1
|
Muckenhuber M, Mengrelis K, Weijler AM, Steiner R, Kainz V, Buresch M, Regele H, Derdak S, Kubetz A, Wekerle T. IL-6 inhibition prevents costimulation blockade-resistant allograft rejection in T cell-depleted recipients by promoting intragraft immune regulation in mice. Nat Commun 2024; 15:4309. [PMID: 38830846 PMCID: PMC11148062 DOI: 10.1038/s41467-024-48574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marlena Buresch
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Miura S, Habibabady ZA, Pollok F, Ma M, Rosales IA, Kinoshita K, Pratts S, McGrath G, Chaban R, Fogarty S, Meibohm B, Daugherty B, Lederman S, Pierson RN. TNX-1500, a crystallizable fragment-modified anti-CD154 antibody, prolongs nonhuman primate cardiac allograft survival. Am J Transplant 2023; 23:1182-1193. [PMID: 37030662 PMCID: PMC10524282 DOI: 10.1016/j.ajt.2023.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Blockade of the CD40/CD154 T cell costimulation pathway is a promising approach to supplement or replace current clinical immunosuppression in solid organ transplantation. We evaluated the tolerability and activity of a novel humanized anti-CD154 monoclonal antibody, TNX-1500 (TNX), in a nonhuman primate heterotopic cardiac allogeneic (allo) transplant model. TNX-1500 contains a rupluzimab fragment antigen-binding region and an immunoglobin G4 crystallizable fragment region engineered to reduce binding to the crystallizable fragment gamma receptor IIa and associated risks of thrombosis. Recipients were treated for 6 months with standard-dose TNX (sTNX) monotherapy, low-dose TNX monotherapy (loTNX), or loTNX with mycophenolate mofetil (MMF) (loTNX + MMF). Results were compared with historical data using chimeric humanized 5c8 monotherapy dosed as for loTNX but discontinued at 3 months. Median survival time was similar for humanized 5c8 and both loTNX groups, but significantly longer with sTNX (>265 days) than with loTNX (99 days) or loTNX + MMF (88 days) (P < 0.05 for both comparisons against sTNX). Standard-dose TNX prevented antidonor alloantibody elaboration, inhibited chronic rejection, and was associated with a significantly reduced effector T cells/regulatory T cells ratio relative to loTNX with MMF. No thrombotic complications were observed. This study demonstrated that TNX was well tolerated, prolongs allograft survival, and prevents alloantibody production and cardiac allograft vasculopathy in a stringent preclinical nonhuman primate heart allotransplant model.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Cardiovascular Surgery, Sapporo Medical University, Sapporo, Japan; Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan.
| | - Zahra A Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Madelyn Ma
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Bernd Meibohm
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
5
|
Velazquez-Soto H, Real F, Jiménez-Martínez MC. Historical evolution, overview, and therapeutic manipulation of co-stimulatory molecules. World J Immunol 2022; 12:1-8. [DOI: 10.5411/wji.v12.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City 06800, Mexico
| | - Fernanda Real
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City 06800, Mexico
| | - Maria C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana”, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
6
|
Petrus-Reurer S, Romano M, Howlett S, Jones JL, Lombardi G, Saeb-Parsy K. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol 2021; 4:798. [PMID: 34172826 PMCID: PMC8233383 DOI: 10.1038/s42003-021-02237-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The central goal of regenerative medicine is to replace damaged or diseased tissue with cells that integrate and function optimally. The capacity of pluripotent stem cells to produce unlimited numbers of differentiated cells is of considerable therapeutic interest, with several clinical trials underway. However, the host immune response represents an important barrier to clinical translation. Here we describe the role of the host innate and adaptive immune responses as triggers of allogeneic graft rejection. We discuss how the immune response is determined by the cellular therapy. Additionally, we describe the range of available in vitro and in vivo experimental approaches to examine the immunogenicity of cellular therapies, and finally we review potential strategies to ameliorate immune rejection. In conclusion, we advocate establishment of platforms that bring together the multidisciplinary expertise and infrastructure necessary to comprehensively investigate the immunogenicity of cellular therapies to ensure their clinical safety and efficacy.
Collapse
Affiliation(s)
- Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Louise Jones
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Crohn's Disease Increases the Mesothelial Properties of Adipocyte Progenitors in the Creeping Fat. Int J Mol Sci 2021; 22:ijms22084292. [PMID: 33924264 PMCID: PMC8074767 DOI: 10.3390/ijms22084292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the interplay between human adipose tissue and the immune system is limited. The mesothelium, an immunologically active structure, emerged as a source of visceral adipose tissue. After investigating the mesothelial properties of human visceral and subcutaneous adipose tissue and their progenitors, we explored whether the dysfunctional obese and Crohn's disease environments influence the mesothelial/mesenchymal properties of their adipocyte precursors, as well as their ability to mount an immune response. Using a tandem transcriptomic/proteomic approach, we evaluated the mesothelial and mesenchymal expression profiles in adipose tissue, both in subjects covering a wide range of body-mass indexes and in Crohn's disease patients. We also isolated adipose tissue precursors (adipose-derived stem cells, ASCs) to assess their mesothelial/mesenchymal properties, as well as their antigen-presenting features. Human visceral tissue presented a mesothelial phenotype not detected in the subcutaneous fat. Only ASCs from mesenteric adipose tissue, named creeping fat, had a significantly higher expression of the hallmark mesothelial genes mesothelin (MSLN) and Wilms' tumor suppressor gene 1 (WT1), supporting a mesothelial nature of these cells. Both lean and Crohn's disease visceral ASCs expressed equivalent surface percentages of the antigen-presenting molecules human leucocyte antigen-DR isotype (HLA-DR) and CD86. However, lean-derived ASCs were predominantly HLA-DR dim, whereas in Crohn's disease, the HLA-DR bright subpopulation was increased 3.2-fold. Importantly, the mesothelial-enriched Crohn's disease precursors activated CD4+ T-lymphocytes. Our study evidences a mesothelial signature in the creeping fat of Crohn's disease patients and its progenitor cells, the latter being able to present antigens and orchestrate an immune response.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Human islet transplantation has proven to be a highly effective treatment for patients with labile type 1 diabetes mellitus, which can free patients from daily glucose monitoring and insulin injections. However, the shortage of islet donors limits its' broad application. Porcine islet xenotransplantation presents a solution to the donor shortage and recent advances in genetic modification and immunosuppressive regimens provide renewed enthusiasm for the potential of this treatment. RECENT FINDINGS Advances in genetic editing technology are leading to multigene modified porcine islet donors with alterations in expression of known xenoantigens, modifications of their complement and coagulation systems, and modifications to gain improved immunological compatibility. Recent NHP-based trials of costimulation blockade using CD154 blockade show promising improvements in islet survival, whereas results targeting CD40 are less consistent. Furthermore, trials using IL-6 receptor antagonism have yet to demonstrate improvement in glucose control and suffer from poor graft revascularization. SUMMARY This review will detail the current status of islet xenotransplantation as a potential treatment for type I diabetes mellitus, focusing on recent advances in porcine xenogeneic islet production, assessment in nonhuman primate preclinical models, the outcome of human clinical trials and review barriers to translation of xenoislets to the clinic.
Collapse
|
9
|
Parsons RF, Larsen CP, Pearson TC, Badell IR. Belatacept and CD28 Costimulation Blockade: Preventing and Reducing Alloantibodies over the Long Term. CURRENT TRANSPLANTATION REPORTS 2019; 6:277-284. [PMID: 32158639 PMCID: PMC7063534 DOI: 10.1007/s40472-019-00260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Highlight developments in T and B cell biology that are helping elucidate the mechanisms underlying CD28 pathway blockade-mediated inhibition of alloantibodies in transplantation, and discuss recent clinical observations on the impact of belatacept on de novo and established HLA antibodies. Recent Findings The identification of T follicular helper cells as the CD4+ T cell subset required for optimal humoral immunity, along with newly identified roles for CD28 and the B7 molecules on B cell lineage cells has begun to pave the way for improved understanding and discovery of the mechanisms of CD28 costimulation blockade-mediated antibody inhibition. There has been resurgent clinical interest in the ability of belatacept to attenuate alloantibody responses. New reports have continued to document its ability to prevent de novo antibody responses, and more recent studies have surfaced exploring its potential to control nascent or pre-existing HLA antibodies. Summary A growing understanding of the mechanisms of anti-CD28-mediated alloantibody inhibition and continued clinical successes will guide the clinical optimization of belatacept and next generation CD28 blockers to prevent and reduce alloantibodies over the long-term.
Collapse
|
10
|
Zhang Y, Shen S, Zhao G, Xu CF, Zhang HB, Luo YL, Cao ZT, Shi J, Zhao ZB, Lian ZX, Wang J. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials 2019; 217:119302. [PMID: 31271858 DOI: 10.1016/j.biomaterials.2019.119302] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Organ transplantation is the only effective method to treat end-stage organ failure. However, it is continuously plagued by immune rejection, which is mostly caused by T cell-mediated reactions. Dendritic cells (DCs) are professional antigen-presenting cells, and blocking the costimulatory signaling molecule CD40 in DCs inhibits T cell activation and induces transplant tolerance. In this study, to relieve graft rejection, Cas9 mRNA (mCas9) and a guide RNA targeting the costimulatory molecule CD40 (gCD40) were prepared and encapsulated into poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-b-PLGA)-based cationic lipid-assisted nanoparticles (CLAN), denoted CLANmCas9/gCD40. CLAN effectively delivered mCas9/gCD40 into DCs and disrupted CD40 in DCs at the genomic level both in vitro and in vivo. After intravenous injection into an acute mouse skin transplant model, CLANmCas9/gCD40-mediated CD40 disruption significantly inhibited T cell activation, which reduced graft damage and prolonged graft survival. This work provides a promising strategy for reprogramming DCs with nanoparticles carrying the CRISPR/Cas9 system to abate transplant rejection.
Collapse
Affiliation(s)
- Yue Zhang
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China; Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Song Shen
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Gui Zhao
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China; Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Cong-Fei Xu
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, PR China.
| | - Hou-Bing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Ying-Li Luo
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi-Ting Cao
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China
| | - Jia Shi
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi-Bin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Jun Wang
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, PR China.
| |
Collapse
|
11
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The review will focus on the impact and current status of costimulatory blockade in renal transplantation. RECENT FINDINGS The mainstay of immunosuppression in kidney transplantation is calcineurin inhibitors (CNIs) which have reduced acute rejection rates but failed to improve long-term allograft survival. Their cardiometabolic side-effects and nephrotoxicity have shifted the focus of investigation to CNI-free regimens. Costimulation blockade with belatacept, a second generation, higher avidity variant of cytotoxic T-lymphocyte associated protein 4 has emerged as part of a CNI-free regimen. Belatacept has demonstrated superior glomerular filtration rate compared with CNIs, albeit with an increased risk of early and histologically severe rejection. Focus on optimizing the belatacept regimen is underway. ASKP1240, which blocks the cluster of differentiation 40 (CD40)/CD154 costimulatory pathway, has just completed a phase 2 trial with a CNI-free regimen. CFZ533, an anti-CD40, is also poised to be tested in a phase 2 trial in renal transplantation. Nonagonistic CD28 antibodies have re-emerged with two anti-CD28 candidates in preclinical development. SUMMARY A reliable, CNI-free regimen that maintains low acute rejection rates and improves long-term renal allograft survival has become an achievable goal with costimulation blockade. The task of clinicians and researchers is to find the optimal combinations to maintain safety and improve efficacy.
Collapse
|
13
|
Agua-Doce A, Caridade M, Oliveira VG, Bergman L, Lafaille MC, Lafaille JJ, Demengeot J, Graca L. Route of Antigen Presentation Can Determine the Selection of Foxp3-Dependent or Foxp3-Independent Dominant Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 200:101-109. [PMID: 29167234 DOI: 10.4049/jimmunol.1601886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
Abstract
It has been shown that dominant tolerance, namely in transplantation, requires Foxp3+ regulatory T cells. Although most tolerance-inducing regimens rely on regulatory T cells, we found that induction of tolerance to proteins in aluminum hydroxide can be achieved in Foxp3-deficient mice using nondepleting anti-CD4 Abs. This type of tolerance is Ag specific, and tolerant mice retain immune competence to respond to unrelated Ags. We demonstrated with chicken OVA-specific TCR-transgenic mice that the same tolerizing protocol (CD4 blockade) and the same target Ag (OVA) achieves Foxp3-dependent transplantation tolerance to OVA-expressing skin grafts, but Foxp3-independent tolerance when the Ag is provided as OVA-aluminum hydroxide. In the latter case, we found that tolerance induction triggered recessive mechanisms leading to elimination of effector cells and, simultaneously, a dominant mechanism associated with the emergence of an anergic and regulatory CTLA-4+IL-2lowFoxp3- T cell population, where the tolerance state is IL-10 dependent. Such Foxp3-independent mechanisms can improve the efficacy of tolerance-inducing protocols.
Collapse
Affiliation(s)
- Ana Agua-Doce
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Marta Caridade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Vanessa G Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Lisa Bergman
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| | - Maria C Lafaille
- Department of Pathology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Juan J Lafaille
- Department of Pathology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | | | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; .,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; and
| |
Collapse
|
14
|
Dai J, Fang P, Saredy J, Xi H, Ramon C, Yang W, Choi ET, Ji Y, Mao W, Yang X, Wang H. Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated CD40 + monocyte differentiation. J Hematol Oncol 2017; 10:141. [PMID: 28738836 PMCID: PMC5525309 DOI: 10.1186/s13045-017-0504-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/26/2017] [Indexed: 01/16/2023] Open
Abstract
Adaptive immunity is critical for disease progression and modulates T cell (TC) and antigen-presenting cell (APC) functions. Three signals were initially proposed for adaptive immune activation: signal 1 antigen recognition, signal 2 co-stimulation or co-inhibition, and signal 3 cytokine stimulation. In this article, we propose to term signal 2 as an immune checkpoint, which describes interactions of paired molecules leading to stimulation (stimulatory immune checkpoint) or inhibition (inhibitory immune checkpoint) of an immune response. We classify immune checkpoint into two categories: one-way immune checkpoint for forward signaling towards TC only, and two-way immune checkpoint for both forward and reverse signaling towards TC and APC, respectively. Recently, we and others provided evidence suggesting that metabolic risk factors (RF) activate innate and adaptive immunity, involving the induction of immune checkpoint molecules. We summarize these findings and suggest a novel theory, metabolism-associated danger signal (MADS) recognition, by which metabolic RF activate innate and adaptive immunity. We emphasize that MADS activates the reverse immune checkpoint which leads to APC inflammation in innate and adaptive immunity. Our recent evidence is shown that metabolic RF, such as uremic toxin or hyperhomocysteinemia, induced immune checkpoint molecule CD40 expression in monocytes (MC) and elevated serum soluble CD40 ligand (sCD40L) resulting in CD40+ MC differentiation. We propose that CD40+ MC is a novel pro-inflammatory MC subset and a reliable biomarker for chronic kidney disease severity. We summarize that CD40:CD40L immune checkpoint can induce TC and APC activation via forward stimulatory, reverse stimulatory, and TC contact-independent immune checkpoints. Finally, we modeled metabolic RF-induced two-way stimulatory immune checkpoint amplification and discussed potential signaling pathways including AP-1, NF-κB, NFAT, STAT, and DNA methylation and their contribution to systemic and tissue inflammation.
Collapse
Affiliation(s)
- Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian road, Hangzhou, 310006, Zhejiang, China.,Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pu Fang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Jason Saredy
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hang Xi
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Cueto Ramon
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - William Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Department of Surgery, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Mao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian road, Hangzhou, 310006, Zhejiang, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Nelsen MK, Beard KS, Plenter RJ, Kedl RM, Clambey ET, Gill RG. Disruption of Transplant Tolerance by an "Incognito" Form of CD8 T Cell-Dependent Memory. Am J Transplant 2017; 17:1742-1753. [PMID: 28066981 PMCID: PMC5489385 DOI: 10.1111/ajt.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023]
Abstract
Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross-react to donor MHC antigens. Such preexisting "heterologous" memory cells have direct reactivity to donor cells and resist most tolerance regimens. In this study, we developed a model system to determine if an alternative form of immune memory could also block tolerance. We posited that host memory T cells could potentially respond to donor-derived non-MHC antigens, such as latent viral antigens or autoantigens, to which the host is immune. Results show that immunity to a model nonself antigen, ovalbumin (OVA), can dramatically disrupt tolerance despite undetectable initial reactivity to donor MHC antigens. Importantly, this blockade of tolerance was CD8+ T cell-dependent and required linked antigen presentation of alloantigens with the test OVA antigen. As such, this pathway represents an unapparent, or "incognito," form of immunity that is sufficient to prevent tolerance and that can be an unforeseen additional immune barrier to clinical transplant tolerance.
Collapse
Affiliation(s)
- M. K. Nelsen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - K. S. Beard
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. J. Plenter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. M. Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - E. T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. G. Gill
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
16
|
Ansari AW, Khan MA, Schmidt RE, Broering DC. Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunol Lett 2017; 183:8-16. [PMID: 28119073 DOI: 10.1016/j.imlet.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Alloantigen-specific T-cell triggered immunopathological events are responsible for rapid allograft rejection. The co-signaling pathways orchestrated by co-stimulatory and co-inhibitory molecules are critical for optimal T-cell effector function. Therefore, selective blockade of pathways that control T-cell immunity may offer an attractive therapeutic strategy to manipulate cell mediated allogenic responses. For example, CD28, CTLA-4 and CD154 receptor blockade have proven beneficial in maintaining T-cell tolerance against transplanted organs in experimental animal models as well as in clinical trials. Conversely, induction of co-inhibitory molecules may result in suppressed effector function. There are several other potential molecules that are known to induce immune tolerance are currently under consideration for clinical studies. In this review, we provide a comprehensive and updated analysis of co-stimulatory and co-inhibitory molecules, their therapeutic potential to prevent graft rejection, and to further improve their long-term survival.
Collapse
Affiliation(s)
- Abdul W Ansari
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| | - Mohammad A Khan
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg Str.1, D-30625 Hannover, Germany
| | - Dieter C Broering
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
17
|
Giraldo JA, Molano RD, Rengifo HR, Fotino C, Gattás-Asfura KM, Pileggi A, Stabler CL. The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomater 2017; 49:272-283. [PMID: 27915019 DOI: 10.1016/j.actbio.2016.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (>100d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia long-term. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect. STATEMENT OF SIGNIFICANCE We believe this study is important and of interest to the biomaterials and transplant community for several reasons: 1) it provides an optimized protocol for the PEGylation of islets, with minimal impact on the coated islets, which can be easily translated for clinical applications; 2) this optimized protocol demonstrates the benefits of islet PEGylation in providing modest immunosuppression in a murine model; 3) this work demonstrates the combinatory impact of PEGylation with short-course immunotherapy (via LFA-1 blockage), illustrating the capacity of PEGylation to complement existing immunotherapy; and 4) it suggests macrophage phenotype shifting as the potential mechanism for this observed benefit.
Collapse
Affiliation(s)
- Jaime A Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA
| | - Hernán R Rengifo
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Kerim M Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Terzieva VI, Popova DN, Elenkov II. IFN-γ Attenuates Spontaneous Lymphocyte Proliferation by Fuelling Regulatory T Cells in HIV-1-Infected Patients. Viral Immunol 2017; 30:157-166. [PMID: 28051930 DOI: 10.1089/vim.2016.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV infection is characterized by a high degree of immune activation. It has an impact on CD4 cell count and populations' distribution and function. T regulatory cells (Tregs) were found to play a controversial role in the course of infection because of their beneficial effect on the degree of immune activation and unfavorable influence on the antigen-specific responses. The goal of the present work was to study the relationship among interferon-γ (IFN-γ), spontaneous lymphocyte proliferation, and regulatory T cells in HIV patients receiving therapy. Three lymphocyte populations, isolated after a stepwise magnetic separation from 17 individuals, were investigated-peripheral blood lymphocytes, CD4+CD45RA- (CD4+TM), and CD4+CD45RA-CD25- (TMCD25depl.) cells. The spontaneous, phytohemagglutinin (PHA) and HIV-1p24Ag-stimulated IFN-γ production and the spontaneous lymphocyte proliferation were evaluated. The potential of Tregs to establish a productive infection was determined by measurement of free HIV-1p24 antigen. Two types of constellations among subsets were found. In the first one (in 11 subjects), the spontaneous INF-γ inversely correlated with the spontaneous proliferation in all fractions (r = -0.9, p < 0.001). Conversely, in the second group (six subjects), no associations between the selected parameters were observed. The overall increase in p24-stimulated IFN-γ from TMCD25depl. cells was weak. Four samples: one in Tregs and three in TMCD25depl. cells were positive for the free p24 antigen. No association with the CD4+ T cell count, percentage of Tregs, and stage of infection was determined. In conclusion, our results demonstrate that IFN-γ could impact the proliferative capacity of non-Treg cells by fuelling Tregs. Furthermore, Tregs may control the spontaneous lymphocyte proliferation, but are less powerful in the suppression of Ag-specific IFN-γ production from non-Treg lymphocytes. The direct viral influence on Treg functions should be also considered.
Collapse
Affiliation(s)
| | | | - Ivaylo I Elenkov
- 3 Hospital for Infectious Diseases "Prof. I. Kirov ," Sofia, Bulgaria
| |
Collapse
|
19
|
Simões ICM, Costa IPD, Coimbra JTS, Ramos MJ, Fernandes PA. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein–Protein Interfaces. J Chem Inf Model 2016; 57:60-72. [DOI: 10.1021/acs.jcim.6b00378] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Inês C. M. Simões
- UCIBIO, REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Inês P. D. Costa
- UCIBIO, REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - João T. S. Coimbra
- UCIBIO, REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Diehl R, Ferrara F, Müller C, Dreyer AY, McLeod DD, Fricke S, Boltze J. Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol 2016; 14:146-179. [PMID: 27721455 PMCID: PMC5301156 DOI: 10.1038/cmi.2016.39] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Almost every experimental treatment strategy using non-autologous cell, tissue or organ transplantation is tested in small and large animal models before clinical translation. Because these strategies require immunosuppression in most cases, immunosuppressive protocols are a key element in transplantation experiments. However, standard immunosuppressive protocols are often applied without detailed knowledge regarding their efficacy within the particular experimental setting and in the chosen model species. Optimization of such protocols is pertinent to the translation of experimental results to human patients and thus warrants further investigation. This review summarizes current knowledge regarding immunosuppressive drug classes as well as their dosages and application regimens with consideration of species-specific drug metabolization and side effects. It also summarizes contemporary knowledge of novel immunomodulatory strategies, such as the use of mesenchymal stem cells or antibodies. Thus, this review is intended to serve as a state-of-the-art compendium for researchers to refine applied experimental immunosuppression and immunomodulation strategies to enhance the predictive value of preclinical transplantation studies.
Collapse
Affiliation(s)
- Rita Diehl
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Fabienne Ferrara
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Institute of Vegetative Physiology, Charite University Medicine and Center for Cardiovascular Research, Berlin 10115, Germany
| | - Claudia Müller
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Antje Y Dreyer
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | | | - Stephan Fricke
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Johannes Boltze
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
21
|
|
22
|
del Rio ML, Fernandez-Renedo C, Chaloin O, Scheu S, Pfeffer K, Shintani Y, Perez-Simon JA, Schneider P, Rodriguez-Barbosa JI. Immunotherapeutic targeting of LIGHT/LTβR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. MAbs 2016; 8:478-90. [PMID: 26752542 DOI: 10.1080/19420862.2015.1132130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFRSF14) and the lymphotoxin β receptor (LTβR, TNFRSF3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| | - Carlos Fernandez-Renedo
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| | - Olivier Chaloin
- b CNRS UPR 3572, IBMC, Immunopathologie et Chimie Thérapeutique, 15 rue René Descartes , Strasbourg , France
| | - Stefanie Scheu
- c Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Universitaetsstr. 1, Geb. 22.21 , Duesseldorf , D-40225 Germany
| | - Klaus Pfeffer
- c Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Universitaetsstr. 1, Geb. 22.21 , Duesseldorf , D-40225 Germany
| | - Yasushi Shintani
- d Department of International Affairs , Japan Science and Technology Agency, K´s Gobancho 7 , Gobancho Chiyoda-Ku , Tokyo , 102-0076 , Japan
| | - Jose-Antonio Perez-Simon
- e Department of Hematology , University Hospital Virgen del Rocio / Institute of Biomedicine (IBIS / CSIC) , Sevilla , Spain
| | - Pascal Schneider
- f Department of Biochemistry , University of Lausanne , 1066 Epalinges , Switzerland
| | - Jose-Ignacio Rodriguez-Barbosa
- a Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital , Leon , Spain
| |
Collapse
|
23
|
Understanding Stem Cell Immunogenicity in Therapeutic Applications. Trends Immunol 2015; 37:5-16. [PMID: 26687737 DOI: 10.1016/j.it.2015.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Stem cells and their differentiated progeny offer great hope for treating disease by providing an unlimited source of cells for repairing or replacing damaged tissue. Initial studies suggested that, unlike 'normal' transplants, specific characteristics of stem cells enabled them to avoid immune attack. However, recent findings have revealed that the immunogenicity of stem cells may have been underestimated. Here, we review the current understanding of the mechanisms of immune recognition associated with stem cell immunogenicity, and discuss the relevance of reprogramming and differentiation strategies used to generate cells or tissue from stem cells for implantation in eliciting an immune response. We examine the effectiveness of current strategies for minimising immune attack in light of our experience in the transplantation field and, in this context, outline important challenges moving forward.
Collapse
|
24
|
Karakhanova S, Oweira H, Steinmeyer B, Sachsenmaier M, Jung G, Elhadedy H, Schmidt J, Hartwig W, Bazhin AV, Werner J. Interferon-γ, interleukin-10 and interferon-inducible protein 10 (CXCL10) as serum biomarkers for the early allograft dysfunction after liver transplantation. Transpl Immunol 2015; 34:14-24. [PMID: 26658573 DOI: 10.1016/j.trim.2015.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/14/2015] [Accepted: 12/02/2015] [Indexed: 01/29/2023]
Abstract
Orthotopic liver transplantation (LTP) is nowadays a standard procedure, and provides the chance of survival of patients with end-stage non-treatable chronic liver disease or acute liver failure. Despite long-term survival with a good quality of life in the majority of patients, about 20% develop early allograft dysfunction (EAD), which leads to death or the need for re-transplantation. Therefore, the early diagnosis of EAD and evaluation of its risk factors are very important. Many primary pathological processes leading to EAD are accompanied by the release of different mediators and by a change of biochemical parameters detectable in the peripheral blood. The aim of this study was to investigate cytokines as well as soluble mediators in the serum of patients with and without EAD from our LTP bank, and to evaluate their predictive and prognostic values for EAD. We demonstrated for the first time that the level of IFNγ during the nearest preoperative period may serve as a predictive parameter for EAD. We additionally found that IL-10 and CXCL10 (IP-10) levels in the early postoperative period can be prognostic for EAD. We believe our data expand the spectrum of predictive and prognostic parameters for EAD in LTP.
Collapse
Affiliation(s)
- Svetlana Karakhanova
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Hani Oweira
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Beate Steinmeyer
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Milena Sachsenmaier
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gregor Jung
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hazem Elhadedy
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jan Schmidt
- Department of General Surgery, University of Heidelberg, 69120 Heidelberg, Germany; General and Visceral Surgery Center, 8002 Zurich, Switzerland
| | - Werner Hartwig
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, 81377 Munich, Germany
| |
Collapse
|
25
|
Badell IR, Kitchens WH, Wagener ME, Lukacher AE, Larsen CP, Ford ML. Pathogen Stimulation History Impacts Donor-Specific CD8(+) T Cell Susceptibility to Costimulation/Integrin Blockade-Based Therapy. Am J Transplant 2015; 15:3081-94. [PMID: 26228897 PMCID: PMC5416935 DOI: 10.1111/ajt.13399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/25/2023]
Abstract
Recent studies have shown that the quantity of donor-reactive memory T cells is an important factor in determining the relative heterologous immunity barrier posed during transplantation. Here, we hypothesized that the quality of T cell memory also potently influences the response to costimulation blockade-based immunosuppression. Using a murine skin graft model of CD8(+) memory T cell-mediated costimulation blockade resistance, we elicited donor-reactive memory T cells using three distinct types of pathogen infections. Strikingly, we observed differential efficacy of a costimulation and integrin blockade regimen based on the type of pathogen used to elicit the donor-reactive memory T cell response. Intriguingly, the most immunosuppression-sensitive memory T cell populations were composed primarily of central memory cells that possessed greater recall potential, exhibited a less differentiated phenotype, and contained more multi-cytokine producers. These data, therefore, demonstrate that the memory T cell barrier is dependent on the specific type of pathogen infection via which the donor-reactive memory T cells are elicited, and suggest that the immune stimulation history of a given transplant patient may profoundly influence the relative barrier posed by heterologous immunity during transplantation.
Collapse
Affiliation(s)
- IR Badell
- Emory Transplant Center, Atlanta, GA, USA
| | | | - ME Wagener
- Emory Transplant Center, Atlanta, GA, USA
| | - AE Lukacher
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - CP Larsen
- Emory Transplant Center, Atlanta, GA, USA
| | - ML Ford
- Emory Transplant Center, Atlanta, GA, USA
| |
Collapse
|
26
|
Lee W, Satyananda V, Iwase H, Tanaka T, Miyagawa Y, Long C, Ayares D, Cooper DKC, Hara H. In vitro testing of an anti-CD40 monoclonal antibody, clone 2C10, in primates and pigs. Transpl Immunol 2015; 33:185-91. [PMID: 26458513 PMCID: PMC4648655 DOI: 10.1016/j.trim.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The CD40/CD154 and CD28/B7 pathways are important in allo- and xeno-transplantation. Owing to the thrombotic complications of anti-CD154mAb, anti-CD40mAb has emerged as a promising inhibitor of costimulation. Various clones of anti-CD40mAb have been developed against primate species, e.g., clone 2C10 against rhesus monkeys. We have compared the in vitro efficacy of 2C10 to prevent a T cell response in primates and pigs. METHODS The binding of 2C10 to antigen-presenting cells (PBMCs [B cells]) of humans, rhesus and cynomolgus monkeys, baboons, and pigs was measured by flow cytometry, and was also tested indirectly by a blocking assay. The functional capacity of 2C10 was tested by mixed lymphocyte reaction (MLR) with polyclonal stimulation by phytohemagglutinin (PHA) and also with wild-type pig aortic endothelial cells (pAECs) as stimulators. RESULTS There was a significant reduction in binding of 2C10 to baboon PBMCs compared to rhesus, cynomolgus, and human PBMCs, and minimal binding to pig PBMCs. The blocking assay confirmed that the binding of 2C10 was significantly lower to baboon PBMCs when compared to the other primate species tested. The functional assay with PHA showed significantly reduced inhibition of PBMC proliferation in humans, cynomolgus monkeys, and baboons compared to rhesus monkeys, which was confirmed on MLR with pAECs. CONCLUSIONS Since both the binding and functional activity of 2C10 in the baboon is lower than in rhesus monkeys, in vivo treatment using 2C10 in the baboon might require a higher dose or more frequent administration in comparison to rhesus monkeys. It may also be beneficial to develop species-specific clones of anti-CD40mAb.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vikas Satyananda
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takayuki Tanaka
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuko Miyagawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Bagley J, Yuan J, Chandrakar A, Iacomini J. Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade. Am J Transplant 2015; 15:2324-35. [PMID: 26079467 PMCID: PMC5125018 DOI: 10.1111/ajt.13351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 01/25/2023]
Abstract
Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti-donor Th17 reactivity and production of IL-17. Here, we show that hyperlipidemia also affects FoxP3(+) regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25(low) Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3(+) , CD25(high) , CD4(+) Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti-CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3(+) CD25(low) CD4(+) T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti-CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance.
Collapse
Affiliation(s)
- J. Bagley
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA
| | - J. Yuan
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA
| | - A. Chandrakar
- Schuster Family Transplantation Research Center Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - J. Iacomini
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA,Corresponding author: John Iacomini,
| |
Collapse
|
28
|
Abstract
Generation of an effective immune response against foreign antigens requires two distinct molecular signals: a primary signal provided by the binding of antigen-specific T-cell receptor to peptide-MHC on antigen-presenting cells and a secondary signal delivered via the engagement of costimulatory molecules. Among various costimulatory signaling pathways, the interactions between CD40 and its ligand CD154 have been extensively investigated given their essential roles in the modulation of adaptive immunity. Here, we review current understanding of the role CD40/CD154 costimulation pathway has in alloimmunity, and summarize recent mechanistic and preclinical advances in the evaluation of candidate therapeutic approaches to target this receptor-ligand pair in transplantation.
Collapse
Affiliation(s)
- Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore VA Medical Center, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Ville S, Poirier N, Blancho G, Vanhove B. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells? Front Immunol 2015; 6:411. [PMID: 26322044 PMCID: PMC4532816 DOI: 10.3389/fimmu.2015.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses.
Collapse
Affiliation(s)
- Simon Ville
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Nicolas Poirier
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| | - Gilles Blancho
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Bernard Vanhove
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| |
Collapse
|
30
|
Welzenbach K, Mancuso RV, Krähenbühl S, Weitz-Schmidt G. A novel multi-parameter assay to dissect the pharmacological effects of different modes of integrin αLβ2 inhibition in whole blood. Br J Pharmacol 2015. [PMID: 26224111 DOI: 10.1111/bph.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The integrin αLβ2 plays central roles in leukocyte adhesion and T cell activation, rendering αLβ2 an attractive therapeutic target. Compounds with different modes of αLβ2 inhibition are in development, currently. Consequently, there is a foreseeable need for bedside assays, which allow assessment of the different effects of diverse types of αLβ2 inhibitors in the peripheral blood of treated patients. EXPERIMENTAL APPROACH Here, we describe a flow cytometry-based technology that simultaneously quantitates αLβ2 conformational change upon inhibitor binding, αLβ2 expression and T cell activation at the single-cell level in human blood. Two classes of allosteric low MW inhibitors, designated α I and α/β I allosteric αLβ2 inhibitors, were investigated. The first application revealed intriguing inhibitor class-specific profiles. KEY RESULTS Half-maximal inhibition of T cell activation was associated with 80% epitope loss induced by α I allosteric inhibitors and with 40% epitope gain induced by α/β I allosteric inhibitors. This differential establishes that inhibitor-induced αLβ2 epitope changes do not directly predict the effect on T cell activation. Moreover, we show here for the first time that α/β I allosteric inhibitors, in contrast to α I allosteric inhibitors, provoked partial downmodulation of αLβ2, revealing a novel property of this inhibitor class. CONCLUSIONS AND IMPLICATIONS The multi-parameter whole blood αLβ2 assay described here may enable therapeutic monitoring of αLβ2 inhibitors in patients' blood. The assay dissects differential effect profiles of different classes of αLβ2 inhibitors.
Collapse
Affiliation(s)
- Karl Welzenbach
- Novartis Pharma AG, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Riccardo V Mancuso
- Division of Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | - Gabriele Weitz-Schmidt
- Novartis Pharma AG, Novartis Institutes of Biomedical Research, Basel, Switzerland.,AlloCyte Pharmaceuticals AG, Basel, Switzerland
| |
Collapse
|
31
|
Esposito P, Rampino T, Canton AD. Costimulatory blockade: A novel approach to the treatment of glomerular disease? World J Methodol 2015; 5:20-25. [PMID: 26140268 PMCID: PMC4482818 DOI: 10.5662/wjm.v5.i2.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/01/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Costimulatory pathways (Cluster of differentiation 28, tumor necrosis factor-related, adhesion and T Cell Ig- and mucin-domain molecules) regulating the interactions between receptors on the T cells and their ligands expressed on several cell types, have a key role in controlling many immunological and non immunological processes. Indeed, accumulating evidence indicate that these molecules are involved in the pathogenesis of numerous conditions, such as allograft rejection, atherosclerosis, rheumatoid arthritis, psoriasis and renal diseases, including glomerulonephritis. Primary or secondary (i.e., associated with infections, drugs or systemic diseases, such as systemic lupus erythematosus, diabetes, etc.) glomerulonephritis represent a group of heterogeneous diseases with different pathogenic mechanisms. Since costimulatory molecules, in particular CD80 and CD40, have been found to be expressed on podocytes in the course of different experimental and clinical glomerulonephritis, costimulation has been thought as a new therapeutic target for patients with glomerular diseases. However, although experimental data suggested that the blockade of costimulatory pathways is effective and safe in the prevention and treatment of glomerular diseases, clinical trials reported contrasting results. So, at this moment, there is not a strong evidence for the general use of costimulatory blockade as an alternative treatment strategy in patients with primary or secondary glomerulonephritis. Here, we critically discuss the current data and the main issues regarding the development of this innovative therapeutic approach.
Collapse
|
32
|
Liu D, Suchard SJ, Nadler SG, Ford ML. Inhibition of Donor-Reactive CD8+ T Cell Responses by Selective CD28 Blockade Is Independent of Reduced ICOS Expression. PLoS One 2015; 10:e0130490. [PMID: 26098894 PMCID: PMC4476729 DOI: 10.1371/journal.pone.0130490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022] Open
Abstract
Programmed T cell differentiation is critically influenced by the complement of costimulatory and coinhibitory signals transmitted during initial antigen encounter. We previously showed that selective CD28 blockade with novel domain antibodies that leave CTLA-4-mediated coinhibitory signaling intact resulted in more profound attenuation of donor-reactive T cell responses and improved graft survival in a murine transplant model. Selective CD28 blockade was also associated with decreased ICOS expression on donor-reactive CD8+ T cell responses as compared to CTLA-4 Ig, but the functional importance of this reduced ICOS expression was not known. In this study, we created retrogenic donor-reactive CD8+ T cells that overexpress ICOS in order to determine whether reduced ICOS expression mechanistically underlies the increased efficacy of selective CD28 blockade in controlling graft-specific T cell responses as compared to conventional costimulation blockade with CTLA-4 Ig. Results indicated that the ability of selective CD28 blockade to blunt donor-reactive CD8+ T cell expansion following transplantation was independent of its ability to inhibit ICOS expression. Furthermore, we have previously published that 2B4 coinhibitory signals are functionally important for controlling graft-specific CD8+ T cell responses in mice treated with CD28 blockade. Here we used a co-adoptive transfer approach to determine that 2B4 coinhibitory signals on antigen-specific CD8+ T cells function in a cell-intrinsic manner to limit ICOS expression in the setting of selective CD28 blockade.
Collapse
Affiliation(s)
- Danya Liu
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, United States of America
| | | | - Steve G. Nadler
- Bristol-Myers Squibb Company, Princeton, NJ, United States of America
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, United States of America
- * E-mail:
| |
Collapse
|
33
|
Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. ACTA ACUST UNITED AC 2015; 21:1102-14. [PMID: 25237857 DOI: 10.1016/j.chembiol.2014.09.001] [Citation(s) in RCA: 780] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The past 20 years have seen many advances in our understanding of protein-protein interactions (PPIs) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of "lead-like" or "drug-like" molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery-structure, computation, screening, and biomarkers. PPIs become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last 10 years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Stimulatory and inhibitory receptor signaling (cosignaling) on T cells is a critical component of T-cell responses that mediate graft rejection. The blockade of cosignaling pathways is an attractive strategy for preventing allogeneic T-cell responses. Here, we review the new studies that provide critical insight into the well studied CD28-CTLA-4 and CD40-CD40L cosignaling pathways, as well as the identification of novel cosignaling receptors that play a role in allogeneic T-cell responses. RECENT FINDINGS Recently, it has been appreciated that the CD28-CTLA-4 pathway has unique roles on specific T-cell subsets, particularly on forkhead box P3 (FoxP3)+ regulatory T cell (Treg) and T helper 17 (Th17) cells. New insight has been provided into the mechanism by which CD40-CD154 blockade elicits FoxP3+ Treg conversion and memory T cells elicit CD40-independent alloantibody responses. Finally, several novel cosignaling pathways have been demonstrated to be important to graft-specific T cells, including CD160, signaling lymphocytic activation molecule family member 2B4, T-cell Ig mucin 4, and the Notch receptor. SUMMARY Recent work has provided more granular understanding of the CD28-CTLA-4 and CD40-CD154 pathways on T-cell subsets, and provided important insight into the generation and maintenance of FoxP3+ Treg. This information, as well as the characterization of novel transplantation-relevant cosignaling pathways, has implications for the modulation of alloreactive T-cell responses.
Collapse
|
35
|
You S. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance. Front Immunol 2015; 6:242. [PMID: 26042125 PMCID: PMC4437185 DOI: 10.3389/fimmu.2015.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non-toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs) to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool, which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this mini review, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.
Collapse
Affiliation(s)
- Sylvaine You
- Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; INSERM U1151, Institut Necker-Enfants Malades , Paris , France ; CNRS UMR 8253, Institut Necker-Enfants Malades , Paris , France
| |
Collapse
|
36
|
Iwase H, Ekser B, Satyananda V, Zhou H, Hara H, Bajona P, Wijkstrom M, Bhama JK, Long C, Veroux M, Wang Y, Dai Y, Phelps C, Ayares D, Ezzelarab MB, Cooper DKC. Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs. Transpl Immunol 2015; 32:99-108. [PMID: 25687023 PMCID: PMC4368496 DOI: 10.1016/j.trim.2015.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND In the pig-to-nonimmunosuppressed baboon artery patch model, a graft from an α1,3-galactosyltransferase gene-knockout pig transgenic for human CD46 (GTKO/CD46) induces a significant adaptive immune response (elicited anti-pig antibody response, increase in T cell proliferation on MLR, cellular infiltration of the graft), which is effectively prevented by anti-CD154mAb-based therapy. METHODS As anti-CD154mAb is currently not clinically applicable, we evaluated whether it could be replaced by CD28/B7 pathway blockade or by blockade of both pathways (using belatacept + anti-CD40mAb [2C10R4]). We further investigated whether a patch from a GTKO/CD46 pig with a mutant human MHC class II transactivator (CIITA-DN) gene would allow reduction in the immunosuppressive therapy administered. RESULTS When grafts from GTKO/CD46 pigs were transplanted with blockade of both pathways, a minimal or insignificant adaptive response was documented. When a GTKO/CD46/CIITA-DN graft was transplanted, but no immunosuppressive therapy was administered, a marked adaptive response was documented. In the presence of CD28/B7 pathway blockade (abatacept or belatacept), there was a weak adaptive response that was diminished when compared with that to a GTKO/CD46 graft. Blockade of both pathways prevented an adaptive response. CONCLUSION Although expression of the mutant MHC CIITA-DN gene was associated with a reduced adaptive immune response when immunosuppressive therapy was inadequate, when blockade of both the CD40/CD154 and CD28/B7 pathways was present, the response even to a GTKO/CD46 graft was suppressed. This was confirmed after GTKO/CD46 heart transplantation in baboons.
Collapse
Affiliation(s)
- H Iwase
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - B Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - V Satyananda
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Zhou
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - H Hara
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - P Bajona
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Wijkstrom
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - J K Bhama
- Department of Cardiac Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Long
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Y Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Y Dai
- Revivicor, Blacksburg, VA, USA
| | | | | | - M B Ezzelarab
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - D K C Cooper
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Chong AS, Alegre ML. Transplantation tolerance and its outcome during infections and inflammation. Immunol Rev 2015; 258:80-101. [PMID: 24517427 DOI: 10.1111/imr.12147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Much progress has been made toward understanding the mechanistic basis of transplantation tolerance in experimental models, which implicates clonal deletion of alloreactive T and B cells, induction of cell-intrinsic hyporesponsiveness, and dominant regulatory cells mediating infectious tolerance and linked suppression. Despite encouraging success in the laboratory, achieving tolerance in the clinic remains challenging, although the basis for these challenges is beginning to be understood. Heterologous memory alloreactive T cells generated by infections prior to transplantation have been shown to be a critical barrier to tolerance induction. Furthermore, infections at the time of transplantation and tolerance induction provide a pro-inflammatory milieu that alters the stability and function of regulatory T cells as well as the activation requirements and differentiation of effector T cells. Thus, infections can result in enhanced alloreactivity, resistance to tolerance induction, and destabilization of the established tolerance state. We speculate that these experimental findings have relevance to the clinic, where infections have been associated with allograft rejection and may be a causal event precipitating the loss of grafts after long periods of stable operational tolerance. Understanding the mechanisms by which infections prevent and destabilize tolerance can lead to therapies that promote stable life-long tolerance in transplant recipients.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
38
|
|
39
|
Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw 2014; 14:277-88. [PMID: 25550694 PMCID: PMC4275385 DOI: 10.4110/in.2014.14.6.277] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 12/27/2022] Open
Abstract
T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.
Collapse
Affiliation(s)
- Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine; Weldon School of Biomedical Engineering; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jeongho Park
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine; Weldon School of Biomedical Engineering; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Myunghoo Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine; Weldon School of Biomedical Engineering; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Kudo H, Wada H, Sasaki H, Tsuji H, Otsuka R, Baghdadi M, Kojo S, Chikaraishi T, Seino KI. Induction of macrophage-like immunosuppressive cells from mouse ES cells that contribute to prolong allogeneic graft survival. PLoS One 2014; 9:e111826. [PMID: 25356669 PMCID: PMC4214817 DOI: 10.1371/journal.pone.0111826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/01/2014] [Indexed: 01/03/2023] Open
Abstract
Recent progress in regenerative medicine has enabled the utilization of pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs) as a donor resource for transplantation. However, immune suppression is still needed when the donor-recipient combination is allogeneic. Protection of ESCs-derived grafts from host immune response might be achieved thought the utilization of immunosuppressive cells generated from ESCs. In the present study, we show that a certain fraction of immunosuppressive cells can be generated from ESCs and help to suppress immune response against allogeneic grafts. ESCs-derived suppressor cells (ES-SCs) resembled macrophages in terms of cell surface molecule and gene expressions. Furthermore, gene expression analysis including microarray showed that ES-SCs have M1/M2 hybrid phenotype with high expression of genes correlated to immunosuppression of T cell response. Indeed, ES-SCs were effective to block allogeneic T cell proliferation in a nitric oxide-dependent manner, and prolonged the survival of ESCs-derived embryoid bodies or cardiomyocytes grafts transplanted into mouse kidney capsule. Thus, we consider the potential use of these ESCs-derived macrophage-like immunosuppressive cells as cellular therapies to promote long-term graft survival in future therapies.
Collapse
Affiliation(s)
- Hiroya Kudo
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Urology St. Marianna University School of Medicine, Miyamae-ku, Kawasaki City, Kanagawa, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Sasaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hyuma Tsuji
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | - Satoshi Kojo
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Chikaraishi
- Department of Urology St. Marianna University School of Medicine, Miyamae-ku, Kawasaki City, Kanagawa, Japan
| | - Ken-ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
41
|
Park SJ, Lee JS, Kwon B, Cho HR. Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection. KOREAN JOURNAL OF TRANSPLANTATION 2014. [DOI: 10.4285/jkstn.2014.28.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sang June Park
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Jong Soo Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| |
Collapse
|
42
|
Gracon ASA, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75:887-94. [PMID: 24979671 PMCID: PMC4357397 DOI: 10.1016/j.humimm.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.
Collapse
Affiliation(s)
- Adam S A Gracon
- Department of Surgery and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Wilkes
- Departments of Medicine, Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
43
|
New generation CD3 monoclonal antibodies: are we ready to have them back in clinical transplantation? Curr Opin Organ Transplant 2014; 15:720-4. [PMID: 20881491 DOI: 10.1097/mot.0b013e3283402bd8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The continuing problem of late graft loss and immunosuppressive drug toxicity forces us to explore new treatments for the induction of transplant tolerance. Monoclonal antibodies targeting molecules implicated in lymphocyte activation, in particular CD3/TCR, constitute a promising strategy. RECENT FINDINGS Promising results were obtained from the use of antibodies targeting CD3/TCR, coreceptors or costimulatory pathways as tolerance-promoting tools in experimental transplantation. These antibodies do not uniformly depress the immune system but act in an antigen-specific manner by preferentially targeting effector T cells while preserving regulatory T cells. However, translation to the clinic proved to be more difficult than expected. New generation CD3 antibodies, currently used in phase II/III trials in autoimmunity, constitute a promising approach as, beside their immunosuppressive effect, they also express potent tolerogenic capacities. Importantly, CD3 therapy is effective especially when applied in primed hosts, highlighting the importance of the therapeutic window for tolerance induction. SUMMARY Further investigations are required for adapting to the clinic monoclonal antibodies as substitutes for current immunosuppression. Our aim is to show that development of new therapeutic strategies/molecules may come from transversal-type research, in particular from experience in autoimmunity, as immune responses leading to autoimmunity and graft rejection involve similar pathways.
Collapse
|
44
|
Esposito P, Grosjean F, Rampino T, Libetta C, Gregorini M, Fasoli G, Marchi G, Sileno G, Montagna F, Dal Canton A. Costimulatory pathways in kidney transplantation: pathogenetic role, clinical significance and new therapeutic opportunities. Int Rev Immunol 2014; 33:212-233. [PMID: 24127878 DOI: 10.3109/08830185.2013.829470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2013] [Indexed: 02/05/2023]
Abstract
Costimulatory pathways play a key role in immunity, providing the second signal required for a full activation of adaptive immune response. Different costimulatory families (CD28, TNF-related, adhesion and TIM molecules), characterized by structural and functional analogies, have been described. Costimulatory molecules modulate T cell activation, B cell function, Ig production, cytokine release and many other processes, including atherosclerosis. Patients suffering from renal diseases present significant alterations of the costimulatory pathways, which might make them particularly liable to infections. These alterations are further pronounced in patients undergoing kidney transplantation. In these patients, different costimulatory patterns have been related to distinct clinical features. The importance that costimulation has gained during the last years has led to development of several pharmacological approaches to modulate this critical step in the immune activation. Different drugs, mainly monoclonal antibodies targeting various costimulatory molecules (i.e. anti-CD80, CTLA-4 fusion proteins, anti-CD154, anti-CD40, etc.) were designed and tested in both experimental and clinical studies. The results of these studies highlighted some criticisms, but also some promising findings and now costimulatory blockade is considered a suitable strategy, with belatacept (a CTLA-4 fusion protein) being approved as the first costimulatory blocker for use in renal transplantation. In this review, we summarize the current knowledge on costimulatory pathways in the setting of kidney transplantation. We describe the principal costimulatory molecule families, their role and clinical significance in patients undergoing renal transplantation and the new therapeutic approaches that have been developed to modulate the costimulatory pathways.
Collapse
Affiliation(s)
- Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico S. Matteo and University of Pavia , Pavia , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tan X, Zeng H, Jie Y, Zhang Y, Xu Q, Pan Z. CD154 blockade modulates the ratio of Treg to Th1 cells and prolongs the survival of allogeneic corneal grafts in mice. Exp Ther Med 2014; 7:827-834. [PMID: 24660031 PMCID: PMC3961129 DOI: 10.3892/etm.2014.1527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/08/2013] [Indexed: 11/09/2022] Open
Abstract
Administration of anti-CD154 monoclonal antibody (mAb) may prolong the survival of an allograft; however, the associated therapeutic mechanisms remain poorly understood. This study aimed to evaluate the effects of anti-CD154 mAb on T-cell responses in a mouse model of corneal allograft transplantation. BALB/c mice were transplanted with corneal grafts from C57BL/6 mice and treated intraperitoneally with 250 μg anti-CD154 mAb or isotype IgG on days 0, 3 and 6 post surgery. The transparency of the corneal grafts was evaluated for potential rejection signs by slit-lamp biomicroscopy and histopathology. The percentages of CD4+ T, Tim-3+CD4+ T helper (Th) 1 and CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the spleen, ipsilateral draining lymph nodes and corneal grafts, and the frequency of splenic IFN-γ+ and IL-10+ expression in CD4+ T cells were determined by flow cytometry. Moreover, the ratio of Tregs to Th1 cells was calculated and the suppressive activity of splenic Tregs was measured. Anti-CD154 neutralization significantly prolonged the survival of the corneal allograft (P=0.0012) and reduced the numbers of inflammatory infiltrates in the corneal graft. In the spleen and lymph nodes, anti-CD154 treatment reduced the frequency of CD4+ T cells, Tregs and particularly Th1 cells. In the corneal allografts, anti-CD154 treatment downregulated graft-infiltrated CD4+ T cells and Th1 cells, but increased graft-infiltrated Tregs. Furthermore, anti-CD154 treatment increased the frequency of splenic IL-10+CD4+ T cells and decreased the concentration of splenic IFN-γ+CD4+ T cells. As a result, the ratio of Tregs to Th1 cells in the anti-CD154-treated recipients increased. Anti-CD154 treatment did not enhance the suppressive activity of Tregs in the recipients. The results indicate that the therapeutic effects of anti-CD154 mAb on prolonging the survival of the corneal allograft may be associated with an increased ratio of Tregs to Th1 cells in mice.
Collapse
Affiliation(s)
- Xiaobo Tan
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China ; Department of Ophthalmology, the Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ying Jie
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yingnan Zhang
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qing Xu
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zhiqiang Pan
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
46
|
Gokhale A, Kanthala S, Latendresse J, Taneja V, Satyanarayanajois S. Immunosuppression by co-stimulatory molecules: inhibition of CD2-CD48/CD58 interaction by peptides from CD2 to suppress progression of collagen-induced arthritis in mice. Chem Biol Drug Des 2014; 82:106-18. [PMID: 23530775 DOI: 10.1111/cbdd.12138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 12/21/2022]
Abstract
Targeting co-stimulatory molecules to modulate the immune response has been shown to have useful therapeutic effects for autoimmune diseases. Among the co-stimulatory molecules, CD2 and CD58 are very important in the early stages of generation of an immune response. Our goal was to utilize CD2-derived peptides to modulate protein-protein interactions between CD2 and CD58, thereby modulating the immune response. Several peptides were designed based on the structure of the CD58-binding domain of CD2 protein. Among the CD2-derived peptides, peptide 6 from the F and C β-strand region of CD2 protein exhibited inhibition of cell-cell adhesion in the nanomolar concentration range. Peptide 6 was evaluated for its ability to bind to CD58 in Caco-2 cells and to CD48 in T cells from rodents. A molecular model was proposed for binding a peptide to CD58 and CD48 using docking studies. Furthermore, in vivo studies were carried out to evaluate the therapeutic ability of the peptide to modulate the immune response in the collagen-induced arthritis (CIA) mouse model. In vivo studies indicated that peptide 6 was able to suppress the progression of CIA. Evaluation of the antigenicity of peptides in CIA and transgenic animal models indicated that this peptide is not immunogenic.
Collapse
Affiliation(s)
- Ameya Gokhale
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | | | | | | | |
Collapse
|
47
|
Abdoli R, Najafian N. T Helper Cells Fate Mapping by Co-stimulatory Molecules and its Functions in Allograft Rejection and Tolerance. Int J Organ Transplant Med 2014; 5:97-110. [PMID: 25184030 PMCID: PMC4149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
T cell differentiation is dictated by a combination of T cell receptor (TCR) interaction with an antigen-bound major histocompatibility complex (MHC), and co-stimulatory molecules signal. The co-stimulatory signal can be positive or negative, and amplifying or diminishing the initial signal. However, the secondary co-stimulatory signal is not obligatory and its necessity is dictated, in part, by the stage of T cell development. In the field of transplantation, directing the T cell differentiation process can lead to therapeutic possibilities that promote allograft tolerance, and hinder unfavorable alloimmune responses. Therefore, understanding the details of T cell differentiation process, including the influence of co-stimulatory signals, is of paramount importance. It is important to note there is functional overlap between co-stimulatory molecules. It has been observed that some co-stimulatory signals have different effects on different T cell subsets. Hence, blockade of a co-stimulatory signal pathway, as part of a therapeutic regimen in transplantation, may have far reaching effects beyond the initial therapeutic intent and inhibit co-stimulatory signals necessary for desirable regulatory responses. In this review, co-stimulatory molecules involved in the differentiation of naïve T cells into T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17), inducible regulatory T cells (iTregs), and T helper 9 (Th9) cells and their overlap are discussed.
Collapse
Affiliation(s)
- R. Abdoli
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - N. Najafian
- Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd. Weston, FL 33331, USA
| |
Collapse
|
48
|
Huber BC, Ransohoff JD, Ransohoff KJ, Riegler J, Ebert A, Kodo K, Gong Y, Sanchez-Freire V, Dey D, Kooreman NG, Diecke S, Zhang WY, Odegaard J, Hu S, Gold JD, Robbins RC, Wu JC. Costimulation-adhesion blockade is superior to cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation. Stem Cells 2013; 31:2354-63. [PMID: 24038578 PMCID: PMC3938393 DOI: 10.1002/stem.1501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/05/2013] [Accepted: 07/07/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction. OBJECTIVE To test the hypothesis that a short-course, dual-agent regimen of two costimulation-adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents. METHODS AND RESULTS We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein, and differentiated these cells to endothelial cells (hESC-ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging. Costimulation-adhesion therapy resulted in superior hESC-EC and mouse EC engraftment compared to cyclosporine therapy in a hind limb model. Costimulation-adhesion therapy also promoted robust hESC-EC and hESC-derived cardiomyocyte survival in an ischemic myocardial injury model. Improved hESC-EC engraftment had a cardioprotective effect after myocardial injury, as assessed by magnetic resonance imaging. Mechanistically, costimulation-adhesion therapy is associated with systemic and intragraft upregulation of T-cell immunoglobulin and mucin domain 3 (TIM3) and a reduced proinflammatory cytokine profile. CONCLUSIONS Costimulation-adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post-transplant rejection of hESC derivatives. By extending the window for cellular engraftment, costimulation-adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3-dependent mechanism.
Collapse
Affiliation(s)
- Bruno C. Huber
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Julia D. Ransohoff
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Katherine J. Ransohoff
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Antje Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Yongquan Gong
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Veronica Sanchez-Freire
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Devaveena Dey
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Nigel G. Kooreman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Sebastian Diecke
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Wendy Y. Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Justin Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Shijun Hu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Joseph D. Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Robert C. Robbins
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
49
|
Patel SR, Zimring JC. Transfusion-induced bone marrow transplant rejection due to minor histocompatibility antigens. Transfus Med Rev 2013; 27:241-8. [PMID: 24090731 DOI: 10.1016/j.tmrv.2013.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 11/18/2022]
Abstract
Traditionally, alloimmunization to transfused blood products has focused exclusively on recipient antibodies recognizing donor alloantigens present on the cell surface. Accordingly, the immunologic sequelae of alloimmunization have been antibody mediated effects (ie, hemolytic transfusion reactions, platelet refractoriness, anti-HLA and anti-HNA effects, etc). However, in addition to the above sequelae, there is also a correlation between the number of antecedent transfusions in humans and the rate of bone marrow transplant (BMT) rejection-under reduced intensity conditioning with HLA-matched or HLA-identical marrow. Bone marrow transplant of this nature is the only existing cure for a series of nonmalignant hematologic diseases (eg, sickle cell disease, thalassemias, etc); however, rejection remains a clinical problem. It has been hypothesized that transfusion induces subsequent BMT rejection through immunization. Studies in animal models have observed the same effect and have demonstrated that transfusion-induced BMT rejection can occur in response to alloimmunization. However, unlike traditional antibody responses, sensitization in this case results in cellular immune effects, involving populations such as T cell or natural killer cells. In this case, rejection occurs in the absence of alloantibodies and would not be detected by existing immune-hematologic methods. We review human and animal studies in light of the hypothesis that, for distinct clinical populations, enhanced rejection of BMT may be an unappreciated adverse consequence of transfusion, which current blood bank methodologies are unable to detect.
Collapse
Affiliation(s)
- Seema R Patel
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
50
|
Abstract
Large animal models have long served as the proving grounds for advances in transplantation, bridging the gap between inbred mouse experimentation and human clinical trials. Although a variety of species have been and continue to be used, the emergence of highly targeted biologic- and antibody-based therapies has required models to have a high degree of homology with humans. Thus, the nonhuman primate has become the model of choice in many settings. This article will provide an overview of nonhuman primate models of transplantation. Issues of primate genetics and care will be introduced, and a brief overview of technical aspects for various transplant models will be discussed. Finally, several prominent immunosuppressive and tolerance strategies used in primates will be reviewed.
Collapse
Affiliation(s)
- Douglas J Anderson
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|