 10.1080/14737175.2020.1855144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Children with high-grade gliomas (pHGGs) represent a clinical population in substantial need of new therapeutic options given the inefficacy and toxicity of current standard-of-care modalities. Although immunotherapy has emerged as a promising modality, it has yet to elicit a significant survival benefit for pHGG patients. While preclinical studies address a variety of underlying challenges, translational clinical trial design and management also need to reflect the most updated progress and lessons from the field. AREAS COVERED The authors will focus our discussion on the design of clinical trials, the management of potential toxicities, immune monitoring, and novel biomarkers. Clinical trial design should integrate appropriate patient populations, novel, and preclinically optimized trial design, and logical treatment combinations, particularly those which synergize with standard of care modalities. However, there are caveats due to the nature of immunotherapy trials, such as patient selection bias, evidenced by the frequent exclusion of patients on high-dose corticosteroids. Robust immune-modulating effects of modern immunotherapy can have toxicities. As such, it is important to understand and manage these, especially in pHGG patients. EXPERT OPINION Adequate integration of these considerations should allow us to effectively gain insights on biological activity, safety, and biomarkers associated with benefits for patients.
Collapse
Affiliation(s)
- Erin E. Crotty
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
| | - Kira M. Downey
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Lauren M. Ferrerosa
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, UCSF Benioff Children’s Hospital, Oakland, 747 52nd Street, Oakland, CA, USA
| | | | - Bindu Hegde
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Scott Raskin
- Children’s National Hospital, Washington, DC, USA
| | | | - Nicholas A. Vitanza
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Hideho Okada
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Research Center, University of California San Francisco, San Francisco, CA, USA
- The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, Zhang C, Tang W, Liu Z. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 2020; 9:1088-1103. [PMID: 33332490 DOI: 10.1039/d0bm01164a] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of nanomedicine have achieved dramatic progress in recent decades. However, the main challenges that traditional nanomedicine has to overcome include low accumulation at target sites and rapid clearance from the blood circulation. An interesting approach using cell membrane coating technology has emerged as a possible way to overcome these limitations, owing to the enhanced targeted delivery and reduced immunogenicity of cell membrane moieties. Mesenchymal stem cell (MSC) therapy has been investigated for treating various diseases, ranging from inflammatory diseases to tissue damage. Recent studies with engineered modified MSCs or MSC membranes have focused on enhancing cell therapeutic efficacy. Therefore, bioengineering strategies that couple synthetic nanoparticles with MSC membranes have recently received much attention due to their homing ability and tumor tropism. Given the various membrane receptors on their surfaces, MSC membrane-coated nanoparticles are an effective method with selective targeting properties, allowing entry into specific cells. Here, we review recent progress on the use of MSC membrane-coated nanoparticles for biomedical applications, particularly in the two main antitumor and anti-inflammatory fields. The combination of a bioengineered cell membrane and synthesized nanoparticles presents a wide range of possibilities for the further development of targeted drug delivery, showing the potential to enhance the therapeutic efficacy for treating various diseases.
Collapse
Affiliation(s)
- Mian Wang
- Department of Cardiology, Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim J, Lee WW, Hwang ES. Human Cytomegalovirus (HCMV)-infected Astrocytoma Cells Impair the Function of HCMV-specific Cytotoxic T Cells. J Korean Med Sci 2020; 35:e218. [PMID: 32657085 PMCID: PMC7358065 DOI: 10.3346/jkms.2020.35.e218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) is associated with a poor prognosis and may affect the pathogenesis of GBM. In this study, we investigated the role of HCMV-infected astrocytoma cells in impairing the activity of cytotoxic T lymphocytes (CTLs) specific to the HCMV protein. METHODS CTLs specific to HCMV immediate early (IE)-1 were expanded from peripheral blood mononuclear cells of healthy donors by stimulating CD8+ T lymphocytes with U373MG cells (ATCC HTB-17: male) expressing HCMV IE-1. The death rate of the target and the effector cells was determined by the total count of the remaining respective cells after the interaction of them. RESULTS The death rate of the target cells by CTLs increased depending on HLA restriction and the effector:target (E:T) ratio. The death rate of effector cells in the HCMV-infected U373MG cell culture was 37.1% on day 4 post-infection. The removal of the culture supernatant from HCMV-infected U373MG cells prior to adding the effector cells increased target cell death from 8.4% to 40.8% at E:T = 1:1, but not at E:T = 3:1. The transfer of cells from a 24-hour co-culture of the HCMV-infected U373MG cells and CTLs to HCMV IE-1-expressing target cells resulted in decreasing the cell death rate of the target cells from 31.1% to 13.0% at E:T = 1:1, but not at E:T = 3:1. HCMV infection of U373MG cells decreases the activity of CTLs specific to HCMV when the number of CTLs is low. CONCLUSION These results suggest that HCMV could impair CTL activity and facilitate glioblastoma growth unchecked by CTLs.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | - Won Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | - Eung Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
12
|
Chen PY, Wu CYJ, Fang JH, Chen HC, Feng LY, Huang CY, Wei KC, Fang JY, Lin CY. Functional Change of Effector Tumor-Infiltrating CCR5 +CD38 +HLA-DR +CD8 + T Cells in Glioma Microenvironment. Front Immunol 2019; 10:2395. [PMID: 31649684 PMCID: PMC6794477 DOI: 10.3389/fimmu.2019.02395] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Human glioma facilitates an impaired anti-tumor immunity response, including defects in circulation of T lymphocytes. The level of CD8+ T-cell activation acts as an immune regulator associated with disease progression. However, little is known about the characteristics of peripheral and tumor-infiltrating CD8+ T cells in patients with glioma. In this study, we examined the level of CD8+ T-cell activation in a group of 143 patients with glioma and determined that peripheral CD3+ T cells decreased in accordance with disease severity. The patients' peripheral CD8+ T-cell populations were similar to that of healthy donors, and a small amount of CD8+ tumor-infiltrating lymphocytes was identified in glioma tissues. An increase in activated CD8+ T cells, characterized as CD38+HLA-DR+, and their association with disease progression were identified in the patients' peripheral blood and glioma, and shown to display enriched CCR5+ and TNFR2+ expression levels. Ex vivo examination of CD38+HLA-DR+CD8+ T cells indicated that this subset of cells displayed stronger secretion of IFN-γ and IL-2 before and after a 6-h stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (ION) relative to healthy CD38+HLA-DR+CD8+ T cells, indicating the functional feasibility of CD38+HLA-DR+CD8+ T cells. Higher CCL5 protein and mRNA levels were identified in glioma tissues, which was consistent with the immunohistochemistry results revealing both CCL5 and CD38+HLA-DR+CD8+ T cell expression. Patients' CCR5+CD38+HLA-DR+CD8+ T cells were further validated and shown to display increases in CD45RA+CCR7- and T-bet+ accompanied by substantial CD107-a, IFN-γ, and Granzyme B levels in response to glioma cells.
Collapse
Affiliation(s)
- Pin-Yuan Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jian-He Fang
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Chi Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Ying Feng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
13
|
Sanz-Ortega L, Rojas JM, Portilla Y, Pérez-Yagüe S, Barber DF. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol 2019; 10:2073. [PMID: 31543880 PMCID: PMC6728794 DOI: 10.3389/fimmu.2019.02073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Adoptive cell transfer therapy is currently one of the most promising approaches for cancer treatment. This therapy has some limitations, however, such as the dispersion of in vivo-administered cells, causing only a small proportion to reach the tumor. Nanotechnological approaches could offer a solution for this drawback, as they can increase cell retention and accumulation in a region of interest. In particular, strategies employing magnetic nanoparticles (MNPs) to improve targeting of adoptively transferred T or NK cells have been explored in mice. In vivo magnetic retention is reported using the human NK cell line NK-92MI transfected with MNPs. Primary NK cells are nonetheless highly resistant to transfection, and thus we explore in here the possibility of attaching the MNPs to the NK cell surface to overcome this issue, and examine whether this association would affect NK effector functions. We assessed the attachment of MNPs coated with different polymers to the NK cell surface, and found that APS-MNP attached more efficiently to the NK-92MI cell surface. In association with MNPs, these cells preserved their main functions, exhibiting a continued capacity to degranulate, conjugate with and lyse target cells, produce IFN-γ, and respond to chemotactic signals. MNP-loaded NK-92MI cells were also retained in an in vitro capillary flow system by applying an EMF. A similar analysis was carried out in primary NK cells, isolated from mice, and expanded in vitro. These primary murine NK cells also maintained their functionality intact after MNP treatment and were successfully retained in vitro. This work therefore provides further support for using MNPs in combination with EMFs to favor specific retention of functional NK cells in a region of interest, which may prove beneficial to adoptive cell-therapy protocols.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José M Rojas
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yadileiny Portilla
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
14
|
Liu S, Zhang C, Maimela NR, Yang L, Zhang Z, Ping Y, Huang L, Zhang Y. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma. Oncoimmunology 2019; 8:1601478. [PMID: 31143523 PMCID: PMC6527268 DOI: 10.1080/2162402x.2019.1601478] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/28/2023] Open
Abstract
The expression and function of CD163 in glioma are not fully understood. In this report, we collected totally 1323 glioma samples from the Chinese Glioma Genome Atlas (CGGA) dataset, including 325 RNA-seq data and 301 mRNA microarray data, and 697 glioma samples from The Cancer Genome Atlas (TCGA) dataset to characterize the molecular and clinical features of CD163 in glioma by conducting a large-scale study. We found that CD163 expression was positively associated with the grade of malignancy of glioma. CD163 expression was up-regulated in IDH wild-type glioma and mesenchymal subtype. Gene ontology analysis suggested that CD163-related genes were more involved in immune response and angiogenesis in glioma. Moreover, CD163 showed a positive relationship with stromal and immune cell populations. Kaplan-Meier curves analysis revealed that higher CD163 expression indicated significantly poor survival in glioma and glioblastoma multiforme (GBM). Pearson correlation analysis revealed that CD163 was robustly associated with the immune checkpoints and other macrophage markers. These results demonstrated that CD163 predicts poor prognosis in glioma patients. Additionally, combination of CD163 and immune checkpoints may impair angiogenesis and reverse dysfunctional phenotypes of T cells, which suggest that CD163 may be a promising biomarker and target for immunotherapeutic strategies. Abbreviations: CGGA: Chinese Glioma Genome Atlas; TCGA: The Cancer Genome Atlas; TAMs: Tumor associated macrophages; IDH: isocitrate dehydrogenase; GBM: glioblastoma.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Sonali, Viswanadh MK, Singh RP, Agrawal P, Mehata AK, Pawde DM, Narendra, Sonkar R, Muthu MS. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018; 2:70-86. [PMID: 29291164 PMCID: PMC5743839 DOI: 10.7150/ntno.21638] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022] Open
Abstract
Nanotheranostics have demonstrated the development of advanced platforms that can diagnose brain cancer at early stages, initiate first-line therapy, monitor it, and if needed, rapidly start subsequent treatments. In brain nanotheranostics, therapeutic as well as diagnostic entities are loaded in a single nanoplatform, which can be further developed as a clinical formulation for targeting various modes of brain cancer. In the present review, we concerned about theranostic nanosystems established till now in the research field. These include gold nanoparticles, carbon nanotubes, magnetic nanoparticles, mesoporous silica nanoparticles, quantum dots, polymeric nanoparticles, upconversion nanoparticles, polymeric micelles, solid lipid nanoparticles and dendrimers for the advanced detection and treatment of brain cancer with advanced features. Also, we included the role of three-dimensional models of the BBB and cancer stem cell concept for the advanced characterization of nanotheranostic systems for the unification of diagnosis and treatment of brain cancer. In future, brain nanotheranostics will be able to provide personalized treatment which can make brain cancer even remediable or at least treatable at the primary stages.
Collapse
Affiliation(s)
- Sonali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| | - Rahul Pratap Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Poornima Agrawal
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| | - Datta Maroti Pawde
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| | - Narendra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| | - Roshan Sonkar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| | - Madaswamy Sona Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi - 221005, India
| |
Collapse
|
16
|
Guishard AF, Yakisich JS, Azad N, Iyer AKV. Translational gap in ongoing clinical trials for glioma. J Clin Neurosci 2018; 47:28-42. [PMID: 29066236 PMCID: PMC5733731 DOI: 10.1016/j.jocn.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Despite the vast amounts of information gathered about gliomas, the overall survival of glioma patients has not improved in the last four decades. This could partially be due to an apparent failure to include basic concepts of glioma biology into clinical trials. Specifically, attempts to overcome the limitations of the blood brain barrier (BBB) and the chemoresistance of glioma stem cells (GSCs) were seldom included (a phenomenon known as the translational gap, TG) in a study involving 29 Phase I/II clinical trials (P2CT) published in 2011. The aim of this study was to re-evaluate this finding with a new series of 100 ongoing, but still unpublished, P2CT in order to determine if there is a TG reduction. As indicators, we evaluated in each P2CT the number of drugs tested, concomitant radiotherapy, and the ability of drugs to pass the BBB and to target GSCs. Compared to clinical trials published in 2011, we found that while in OCT there is an increase in the number of P2CT using two drugs (from 24.1% to 44.9%), and an increase in the number of drugs able to pass the BBB (7.14% versus 64.29%) and target GSCs (0% versus 16.3%), there was a decrease in the number of P2CT using concomitant radiotherapy (34.5% versus 18.37%). Overall our results suggest that there is only a modest improvement regarding reducing the TG because the vast majority of ongoing P2CT are still not including well known concepts of glioma biology important for a successful treatment.
Collapse
Affiliation(s)
| | - Juan Sebastian Yakisich
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA
| | - Neelam Azad
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA
| | - Anand Krishnan V Iyer
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA.
| |
Collapse
|
17
|
Chandran M, Candolfi M, Shah D, Mineharu Y, Yadav VN, Koschmann C, Asad AS, Lowenstein PR, Castro MG. Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther 2017; 17:543-554. [PMID: 28286975 DOI: 10.1080/14712598.2017.1305353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific features may substantially improve upon existing treatments. Areas covered: Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review, the authors discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion: Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While a limited number of combination immunotherapies are described which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration.
Collapse
Affiliation(s)
- Mayuri Chandran
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Marianela Candolfi
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Diana Shah
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Yohei Mineharu
- d Department of Neurosurgery , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Viveka Nand Yadav
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Carl Koschmann
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,e Department of Pediatrics, Hematology & Oncology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Antonela S Asad
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
18
|
Volovitz I, Shapira N, Ezer H, Gafni A, Lustgarten M, Alter T, Ben-Horin I, Barzilai O, Shahar T, Kanner A, Fried I, Veshchev I, Grossman R, Ram Z. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells. BMC Neurosci 2016; 17:30. [PMID: 27251756 PMCID: PMC4888249 DOI: 10.1186/s12868-016-0262-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells’ viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris containing immune-activatory danger associated molecular patterns, and due to the increased quantities of degraded proteins and RNA. Results Over 40 resected BTs and non-tumorous brain tissue samples were dissociated into single cells by mechanical dissociation or by mechanical and enzymatic dissociation. The quality of dissociation was compared for all frequently used dissociation enzymes (collagenase, DNase, hyaluronidase, papain, dispase) and for neutral protease (NP) from Clostridium histolyticum. Single-cell-dissociated cell mixtures were evaluated for cellular viability and for the cell-mixture dissociation quality. Dissociation quality was graded by the quantity of subcellular debris, non-dissociated cell clumps, and DNA released from dead cells. Of all enzymes or enzyme combinations examined, NP (an enzyme previously not evaluated on brain tissues) produced dissociated cell mixtures with the highest mean cellular viability: 93 % in gliomas, 85 % in brain metastases, and 89 % in non-tumorous brain tissue. NP also produced cell mixtures with significantly less cellular debris than other enzymes tested. Dissociation using NP was non-aggressive over time—no changes in cell viability or dissociation quality were found when comparing 2-h dissociation at 37 °C to overnight dissociation at ambient temperature. Conclusions The use of NP allows for the most effective dissociation of viable single cells from human BTs or brain tissue. Its non-aggressive dissociative capacity may enable ambient-temperature shipping of tumor pieces in multi-center clinical trials, meanwhile being dissociated. As clinical grade NP is commercially available it can be easily integrated into cell-therapy clinical trials in neuro-oncology. The high quality viable cells produced may enable investigators to conduct more consistent research by avoiding the experimental artifacts associated with the presence dead cells or cellular debris. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0262-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilan Volovitz
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel. .,Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel.
| | - Netanel Shapira
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Haim Ezer
- Department of Neurosurgery, Galilee Medical Center, Lohamei HaGeta'ot 5, Nahariya, Israel
| | - Aviv Gafni
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Merav Lustgarten
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Tal Alter
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Idan Ben-Horin
- Cancer Immunotherapy Laboratory, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Ori Barzilai
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Tal Shahar
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Andrew Kanner
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Itzhak Fried
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Igor Veshchev
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, Israel
| |
Collapse
|
19
|
Farber SH, Tsvankin V, Narloch JL, Kim GJ, Salama AKS, Vlahovic G, Blackwell KL, Kirkpatrick JP, Fecci PE. Embracing rejection: Immunologic trends in brain metastasis. Oncoimmunology 2016; 5:e1172153. [PMID: 27622023 DOI: 10.1080/2162402x.2016.1172153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022] Open
Abstract
Brain metastases represent the most common type of brain tumor. These tumors offer a dismal prognosis and significantly impact quality of life for patients. Their capacity for central nervous system (CNS) invasion is dependent upon induced disruptions to the blood-brain barrier (BBB), alterations to the brain microenvironment, and mechanisms for escaping CNS immunosurveillance. In the emerging era of immunotherapy, understanding how metastases are influenced by the immunologic peculiarities of the CNS will be crucial to forging therapeutic advances. In this review, the immunology of brain metastasis is explored.
Collapse
Affiliation(s)
- S Harrison Farber
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Vadim Tsvankin
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Jessica L Narloch
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Grace J Kim
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - April K S Salama
- Division of Medical Oncology, Duke University Medical Center , Durham, NC, USA
| | - Gordana Vlahovic
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kimberly L Blackwell
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - John P Kirkpatrick
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
|
21
|
Wang JY, Bettegowda C. Genetics and immunotherapy: using the genetic landscape of gliomas to inform management strategies. J Neurooncol 2015; 123:373-83. [PMID: 25697584 DOI: 10.1007/s11060-015-1730-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
Abstract
Recent work in genetics has identified essential driver mutations in gliomas and has profoundly changed our understanding of tumorigenesis. New insights into the molecular basis of glioma has informed the development of therapies demonstrating considerable potential, including immunotherapeutic approaches such as peptide and dendritic cell vaccines against EGFRvIII. However, the selective targeting of one component of a dysregulated pathway may be inadequate for a durable clinical response, given the intratumoral heterogeneity of glioblastoma (GBM) and hypermutated profiles displayed by tumor recurrences. Immune checkpoint blockade with anti-cytotoxic T lymphocyte antigen-4 (CTLA) and anti-programmed cell death 1 (PD-1) have demonstrated encouraging results in clinical trials with other solid tumors, and recent data suggest that this type of therapy may be particularly useful for tumors with high mutational burdens. Although the survival for patients with GBM has remains grim, the use of immunotherapy may finally change patient outcomes.
Collapse
Affiliation(s)
- Joanna Y Wang
- Department of Neurosurgery, The Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 118, Baltimore, MD, 21287, USA
| | | |
Collapse
|
22
|
Suryadevara CM, Verla T, Sanchez-Perez L, Reap EA, Choi BD, Fecci PE, Sampson JH. Immunotherapy for malignant glioma. Surg Neurol Int 2015; 6:S68-77. [PMID: 25722935 PMCID: PMC4338494 DOI: 10.4103/2152-7806.151341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas (MG) are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM), the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS)-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs) is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.
Collapse
Affiliation(s)
- Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Terence Verla
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
23
|
Wang J, Bettegowda C. Genomic discoveries in adult astrocytoma. Curr Opin Genet Dev 2015; 30:17-24. [PMID: 25616158 DOI: 10.1016/j.gde.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/04/2014] [Indexed: 12/19/2022]
Abstract
Astrocytomas are the most common glial tumor of the central nervous system. Within this category, glioblastoma is the most prevalent and malignant primary brain tumor. Glioblastoma can arise de novo, or through progression from lower-grade lesions, but is uniformly associated with poor outcomes despite surgical resection, chemotherapy, and radiation therapy. Recent genomic discoveries have provided new insight into gliomagenesis and have identified key genetic alterations that have diagnostic, prognostic and predictive capacity. Numerous molecular classification schemes have been proposed to sort tumors into clinically meaningful categories to guide treatment. However, creating therapy targeted towards these alterations has been made challenging by the redundancy of essential signal transduction pathways affected in these tumors, intratumoral heterogeneity, and the hypermutated profiles of recurrent tumors. Future treatment strategies will require a personalized approach with consideration of the unique genetic profile of a specific tumor and the use of multimodality therapies.
Collapse
Affiliation(s)
- Joanna Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Rossmeisl JH. New treatment modalities for brain tumors in dogs and cats. Vet Clin North Am Small Anim Pract 2014; 44:1013-38. [PMID: 25441624 DOI: 10.1016/j.cvsm.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advancements in standard therapies, intracranial tumors remain a significant source of morbidity and mortality in veterinary and human medicine. Several newer approaches are gaining more widespread acceptance or are currently being prepared for translation from experimental to routine therapeutic use. Clinical trials in dogs with spontaneous brain tumors have contributed to the development and human translation of several novel therapeutic brain tumor approaches.
Collapse
Affiliation(s)
- John H Rossmeisl
- Neurology and Neurosurgery, Department of Small Animal Clinical Sciences, VA-MD Regional College of Veterinary Medicine, Virginia Tech, 215 Duckpond Drive, Mail Code 0442, Blacksburg, VA 24061, USA.
| |
Collapse
|
25
|
Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim Biophys Acta Rev Cancer 2014; 1846:560-75. [PMID: 25453365 DOI: 10.1016/j.bbcan.2014.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
Abstract
Glioma-associated microglia and macrophages (GAMs) and myeloid-derived suppressor cells (MDSCs) condition the glioma microenvironment to generate an immunosuppressed niche for tumour expansion. This immunosuppressive microenvironment is considered to be shaped through a complex multi-step interactive process between glioma cells, GAMs and MDSCs. Glioma cells recruit GAMs and MDSCs to the tumour site and block their maturation. Glioma cell-derived factors subsequently skew these cells towards an immunosuppressive, tumour-promoting phenotype. Finally, GAMs and MDSCs enhance immune suppression in the glioma microenvironment and promote glioma growth, invasiveness, and neovascularization. The local and distant cross-talk between glioma cells and GAMs and MDSCs is regulated by a plethora of soluble proteins and cell surface-bound factors, and possibly via extracellular vesicles and platelets. Importantly, GAMs and MDSCs have been reported to impair the efficacy of glioma therapy, in particular immunotherapeutic approaches. Therefore, advancing our understanding of the function of GAMs and MDSCs in brain tumours and targeted intervention of their immunosuppressive function may benefit the treatment of glioma.
Collapse
|
26
|
Li M, Bolduc AR, Hoda MN, Gamble DN, Dolisca SB, Bolduc AK, Hoang K, Ashley C, McCall D, Rojiani AM, Maria BL, Rixe O, MacDonald TJ, Heeger PS, Mellor AL, Munn DH, Johnson TS. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J Immunother Cancer 2014; 2:21. [PMID: 25054064 PMCID: PMC4105871 DOI: 10.1186/2051-1426-2-21] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/02/2014] [Indexed: 12/31/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an enzyme with immune-suppressive properties that is commonly exploited by tumors to evade immune destruction. Anti-tumor T cell responses can be initiated in solid tumors, but are immediately suppressed by compensatory upregulation of immunological checkpoints, including IDO. In addition to these known effects on the adaptive immune system, we previously showed widespread, T cell-dependent complement deposition during allogeneic fetal rejection upon maternal treatment with IDO-blockade. We hypothesized that IDO protects glioblastoma from the full effects of chemo-radiation therapy by preventing vascular activation and complement-dependent tumor destruction. Methods To test this hypothesis, we utilized a syngeneic orthotopic glioblastoma model in which GL261 glioblastoma tumor cells were stereotactically implanted into the right frontal lobes of syngeneic mice. These mice were treated with IDO-blocking drugs in combination with chemotherapy and radiation therapy. Results Pharmacologic inhibition of IDO synergized with chemo-radiation therapy to prolong survival in mice bearing intracranial glioblastoma tumors. We now show that pharmacologic or genetic inhibition of IDO allowed chemo-radiation to trigger widespread complement deposition at sites of tumor growth. Chemotherapy treatment alone resulted in collections of perivascular leukocytes within tumors, but no complement deposition. Adding IDO-blockade led to upregulation of VCAM-1 on vascular endothelium within the tumor microenvironment, and further adding radiation in the presence of IDO-blockade led to widespread deposition of complement. Mice genetically deficient in complement component C3 lost all of the synergistic effects of IDO-blockade on chemo-radiation-induced survival. Conclusions Together these findings identify a novel mechanistic link between IDO and complement, and implicate complement as a major downstream effector mechanism for the beneficial effect of IDO-blockade after chemo-radiation therapy. We speculate that this represents a fundamental pathway by which the tumor regulates intratumoral vascular activation and protects itself from immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Minghui Li
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Aaron R Bolduc
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Department of Surgery, Georgia Regents University, Augusta, GA, USA
| | - Md Nasrul Hoda
- Department of Neurology, Georgia Regents University, Augusta, GA, USA ; College of Allied Health Sciences Department of Medical Laboratory, Imaging & Radiologic Sciences, Georgia Regents University, Augusta, GA 30912, USA
| | - Denise N Gamble
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA
| | - Sarah-Bianca Dolisca
- Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Anna K Bolduc
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA
| | - Kelly Hoang
- Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Claire Ashley
- Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - David McCall
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA
| | - Amyn M Rojiani
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - Bernard L Maria
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA ; Department of Neurology, Georgia Regents University, Augusta, GA, USA ; Department of Neurosurgery, Georgia Regents University, Augusta, GA, USA
| | - Olivier Rixe
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Tobey J MacDonald
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peter S Heeger
- Department of Medicine, Division of Nephrology, The Immunology Institute, New York, NY 10025, USA ; Recanati-Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA
| | - Andrew L Mellor
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - David H Munn
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Theodore S Johnson
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| |
Collapse
|
27
|
Gousias K, Voulgaris S, Vartholomatos G, Voulgari P, Kyritsis AP, Markou M. Prognostic value of the preoperative immunological profile in patients with glioblastoma. Surg Neurol Int 2014; 5:89. [PMID: 25024889 PMCID: PMC4093739 DOI: 10.4103/2152-7806.134104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 11/27/2022] Open
Abstract
Background: Aim of our study was to determine the predictive impact of certain serum immunological markers on overall survival (OS) in patients with glioblastoma multiforme (GBM). Methods: We assayed prospectively values of interleukin 2 (IL-2), immunoglobulin G (IgG), C4, CD3+, CD4+ and CD8+ cells via flow cytometry, enzyme-linked immunosorbent assay (ELISA) and radial immunodiffusion in preoperative sera of adult patients with de novo histologically confirmed supratentorial GBM. Kaplan-Meier method and Cox proportional hazards models were used to assess clinical, laboratory, and treatment prognostic factors for OS. Results: Twenty-six consecutive patients were identified with a mean age of 59.6 years. Median follow up was 12 months. Lower IL-2 values (<7.97 pg/ml vs. ≥7.97 pg/ml, P = 0.029) und CD4+ counts (<200 cells/μl vs. ≥200 cells/μl, P < 0.001) correlated significantly with a shorter OS. The independent prognostic relevance of CD4 + counts was confirmed by the multivariate analysis (HR = 0.010, 95% CI 0.001-0.226, P = 0.011). Further independent prognostic factors for OS were type of resection (resection vs. biopsy) and administration of radiotherapy (yes/no). Conclusion: Preoperative values IL-2 and CD4+ cells in sera may carry a prognostic impact. Novel diagnostic models prior to histopathological confirmation may be used to predict prognosis of patients with GBM. Future studies should investigate whether targeting immune factors, such as CD4+ and IL-2, may improve the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53105, Germany ; Department of Neurosurgery, University Hospital of Ioannina, 45500, Greece
| | - Spiridon Voulgaris
- Department of Neurosurgery, University Hospital of Ioannina, 45500, Greece
| | | | - Paraskevi Voulgari
- Department of Rheumatology, University Hospital of Ioannina, 45500, Greece
| | | | - Markella Markou
- Department of Psychiatry, Landschaftsverband Rheinland Klinik, Kaiser-Karl-Ring 20, Bonn, 53111, Germany
| |
Collapse
|
28
|
Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5:64. [PMID: 24991467 PMCID: PMC4078454 DOI: 10.4103/2152-7806.132138] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system (CNS). Despite the proven benefit of surgical resection and aggressive treatment with chemo- and radiotherapy, the prognosis remains very poor. Recent advances of our understanding of the biology and pathophysiology of GBM have allowed the development of a wide array of novel therapeutic approaches, which have been developed. These novel approaches include molecularly targeted therapies, immunotherapies, and gene therapy. METHODS We offer a brief review of the current standard of care, and a survey of novel therapeutic approaches for treatment of GBM. RESULTS Despite promising results in preclinical trials, many of these therapies have demonstrated limited therapeutic efficacy in human clinical trials. Thus, although survival of patients with GBM continues to slowly improve, treatment of GBM remains extremely challenging. CONCLUSION Continued research and development of targeted therapies, based on a detailed understanding of molecular pathogenesis can reasonably be expected to yield improved outcomes for patients with GBM.
Collapse
Affiliation(s)
- Taylor A Wilson
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Division of Oncology, New York University School of Medicine, NY, USA
| | - David H Harter
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| |
Collapse
|
29
|
Abstract
Background Glioblastoma (GBM) confers a dismal prognosis despite advances in current therapy. Cancer-testis antigens (CTA) comprise families of tumor-associated antigens that are immunogenic in different cancers. The aim of this study was to determine the expression profile of a large number of CTA genes in GBM. Methods We selected, from 153 CTA genes, those genes potentially expressed in GBM. The expression pattern of 30 CTA was then evaluated by RT-PCR in a series of 48 GBM and 5 normal brain samples. The presence of CTCFL protein was also evaluated by immunohistochemical staining. Results Among the genes with no expression in normal brain, ACTL8 (57%), OIP5 (54%), XAGE3 (44%) and CTCFL (15%) were frequently expressed in GBM, while over 85% of the tumors expressed at least 1 of these four CTA. Coexpression of two or more CTA occurred in 49% of cases. CTCFL protein expression was detected in 13% of the GBM and was negative in normal brain samples. GBM expressing 3-4 CTA was associated with significantly better overall survival (OS) rates (P = 0.017). By multivariate analysis, mRNA positivity for 3-4 CTA (P = 0.044), radiotherapy (P = 0.010) and chemotherapy (P = 0.001) were independent prognostic factors for OS. Conclusions GBM frequently express ACTL8, OIP5, XAGE3 and CTCFL. A relatively high percentage of tumors expressed at least one of these four CTA, opening the perspective for their utility in antigen-specific immunotherapy. Furthermore, mRNA positivity for 3-4 CTA is an independent predictor of better OS for GBM patients.
Collapse
|
30
|
Prosniak M, Harshyne LA, Andrews DW, Kenyon LC, Bedelbaeva K, Apanasovich TV, Heber-Katz E, Curtis MT, Cotzia P, Hooper DC. Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res 2013; 19:3776-86. [PMID: 23741072 DOI: 10.1158/1078-0432.ccr-12-1940] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study is directed at identifying the cell source(s) of immunomodulatory cytokines in high-grade gliomas and establishing whether the analysis of associated markers has implications for tumor grading. EXPERIMENTAL DESIGN Glioma specimens classified as WHO grade II-IV by histopathology were assessed by gene expression analysis and immunohistochemistry to identify the cells producing interleukin (IL)-10, which was confirmed by flow cytometry and factor secretion in culture. Finally, principal component analysis (PCA) and mixture discriminant analysis (MDA) were used to investigate associations between expressed genes and glioma grade. RESULTS The principle source of glioma-associated IL-10 is a cell type that bears phenotype markers consistent with M2 monocytes but does not express all M2-associated genes. Measures of expression of the M2 cell markers CD14, CD68, CD163, and CD204, which are elevated in high-grade gliomas, and the neutrophil/myeloid-derived suppressor cell (MDSC) subset marker CD15, which is reduced, provide the best index of glioma grade. CONCLUSIONS Grade II and IV astrocytomas can be clearly differentiated on the basis of the expression of certain M2 markers in tumor tissues, whereas grade III astrocytomas exhibit a range of expression between the lower and higher grade specimens. The content of CD163(+) cells distinguishes grade III astrocytoma subsets with different prognosis.
Collapse
Affiliation(s)
- Michael Prosniak
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Glas M, Coch C, Trageser D, Dassler J, Simon M, Koch P, Mertens J, Quandel T, Gorris R, Reinartz R, Wieland A, Von Lehe M, Pusch A, Roy K, Schlee M, Neumann H, Fimmers R, Herrlinger U, Brüstle O, Hartmann G, Besch R, Scheffler B. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells 2013; 31:1064-74. [PMID: 23390110 DOI: 10.1002/stem.1350] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/12/2013] [Indexed: 01/03/2023]
Abstract
Cellular heterogeneity, for example, the intratumoral coexistence of cancer cells with and without stem cell characteristics, represents a potential root of therapeutic resistance and a significant challenge for modern drug development in glioblastoma (GBM). We propose here that activation of the innate immune system by stimulation of innate immune receptors involved in antiviral and antitumor responses can similarly target different malignant populations of glioma cells. We used short-term expanded patient-specific primary human GBM cells to study the stimulation of the cytosolic nucleic acid receptors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). Specifically, we analyzed cells from the tumor core versus "residual GBM cells" derived from the tumor resection margin as well as stem cell-enriched primary cultures versus specimens without stem cell properties. A portfolio of human, nontumor neural cells was used as a control for these studies. The expression of RIG-I and MDA5 could be induced in all of these cells. Receptor stimulation with their respective ligands, p(I:C) and 3pRNA, led to in vitro evidence for an effective activation of the innate immune system. Most intriguingly, all investigated cancer cell populations additionally responded with a pronounced induction of apoptotic signaling cascades revealing a second, direct mechanism of antitumor activity. By contrast, p(I:C) and 3pRNA induced only little toxicity in human nonmalignant neural cells. Granted that the challenge of effective central nervous system (CNS) delivery can be overcome, targeting of RIG-I and MDA5 could thus become a quintessential strategy to encounter heterogeneous cancers in the sophisticated environments of the brain.
Collapse
Affiliation(s)
- Martin Glas
- Stem Cell Pathologies, University of Bonn Medical Center, Bonn, Germany. martin.glas@ukb
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Biomarkers in T-cell therapy clinical trials. Cytotherapy 2013; 15:632-40. [DOI: 10.1016/j.jcyt.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/01/2013] [Indexed: 01/13/2023]
|
33
|
Tumor-associated macrophages in glioma: friend or foe? JOURNAL OF ONCOLOGY 2013; 2013:486912. [PMID: 23737783 PMCID: PMC3664503 DOI: 10.1155/2013/486912] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/08/2013] [Indexed: 12/31/2022]
Abstract
Tumor-associated macrophages (TAMs) contribute substantially to the tumor mass of gliomas and have been shown to play a major role in the creation of a tumor microenvironment that promotes tumor progression. Shortcomings of attempts at antiglioma immunotherapy may result from a failure to adequately address these effects. Emerging evidence supports an independent categorization of glioma TAMs as alternatively activated M2-type macrophages, in contrast to classically activated proinflammatory M1-type macrophages. These M2-type macrophages exert glioma-supportive effects through reduced anti-tumor functions, increased expression of immunosuppressive mediators, and nonimmune tumor promotion through expression of trophic and invasion-facilitating substances. Much of our work has demonstrated these features of glioma TAMs, and together with the supporting literature will be reviewed here. Additionally, the dynamics of glioma cell-TAM interaction over the course of tumor development remain poorly understood; our efforts to elucidate glioma cell-TAM dynamics are summarized. Finally, the molecular pathways which underlie M2-type TAM polarization and gene expression similarly require further investigation, and may present the most potent targets for immunotherapeutic intervention. Highlighting recent evidence implicating the transcription factor STAT3 in immunosuppressive tumorigenic glioma TAMs, we advocate for gene array-based approaches to identify yet unappreciated expression regulators and effector molecules important to M2-type glioma TAMs polarization and function within the glioma tumor microenvironment.
Collapse
|
34
|
Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery 2013; 71:201-22; discussion 222-3. [PMID: 22353795 DOI: 10.1227/neu.0b013e31824f840d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Significant work from many laboratories over the last decade in the study of cancer immunology has resulted in the development of the cancer immunoediting hypothesis. This contemporary framework of the naturally arising immune system-tumor interaction is thought to comprise 3 phases: elimination, wherein immunity subserves an extrinsic tumor suppressor function and destroys nascent tumor cells; equilibrium, wherein tumor cells are constrained in a period of latency under immune control; and escape, wherein tumor cells outpace immunity and progress clinically. In this review, we address in detail the relevance of the cancer immunoediting concept to neurosurgeons and neuro-oncologists treating and studying malignant glioma by exploring the de novo immune response to these tumors, how these tumors may persist in vivo, the mechanisms by which these cells may escape/attenuate immunity, and ultimately how this concept may influence our immunotherapeutic approaches.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
35
|
Nasim FUH, Ejaz S, Ashraf M, Asif AR, Oellerich M, Ahmad G, Malik GA, Attiq-Ur-Rehman. Potential biomarkers in the sera of breast cancer patients from bahawalpur, pakistan. BIOMARKERS IN CANCER 2012; 4:19-34. [PMID: 24179392 PMCID: PMC3791917 DOI: 10.4137/bic.s10502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most of the approximately 90,000 cases of Breast Cancer (BC) documented annually in Pakistan are not diagnosed properly because of lack of suitable markers. We performed serum proteome expression profiling of BC and benign breast disease (BBD) patients with the aim to identify biomarkers that can be helpful for diagnosis and prognosis of the disease. Sera of patients were analyzed by one-dimensional SDS polyacrylamide gel electrophoresis (PAGE). Differentially expressed proteins were subjected to identification through LC-MS/MS analysis. In majority of the BC cases some acute phase proteins (APP) and some complement system components (C3 and C8) containing fractions were up-regulated with the exception of transthyretin (TTR) which was predominantly (68.75%) down-regulated (n = 33/48) in the sera of these patients. Varying expression patterns were observed in BBD patients and healthy controls. These differentially expressed proteins have the potential to serve as diagnostic biomarkers for BC as well as benign breast diseases.
Collapse
Affiliation(s)
- Faiz-Ul-Hassan Nasim
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan. ; Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nagasawa DT, Fong C, Yew A, Spasic M, Garcia HM, Kruse CA, Yang I. Passive immunotherapeutic strategies for the treatment of malignant gliomas. Neurosurg Clin N Am 2012; 23:481-95. [PMID: 22748660 DOI: 10.1016/j.nec.2012.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This review provides historical and recent perspectives related to passive immunotherapy for high-grade gliomas. The authors discuss approaches that use lymphokine-activated killer cells, cytotoxic T lymphocytes, and monoclonal antibodies.
Collapse
Affiliation(s)
- Daniel T Nagasawa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an enzyme with known immunosuppressive and tolerogenic effects in cancer. Mounting evidence has associated IDO expression with the induction of regulatory T cells (Treg) and malignant progression. IDO inhibition may therefore provide a promising therapeutic approach for glioblastoma, where the need for novel treatment is great.
Collapse
Affiliation(s)
- Bryan D Choi
- Duke Brain Tumor Immunotherapy Program, Preston Robert Tisch Brain Tumor Center, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
38
|
Kushchayev SV, Sankar T, Eggink LL, Kushchayeva YS, Wiener PC, Hoober JK, Eschbacher J, Liu R, Shi FD, Abdelwahab MG, Scheck AC, Preul MC. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain. Cancer Manag Res 2012; 4:309-23. [PMID: 23049280 PMCID: PMC3459590 DOI: 10.2147/cmar.s33248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives Immunotherapy with immunostimulants is an attractive therapy against gliomas. C-type lectin receptors specific for galactose/N-acetylgalactosamine (GCLR) regulate cellular differentiation, recognition, and trafficking of monocyte-derived cells. A peptide mimetic of GCLR ligands (GCLRP) was used to activate blood monocytes and populations of myeloid-derived cells against a murine glioblastoma. Methods The ability of GCLRP to stimulate phagocytosis by human microglia and monocyte-derived cells of the brain (MDCB) isolated from a human glioblastoma was initially assessed in vitro. Induction of activation markers on blood monocytes was assayed by flow cytometry after administration of GCLRP to naive mice. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells and were randomized for tumor size by magnetic resonance imaging, which was also used to assess increase in tumor size. Brain tumor tissues were analyzed using flow cytometry, histology, and enzyme-linked immunosorbent assay with respect to tumor, peritumoral area, and contralateral hemisphere regions. Results GCLRP exhibited strong stimulatory effect on MDCBs and blood monocytes in vitro and in vivo. GCLRP was associated with an increased percentage of precursors of dendritic cells in the blood (P = 0.003), which differentiated into patrolling macrophages in tumoral (P = 0.001) and peritumoral areas (P = 0.04), rather than into dendritic cells, as in control animals. Treatment with GCLRP did not result in a significant change in survival of mice bearing a tumor. Conclusions In vitro and in vivo activation of monocytes was achieved by administration of GCLR to mice. GCLRP-activated blood monocytes were recruited to the brain and exhibited specific phenotypes corresponding with tumor region (glioma, peritumoral zone, and contralateral glioma-free hemisphere). GCLRP treatment alone was associated with increased glioma mass as the result of the infiltration of phagocytic cells. Regional specificity for MDCB may have significant tumor treatment implications.
Collapse
Affiliation(s)
- Sergiy V Kushchayev
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Murphy KA, Lechner MG, Popescu FE, Bedi J, Decker SA, Hu P, Erickson JR, O'Sullivan MG, Swier L, Salazar AM, Olin MR, Epstein AL, Ohlfest JR. An in vivo immunotherapy screen of costimulatory molecules identifies Fc-OX40L as a potent reagent for the treatment of established murine gliomas. Clin Cancer Res 2012; 18:4657-68. [PMID: 22781551 DOI: 10.1158/1078-0432.ccr-12-0990] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE We tested the combination of a tumor lysate vaccine with a panel of costimulatory molecules to identify an immunotherapeutic approach capable of curing established murine gliomas. EXPERIMENTAL DESIGN Glioma-bearing mice were primed with a tumor lysate vaccine, followed by systemic administration of the following costimulatory ligands: OX40L, CD80, 4-1BBL, and GITRL, which were fused to the Fc portion of human immunoglobulin. Lymphocytes and mRNA were purified from the brain tumor site for immune monitoring studies. Numerous variations of the vaccine and Fc-OX40L regimen were tested alone or in combination with temozolomide. RESULTS Lysate vaccinations combined with Fc-OX40L led to the best overall survival, yielding cure rates of 50% to 100% depending on the timing, regimen, and combination with temozolomide. Cured mice that were rechallenged with glioma cells rejected the challenge, showing immunologic memory. Lymphocytes isolated from the draining lymph nodes of vaccine/Fc-OX40L-treated mice had superior tumoricidal function relative to all other groups. Vaccine/Fc-OX40L-treated mice exhibited a significant increase in proliferation of brain-infiltrating CD4 and CD8 T cells, as indicated by Ki67 staining. Fc-OX40L had single-agent activity in transplanted and spontaneous glioma models, and the pattern of inflammatory gene expression in the tumor predicted the degree of therapeutic response. CONCLUSIONS These data show that Fc-OX40L has unique and potent activity against experimental gliomas and warrants further testing.
Collapse
Affiliation(s)
- Katherine A Murphy
- Departments of Pediatrics and Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Farhan S, Lee DA, Champlin RE, Ciurea SO. NK cell therapy: targeting disease relapse after hematopoietic stem cell transplantation. Immunotherapy 2012; 4:305-13. [PMID: 22329587 DOI: 10.2217/imt.11.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As outcomes of hematopoietic stem cell transplantation have improved over time, disease relapse has emerged as the most significant cause of treatment failure. Cellular therapy represents an alternative therapeutic approach, not only to treat or prevent disease relapse after hematopoietic stem cell transplantation, but also conceivably to help patients achieve remission prior to transplantation or as consolidation therapy for high-risk patients with hematologic malignancies. Of the many cellular therapies available, infusion of NK cells may be the most promising approach against malignant or virally infected cells owing to strong innate activity of NK cells in vitro and in vivo. Only limited clinical data exists mostly from feasability studies of inadequate size to demonstrate clinical benefit. Here, we discuss the current status of clinical investigation using NK cell therapy for patients with hematologic malignancies undergoing hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Shatha Farhan
- Stem Cell Transplantation & Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
41
|
Modulation of tumor tolerance in primary central nervous system malignancies. Clin Dev Immunol 2012; 2012:937253. [PMID: 22312408 PMCID: PMC3270544 DOI: 10.1155/2012/937253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 12/14/2022]
Abstract
Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.
Collapse
|
42
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review.
Collapse
Affiliation(s)
- Colleen S Curran
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Paul J Bertics
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
43
|
Ishikawa E, Takano S, Ohno T, Tsuboi K. Adoptive cell transfer therapy for malignant gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:109-20. [PMID: 22639163 DOI: 10.1007/978-1-4614-3146-6_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.
Collapse
Affiliation(s)
- Eiichi Ishikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | |
Collapse
|
44
|
Moravan MJ, Olschowka JA, Williams JP, O'Banion MK. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat Res 2011; 176:459-73. [PMID: 21787181 DOI: 10.1667/rr2587.1] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is commonly employed to treat cancers of the head and neck and is increasingly used to treat other central nervous system (CNS) disorders. Exceeding the radiation tolerance of normal CNS tissues can result in sequelae contributing to patient morbidity and mortality. Animal studies and clinical experience suggest that neuroinflammation plays a role in the etiology of these effects; however, detailed characterization of this response has been lacking. Therefore, a dose-time investigation of the neuroinflammatory response after single-dose cranial irradiation was performed using C57BL/6 mice. Consistent with previous reports, cranial irradiation resulted in multiphasic inflammatory changes exemplified by increased transcript levels of inflammatory cytokines, along with glial and endothelial cell activation. Cranial irradiation also resulted in acute infiltration of neutrophils and a delayed increase in T cells, MHC II-positive cells, and CD11c-positive cells seen first at 1 month with doses ≥ 15 Gy. CD11c-positive cells were found almost exclusively in white matter and expressed MHC II, suggesting a "mature" dendritic cell phenotype that remained elevated out to 1 year postirradiation. Our results indicate that cranial irradiation leads to persistent neuroinflammatory changes in the C57BL/6 mouse brain that includes unique immunomodulatory cell populations.
Collapse
Affiliation(s)
- Michael J Moravan
- Department of Neurobiology and Anatomy and, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
45
|
Wölfl M, Merker K, Morbach H, Van Gool SW, Eyrich M, Greenberg PD, Schlegel PG. Primed tumor-reactive multifunctional CD62L+ human CD8+ T cells for immunotherapy. Cancer Immunol Immunother 2010; 60:173-86. [PMID: 20972785 DOI: 10.1007/s00262-010-0928-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022]
Abstract
T cell-mediated immunotherapy against malignancies has been shown to be effective for certain types of cancer. However, ex vivo expansion of tumor-reactive T cells has been hindered by the low precursor frequency of such cells, often requiring multiple rounds of stimulation, resulting in full differentiation, loss of homing receptors and potential exhaustion of the expanded T cells. Here, we show that when using highly purified naïve CD8+ T cells, a single stimulation with peptide-pulsed, IFNγ/LPS-matured dendritic cells in combination with the sequential use of IL-21, IL-7 and IL-15 is sufficient for extensive expansion of antigen-specific T cells. Short-term expanded T cells were tumor-reactive, multifunctional and retained a central-memory-like phenotype (CD62L+, CCR7+, CD28+). The procedure is highly reproducible and robust as demonstrated for different healthy donors and for cancer patients. Such short-term tumor-antigen-primed, multifunctional T cells may therefore serve as a platform to target different malignancies accessible to immunotherapy.
Collapse
Affiliation(s)
- Matthias Wölfl
- Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, Josef-Schneider-Strasse 2, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol 2010; 103:231-8. [PMID: 20820869 DOI: 10.1007/s11060-010-0383-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/21/2010] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly lethal brain tumor affecting children and adults, with the majority of affected individuals dying from their disease by 2 years following diagnosis. Other groups have reported the association of cytomegalovirus (CMV) with GBM, and we sought to confirm these findings in a large series of patients with primary GBM from our institution. Immunohistochemical analysis of paraffin embedded tissue sections was performed on 49 newly diagnosed GBM tumors, the largest series reported to date. We confirmed the presence of CMV pp65 on 25/49 (51%) and of IE1 on 8/49 (16%) of these tumors. While pp65 and IE1 are generally found in the nucleus of cells that are permissibly infected by CMV, GBM in this series had mostly cytoplasmic staining, with only 16% having nuclear staining for one or both of these antigens. We infected GBM cell lines with a laboratory strain of CMV, and found that most of the staining was cytoplasmic, with some perinuclear localization of IE1. To test the potential for CMV infected GBM cells to be recognized by CMV pp65 and IE1 specific cytotoxic T lymphocytes (CTL), we used CMV infected GBM cell lines in cytotoxicity assays with human leukocyte antigen partially matched CMV CTL. Lysis of CMV infected GBM tumor cells was accentuated by pre-treating these cell lines with either the demethylating agent decitabine or interferon-γ, both of which were shown to increase MHC Class I and II expression on tumor cells in vitro. These studies confirm the presence of CMV pp65 or IE1 on approximately half of GBM, with the possibility that CMV positive tumor cells can be recognized by CMV pp65/IE1 specific T cells.
Collapse
|
47
|
Abstract
Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential.
Collapse
|
48
|
Abstract
Medulloblastoma is one of the most frequent brain tumors in childhood. The mortality of medulloblastoma decreased significantly during the last few decades, which was the result of the better surgical and radiotherapeutic methods and of the development of chemotherapy. The aim of this publication is the critical review of the present chemotherapeutic treatment. The new therapeutic trials based on the molecular genetic mechanism of these tumors are also mentioned.
Collapse
Affiliation(s)
- Dezsô Schuler
- Semmelweis Egyetem AOK II. sz. Gyermekgyógyászati Klinika 1094 Budapest Tuzoltó utca 7-9.
| |
Collapse
|
49
|
Bridle BW, Li J, Jiang S, Chang R, Lichty BD, Bramson JL, Wan Y. Immunotherapy can reject intracranial tumor cells without damaging the brain despite sharing the target antigen. THE JOURNAL OF IMMUNOLOGY 2010; 184:4269-75. [PMID: 20237288 DOI: 10.4049/jimmunol.0901447] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although vaccines targeting tissue differentiation Ags represent a promising strategy for cancer immunotherapy, the risk of triggering autoimmune damage to normal tissues remains to be determined. Immunizing against a melanoma-associated Ag, dopachrome tautomerase (DCT), which normal melanocytes and glial cells also express, allowed concurrent analysis of autoimmune consequences in multiple tissues. We show that vaccination with recombinant adenovirus expressing DCT elicited a strong CTL response in C57BL/6 mice, leading to protection against intracranial challenge with B16-F10 melanoma cells. Both histological analysis and behavioral testing indicated that there was no evidence of neuropathology in vaccinated animals and long-term survivors. Although vitiligo or demyelination could be induced by additional stimuli (i.e., surgery or inflammation) in DCT-vaccinated mice, it did not extend beyond the inflammatory area, suggesting that there is self-regulatory negative feedback in normal tissues. These results demonstrate that it is possible to vaccinate against a tumor embedded in a vital organ that shares the target Ag.
Collapse
Affiliation(s)
- Byram W Bridle
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Sonnemann J, Gressmann S, Becker S, Wittig S, Schmudde M, Beck JF. The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 2010; 66:611-6. [PMID: 20221600 DOI: 10.1007/s00280-010-1302-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE It has recently been recognised that anticancer chemotherapy can elicit an immunogenic form of apoptosis characterised by the exposure of calreticulin (CRT) on the surface of dying tumour cells, entailing an immune response that contributes to the therapeutic outcome. CRT exposure has been found to be induced by anthracyclins and oxaliplatin, but not by other proapoptotic antineoplastic agents including etoposide, camptothecin and cisplatin. In this study, we examined the histone deacetylase inhibitor vorinostat for its capability to stimulate CRT exposure in tumour cells. METHODS Childhood tumour cells, i.e. the brain tumour cell lines PFSK and DAOY and the Ewing's sarcoma cell line CADO-ES-1, were treated with vorinostat, and CRT exposure was determined by flow cytometric analysis of CRT immunofluorescence. Combination effects of vorinostat/TRAIL and vorinostat/bortezomib were also assessed. RESULTS Vorinostat treatment induced CRT exposure in PFSK and DAOY cells, but not in caspase-8-deficient CADO-ES-1 cells. CRT exposure could be prevented by the pan-caspase inhibitor z-VAD-fmk and by brefeldin A, an inhibitor of Golgi-mediated transport. CONCLUSION Vorinostat has the capacity to elicit CRT exposure, suggesting its usefulness as immunogenic antitumour agent.
Collapse
Affiliation(s)
- Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, University Children's Hospital Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|