1
|
Rampeesa NK, Gundla R, Mudasani G, Tangallapalli S, Anugu SR, Gurská S, De Sanctis JB, Džubák P, Hajdúch M, Das V. Identification of a novel Azaspirooxindolinone-based PROTAC for selective BTK degradation and enhanced anticancer activity. Bioorg Chem 2025; 157:108316. [PMID: 40037026 DOI: 10.1016/j.bioorg.2025.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Bruton's Tyrosine Kinase (BTK) is a key driver of hematological malignancies, autoimmune disorders, and neuroinflammation, making it an attractive therapeutic target. Proteolysis targeting chimeras (PROTACs) offer a novel strategy for BTK degradation via the E3 ubiquitin ligase pathway. Here, we evaluated nine azaspirooxindolinone-based PROTAC derivatives for their cytotoxicity and BTK-targeting activity. Several compounds exhibited potent cytotoxicity against BTK-high RAMOS lymphoma cells without affecting non-cancer fibroblasts or normal T/B-cell lymphocytes. Among them, PROTAC 25 emerged as the most effective degraded, achieving a Dmax of 72.84 % and DC50 of 0.27 μM in a proteasome-dependent manner. Although PROTAC 25 was cytotoxic to IL-2-inducible T cell Kinase (ITK)-positive cells, ITK protein levels remained unaffected. Furthermore, kinase assays revealed that PROTAC 25 inhibited BTK kinase activity (IC₅₀ = 0.44 μM) with moderate selectivity over ITK (IC₅₀ = 2.16 μM). Notably, PROTAC 25 suppressed BTK-mediated downstream signaling in RAMOS cells, as evidenced by reduced phosphorylation of BTK and its downstream effector, p38 MAPK. These findings highlight PROTAC 25 as a promising BTK degrader with therapeutic potential and underscore the value of azaspirooxindolinone-based PROTACs in targeting BTK-driven diseases.
Collapse
Affiliation(s)
- Naveen Kumar Rampeesa
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India; Aragen Life Sciences Ltd, Medicinal Chemistry Laboratory Division, Survey, No: 125(Part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India.
| | - Gopal Mudasani
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India; Aragen Life Sciences Ltd, Medicinal Chemistry Laboratory Division, Survey, No: 125(Part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Sudhakar Tangallapalli
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502102, Telangana, India
| | - Sreenivasa Reddy Anugu
- Aragen Life Sciences Ltd, Medicinal Chemistry Laboratory Division, Survey, No: 125(Part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Japp AS, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Prak ETL, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590798. [PMID: 39345402 PMCID: PMC11429609 DOI: 10.1101/2024.04.23.590798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain immune populations correlated with high T1D genetic risk independent of disease state. These datasets form an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and T1D.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
4
|
Ham SD, Abraham MN, Deutschman CS, Taylor MD. Single-cell RNA sequencing reveals Immune Education promotes T cell survival in mice subjected to the cecal ligation and puncture sepsis model. Front Immunol 2024; 15:1366955. [PMID: 38562928 PMCID: PMC10982361 DOI: 10.3389/fimmu.2024.1366955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Individual T cell responses vary significantly based on the microenvironment present at the time of immune response and on prior induced T cell memory. While the cecal ligation and puncture (CLP) model is the most commonly used murine sepsis model, the contribution of diverse T cell responses has not been explored. We defined T cell subset responses to CLP using single-cell RNA sequencing and examined the effects of prior induced T cell memory (Immune Education) on these responses. We hypothesized that Immune Education prior to CLP would alter T cell responses at the single cell level at a single, early post-CLP time point. Methods Splenic T cells were isolated from C57BL/6 mice. Four cohorts were studied: Control, Immune-Educated, CLP, and Immune-Educated CLP. At age 8 weeks, Immune-Educated and Immune-Educated CLP mice received anti-CD3ϵ antibody; Control and CLP mice were administered an isotype control. CLP (two punctures with a 22-gauge needle) was performed at 12-13 weeks of life. Mice were sacrificed at baseline or 24-hours post-CLP. Unsupervised clustering of the transcriptome library identified six distinct T cell subsets: quiescent naïve CD4+, primed naïve CD4+, memory CD4+, naïve CD8+, activated CD8+, and CD8+ cytotoxic T cell subsets. T cell subset specific gene set enrichment analysis and Hurdle analysis for differentially expressed genes (DEGs) were performed. Results T cell responses to CLP were not uniform - subsets of activated and suppressed T cells were identified. Immune Education augmented specific T cell subsets and led to genomic signatures favoring T cell survival in unoperated and CLP mice. Additionally, the combination of Immune Education and CLP effected the expression of genes related to T cell activity in ways that differed from CLP alone. Validating our finding that IL7R pathway markers were upregulated in Immune-Educated CLP mice, we found that Immune Education increased T cell surface IL7R expression in post-CLP mice. Conclusion Immune Education enhanced the expression of genes associated with T cell survival in unoperated and CLP mice. Induction of memory T cell compartments via Immune Education combined with CLP may increase the model's concordance to human sepsis.
Collapse
Affiliation(s)
- Steven D. Ham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mabel N. Abraham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Clifford S. Deutschman
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew D. Taylor
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
5
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
6
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature 2023:10.1038/s41586-023-06110-8. [PMID: 37286594 DOI: 10.1038/s41586-023-06110-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Immunotherapy based on immunecheckpoint blockade (ICB) using antibodies induces rejection of tumours and brings clinical benefit in patients with various cancer types1. However, tumours often resist immune rejection. Ongoing efforts trying to increase tumour response rates are based on combinations of ICB with compounds that aim to reduce immunosuppression in the tumour microenvironment but usually have little effect when used as monotherapies2,3. Here we show that agonists of α2-adrenergic receptors (α2-AR) have very strong anti-tumour activity when used as monotherapies in multiple immunocompetent tumour models, including ICB-resistant models, but not in immunodeficient models. We also observed marked effects in human tumour xenografts implanted in mice reconstituted with human lymphocytes. The anti-tumour effects of α2-AR agonists were reverted by α2-AR antagonists, and were absent in Adra2a-knockout (encoding α2a-AR) mice, demonstrating on-target action exerted on host cells, not tumour cells. Tumours from treated mice contained increased infiltrating T lymphocytes and reduced myeloid suppressor cells, which were more apoptotic. Single-cell RNA-sequencing analysis revealed upregulation of innate and adaptive immune response pathways in macrophages and T cells. To exert their anti-tumour effects, α2-AR agonists required CD4+ T lymphocytes, CD8+ T lymphocytes and macrophages. Reconstitution studies in Adra2a-knockout mice indicated that the agonists acted directly on macrophages, increasing their ability to stimulate T lymphocytes. Our results indicate that α2-AR agonists, some of which are available clinically, could substantially improve the clinical efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Ludwig Institute for Cancer Research, Brussels, Belgium.
- de Duve Institute, UCLouvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.
| | - Stefan Naulaerts
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Loubna Boudhan
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Manon Martin
- de Duve Institute, UCLouvain, Brussels, Belgium
- Computational Biology and Bioinformatics, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- de Duve Institute, UCLouvain, Brussels, Belgium
- Computational Biology and Bioinformatics, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Gao M, Liu X, Guo P, Wang J, Li J, Wang W, Stoddart MJ, Grad S, Li Z, Wu H, Li B, He Z, Zhou G, Liu S, Zhu W, Chen D, Zou X, Zhou Z. Deciphering postnatal limb development at single-cell resolution. iScience 2023; 26:105808. [PMID: 36619982 PMCID: PMC9813795 DOI: 10.1016/j.isci.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The early postnatal limb developmental progression bridges embryonic and mature stages and mirrors the pathological remodeling of articular cartilage. However, compared with multitudinous research on embryonic limb development, the early postnatal stage seems relatively unnoticed. Here, a systematic work to portray the postnatal limb developmental landscape was carried out by characterization of 19,952 single cells from murine hindlimbs at 4 postnatal stages using single-cell RNA sequencing technique. By delineation of cell heterogeneity, the candidate progenitor sub-clusters marked by Cd34 and Ly6e were discovered in articular cartilage and enthesis, and three cellular developmental branches marked by Col10a1, Spp1, and Tnni2 were reflected in growth plate. The representative transcriptomes and developmental patterns were intensively explored, and the key regulation mechanisms as well as evolvement in osteoarthritis were discussed. Above all, these results expand horizons of postnatal limb developmental biology and reach the interconnections between limb development, remodeling, and regeneration.
Collapse
Affiliation(s)
- Manman Gao
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Guo
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junhong Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | - Sibylle Grad
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Huachuan Wu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baoliang Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongyuan He
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Shaoyu Liu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weimin Zhu
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
10
|
Rajavel A, Klees S, Hui Y, Schmitt AO, Gültas M. Deciphering the Molecular Mechanism Underlying African Animal Trypanosomiasis by Means of the 1000 Bull Genomes Project Genomic Dataset. BIOLOGY 2022; 11:biology11050742. [PMID: 35625470 PMCID: PMC9138820 DOI: 10.3390/biology11050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Climate change is increasing the risk of spreading vector-borne diseases such as African Animal Trypanosomiasis (AAT), which is causing major economic losses, especially in sub-Saharan African countries. Mainly considering this disease, we have investigated transcriptomic and genomic data from two cattle breeds, namely Boran and N‘Dama, where the former is known for its susceptibility and the latter one for its tolerance to the AAT. Despite the rich literature on this disease, there is still a need to investigate underlying genetic mechanisms to decipher the complex interplay of regulatory SNPs (rSNPs), their corresponding gene expression profiles and the downstream effectors associated with the AAT disease. The findings of this study complement our previous results, which mainly involve the upstream events, including transcription factors (TFs) and their co-operations as well as master regulators. Moreover, our investigation of significant rSNPs and effectors found in the liver, spleen and lymph node tissues of both cattle breeds could enhance the understanding of distinct mechanisms leading to either resistance or susceptibility of cattle breeds. Abstract African Animal Trypanosomiasis (AAT) is a neglected tropical disease and spreads by the vector tsetse fly, which carries the infectious Trypanosoma sp. in their saliva. Particularly, this parasitic disease affects the health of livestock, thereby imposing economic constraints on farmers, costing billions of dollars every year, especially in sub-Saharan African countries. Mainly considering the AAT disease as a multistage progression process, we previously performed upstream analysis to identify transcription factors (TFs), their co-operations, over-represented pathways and master regulators. However, downstream analysis, including effectors, corresponding gene expression profiles and their association with the regulatory SNPs (rSNPs), has not yet been established. Therefore, in this study, we aim to investigate the complex interplay of rSNPs, corresponding gene expression and downstream effectors with regard to the AAT disease progression based on two cattle breeds: trypanosusceptible Boran and trypanotolerant N’Dama. Our findings provide mechanistic insights into the effectors involved in the regulation of several signal transduction pathways, thereby differentiating the molecular mechanism with regard to the immune responses of the cattle breeds. The effectors and their associated genes (especially MAPKAPK5, CSK, DOK2, RAC1 and DNMT1) could be promising drug candidates as they orchestrate various downstream regulatory cascades in both cattle breeds.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
- Correspondence: (A.R.); (M.G.)
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Yuehan Hui
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Correspondence: (A.R.); (M.G.)
| |
Collapse
|
11
|
Širvinskas D, Omrani O, Lu J, Rasa M, Krepelova A, Adam L, Kaeppel S, Sommer F, Neri F. Single-cell atlas of the aging mouse colon. iScience 2022; 25:104202. [PMID: 35479413 PMCID: PMC9035718 DOI: 10.1016/j.isci.2022.104202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
We performed massive single-cell sequencing in the aging mouse colonic epithelium and immune cells. We identified novel compartment-specific markers as well as dramatic aging-associated changes in cell composition and signaling pathways, including a shift from absorptive to secretory epithelial cells, depletion of naive lymphocytes, and induction of eIF2 signaling. Colon cancer is one of the leading causes of death within the western world, incidence of which increases with age. The colonic epithelium is a rapidly renewing tissue, tasked with water and nutrient absorption, as well as hosting intestinal microbes. The colonic submucosa is populated with immune cells interacting with and regulating the epithelial cells. However, it is unknown whether compartment-specific changes occur during aging and what impact this would cause. We show that both epithelial and immune cells differ significantly between colonic compartments and experience significant age-related changes in mice. We found a shift in the absorptive-secretory cell balance, possibly linked to age-associated intestinal disturbances, such as malabsorption. We demonstrate marked changes in aging immune cells: population shifts and interactions with epithelial cells, linking cytokines (Ifn-γ, Il1B) with the aging of colonic epithelium. Our results provide new insights into the normal and age-associated states of the colon. Mouse colon shows compartment-specific transcriptional and population differences Old animal colon switches to a pro-inflammatory state Changes in epithelium linked to changes in tissue-resident immune cells
Collapse
Affiliation(s)
| | - Omid Omrani
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jing Lu
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Mahdi Rasa
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Anna Krepelova
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lisa Adam
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sandra Kaeppel
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Francesco Neri
- Institute on Aging Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Corresponding author
| |
Collapse
|
12
|
Yin Z, Zou Y, Wang D, Huang X, Xiong S, Cao L, Zhang Y, Sun Y, Zhang N. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discov 2022; 8:119. [PMID: 35296647 PMCID: PMC8927484 DOI: 10.1038/s41420-022-00927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Tyrosine phosphorylation by protein tyrosine kinases (PTKs) is a type of post-translational modification. Tec kinases, which are a subfamily of non-receptor PTKs, were originally discovered in the hematopoietic system and include five members: Tec, Btk, Itk/Emt/Tsk, Etk/Bmx, and Txk/Rlk. With the progression of modern research, certain members of the Tec family of kinases have been found to be expressed outside the hematopoietic system and are involved in the development and progression of a variety of diseases. The role of Tec family kinases in cardiovascular disease is receiving increasing attention. Tec kinases are involved in the occurrence and progression of ischemic heart disease, atherosclerosis, cardiac dysfunction associated with sepsis, atrial fibrillation, myocardial hypertrophy, coronary atherosclerotic heart disease, and myocardial infarction and post-myocardial. However, no reviews have comprehensively clarified the role of Tec kinases in the cardiovascular system. Therefore, this review summarizes research on the role of Tec kinases in cardiovascular disease, providing new insights into the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Zeyu Yin
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Huang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengjun Xiong
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Development of αβ T Cells with Innate Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:149-160. [DOI: 10.1007/978-981-16-8387-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Ni G, Liu X, Li H, Fogarty CE, Chen S, Zhang P, Liu Y, Wu X, Wei MQ, Chen G, Zhang P, Wang T. Topical Application of Temperature-Sensitive Gel Containing Caerin 1.1 and 1.9 Peptides on TC-1 Tumour-Bearing Mice Induced High-Level Immune Response in the Tumour Microenvironment. Front Oncol 2021; 11:754770. [PMID: 34858827 PMCID: PMC8632150 DOI: 10.3389/fonc.2021.754770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
The development of topical cream drugs that increase the immune activation of tumour-infiltrating lymphocytes against tumour and chronic viral infection-associated lesions is of great immunotherapeutic significance. This study demonstrates that the topical application of a temperature-sensitive gel containing caerin 1.1 and 1.9 peptides reduces nearly 50% of the tumour weight of HPV16 E6/E7-transformed TC-1 tumour-bearing mice via improving the tumour microenvironment. Confocal microscopy confirms the time-dependent penetration of caerin 1.9 through the epidermal layer of the ear skin structure of mice. Single-cell transcriptomic analysis shows that the caerin 1.1/1.9 gel expands the populations with high immune activation level and largely stimulates the pro-inflammatory activity of NK and dendritic cells. Closely associated with INFα response, Cebpb seems to play a key role in altering the function of all Arg1hi macrophages in the caerin group. In addition, the caerin gel treatment recruits almost two-fold more activated CD8+ T cells to the TME, relative to the untreated tumour, which shows a synergistic effect derived from the regulation of S1pr1, Ccr7, Ms4a4b and Gimap family expression. The TMT10plex-labelling proteomic quantification further demonstrates the activation of interferon-alpha/beta secretion and response to cytokine stimulus by the caerin gel, while the protein contents of several key regulators were elevated by more than 30%, such as Cd5l, Gzma, Ifit1, Irf9 and Stat1. Computational integration of the proteome with the single-cell transcriptome consistently suggested greater activation of NK and T cells with the topical application of caerin peptide gel.
Collapse
Affiliation(s)
- Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Conor E Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Shu Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ying Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ming Q Wei
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ping Zhang
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| |
Collapse
|
16
|
Xu B, Liu X, Gao S. IL2-inducible T-cell kinase inhibitor ibrutinib reduces symptoms and Th2 differentiation in mouse allergic-rhinitis model. Drug Dev Res 2021; 83:544-551. [PMID: 34609751 DOI: 10.1002/ddr.21884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022]
Abstract
Th2 and Th17 immune response contribute to allergic rhinitis (AR) development. Targeting Th2 and Th17 response has been shown to ameliorate AR. Ibrutinib is an inhibitor for IL2-inducible T-cell kinase, which can promote Th2 and Th17 immune response. We sought to investigate the effect of ibrutinib on AR and the underlying mechanisms. We established house dust mite-induced AR mouse model and treated AR mice with ibrutinib. The symptoms of AR, serum level of immunoglobulin E, percentage of Th1, Th2, Th17, and Treg in nasal lymphoid tissues were monitored. We also established in vitro T cell differentiation cell culture model. The T cells were treated with ibrutinib and the expression of specific transcriptional factors and cytokines was measured. The activation of PLC-γ1/calcium/NFAT2 signaling pathway was detected. Ibrutinib treatment had no effects on the development of lymphocytes and myeloid cells, but alleviated AR symptoms and decreased Th2 cell population in nasal lymphoid tissue. Meanwhile, iburitnib suppressed Th2 and Th17 differentiation in vitro. Moreover, iburitnib prevented phosphorylation of PLC-γ1and nuclear translocation of NFAT2 in Th2 cells. Our results suggested that ibrutinib could ameliorate AR symptoms through suppression of Th2 differentiation in AR mouse model.
Collapse
Affiliation(s)
- Bing Xu
- Department of ENT, Gucheng County Hospital, Hengshui Gucheng, China
| | - Xiaozhe Liu
- Department of Ophthalmology, Gucheng County Hospital, Hengshui Gucheng, China
| | - Shihao Gao
- Department of Chest Surgery, Gucheng County Hospital, Hengshui Gucheng, China
| |
Collapse
|
17
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Sarawi W, Attia SM, Alasmari AF, Alqarni SA, Alfradan AS, Bakheet SA, Al-Harbi MM. Role of ITK signaling in acute kidney injury in mice: Amelioration of acute kidney injury associated clinical parameters and attenuation of inflammatory transcription factor signaling in CD4+ T cells by ITK inhibition. Int Immunopharmacol 2021; 99:108028. [PMID: 34365077 DOI: 10.1016/j.intimp.2021.108028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is a world-wide health problem and linked with increased risk of morbidity/mortality in hospitalized patients and its incidence has been on the rise in the last few decades. AKI is characterized by renal tubular injury which results from interactions between bacterial products and host immune responses which manifests as a rapid deterioration in renal function. Immune system dysfunction induced by sepsis plays a crucial role in AKI through activation of multiple immune cells of both innate and adaptive origin. These cells release pro-inflammatory cytokines such as IL-6, IL-17A, IFN-γ, and reactive oxygen metabolites. Adaptive immune cells, especially T cells also participate in the amplification of renal inflammation through release of pro-inflammatory cytokines such as IL-17A, IFN-γ, TNF-α, and IL-10. Non-receptor protein tyrosine kinases such as ITK play crucial role in T cell through modulation of key downstream molecules such as PLCγ, STAT3, NFkB, NFATc1, and p-38MAPK. However, it has not been explored in CD4+ T cells during AKI. Therefore, this study investigated the effect of ITK inhibitor on AKI linked clinical parameters (serum BUN, creatinine and renal histopathology), downstream signaling molecules in CD4+ T cells (PLCγ, STAT3, NFkB, and NFATc1), Th1/Th2/Treg cell markers (IL-17A, TNF-α, and IL-10), and neutrophil-mediated oxidative inflammation (MPO/carbonyl/nitrotyrosine formation) in mice. Our data exhibit elevated p-ITK levels in CD4+ T cells which is associated with renal dysfunction and elevated Th1/Th17/neutrophilic responses. Blockade of ITK signaling resulted in ameliorated of AKI associated biochemical; parameters through downregulation in transcription signaling in CD4+ T cells and Th1/Th17 immune responses. Therefore, this report suggests that ITK inhibition could be an effective strategy to halt renal dysfunction associated with AKI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfradan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Wang L, Sun Y, Liu X, Li H, Lu C, Yang R, Yang C, Li B. SY-1530, a highly selective BTK inhibitor, effectively treats B-cell malignancies by blocking B-cell activation. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0291. [PMID: 34264564 PMCID: PMC9334755 DOI: 10.20892/j.issn.2095-3941.2020.0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE B-cell antigen receptor (BCR) signaling is required to maintain the physiological functions of normal B cells and plays an important pathogenic role in B-cell malignancies. Bruton tyrosine kinase (BTK), a critical mediator of BCR signaling, is an attractive target for the treatment of B-cell malignancies. This study aimed to identify a highly potent and selective BTK inhibitor. METHODS Homogeneous time-resolved fluorescence assays were used to screen BTK inhibitors. Typhoon fluorescence imaging and Western blot analysis were used to confirm the effects of SY-1530 on the BCR signaling pathway. Additionally, the anti-tumor activities of SY-1530 were evaluated in TMD8 xenografts and spontaneous canine B-cell lymphoma. RESULTS We found a novel irreversible and non-competitive inhibitor of BTK, SY-1530, which provided dose-dependent and time-dependent inhibition. SY-1530 selectively bound to BTK rather than inducible T-cell kinase; consequently, it did not significantly affect T-cell receptor signaling and caused limited off-target effects. SY-1530 blocked the BCR signaling pathway through down-regulation of BTK activity, thus leading to impaired phosphorylation of BTK and its downstream kinases. Moreover, SY-1530 induced apoptosis in a caspase-dependent manner and efficaciously inhibited tumor growth in mouse xenograft models of B-cell malignancy (P < 0.001). SY-1530 also induced positive clinical responses in spontaneous canine B-cell lymphoma. CONCLUSIONS SY-1530 is an irreversible and selective BTK inhibitor that shows inhibitory effects on B-cell malignancies by blocking the BCR signaling pathway. Therefore, it may be a promising therapeutic approach for the treatment of B-cell malignancies.
Collapse
Affiliation(s)
- Liao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yinghui Sun
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Xijie Liu
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Hongjuan Li
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Chang Lu
- Shouyao Holdings Co., Ltd, Beijing 100195, China
| | - Ronghui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
19
|
Furman RR, Byrd JC, Owen RG, O'Brien SM, Brown JR, Hillmen P, Stephens DM, Chernyukhin N, Lezhava T, Hamdy AM, Izumi R, Patel P, Baek M, Christian B, Dyer MJS, Streetly MJ, Sun C, Rule S, Wang M, Ghia P, Jurczak W, Pagel JM, Sharman JP. Pooled analysis of safety data from clinical trials evaluating acalabrutinib monotherapy in mature B-cell malignancies. Leukemia 2021; 35:3201-3211. [PMID: 33907299 DOI: 10.1038/s41375-021-01252-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Bruton tyrosine kinase (BTK) inhibition is an effective therapy for many B-cell malignancies. Acalabrutinib is a next-generation, potent, highly selective, covalent BTK inhibitor. To characterize acalabrutinib tolerability, we pooled safety data from 1040 patients with mature B-cell malignancies treated with acalabrutinib monotherapy in nine clinical studies (treatment-naïve: n = 366 [35%], relapsed/refractory: n = 674 [65%]; median [range] age: 67 [32-90] years; median [range] prior treatments: 1 [0-13]; median [range] duration of exposure: 24.6 [0.0-58.5] months). The most common adverse events (AEs) were headache (38%), diarrhea (37%), upper respiratory tract infection (22%), contusion (22%), nausea (22%), fatigue (21%), and cough (21%). Serious AEs (SAEs) occurred in 39% of patients; pneumonia (6%) was the only SAE that occurred in ≥2%. Deaths due to AEs occurred in 52 patients (5%); pneumonia (n = 8) was the only fatal AE to occur in ≥3 patients. AEs led to treatment discontinuation in 9%. Rates for the AEs of interest (all grades) included infections (67%), hemorrhages (46%), neutropenia (16%), anemia (14%), second primary malignancies (12%), thrombocytopenia (9%), hypertension (8%), and atrial fibrillation (4%). This pooled analysis confirmed acalabrutinib's tolerability and identified no newly emerging late toxicities, supporting acalabrutinib as a long-term treatment for patients with mature B-cell malignancies.
Collapse
Affiliation(s)
- Richard R Furman
- Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA.
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Susan M O'Brien
- Chao Family Comprehensive Cancer Center, University of California-Irvine, Irvine, CA, USA
| | | | | | | | | | | | | | | | | | | | - Beth Christian
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Clare Sun
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Simon Rule
- Plymouth University Medical School, Plymouth, UK
| | - Michael Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Wojciech Jurczak
- Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | | | - Jeff P Sharman
- Willamette Valley Cancer Institute/US Oncology, Eugene, OR, USA
| |
Collapse
|
20
|
Inhibition of interleukin-2-inducible T-cell kinase causes reduction in imiquimod-induced psoriasiform inflammation through reduction of Th17 cells and enhancement of Treg cells in mice. Biochimie 2020; 179:146-156. [PMID: 33007409 DOI: 10.1016/j.biochi.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023]
Abstract
Psoriasis is a debilitating chronic skin disease with a worldwide prevalence. Its main features include well-marked silvery scales on the skin of hands and feet and back which arise due to hyperproliferation of keratinocytes and infiltration of immune cells in the skin. Multiple interactions exist between adaptive immune cells such as T cells and innate immune cells such as neutrophils and macrophages which are key players in the pathogenesis of psoriasis. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. ITK has been shown to control NFATc1, NFkB and STAT3 in CD4+ T cells. Effect of ITK inhibitor in imiquimod (IMQ)-induced psoriasiform inflammation remains to be explored. In the current examination, role of ITK signaling and its inhibition blockade were evaluated on NFATc1, NFkB and STAT3, IL-17A, TNF-α, IFN-γ, Foxp3, IL-10 in CD4+ T cells in IMQ model. Our data display that ITK signaling is involved in IMQ-induced psoriatic inflammation as paralleled by enhancement of p-ITK, NFATc1, p-NFkB and p-STAT3 in CD4+ T cells. It was associated with enhancement of Th17/Th1 cells and neutrophilic inflammation in the skin. Preventive treatment with ITK inhibitor led to a reduction in Th17/Th1 cells and enhancement of Treg cells. Overall, this study suggests that ITK signaling is an important modulator of transcription factor signaling in CD4+ T cells which is associated with Th17/Th1 cells and psoriasiform inflammation in mice. ITK signaling blockade could be a therapeutic target for the treatment of psoriatic inflammation.
Collapse
|
21
|
Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 2020; 135:644-655. [PMID: 31942615 DOI: 10.1182/blood.2019000928] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/14/2019] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is an enigma; on one hand, it infects and persists in latent form in the vast majority of the global population, causing relatively benign disease in otherwise healthy individuals. On the other hand, EBV represents the first identified oncogenic virus, capable of causing ≥7 different types of malignancies, usually in immunocompromised individuals. Furthermore, some individuals with defined inborn errors of immunity exhibit extreme susceptibility to EBV-induced disease, developing severe and often fatal infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, and/or EBV+ B-cell lymphoma. Thus, host and pathogen have coevolved to enable viral persistence and survival with minimal collateral damage to the healthy host. However, acquired or genetic disruptions to host defense that tip the balance in favor of EBV can have catastrophic effects. The study of primary immunodeficiencies has provided opportunities to define nonredundant requirements for host defense against EBV infection. This has not only revealed mechanisms underlying EBV-induced disease in these primary immunodeficiencies but also identified molecules and pathways that could be targeted to enhance the efficacy of an EBV-specific vaccine or treat severe EBV infection and pathological consequences in immunodeficient hosts.
Collapse
|
22
|
Huang Y, Wang Z, Li H, Hu Z, Hong H, Sun Y, Ke Y, Du X. ITK inhibition promotes long-term survival of cardiac allografts by regulating T cell PLCγ phosphorylation. Am J Transl Res 2020; 12:5762-5771. [PMID: 33042455 PMCID: PMC7540118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND T cells express interleukin-2 inducible T-cell kinase (ITK), which is an essential modulator of T-cell signaling and function. However, the role of ITK in solid organ transplantation has not been investigated to date. Here, we studied the function of ITK in a murine cardiac transplantation model. METHOD Murine heart transplantation was performed using BALB/C mice as donors and C57BL/6 mice as recipients. Subsequent intraperitoneal injections of an ITK-specific inhibitor (BMS-509744) were performed to assess the effects of the kinase following cardiac transplantation. Additionally, naive T cells were isolated to investigate the inhibitor's potential effects in the alloimmune responses. RESULTS ITK inhibition was found to promote long-term cardiac allograft survival compared with the control group of 36.0 ± 3.8 days vs. 7.0 ± 0.7 days, respectively (P < 0.01). While the Th1/Th17 percentages showed a decrease in prevalence (P < 0.001), the CD4+CD25+Foxp3+ percentages were not markedly affected. In vitro treatment of CD4+ T cells with the ITK inhibitor downregulated the proliferation, possibly by regulating the phosphorylation of PLCγ. CONCLUSION ITK inhibition resulted in lower Th1/Th17 responses after cardiac transplantation and markedly prolonged the mean survival time of the cardiac allografts. Thus, ITK inhibition might be a promising therapeutic target to alleviate alloimmune responses in the cardiac transplantation.
Collapse
Affiliation(s)
- Yajun Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Zhongyu Wang
- Department of Urology, The First Affiliated Hospital of Yangtze UniversityJingzhou, PR China
| | - Huanhuan Li
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Zhiwei Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Hao Hong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Yongfeng Sun
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Youli Ke
- Department of General Thoracic Surgery of The No.1 Hospital of Wuhan CityHubei Province, PR China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| |
Collapse
|
23
|
Nadeem A, Al-Harbi NO, Ahmad SF, Al-Harbi MM, Alhamed AS, Alfardan AS, Assiri MA, Ibrahim KE, Albassam H. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress. Int Immunopharmacol 2020; 83:106369. [PMID: 32163900 DOI: 10.1016/j.intimp.2020.106369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is linked with considerable morbidity and mortality. ALI can be caused by various agents, one of them being sepsis. ALI is characterized by injury to vascular endothelium and alveolar epithelium that results in edema, pulmonary immune cells infiltration and hypoxemia. Neutrophils and T cells particularly play a huge role in amplification of pulmonary inflammation through release of multiple inflammatory mediators. Recent reports suggest a strong involvement of Th17 cells and oxidative stress in initiation/amplification of pulmonary inflammation during ALI. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. Therefore, our study explored the role of ITK on airway inflammation (total/neutrophilic cell counts, myeloperoxidase activity, E-cadherin expression, histopathological analyses) and effect of its inhibition on various inflammatory/anti-inflammatory pathways during ALI [phosphorylated-ITK (p-ITK), NFATc1, IL-17A, STAT3, Foxp3, IL-10, iNOS, nitrotyrosine, lipid peroxides). ALI was associated with increased total/neutrophilic cell counts and myeloperoxidase activity, and decreased E-cadherin expression in airway epithelial cells (AECs) which was concurrent with upregulation of p-ITK, NFATc1, IL-17A, STAT3 in CD4+ T cells and iNOS/nitrotyrosine in AECs. Treatment with ITK inhibitor reversed ALI-induced changes in airway inflammation and Th17 cells/oxidative stress. Treatment with ITK inhibitor further expanded Treg cells in mice with ALI. In short, our study proposes that ITK signaling plays a significant role in sepsis-induced ALI through upregulation of Th17 cells and oxidative stress. Further, findings provide evidence that ITK blockade could be a potential treatment strategy to attenuate airway inflammation associated with ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 2020; 139:885-901. [PMID: 32152698 DOI: 10.1007/s00439-020-02145-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting > 90% of the adult population. In the vast majority of healthy individuals, infection with EBV runs a relatively benign course. However, EBV is by no means a benign pathogen. Indeed, apart from being associated with at least seven different types of malignancies, EBV infection can cause severe and often fatal diseases-hemophagocytic lymphohistiocytosis, lymphoproliferative disease, B-cell lymphoma-in rare individuals with specific monogenic inborn errors of immunity. The discovery and detailed investigation of inborn errors of immunity characterized by heightened susceptibility to, or increased frequency of, EBV-induced disease have elegantly revealed cell types and signaling pathways that play critical and non-redundant roles in host-defense against EBV. These analyses have revealed not only mechanisms underlying EBV-induced disease in rare genetic conditions, but also identified molecules and pathways that could be targeted to treat severe EBV infection and pathological consequences in immunodeficient hosts, or even potentially enhance the efficacy of an EBV-specific vaccine.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of NSW Sydney, Darlinghurst, NSW, 2010, Australia. .,Clincial Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW, Australia.
| |
Collapse
|
25
|
Shi H, Tice CM, Emert-Sedlak L, Chen L, Li WF, Carlsen M, Wrobel JE, Reitz AB, Smithgall TE. Tight-Binding Hydroxypyrazole HIV-1 Nef Inhibitors Suppress Viral Replication in Donor Mononuclear Cells and Reverse Nef-Mediated MHC-I Downregulation. ACS Infect Dis 2020; 6:302-312. [PMID: 31775511 DOI: 10.1021/acsinfecdis.9b00382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The HIV-1 Nef accessory factor is critical to the viral life cycle in vivo and promotes immune escape of infected cells via downregulation of cell-surface MHC-I. Previously, we discovered small molecules that bind directly to Nef and block many of its functions, including enhancement of viral infectivity and replication in T cell lines. These compounds also restore cell-surface MHC-I expression in HIV-infected CD4 T cells from AIDS patients, enabling recognition and killing by autologous cytotoxic T lymphocytes (CTLs). In this study, we describe the synthesis and evaluation of a diverse set of analogs based on the original hydroxypyrazole Nef inhibitor core. All analogs were screened for the interaction with recombinant HIV-1 Nef by surface plasmon resonance (SPR) and for antiretroviral activity in TZM-bl reporter cells infected with HIV-1. Active analogs were ranked on the basis of an activity score that integrates three aspects of the SPR data (affinity, residence time, and extent of binding) with antiretroviral activity. The top scoring compounds bound tightly to Nef by SPR, with KD values in the low nM to pM range, and displayed very slow dissociation from their Nef target. These analogs also suppressed HIV-1 replication in donor peripheral blood mononuclear cells (PBMCs) with IC50 values in the 1-10 nM range without cytotoxicity, inhibited Nef-mediated IL-2-inducible tyrosine kinase (Itk) and hematopoietic cell kinase (Hck) activation, and rescued MHC-I downregulation in a Nef-transfected T cell line. The development of Nef inhibitors based on the structure-activity relationships defined here has promise as a new approach to antiretroviral therapy that includes a path to eradication of HIV-infected cells via the adaptive immune response.
Collapse
Affiliation(s)
- Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Colin M. Tice
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Lori Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Wing Fai Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Marianne Carlsen
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jay E. Wrobel
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
26
|
Vande Catsyne CA, Sayyed SA, Molina-Ortiz P, Moes B, Communi D, Muller J, Heusschen R, Caers J, Azzi A, Erneux C, Schurmans S. Altered chondrocyte differentiation, matrix mineralization and MEK-Erk1/2 signaling in an INPPL1 catalytic knock-out mouse model of opsismodysplasia. Adv Biol Regul 2019; 76:100651. [PMID: 31519471 DOI: 10.1016/j.jbior.2019.100651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
Abstract
Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2Δ/Δ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2Δ/Δ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition. Altogether, our results indicate that Ship2Δ/Δ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.
Collapse
Affiliation(s)
- Charles-Andrew Vande Catsyne
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Sufyan Ali Sayyed
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Bastien Moes
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - David Communi
- IRIBHM, Bat. C, Campus Hôpital Erasme, Université Libre de Bruxelles, route de Lennik 808, 1070, Bruxelles, Belgium
| | - Joséphine Muller
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Inflammation, Infection & Immunity, GIGA-B34, CHU Sart Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Abdelhalim Azzi
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Christophe Erneux
- IRIBHM, Bat. C, Campus Hôpital Erasme, Université Libre de Bruxelles, route de Lennik 808, 1070, Bruxelles, Belgium
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, GIGA-B34, CHU Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
27
|
Xu H, Jesson MI, Seneviratne UI, Lin TH, Sharif MN, Xue L, Nguyen C, Everley RA, Trujillo JI, Johnson DS, Point GR, Thorarensen A, Kilty I, Telliez JB. PF-06651600, a Dual JAK3/TEC Family Kinase Inhibitor. ACS Chem Biol 2019; 14:1235-1242. [PMID: 31082193 DOI: 10.1021/acschembio.9b00188] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PF-06651600 was developed as an irreversible inhibitor of JAK3 with selectivity over the other three JAK isoforms. A high level of selectivity toward JAK3 is achieved by the covalent interaction of PF-06651600 with a unique cysteine residue (Cys-909) in the catalytic domain of JAK3, which is replaced by a serine residue in the other JAK isoforms. Importantly, 10 other kinases in the kinome have a cysteine at the equivalent position of Cys-909 in JAK3. Five of those kinases belong to the TEC kinase family including BTK, BMX, ITK, RLK, and TEC and are also inhibited by PF-06651600. Preclinical data demonstrate that inhibition of the cytolytic function of CD8+ T cells and NK cells by PF-06651600 is driven by the inhibition of TEC kinases. On the basis of the underlying pathophysiology of inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, alopecia areata, and vitiligo, the dual activity of PF-06651600 toward JAK3 and the TEC kinase family may provide a beneficial inhibitory profile for therapeutic intervention.
Collapse
Affiliation(s)
- Hua Xu
- Medicine Design, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Michael I. Jesson
- Drug Safety R&D, Pfizer Worldwide R&D, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Uthpala I. Seneviratne
- Medicine Design, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Tsung H. Lin
- Inflammation and Immunology, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - M. Nusrat Sharif
- Inflammation and Immunology, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Liang Xue
- Integrative Biology, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Chuong Nguyen
- Medicine Design, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert A. Everley
- Medicine Design, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John I. Trujillo
- Medicine Design, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Douglas S. Johnson
- Medicine Design, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Gary R. Point
- Drug Safety R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Atli Thorarensen
- Medicine Design, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Iain Kilty
- Inflammation and Immunology, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Jean-Baptiste Telliez
- Inflammation and Immunology, Pfizer Worldwide R&D, 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Kanellopoulou C, George AB, Masutani E, Cannons JL, Ravell JC, Yamamoto TN, Smelkinson MG, Jiang PD, Matsuda-Lennikov M, Reilley J, Handon R, Lee PH, Miller JR, Restifo NP, Zheng L, Schwartzberg PL, Young M, Lenardo MJ. Mg 2+ regulation of kinase signaling and immune function. J Exp Med 2019; 216:1828-1842. [PMID: 31196981 PMCID: PMC6683994 DOI: 10.1084/jem.20181970] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
A Mg2+-dependent mechanism regulates proximal T cell receptor signaling by modulating ITK activity through a low-affinity Mg2+ binding pocket in the catalytic domain. Dietary Mg2+ deprivation in mice impairs T cell activation and T cell–mediated immunity against influenza. Mg2+ is required at micromolar concentrations as a cofactor for ATP, enzymatic reactions, and other biological processes. We show that decreased extracellular Mg2+ reduced intracellular Mg2+ levels and impaired the Ca2+ flux, activation marker up-regulation, and proliferation after T cell receptor (TCR) stimulation. Reduced Mg2+ specifically impairs TCR signal transduction by IL-2–inducible T cell kinase (ITK) due to a requirement for a regulatory Mg2+ in the catalytic pocket of ITK. We also show that altered catalytic efficiency by millimolar changes in free basal Mg2+ is an unrecognized but conserved feature of other serine/threonine and tyrosine kinases, suggesting a Mg2+ regulatory paradigm of kinase function. Finally, a reduced serum Mg2+ concentration in mice causes an impaired CD8+ T cell response to influenza A virus infection, reduces T cell activation, and exacerbates morbidity. Thus, Mg2+ directly regulates the active site of specific kinases during T cell responses, and maintaining a high serum Mg2+ concentration is important for antiviral immunity in otherwise healthy animals.
Collapse
Affiliation(s)
- Chryssa Kanellopoulou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alex B George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Evan Masutani
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Medical Scientist Training Program, School of Medicine, University of California, San Diego, San Diego, CA
| | - Jennifer L Cannons
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tori N Yamamoto
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Margery G Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mami Matsuda-Lennikov
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie Reilley
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD
| | - Robin Handon
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD
| | - Ping-Hsien Lee
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Pamela L Schwartzberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD
| | - Matthew Young
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD .,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Mousavi SR, Ahmadi A, Jamalkandi SA, Salimian J. Involvement of microRNAs in physiological and pathological processes in asthma. J Cell Physiol 2019; 234:21547-21559. [PMID: 31099080 DOI: 10.1002/jcp.28781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Asthma is the most common respiratory disease accompanied by lung inflammatory disorders. The main symptoms are airway obstruction, chronic inflammation due to mast cell and eosinophil activity, and the disturbance of immune responses mostly mediated by the Th2 response. Genetic background and environmental factors also contribute to the pathogenesis of asthma. Today, microRNAs (miRNAs) are known as remarkable regulators of gene expression. As a small group of noncoding single-strand RNAs, mature miRNAs (~21 nucleotides) modulate the gene expression by targeting complement RNAs at both transcriptional and posttranscriptional levels. The role of miRNAs in the pathogenesis of many diseases such as allergies, asthma, and autoimmunity has been vastly studied. This review provides a thorough research update on the role of miRNAs in the pathogenesis of asthma and their probable role as diagnostic and/or therapeutic biomarkers.
Collapse
Affiliation(s)
- Seyed Reza Mousavi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). Eur J Med Chem 2019; 173:167-183. [PMID: 30999237 DOI: 10.1016/j.ejmech.2019.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/23/2019] [Indexed: 01/30/2023]
Abstract
Interleukin-2-inducible T-cell kinase (Itk) plays an important role in multiple signal transduction pathways in T and mast cells, and is a potential drug target for treating inflammatory diseases, autoimmune diseases, and T cell leukemia/lymphoma. Herein, we describe the discovery of a series of covalent Itk inhibitors based on the 7H-pyrrolo[2,3-d]pyrimidine scaffold. Placing an appropriate substitution group at a hydration site of the ATP binding pocket of Itk and using a saturated heterocyclic ring as a linker to the reactive group were crucial for selectivity. The optimized compound 9 showed potent activity against Itk, excellent selectivity for Itk over Btk and other structurally related kinases, inhibition of phospholipase C-γ1 (PLC-γ1) phosphorylation in cells, and anti-proliferative effects against multiple T leukemia/lymphoma cell lines. Compound 9 can serve as a valuable compound for further determination of functions of Itk.
Collapse
|
31
|
Interleukin-2-inducible T-cell kinase inhibitors modify functional polarization of human peripheral T-cell lymphoma cells. Blood Adv 2019; 3:705-710. [PMID: 30814054 DOI: 10.1182/bloodadvances.2018027821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
Key Points
ITK inhibitors perturb functional changes due to polarizing culture conditions in normal human tonsil CD4+ T cells. Primary human PTCL cells alter their functional properties in culture and ITK inhibitors modify these changes.
Collapse
|
32
|
Comparison of interleukin-2-inducible kinase (ITK) inhibitors and potential for combination therapies for T-cell lymphoma. Sci Rep 2018; 8:14216. [PMID: 30242208 PMCID: PMC6154993 DOI: 10.1038/s41598-018-32634-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with peripheral T-cell lymphomas generally have poor clinical outcomes with conventional chemotherapy. Recent advances have demonstrated that a large subgroup of PTCL are derived from follicular helper (Tfh) T-cells. These cases show a characteristic pattern of gene expression, which includes high-level protein expression of interleukin-2-inducible kinase (ITK). ITK is a member of the TEC family of kinases and normally has essential functions in regulating T-cell receptor signalling and T-cell differentiation. Here we report a side-by-side comparison of four ITK inhibitors. We investigate effects on apoptosis, phosphorylation of signaling molecules, calcium flux and migration. In line with a specific mechanism of action ONO7790500 and BMS509744 did not inhibit MEK1/2 or AKT phosphorylation although other ITK inhibitors, ibrutinib and PF-06465469, did have this effect. Specific ITKi had modest effects on apoptosis alone but there was definite synergy with doxorubicin, pictilisib (PI3Ki) and idelalisib (PI3Kδi). ITKi repressed migration of Jurkat cells caused by CXCL12 and the CXCR4 antagonist, plerixafor enhanced this effect. Overall ITKi may have several mechanisms of action that will be therapeutically useful in PTCL including reduction in survival and perturbation of trafficking.
Collapse
|
33
|
Maurice D, Costello P, Sargent M, Treisman R. ERK Signaling Controls Innate-like CD8 + T Cell Differentiation via the ELK4 (SAP-1) and ELK1 Transcription Factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1681-1691. [PMID: 30068599 PMCID: PMC6121213 DOI: 10.4049/jimmunol.1800704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/07/2018] [Indexed: 11/19/2022]
Abstract
In mouse thymocyte development, signaling by the TCR through the ERK pathway is required for positive selection of conventional naive T cells. The Ets transcription factor ELK4 (SAP-1), an ERK-regulated cofactor of the SRF transcription factor, plays an important role in positive selection by activating immediate-early genes such as the Egr transcription factor family. The role of ELK4-SRF signaling in development of other T cell types dependent on ERK signaling has been unclear. In this article, we show that ELK4, and its close relative ELK1, act cell autonomously in the thymus to control the generation of innate-like αβ CD8+ T cells with memory-like characteristics. Mice lacking ELK4 and ELK1 develop increased numbers of innate-like αβ CD8+ T cells, which populate the periphery. These cells develop cell autonomously rather than through expansion of PLZF+ thymocytes and concomitantly increased IL-4 signaling. Their development is associated with reduced TCR-mediated activation of ELK4-SRF target genes and can be partially suppressed by overexpression of the ELK4-SRF target gene EGR2. Consistent with this, partial inhibition of ERK signaling in peripheral CD8+T cells promotes the generation of cells with innate-like characteristics. These data establish that low-level ERK signaling through ELK4 (and ELK1) promotes innate-like αβ CD8+ T cell differentiation, tuning conventional versus innate-like development.
Collapse
Affiliation(s)
- Diane Maurice
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Patrick Costello
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Mathew Sargent
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
34
|
Ghosh S, Drexler I, Bhatia S, Adler H, Gennery AR, Borkhardt A. Interleukin-2-Inducible T-Cell Kinase Deficiency-New Patients, New Insight? Front Immunol 2018; 9:979. [PMID: 29867957 PMCID: PMC5951928 DOI: 10.3389/fimmu.2018.00979] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Patients with primary immunodeficiency can be prone to severe Epstein–Barr virus (EBV) associated immune dysregulation. Individuals with mutations in the interleukin-2-inducible T-cell kinase (ITK) gene experience Hodgkin and non-Hodgkin lymphoma, EBV lymphoproliferative disease, hemophagocytic lymphohistiocytosis, and dysgammaglobulinemia. In this review, we give an update on further reported patients. We believe that current clinical data advocate early definitive treatment by hematopoietic stem cell transplantation, as transplant outcome in primary immunodeficiency disorders in general has gradually improved in recent years. Furthermore, we summarize experimental data in the murine model to provide further insight of pathophysiology in ITK deficiency.
Collapse
Affiliation(s)
- Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Comprehensive Pneumology Center, Helmholtz Zentrum München—Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany,University Hospital Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Lung Research (DZL), Giessen, Germany
| | - Andrew R Gennery
- Paediatric Immunology and HSCT, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
36
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
37
|
IL-2 Inducible Kinase ITK is Critical for HIV-1 Infection of Jurkat T-cells. Sci Rep 2018; 8:3217. [PMID: 29453458 PMCID: PMC5816632 DOI: 10.1038/s41598-018-21344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Successful replication of Human immunodeficiency virus (HIV)-1 depends on the expression of various cellular host factors, such as the interleukin-2 inducible T-cell kinase (ITK), a member of the protein family of TEC-tyrosine kinases. ITK is selectively expressed in T-cells and coordinates signaling pathways downstream of the T-cell receptor and chemokine receptors, including PLC-1 activation, Ca2+-release, transcription factor mobilization, and actin rearrangements. The exact role of ITK during HIV-1 infection is still unknown. We analyzed the function of ITK during HIV-1 replication and showed that attachment, fusion of virions with the cell membrane and entry into Jurkat T-cells was inhibited when ITK was knocked down. In contrast, reverse transcription and provirus expression were not affected by ITK deficiency. Inhibited ITK expression did not affect the CXCR4 receptor on the cell surface, whereas CD4 and LFA-1 integrin levels were slightly enhanced in ITK knockdown cells and heparan sulfate (HS) expression was completely abolished in ITK depleted T-cells. However, neither HS expression nor other attachment factors could explain the impaired HIV-1 binding to ITK-deficient cells, which suggests that a more complex cellular process is influenced by ITK or that not yet discovered molecules contribute to restriction of HIV-1 binding and entry.
Collapse
|
38
|
Arjunaraja S, Angelus P, Su HC, Snow AL. Impaired Control of Epstein-Barr Virus Infection in B-Cell Expansion with NF-κB and T-Cell Anergy Disease. Front Immunol 2018; 9:198. [PMID: 29472930 PMCID: PMC5809398 DOI: 10.3389/fimmu.2018.00198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
B-cell expansion with NF-κB and T-cell anergy (BENTA) disease is a B-cell-specific lymphoproliferative disorder caused by germline gain-of-function mutations in CARD11. These mutations force the CARD11 scaffold into an open conformation capable of stimulating constitutive NF-κB activation in lymphocytes, without requiring antigen receptor engagement. Many BENTA patients also suffer from recurrent infections, with 7 out of 16 patients exhibiting chronic, low-grade Epstein–Barr virus (EBV) viremia. In this mini-review, we discuss EBV infection in the pathogenesis and clinical management of BENTA disease, and speculate on mechanisms that could explain inadequate control of viral infection in BENTA patients.
Collapse
Affiliation(s)
- Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Pamela Angelus
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD, United States
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
39
|
ITK and RLK Inhibitor PRN694 Improves Skin Disease in Two Mouse Models of Psoriasis. J Invest Dermatol 2017; 138:864-871. [PMID: 29129599 DOI: 10.1016/j.jid.2017.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
The chronic and highly prevalent skin disorder psoriasis vulgaris is characterized by a hyperproliferative epidermis and aberrant immune activity. Many studies have highlighted the role of differentiated T lymphocytes in psoriasis progression. Several biologics are currently available that target proinflammatory cytokines produced by T lymphocytes, but the need for improved therapies persists. The small molecule PRN694 covalently binds ITK and RLK, two Tec kinases activated downstream of T-lymphocyte activation, both of which are up-regulated in psoriatic skin. These Tec kinases are involved in signaling cascades mediating T-lymphocyte proliferation, differentiation, and migration and proinflammatory cytokine production. In vitro analysis showed that PRN694 effectively inhibited IL-17A production from murine T helper type 17-differentiated T lymphocytes. Additionally, PRN694 effectively reduced the psoriasis-like phenotype severity and reduced epidermal proliferation and thickness in both the Rac1V12 and imiquimod mouse models of psoriasis. PRN694 also inhibited CD3+ T-cell and γδ T-cell infiltration into skin regions. Inhibition of ITK and RLK attenuated psoriasis-associated signaling pathways, indicating that PRN694 is an effective psoriasis therapeutic.
Collapse
|
40
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
41
|
Younes A, Ansell S, Fowler N, Wilson W, de Vos S, Seymour J, Advani R, Forero A, Morschhauser F, Kersten MJ, Tobinai K, Zinzani PL, Zucca E, Abramson J, Vose J. The landscape of new drugs in lymphoma. Nat Rev Clin Oncol 2017; 14:335-346. [PMID: 28031560 PMCID: PMC5611863 DOI: 10.1038/nrclinonc.2016.205] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The landscape of drugs for the treatment of lymphoma has become crowded in light of the plethora of new agents, necessitating the efficient prioritization of drugs for expedited development. The number of drugs available, and the fact that many can be given for an extended period of time, has resulted in the emergence of new challenges; these include determining the optimal duration of therapy, and the need to balance costs, benefits, and the risk of late-onset toxicities. Moreover, with the increase in the number of available investigational drugs, the number of possible combinations is becoming overwhelming, which necessitates prioritization plans for the selective development of novel combination regimens. In this Review, we describe the most-promising agents in clinical development for the treatment of lymphoma, and provide expert opinion on new strategies that might enable more streamlined drug development. We also address new approaches for patient selection and for incorporating new end points into clinical trials.
Collapse
Affiliation(s)
- Anas Younes
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | - Stephen Ansell
- Division of Haematology, Mayo Clinic, 200 1st St Sw, Rochester, Minnesota 55905, USA
| | - Nathan Fowler
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Wyndham Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Sven de Vos
- Department of Medicine, Ronald Reagan UCLA Medical Center, Santa Monica, California 90404, USA
| | - John Seymour
- Department of Haematology, Peter MacCallum Cancer Centre, A'Beckett Street, East Melbourne, Victoria 8006, Australia
| | - Ranjana Advani
- Division of Oncology, Stanford University Cancer Center, 875 Blake Wilbur Drive, Stanford, California 94305, USA
| | - Andres Forero
- Division of Haematology and Oncology, University of Alabama School of Medicine, 1720 2nd Avenue South, NP2540, Birmingham, Alabama 35294-3300, USA
| | | | - Marie Jose Kersten
- Department of Haematology, Academic Medical Center and LYMMCARE, Amsterdam, Netherlands
| | - Kensei Tobinai
- Haematology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Pier Luigi Zinzani
- Institute of Haematology "L. e A. Seràgnoli," University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ospedale San Giovanni, 6500 Bellinzona, Switzerland
| | - Jeremy Abramson
- Massachusetts General Hospital Cancer Center, Yawkey Center for Outpatient Care, Mailstop: Yawkey 9A, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | - Julie Vose
- UNMC Oncology/Haematology Division, 987680 Nebraska Medical Center, Omaha, Nebraska 681980-7680, USA
| |
Collapse
|
42
|
Tangye SG, Palendira U, Edwards ESJ. Human immunity against EBV-lessons from the clinic. J Exp Med 2017; 214:269-283. [PMID: 28108590 PMCID: PMC5294862 DOI: 10.1084/jem.20161846] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
The mammalian immune system has evolved over many millennia to be best equipped to protect the host from pathogen infection. In many cases, host and pathogen have coevolved, each acquiring sophisticated ways of inducing or protecting from disease. Epstein-Barr virus (EBV) is a human herpes virus that infects >90% of individuals. Despite its ubiquity, infection by EBV is often subclinical; this invariably reflects the necessity of the virus to preserve its host, balanced with sophisticated host immune mechanisms that maintain viral latency. However, EBV infection can result in various, and often fatal, clinical sequelae, including fulminant infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, organomegaly, and/or malignancy. Such clinical outcomes are typically observed in immunosuppressed individuals, with the most extreme cases being Mendelian primary immunodeficiencies (PIDs). Although these conditions are rare, they have provided critical insight into the cellular, biochemical, and molecular requirements for robust and long-lasting immunity against EBV infection. Here, we review the virology of EBV, mechanisms underlying disease pathogenesis in PIDs, and developments in immune cell–mediated therapy to treat disorders associated with or induced by EBV infection.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia .,St. Vincent's Clinical School, University of New South Wales, Sydney 2052, NSW, Australia
| | | | - Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
43
|
Ibrutinib efficacy and tolerability in patients with relapsed chronic lymphocytic leukemia following allogeneic HCT. Blood 2016; 128:2899-2908. [PMID: 27802969 DOI: 10.1182/blood-2016-06-715284] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/15/2016] [Indexed: 02/07/2023] Open
Abstract
Ibrutinib, a potent and irreversible small-molecule inhibitor of both Bruton's tyrosine kinase and interleukin-2 inducible kinase (ITK), has been used to treat relapsed/refractory chronic lymphocytic leukemia (CLL) with prolongation of progression-free and overall survival. Here, we present 27 patients with relapsed CLL following allogeneic hematopoietic cell transplant (HCT) who subsequently received ibrutinib salvage therapy. Sixteen of these patients were part of multi-institutional clinical trials and achieved an overall response rate of 87.5%. An additional 11 patients were treated at Stanford University following US Food and Drug Administration approval of ibrutinib; 7 (64%) achieved a complete response, and 3 (27%) achieved a partial response. Of the 9 patients treated at Stanford who had mixed chimerism-associated CLL relapse, 4 (44%) converted to full donor chimerism following ibrutinib initiation, in association with disease response. Four of 11 (36%) patients evaluated by ClonoSeq achieved minimal residual disease negativity with CLL <1/10 000 white blood cells, which persisted even after ibrutinib was discontinued, in 1 case even after 26 months. None of the 27 patients developed graft-versus-host-disease (GVHD) following ibrutinib initiation. We postulate that ibrutinib augments the graft-versus-leukemia (GVL) benefit through a T-cell-mediated effect, most likely due to ITK inhibition. To investigate the immune modulatory effects of ibrutinib, we completed comprehensive immune phenotype characterization of peripheral B and T cells from treated patients. Our results show that ibrutinib selectively targets pre-germinal B cells and depletes Th2 helper cells. Furthermore, these effects persisted after drug discontinuation. In total, our results provide evidence that ibrutinib effectively augments GVL without causing GVHD.
Collapse
|
44
|
Xu WD, Su LC, Xie QB, Zhao Y, Liu Y. Interleukin-2-inducible T-cell kinase expression and relation to disease severity in systemic lupus erythematosus. Clin Chim Acta 2016; 463:11-17. [PMID: 27729219 DOI: 10.1016/j.cca.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 10/07/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Interleukin-2 inducible T-cell kinase (ITK) is expressed in T cells, and plays an important role in autoimmune inflammatory diseases through regulating the balance of Th17/Treg. However, its role in human systemic lupus erythematosus (SLE) remains unclear. The present study aims to measure the activation status of ITK in T cells from SLE patients and healthy controls, and identify its possible correlation to disease severity. We also discuss the serum levels of Th17, Treg related cytokines including IL-17, IL-21, IL-22, IL-10, analyzing correlation between ITK and Th17/Treg related cytokines. METHODS Peripheral blood samples were drawn from 42 patients with SLE and 43 healthy blood donors, and the phosphorylation of ITK protein was studied in T cells using flow cytometry. In addition, serum levels of Th17/Treg related cytokines were studied with enzyme-linked immunosorbent assay (ELISA). RESULTS Percentages of CD4+pITK+ T cells, CD8+pITK+ T cells were higher in SLE patients compared with controls, and were positively related to disease activity, some clinical and laboratory parameters. Percentages of CD4+pITK+ T cells, CD8+pITK+ T cells were more prominent in active SLE patients compared with less active patients. Serum levels of Th17 and Treg related cytokines were higher in patients compared with controls. CD4+pITK+ T cells were related to levels of IL-17, IL-21. CONCLUSION These data indicate that increased ITK expression could act as a disease activity marker and as a risk factor for involvement in SLE, but it still needs further study to confirm.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, PR China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, PR China
| | - Qi-Bing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, PR China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, PR China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
45
|
Pachulec E, Neitzke-Montinelli V, Viola JPB. NFAT2 Regulates Generation of Innate-Like CD8 + T Lymphocytes and CD8 + T Lymphocytes Responses. Front Immunol 2016; 7:411. [PMID: 27766099 PMCID: PMC5052263 DOI: 10.3389/fimmu.2016.00411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) 2 null mutant mice die in utero of cardiac failure, precluding analysis of the role of NFAT2 in lymphocyte responses. Only the NFAT2-/-/Rag-1-/- chimeric mice model gave insight into the role of NFAT2 transcription factor in T lymphocyte development, activation, and differentiation. As reports are mainly focused on the role of NFAT2 in CD4+ T lymphocytes activation and differentiation, we decided to investigate NFAT2's impact on CD8+ T lymphocyte responses. We report that NFAT2 is phosphorylated and inactive in the cytoplasm of naive CD8+ T cells, and upon TCR stimulation, it is dephosphorylated and translocated into the nucleus. To study the role of NFAT2 in CD8+ T responses, we employed NFAT2fl/flCD4-Cre mice with NFAT2 deletion specifically in T cells. Interestingly, the absence of NFAT2 in T cells resulted in increased percentage of non-conventional innate-like CD8+ T cells. These cells were CD122+, rapid producer of interferon gamma (IFN-γ) and had characteristics of conventional memory CD8+ T cells. We also observed an expansion of PLZF+ expressing CD3+ thymocyte population in the absence of NFAT2 and increased IL-4 production. Furthermore, we found that CD8+ T lymphocytes deficient in NFAT2 had reduced activation, proliferation, and IFN-γ and IL-2 production at suboptimal TCR strength. NFAT2 absence did not significantly influence differentiation of CD8+ T cells into cytotoxic effector cells but reduced their IFN-γ production. This work documents NFAT2 as a negative regulator of innate-like CD8+ T cells development. NFAT2 is required for complete CD8+ T cell responses at suboptimal TCR stimulation and regulates IFN-γ production by cytotoxic CD8+ T cells in vitro.
Collapse
Affiliation(s)
- Emilia Pachulec
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | | | - João P B Viola
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
46
|
Norman P. Investigational Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2016; 25:891-9. [DOI: 10.1080/13543784.2016.1182499] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Smith GA, Uchida K, Weiss A, Taunton J. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat Chem Biol 2016; 12:373-9. [PMID: 27018889 PMCID: PMC4837022 DOI: 10.1038/nchembio.2056] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
Abstract
To drive lymphocyte proliferation and differentiation, common γ-chain (γc) cytokine receptors require hours to days of sustained stimulation. JAK1 and JAK3 kinases are found together in all γc-receptor complexes, but how their respective catalytic activities contribute to signaling over time is not known. Here we dissect the temporal requirements for JAK3 kinase activity with a selective covalent inhibitor (JAK3i). By monitoring phosphorylation of the transcription factor STAT5 over 20 h in CD4(+) T cells stimulated with interleukin 2 (IL-2), we document a second wave of signaling that is much more sensitive to JAK3i than the first wave. Selective inhibition of this second wave is sufficient to block cyclin expression and entry to S phase. An inhibitor-resistant JAK3 mutant (C905S) rescued all effects of JAK3i in isolated T cells and in mice. Our chemical genetic toolkit elucidates a biphasic requirement for JAK3 kinase activity in IL-2-driven T cell proliferation and will find broad utility in studies of γc-receptor signaling.
Collapse
Affiliation(s)
- Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.,Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kenji Uchida
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
48
|
Young WB, Barbosa J, Blomgren P, Bremer MC, Crawford JJ, Dambach D, Eigenbrot C, Gallion S, Johnson AR, Kropf JE, Lee SH, Liu L, Lubach JW, Macaluso J, Maciejewski P, Mitchell SA, Ortwine DF, Di Paolo J, Reif K, Scheerens H, Schmitt A, Wang X, Wong H, Xiong JM, Xu J, Yu C, Zhao Z, Currie KS. Discovery of highly potent and selective Bruton’s tyrosine kinase inhibitors: Pyridazinone analogs with improved metabolic stability. Bioorg Med Chem Lett 2016; 26:575-579. [DOI: 10.1016/j.bmcl.2015.11.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022]
|
49
|
Sun Y, Peng I, Webster JD, Suto E, Lesch J, Wu X, Senger K, Francis G, Barrett K, Collier JL, Burch JD, Zhou M, Chen Y, Chan C, Eastham-Anderson J, Ngu H, Li O, Staton T, Havnar C, Jaochico A, Jackman J, Jeet S, Riol-Blanco L, Wu LC, Choy DF, Arron JR, McKenzie BS, Ghilardi N, Ismaili MHA, Pei Z, DeVoss J, Austin CD, Lee WP, Zarrin AA. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci Signal 2015; 8:ra122. [PMID: 26628680 DOI: 10.1126/scisignal.aab0949] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - George Francis
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jenna L Collier
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason D Burch
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Hai Ngu
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Olga Li
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tracy Staton
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charles Havnar
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Janet Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Immunology, Tissue Growth, and Repair Diagnostics Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brent S McKenzie
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Zhonghua Pei
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Affiliation(s)
- Paul C Driscoll
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| |
Collapse
|