1
|
Alghanmi M, Minshawi F, Altorki TA, Zawawi A, Alsaady I, Naser AY, Alwafi H, Alsulami SM, Azhari AA, Hashem AM, Alhabbab R. Helminth-derived proteins as immune system regulators: a systematic review of their promise in alleviating colitis. BMC Immunol 2024; 25:21. [PMID: 38637733 PMCID: PMC11025257 DOI: 10.1186/s12865-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.
Collapse
Grants
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
Collapse
Affiliation(s)
- Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa A Altorki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdallah Y Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Soa'ad M Alsulami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ala A Azhari
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Chowdhury F, Akter A, Bhuiyan TR, Biswas R, Firoj MG, Tauheed I, Harris JB, Larocque RC, Ross AG, McMillan NAJ, Charles RC, Ryan ET, Calderwood SB, Qadri F. Long-term sialidase-specific immune responses after natural infection with cholera: Findings from a longitudinal cohort study in Bangladesh. Front Immunol 2022; 13:1067737. [PMID: 36618409 PMCID: PMC9813220 DOI: 10.3389/fimmu.2022.1067737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Immune responses that target sialidase occur following natural cholera and have been associated with protection against cholera. Sialidase is a neuraminidase that facilitates the binding of cholera toxin (CT) to intestinal epithelial cells. Despite this, little is known about age-related sialidase-specific immune responses and the impact of nutritional status and co-infection on sialidase-specific immunity. Methods We enrolled 50 culture-confirmed Vibrio cholerae O1 cholera cases presenting to the icddr,b Dhaka hospital with moderate to severe dehydration. We evaluated antibody responses out to 18 months (day 540) following cholera. We assessed immune responses targeting sialidase, lipopolysaccharide (LPS), cholera toxin B subunit (CtxB), and vibriocidal responses. We also explored the association of sialidase-specific immune responses to nutritional parameters and parasitic co-infection of cases. Results This longitudinal cohort study showed age-dependent differences in anti-sialidase immune response after natural cholera infection. Adult patients developed plasma anti-sialidase IgA and IgG responses after acute infection (P<0.05), which gradually decreased from day 30 on. In children, no significant anti-sialidase IgA, IgM, and IgG response was seen with the exception of a late IgG response at study day 540 (p=0.05 compared to adults). There was a correlation between anti-sialidase IgA with vibriocidal titers, as well as anti-sialidase IgA and IgG with anti-LPS and anti-CtxB antibody responses in adult patients, whereas in children, a significant positive correlation was seen only between anti-sialidase IgA and CtxB IgA responses. Stunted children showed significantly lower anti-sialidase IgA, IgG, and IgM antibody responses and higher LPS IgG and IgM antibody responses than healthy children. The anti-sialidase IgA and IgG responses were significantly higher in cases with concomitant parasitic infection. Conclusion Our data suggest that cholera patients develop age-distinct systemic and mucosal immune responses against sialidase. The stunted children have a lower anti-sialidase antibody response which may be associated with gut enteropathy and the neuraminidase plays an important role in augmented immune response in cholera patients infected with parasites.
Collapse
Affiliation(s)
- Fahima Chowdhury
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Afroza Akter
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rajib Biswas
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Department of Biology, Xavier University of Louisiana, New Orleans, AK, United States
| | - Md. Golam Firoj
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Jason B. Harris
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
| | - Regina C. Larocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | | | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Firdausi Qadri
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
3
|
Zakeri A, Everts B, Williams AR, Nejsum P. Antigens from the parasitic nematode Trichuris suis induce metabolic reprogramming and trained immunity to constrain inflammatory responses in macrophages. Cytokine 2022; 156:155919. [DOI: 10.1016/j.cyto.2022.155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
|
4
|
Doyen V, Truyens C, Nhu Thi H, Mong HTT, Le Chi T, De Blay F, Huynh PTN, Michel O, Corazza F. Helminth infection induces non-functional sensitization to house dust mites. PLoS One 2021; 16:e0253887. [PMID: 34197505 PMCID: PMC8248592 DOI: 10.1371/journal.pone.0253887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND IgE characterizes the humoral response of allergic sensitization but less is known about what modulates its function and why some patients present clinical symptoms for a given IgE level and others do not. An IgE response also occurs during helminth diseases, independently of allergic symptoms. This response could be a model of non-functional IgE. OBJECTIVE To study the IgE response against environmental allergens induced during natural helminth infection. METHODS In 28 non allergic subjects from the periphery of Ho Chi Minh city with (H+, n = 18) and without helminth infection (H-, n = 10), we measured IgE and IgG4 against several components of Dermatophagoïdes pteronyssinus (Dpt) and Ascaris (a marker of immunization against nematodes), and determined the IgE component sensitization profile using microarray ISAC biochips. The functional ability of IgE to induce degranulation of cultured mast cells was evaluated in the presence of Dpt. RESULTS Non allergic H+ subjects exhibited higher levels of IgE against Dpt compared to H- subjects. Dpt IgE were not functional in vitro and did not recognize usual Dpt major allergens. IgE recognized other component allergens that belong to different protein families, and most were glycosylated. Depletion of IgE recognizing carbohydrate cross-reactive determinant (CCD) did not induce a reduction in Dpt IgE. The Dpt IgG4 were not significantly different. CONCLUSION Helminth infections induced IgE against allergens such as Dpt and molecular components that belong to different sources as well as against CCD (such as β-1,2-xylose and/or ⍺-1,3-fucose substituted N-glycans). Dpt IgE were not able to induce degranulation of mast cells and were not explained by sensitization to usual major allergens or N-glycans.
Collapse
Affiliation(s)
- Virginie Doyen
- Clinic of Immunoallergology, CHU Brugmann, Brussels, Belgium
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| | - Carine Truyens
- Parasitology Laboratory, ULB Center for Research in immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Hoa Nhu Thi
- Parasitology and Mycology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Hiep Tran Thi Mong
- Department of Family Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Thanh Le Chi
- Immunology Laboratory, Pasteur Institute, Ho Chi Minh, Vietnam
| | - Frederic De Blay
- Chest Diseases Department, Strasbourg University Hospital, Strasbourg, France
- Biocluster des Haras, ALYATEC, Strasbourg, France
| | | | - Olivier Michel
- Clinic of Immunoallergology, CHU Brugmann, Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Translational Research, ULB223, CHU Brugmann, Immunology Laboratory, LHUB-ULB, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Moulson AJ, Av-Gay Y. BCG immunomodulation: From the 'hygiene hypothesis' to COVID-19. Immunobiology 2021; 226:152052. [PMID: 33418320 PMCID: PMC7833102 DOI: 10.1016/j.imbio.2020.152052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022]
Abstract
The century-old tuberculosis vaccine BCG has been the focus of renewed interest due to its well-documented ability to protect against various non-TB pathogens. Much of these broad spectrum protective effects are attributed to trained immunity, the epigenetic and metabolic reprogramming of innate immune cells. As BCG vaccine is safe, cheap, widely available, amendable to use as a recombinant vector, and immunogenic, it has immense potential for use as an immunotherapeutic agent for various conditions including autoimmune, allergic, neurodegenerative, and neoplastic diseases as well as a preventive measure against infectious agents. Of particular interest is the use of BCG vaccination to counteract the increasing prevalence of autoimmune and allergic conditions in industrialized countries attributable to reduced infectious burden as described by the 'hygiene hypothesis.' Furthermore, BCG vaccination has been proposed as a potential therapy to mitigate spread and disease burden of COVID-19 as a bridge to development of a specific vaccine and recombinant BCG expression vectors may prove useful for the introduction of SARS-CoV-2 antigens (rBCG-SARS-CoV-2) to induce long-term immunity. Understanding the immunomodulatory effects of BCG vaccine in these disease contexts is therefore critical. To that end, we review here BCG-induced immunomodulation focusing specifically on BCG-induced trained immunity and how it relates to the 'hygiene hypothesis' and COVID-19.
Collapse
Affiliation(s)
- Aaron J Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| | - Yossef Av-Gay
- Faculty of Medicine, University of British Columbia, Vancouver, Canada; Division of Infectious Disease, University of British Columbia, Vancouver, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
Whitehead B, Boysen AT, Mardahl M, Nejsum P. Unique glycan and lipid composition of helminth-derived extracellular vesicles may reveal novel roles in host-parasite interactions. Int J Parasitol 2020; 50:647-654. [PMID: 32526222 DOI: 10.1016/j.ijpara.2020.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Although the study of helminth-derived extracellular vesicles (EVs) is in its infancy, proteomic studies of EVs from representatives of nematodes, cestodes and trematodes have identified homologs of mammalian EV proteins including components of the endosomal sorting complexes required for transport and heat-shock proteins, suggesting conservation of pathways of EV biogenesis and cargo loading between helminths and their hosts. However, parasitic helminth biology is unique and this is likely reflected in helminth EV composition and biological activity. This opinion article highlights two exceptional studies that identified EVs released by Heligmosomoides polygyrus and Fasciola hepatica which display differential lipid and glycan composition, respectively, when compared with EVs derived from mammalian cells. Furthermore, we discuss the potential implications of helminth EV lipid and glycan composition upon helminth infection and host pathology. Future studies, focusing on the unique composition and functional properties of helminth EVs, may prove crucial to the understanding of host-parasite communication.
Collapse
Affiliation(s)
- Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anders T Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maibritt Mardahl
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J 2019; 36:241-257. [PMID: 31267247 DOI: 10.1007/s10719-019-09876-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Collapse
Affiliation(s)
- Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Helminth Antigen-Conditioned Dendritic Cells Generate Anti-Inflammatory Cd4 T Cells Independent of Antigen Presentation via Major Histocompatibility Complex Class II. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2589-2604. [PMID: 30121255 DOI: 10.1016/j.ajpath.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy. We show a requirement for Ccr7 expression on transferred H. diminuta antigen-treated (HD)-DCs, suggesting that homing to secondary lymphoid tissues is important for suppression of colitis. Furthermore, sodium metaperiodate-sensitive helminth-derived glycans are required to drive the anti-colitic response in recipient mice. Induction of Th2-type cytokines and Gata-3+Cd4+ cells in secondary lymphoid tissues is dependent on major histocompatibility complex class II (MHC II) protein expression on transferred DCs, although remarkably, transfer of MHC II-/- HD-DCs still attenuated dinitrobenzene sulfonic acid-induced colitis in recipient mice. Moreover, transfer of Cd4+ splenic T cells retrieved from mice administered MHC II-/- HD-DCs suppressed dinitrobenzene sulfonic acid-induced colitis in recipient mice. Our studies reveal that HD-DCs can suppress colitis via an alternative MHC II-independent pathway that involves, in part, mobilization of T-cell responses. These data support the utility of HD-DCs in blocking colitis, revealing a requirement for Ccr7 and providing for HD-DC autologous immunotherapy for disease in which MHC II expression and/or function is compromised.
Collapse
|
11
|
Sefiddashti RR, Sharafi SM, Ebrahimi SA, Akhlaghi L, Moosavi A, Eskandarian A, Darani HY. A 53 KDa Glycan Antigen of Hydatid Cyst Wall May Involve in Evasion from Host Immune System. Adv Biomed Res 2018; 7:82. [PMID: 29930922 PMCID: PMC5991282 DOI: 10.4103/abr.abr_287_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Recent studies have shown that similar host glycan antigens are expressed by helminths such as Echinococcus granulosus hydatid cysts to evade from host immune system. In this work to investigate these antigens further, immunological cross-reactivity between human sera and hydatid cyst wall antigens has been investigated. Materials and Methods: Hydatid cyst wall antigens were used in enzyme-linked immunosorbent assay and Western immunoblotting and probed with pooled sera of hydatidosis patients and healthy controls. Sodium metaperiodate treatment was used to investigate glycan antigens. Results: A band with molecular weight about 53 KDa reacted with both hydatid patients' sera and also normal human sera. It has been shown that this band was a glycan antigen. Conclusions: A 53 KDa glycan antigen of hydatid cyst wall that reacted with all human sera may have an important role for evasion from host immune system.
Collapse
Affiliation(s)
- Raheleh Rafiei Sefiddashti
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Maryam Sharafi
- Infectious Diseases and Tropical Medicine Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soltan Ahmad Ebrahimi
- Department of Pharmacology, Faculty of Medicine, Razi Institute for Drug Research, Iran University of Medical Sciences, Tehran, Iran
| | - Lame Akhlaghi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Moosavi
- Department of of Medical Parasitology and Mycology, Iran University of Medical Sciences, Tehran, Iran
| | - Abasali Eskandarian
- Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Souza AJ, Milhomem AC, Rezende HH, Matos-Silva H, Vinaud MC, Oliveira MA, Castro AM, Lino-Júnior RS. Taenia crassiceps antigens induce a Th2 immune response and attenuate injuries experimentally induced by neurotoxoplasmosis in BALB/c mice. Parasitol Int 2018; 67:16-22. [DOI: 10.1016/j.parint.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
|
13
|
Triantis V, Bode L, van Neerven RJJ. Immunological Effects of Human Milk Oligosaccharides. Front Pediatr 2018; 6:190. [PMID: 30013961 PMCID: PMC6036705 DOI: 10.3389/fped.2018.00190] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Human milk oligosaccharides (HMOs) comprise a group of structurally complex, unconjugated glycans that are highly abundant in human milk. HMOs are minimally digested in the gastrointestinal tract and reach the colon intact, where they shape the microbiota. A small fraction of HMOs is absorbed, reaches the systemic circulation, and is excreted in urine. HMOs can bind to cell surface receptors expressed on epithelial cells and cells of the immune system and thus modulate neonatal immunity in the infant gut, and possibly also sites throughout the body. In addition, they have been shown to act as soluble decoy receptors to block the attachment of various microbial pathogens to cells. This review summarizes the current knowledge of the effects HMOs can have on infections, allergies, auto-immune diseases and inflammation, and will focus on the role of HMOs in altering immune responses through binding to immune-related receptors.
Collapse
Affiliation(s)
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - R J Joost van Neerven
- FrieslandCampina, Amersfoort, Netherlands.,Wageningen University and Research, Cell Biology and Immunology, Wageningen, Netherlands
| |
Collapse
|
14
|
Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections. Microb Pathog 2017; 112:195-208. [PMID: 28942176 DOI: 10.1016/j.micpath.2017.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/13/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022]
Abstract
Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells.
Collapse
|
15
|
Winton VJ, Justen AM, Deng H, Kiessling LL. Deleterious Consequences of UDP-Galactopyranose Mutase Inhibition for Nematodes. ACS Chem Biol 2017; 12:2354-2361. [PMID: 28732158 DOI: 10.1021/acschembio.7b00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parasitic nematodes pose a serious threat to agriculture, livestock, and human health. Increasing resistance to antiparasitic agents underscores the need to replenish our anthelmintic arsenal. The nonpathogenic Caenorhabditis elegans, which serves as an effective model of parasitic helminths, has been used to search for new anthelmintic leads. We previously reported small-molecule inhibitors of the essential C. elegans protein UDP-galactopyranose mutase (UGM or Glf). This enzyme is required for the generation of galactofuranose (Galf)-containing glycans and is needed in nematodes for proper cuticle formation. Though our first-generation inhibitors were effective in vitro, they elicited no phenotypic effects. These findings are consistent with the known difficulty of targeting nematodes. C. elegans is recalcitrant to pharmacological modulation; typically, less than 0.02% of small molecules elicit a phenotypic effect, even at 40 μM. We postulated that the lack of activity of the UGM inhibitors was due to their carboxylic acid group, which can be exploited by nematodes for detoxification. We therefore tested whether replacement of the carboxylate with an N-acylsulfonamide surrogate would result in active compounds. UGM inhibitors with the carboxylate mimetic can phenocopy the deleterious consequences of UGM depletion in C. elegans. These findings support the use of UGM inhibitors as anthelmintic agents. They also outline a strategy to render small-molecule carboxylates more effective against nematodes.
Collapse
Affiliation(s)
- Valerie J. Winton
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Alexander M. Justen
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Helen Deng
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Laura L. Kiessling
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| |
Collapse
|
16
|
Homann A, Schramm G, Jappe U. Glycans and glycan-specific IgE in clinical and molecular allergology: Sensitization, diagnostics, and clinical symptoms. J Allergy Clin Immunol 2017; 140:356-368. [PMID: 28479330 DOI: 10.1016/j.jaci.2017.04.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Glycan-specific IgE antibodies cross-react with highly similar or even identical carbohydrate structures on a variety of different natural allergens, the so-called cross-reactive carbohydrate determinants (CCDs). In clinical practice CCDs often interfere with the specificity of in vitro allergy diagnostics, thus impairing allergy therapy decisions for individual patients. Strikingly, these IgE antibodies directed against CCDs often do not cause clinically relevant allergy symptoms. On the other hand, the IgE-binding glycan allergen galactose-α-(1,3)-galactose (α-Gal) is associated with IgE-mediated delayed anaphylaxis in meat allergy. The reason for this discrepancy is not known. The discovery of α-Gal stimulated new discussions and investigations regarding the relevance of anti-glycan IgE for allergic diseases. In this review the effect of glycans and glycan-specific IgE on sensitization to allergens and allergy diagnosis is described. Because parasite infections elicit a similar immunologic environment as allergic diseases, the association of glycan-specific antibodies against parasite glycoproteins with glycan structures on allergens is discussed.
Collapse
Affiliation(s)
- Arne Homann
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
| | - Gabriele Schramm
- Division of Experimental Pneumology, Priority Research Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
17
|
Crowe J, Lumb FE, Harnett MM, Harnett W. Parasite excretory-secretory products and their effects on metabolic syndrome. Parasite Immunol 2017; 39. [PMID: 28066896 DOI: 10.1111/pim.12410] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homoeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival, and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies.
Collapse
Affiliation(s)
- J Crowe
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - F E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - M M Harnett
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - W Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
18
|
Rafiei Sefiddashti R, Sharafi SM, Ebrahimi SA, Akhlaghi L, Moosavi A, Eskandarian A, Hejrati A, Yousofi Darani H. Antibody response to glycan antigens of hydatid cyst fluid, laminated layer and protoscolex of Echinococcus granulosus. Med J Islam Repub Iran 2017; 31:12. [PMID: 28955662 PMCID: PMC5609323 DOI: 10.18869/mjiri.31.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 01/13/2023] Open
Abstract
Background: Hydatid disease is characterized by long-term growth of hydatid cysts in the human. The glycan antigens have an important role in the immunology of hydatid cyst. In this study immunological reaction of host sera to different glycan antigens of the cyst, has been investigated.
Methods: The antibody responses were tested to glycoprotein and glycolipid of the laminated layer (LL), cyst fluid (CF) and protoscolex (PS) antigens of E. Granulosus using ELISA and western immunoblotting tests. Thin-layer chromatography and ß-elimination were used for glycan purification.
Results: Both hydatid cyst and normal human sera reacted with hydatid cyst fluid, protoscolices, laminated layer, glycoprotein and glycolipid antigens. The most antigen-antibody reaction was related to CF and PS antigens, and LL antigens had the minimal reaction with the sera. Thin layer chromatography (TLC) of the antigens showed presence of many glycan bands in the laminated layer.
Conclusion: The parasite may elaborate different glycan antigens in LL to evade host immune response.
Collapse
Affiliation(s)
| | - Seyedeh Maryam Sharafi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soltan Ahmad Ebrahimi
- Pharmacology Department and Razi Institute for Drug Research, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lame Akhlaghi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Iran university of Medical Sciences, Tehran, Iran
| | - Ali Moosavi
- Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Laan LC, Williams AR, Stavenhagen K, Giera M, Kooij G, Vlasakov I, Kalay H, Kringel H, Nejsum P, Thamsborg SM, Wuhrer M, Dijkstra CD, Cummings RD, van Die I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB J 2016; 31:719-731. [PMID: 27806992 DOI: 10.1096/fj.201600841r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Clinical trials have shown that administration of the nematode Trichuris suis can be beneficial in treating various immune disorders. To provide insight into the mechanisms by which this worm suppresses inflammatory responses, an active component was purified from T. suis soluble products (TsSPs) that suppress---- TNF and IL-12 secretion from LPS-activated human dendritic cells (DCs). Analysis by liquid chromatography tandem mass spectrometry identified this compound as prostaglandin (PG)E2. The purified compound showed similar properties compared with TsSPs and commercial PGE2 in modulating LPS-induced expression of many cytokines and chemokines and in modulating Rab7B and P2RX7 expression in human DCs. Furthermore, the TsSP-induced reduction of TNF secretion from DCs is reversed by receptor antagonists for EP2 and EP4, indicating PGE2 action. T. suis secretes extremely high amounts of PGE2 (45-90 ng/mg protein) within their excretory/secretory products but few related lipid mediators as established by metabololipidomic analysis. Culture of T. suis with several cyclooxygenase (COX) inhibitors that inhibit mammalian prostaglandin synthesis affected the worm's motility but did not inhibit PGE2 secretion, suggesting that the worms can synthesize PGE2 via a COX-independent pathway. We conclude that T. suis secretes PGE2 to suppress proinflammatory responses in human DCs, thereby modulating the host's immune response.-Laan, L. C., Williams, A. R., Stavenhagen, K., Giera, M., Kooij, G., Vlasakov, I., Kalay, H., Kringel, H., Nejsum, P., Thamsborg, S. M., Wuhrer, M., Dijkstra, C. D., Cummings, R. D., van Die, I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells.
Collapse
Affiliation(s)
- Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrew R Williams
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Iliyan Vlasakov
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Helene Kringel
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Peter Nejsum
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Stig M Thamsborg
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine D Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycosciences, Boston, Massachusetts, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
20
|
Apaer S, Tuxun T, Ma HZ, Zhang H, Aierken A, Aini A, Li YP, Lin RY, Wen H. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis. Exp Ther Med 2016; 12:2359-2366. [PMID: 27698735 DOI: 10.3892/etm.2016.3660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/15/2016] [Indexed: 12/11/2022] Open
Abstract
Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the 'hygiene hypothesis' since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis.
Collapse
Affiliation(s)
- Shadike Apaer
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tuerhongjiang Tuxun
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hai-Zhang Ma
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Heng Zhang
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Amina Aierken
- Department of Ultrasonography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abudusalamu Aini
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yu-Peng Li
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ren-Yong Lin
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hao Wen
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
21
|
Aberrant immune response with consequent vascular and connective tissue remodeling - causal to scleroderma and associated syndromes such as Raynaud phenomenon and other fibrosing syndromes? Curr Opin Rheumatol 2016; 28:571-6. [PMID: 27548652 DOI: 10.1097/bor.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Scleroderma and other autoimmune-induced connective tissue diseases are characterized by dysfunctions in the immune system, connective tissue and the vasculature. We are focusing on systemic sclerosis (SSc)-associated pulmonary hypertension, which remains a leading cause of death with only a 50-60% of 2-year survival rate. RECENT FINDINGS Much research and translational efforts have been directed at understanding the immune response that causes SSc and the networked interactions with the connective tissue and the vasculature. One of the unexpected findings was that in some cases the pathogenic immune response in SSc resembles the immune response to helminth parasites. During coevolution, means of communication were developed which protect the host from over-colonization with parasites and which protect the parasite from excessive host responses. One explanation for the geographically clustered occurrence of SSc is that environmental exposures combined with genetic predisposition turn on triggers of molecular and cellular modules that were once initiated by parasites. SUMMARY Future research is needed to further understand the parasite-derived signals that dampen the host response. Therapeutic helminth infection or treatment with parasite-derived response modifiers could be promising new management tools for autoimmune connective tissue diseases.
Collapse
|
22
|
Abstract
The decline in age of pubertal timing has serious public health implications ranging from psychosocial adjustment problems to a possible increase in reproductive cancers. One biologically plausible explanation for the decline is a decrease in exposures to infections. To systematically review studies that assess the role of infection in pubertal timing, Medline, Web of Science and EMBASE were systematically searched and retrieved studies were reviewed for eligibility. Eligible studies examined the association between infections, including microbial exposures, and physical pubertal characteristics (breast, genitalia and pubic hair development) or age at menarche. We excluded studies that were published in a language other than English, focused on precocious puberty, were case studies, and/or included youth with autoimmune diseases. We report on study design, population characteristics, measurement of infection and puberty and the main effects of infection on pubertal development. Based on our search terms we identified 1372 unique articles, of which only 15 human and five animal studies met our eligibility criteria. Not all studies examined all outcomes. Infection was associated with later breast development (4/4 human studies), with less consistent evidence for genitalia and pubic hair development. Seven studies assessed age at menarche with inconsistent findings (three supporting later, four no association). We conclude that a small but consistent literature supports that infection is associated with later breast development; the evidence for other pubertal events and age at menarche is less clear. Where fewer childhood infections coincide with the rise in incidence of hormone-related cancers.
Collapse
|
23
|
Zakeri A, Borji H, Haghparast A. Interaction Between Helminths and Toll-Like Receptors: Possibilities and Potentials for Asthma Therapy. Int Rev Immunol 2016; 35:219-48. [PMID: 27120222 DOI: 10.3109/08830185.2015.1096936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are essential components of the innate immune system. They play an important role in the pathogenesis of allergic diseases, especially asthma. Since TLRs significantly orchestrate innate and adaptive immune response, their manipulation has widely been considered as a potential approach to control asthma symptoms. It is well established that helminths have immunoregulatory effects on host immune responses, especially innate immunity. They release bioactive molecules such as excretory-secretory (ES) products manipulating TLRs expression and signaling. Thus, given the promising results derived from preclinical studies, harnessing helminth-derived molecules affecting TLRs can be considered as a potential biological therapy for allergic diseases. Prospectively, the data that are available at present suggest that, in the near future, it is possible that helminth antigens will offer new therapeutic strategies and druggable targets for fighting allergic diseases. This review describes the interactions between helminths and TLRs and discusses the potential possibilities for asthma therapy. In this opinion paper, the authors aimed to review the updated literatures on the interplay between helminths, TLRs, and asthma with a view to proposing helminth-based asthma therapy.
Collapse
Affiliation(s)
- Amin Zakeri
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Hassan Borji
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Alireza Haghparast
- b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,c Biotechnology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
24
|
Zhou G, Stevenson MM, Geary TG, Xia J. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections. PLoS Negl Trop Dis 2016; 10:e0004624. [PMID: 27058578 PMCID: PMC4826001 DOI: 10.1371/journal.pntd.0004624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Helminth infections affect more than a third of the world’s population. Despite very broad phylogenetic differences among helminth parasite species, a systemic Th2 host immune response is typically associated with long-term helminth infections, also known as the “helminth effect”. Many investigations have been carried out to study host gene expression profiles during helminth infections. The objective of this study is to determine if there is a common transcriptomic signature characteristic of the helminth effect across multiple helminth species and tissue types. To this end, we performed a comprehensive meta-analysis of publicly available gene expression datasets. After data processing and adjusting for study-specific effects, we identified ~700 differentially expressed genes that are changed consistently during helminth infections. Functional enrichment analyses indicate that upregulated genes are predominantly involved in various immune functions, including immunomodulation, immune signaling, inflammation, pathogen recognition and antigen presentation. Down-regulated genes are mainly involved in metabolic process, with only a few of them are involved in immune regulation. This common immune gene signature confirms previous observations and indicates that the helminth effect is robust across different parasite species as well as host tissue types. To the best of our knowledge, this study is the first comprehensive meta-analysis of host transcriptome profiles during helminth infections. Many studies have been conducted to understand the immune modulatory effects in helminth infections. To determine whether there is a common transcriptomic signature characteristic of the helminth effect, we performed a comprehensive meta-analysis of publicly available gene expression datasets. The results revealed a distinct pattern of gene expression that is consistent across multiple helminth species and host tissue types, with upregulated genes dominated by those involved in immune regulation, Th2 immunity and inflammatory responses.
Collapse
Affiliation(s)
- Guangyan Zhou
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Mary M. Stevenson
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Departments of Medicine and Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Rodríguez E, Noya V, Cervi L, Chiribao ML, Brossard N, Chiale C, Carmona C, Giacomini C, Freire T. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells. PLoS Negl Trop Dis 2015; 9:e0004234. [PMID: 26720149 PMCID: PMC4697847 DOI: 10.1371/journal.pntd.0004234] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] Open
Abstract
Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.
Collapse
Affiliation(s)
- Ernesto Rodríguez
- Laboratory of Immunomodulation and Vaccine Development, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Verónica Noya
- Laboratory of Immunomodulation and Vaccine Development, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CIBICI-CONICET, Córdoba, Argentina
| | | | - Natalie Brossard
- Laboratory of Immunomodulation and Vaccine Development, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Carolina Chiale
- Laboratory of Immunomodulation and Vaccine Development, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Departamento de Biología Celular y Molecular, Instituto de Higiene, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Cecilia Giacomini
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Montevideo, Uruguay
| | - Teresa Freire
- Laboratory of Immunomodulation and Vaccine Development, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
26
|
Hewitson JP, Nguyen DL, van Diepen A, Smit CH, Koeleman CA, McSorley HJ, Murray J, Maizels RM, Hokke CH. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus. Int J Parasitol 2015; 46:157-170. [PMID: 26688390 PMCID: PMC4776704 DOI: 10.1016/j.ijpara.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/25/2022]
Abstract
Heligmosomoides polygyrus excretory–secretory (ES) proteins carry diverse N- and O-glycans, and many are O-methylated. A methylhexose containing O-glycan of abundant ES glycoproteins is immunodominant. This dominant glycan is not the immunomodulatory heat-stable ES component.
Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory–secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC–MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory–secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1–4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory–secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory–secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory–secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Cornelis H Smit
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Carolien A Koeleman
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henry J McSorley
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Janice Murray
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
27
|
Nutman TB. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths. Parasite Immunol 2015; 37:304-13. [PMID: 25869527 DOI: 10.1111/pim.12194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections.
Collapse
Affiliation(s)
- T B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Singh A, Garg RK, Jain A, Malhotra HS, Prakash S, Verma R, Sharma PK. Toll like receptor-4 gene polymorphisms in patients with solitary cysticercus granuloma. J Neurol Sci 2015; 355:180-5. [DOI: 10.1016/j.jns.2015.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
|
29
|
Chauhan A, Quenum FZ, Abbas A, Bradley DS, Nechaev S, Singh BB, Sharma J, Mishra BB. Epigenetic Modulation of Microglial Inflammatory Gene Loci in Helminth-Induced Immune Suppression: Implications for Immune Regulation in Neurocysticercosis. ASN Neuro 2015; 7:7/4/1759091415592126. [PMID: 26148848 PMCID: PMC4552224 DOI: 10.1177/1759091415592126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurocysticercosis, parasite-induced immune suppressive effects are thought to play an important role in enabling site-specific inhibition of inflammatory responses to infections. It is axiomatic that microglia-mediated (M1 proinflammatory) response causes central nervous system inflammation; however, the mechanisms by which helminth parasites modulate microglia activation remain poorly understood. Here, we show that microglia display a diminished expression of M1-inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nitric oxide synthase 2 (NOS2) in murine neurocysticercosis. Microglia also exhibited a lack of myeloid cell maturation marker major histocompatibility complex (MHC)-II in these parasite-infected brains. Treatment of microglia with helminth soluble/secreted factors (HSFs) in vitro did not induce expression of M1-inflammatory signature molecule NOS2 as well as MHC-II in primary microglia. However, HSF treatment completely inhibited lipopolysaccharide-induced increase in expression of MHC-II, NOS2 and nitric oxide production in these cells. As epigenetic modulation of chromatin states that regulates recruitment of RNA polymerase II (Pol-II) is a key regulatory step in determining gene expression and functional outcome, we next evaluated whether HSF induced modulation of these phenomenon in microglia in vitro. Indeed, HSF downregulated Pol-II recruitment to the promoter region of TNF-α, IL-6, NOS2, MHC-II, and transcription factor CIITA (a regulator of MHC-II expression), by itself. Moreover, HSF suppressed the lipopolysaccharide-induced increase in Pol-II recruitment as well. In addition, HSF exposure reduced the positive histone marks H3K4Me3 and H3K9/14Ac at the promoter of TNF-α, IL-6, NOS2, MHC-II, and CIITA. These studies provide a novel mechanistic insight into helminth-mediated immune suppression in microglia via modulation of epigenetic processes.
Collapse
Affiliation(s)
- Arun Chauhan
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - Fredice Z Quenum
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - Ata Abbas
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - David S Bradley
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - Sergei Nechaev
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - Brij B Singh
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - Jyotika Sharma
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| | - Bibhuti B Mishra
- Department of Basic Sciences, School of Medicine and Health Sciences, The University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
30
|
Secretory Products of Trichinella spiralis Muscle Larvae and Immunomodulation: Implication for Autoimmune Diseases, Allergies, and Malignancies. J Immunol Res 2015; 2015:523875. [PMID: 26114122 PMCID: PMC4465845 DOI: 10.1155/2015/523875] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Trichinella spiralis has the unique ability to make itself "at home" by creating and hiding in a new type of cell in the host body that is the nurse cell. From this immunologically privileged place, the parasite orchestrates a long-lasting molecular cross talk with the host through muscle larvae excretory-secretory products (ES L1). Those products can successfully modulate parasite-specific immune responses as well as responses to unrelated antigens (either self or nonself in origin), providing an anti-inflammatory milieu and maintaining homeostasis. It is clear, based on the findings from animal model studies, that T. spiralis and its products induce an immunomodulatory network (which encompasses Th2- and Treg-type responses) that may allow the host to deal with various hyperimmune-associated disorders as well as tumor growth, although the latter still remains unclear. This review focuses on studies of the molecules released by T. spiralis, their interaction with pattern recognition receptors on antigen presenting cells, and subsequently provoked responses. This paper also addresses the immunomodulatory properties of ES L1 molecules and how the induced immunomodulation influences the course of different experimental inflammatory and malignant diseases.
Collapse
|
31
|
Li XX, Chen JX, Wang LX, Sun J, Chen SH, Chen JH, Zhang XY, Zhou XN. Profiling B and T cell immune responses to co-infection of Mycobacterium tuberculosis and hookworm in humans. Infect Dis Poverty 2015; 4:20. [PMID: 25954506 PMCID: PMC4423492 DOI: 10.1186/s40249-015-0046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/20/2015] [Indexed: 02/01/2023] Open
Abstract
Background Humoral and cellular immune responses play protective roles against Mycobacterium tuberculosis (MTB) infection. However, hookworm infection decreases the immune response to hookworm and bystander antigens. Currently, immune responses to co-infection of MTB and hookworm are still unknown, although co-infection has been one of the public health problems in co-endemic areas of pulmonary tuberculosis (PTB) and hookworm disease. Therefore, it is essential to evaluate B and T cell immune responses to the co-infection. Methods Seventeen PTB cases co-infected with hookworm, 26 PTB cases, 15 patients with hookworm infection, and 24 healthy controls without PTB or hookworm infection were enrolled in the study. Expressions of CD3, CD4, CD8, CD10, CD19, CD20, CD21, CD25, CD27, CD38, FoxP3, and PD-1 were assessed on B and T cell subsets using multicolor flow cytometry. Results For the B cell (CD19+) subsets, naïve B cells (CD10−CD27−CD21+CD20+), plasma cells (CD10−CD27+CD21−CD20−), and tissue-like memory B cells (CD10−CD27−CD21−CD20+) had higher proportions, whilst resting memory B cells (CD10−CD27+CD21+CD20+) had lower proportions in the group co-infected with MTB and hookworm as compared to other groups. Frequencies of activated memory B cells (CD10−CD27+CD21−CD20+) did not differ among the four groups. For the T cell (CD3+) subsets, frequencies of regulatory T cells (CD4+CD25+Foxp3+) and exhausted CD4+ and CD8+ T cells (CD4+PD-1+ and CD8+PD-1+) were higher, and frequencies of activated CD4+ and CD8+ T cells (CD4+CD38+ and CD8+CD38+) were lower in the co-infected group as compared to the other groups. Conclusion The change patterns of the cell profile of circulating lymphocytes were indentified in human co-infection of MTB and hookworm, which might indicate that the humoral and cellular immune responses are more suppressed. Electronic supplementary material The online version of this article (doi:10.1186/s40249-015-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Xu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC) ; National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 PR China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Li-Xia Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 PR China
| | - Jun Sun
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508 PR China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Xiao-Yan Zhang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508 PR China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| |
Collapse
|
32
|
Tahapary DL, de Ruiter K, Martin I, van Lieshout L, Guigas B, Soewondo P, Djuardi Y, Wiria AE, Mayboroda OA, Houwing-Duistermaat JJ, Tasman H, Sartono E, Yazdanbakhsh M, Smit JWA, Supali T. Helminth infections and type 2 diabetes: a cluster-randomized placebo controlled SUGARSPIN trial in Nangapanda, Flores, Indonesia. BMC Infect Dis 2015; 15:133. [PMID: 25888525 PMCID: PMC4389675 DOI: 10.1186/s12879-015-0873-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
Background Insulin resistance is a strong predictor of the development of type 2 diabetes mellitus. Chronic helminth infections might protect against insulin resistance via a caloric restriction state and indirectly via T-helper-2 polarization of the immune system. Therefore the elimination of helminths might remove this beneficial effect on insulin resistance. Methods/Design To determine whether soil-transmitted helminth infections are associated with a better whole-body insulin sensitivity and whether this protection is reversible by anthelmintic treatment, a household-based cluster-randomized, double blind, placebo-controlled trial was conducted in the area of Nangapanda on Flores Island, Indonesia, an area endemic for soil-transmitted helminth infections. The trial incorporates three monthly treatment with albendazole or matching placebo for one year, whereby each treatment round consists of three consecutive days of supervised drug intake. The presence of soil-transmitted helminths will be evaluated in faeces using microscopy and/or PCR. The primary outcome of the study will be changes in insulin resistance as assessed by HOMA-IR, while the secondary outcomes will be changes in body mass index, waist circumference, fasting blood glucose, 2 h-glucose levels after oral glucose tolerance test, HbA1c, serum lipid levels, immunological parameters, and efficacy of anthelmintic treatment. Discussion The study will provide data on the effect of helminth infections on insulin resistance. It will assess the relationship between helminth infection status and immune responses as well as metabolic parameters, allowing the establishment of a link between inflammation and whole-body metabolic homeostasis. In addition, it will give information on anthelmintic treatment efficacy and effectiveness. Trial registration This study has been approved by the ethical committee of Faculty of Medicine Universitas Indonesia (ref: 549/H2.F1/ETIK/2013), and has been filed by the ethics committee of Leiden University Medical Center, clinical trial number: ISRCTN75636394. The study is reported in accordance with the CONSORT guidelines for cluster-randomised trials.
Collapse
Affiliation(s)
- Dicky L Tahapary
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Karin de Ruiter
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ivonne Martin
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands. .,Department of Mathematics, Parahyangan Catholic University, Bandung, Indonesia.
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands. .,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Pradana Soewondo
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Aprilianto E Wiria
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Hengki Tasman
- Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Indonesia, Jakarta, Indonesia.
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Johannes W A Smit
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands. .,Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
33
|
Bourke CD, Prendergast CT, Sanin DE, Oulton TE, Hall RJ, Mountford AP. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection. Int J Parasitol 2015; 45:215-24. [PMID: 25575749 PMCID: PMC4365920 DOI: 10.1016/j.ijpara.2014.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 10/28/2022]
Abstract
Keratinocytes constitute the majority of cells in the skin's epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45(-), CD326(-), CD34(+)) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin(-)) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67(+) nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those observed in epidermal wound healing.
Collapse
Affiliation(s)
- Claire D Bourke
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom.
| | | | - David E Sanin
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Tate E Oulton
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Rebecca J Hall
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Adrian P Mountford
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
34
|
Heylen M, Ruyssers NE, Nullens S, Schramm G, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Treatment with egg antigens of Schistosoma mansoni ameliorates experimental colitis in mice through a colonic T-cell-dependent mechanism. Inflamm Bowel Dis 2015; 21:48-59. [PMID: 25437821 DOI: 10.1097/mib.0000000000000246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Helminth-derived molecules are being identified as a new therapeutic approach for immune-mediated diseases. We investigated the anti-inflammatory effect and the immunological mechanisms of Schistosoma mansoni soluble egg antigens (SmSEA) in a mouse model of chronic colitis. METHODS Colitis was induced in immunocompromised severe combined immunodeficiency mice by the adoptive transfer of CD4CD25CD62L T cells. Two weeks post-transfer, SmSEA treatments were started (study 1: 1 × 20 μg SmSEA per week 5 times; study 2: 2 × 20 μg SmSEA per week 3 times). From the start of the treatment (week 2), the clinical outcome and colonic inflammation were assessed at different time points by a clinical disease score and colonoscopy, respectively. At the end of the studies, the colons were harvested for macroscopic examination, and colonic lamina propria mononuclear cells were isolated for flow cytometric T-cell characterization. RESULTS In both studies, administration of SmSEA in colitis mice improved all the inflammatory parameters studied. However in study 1, this beneficial effect on inflammation diminished with time, and the T-cell characterization of the lamina propria mononuclear cells, performed at week 6, revealed no immunological effects of the SmSEA treatment. In study 2, mice were killed earlier (week 4) and at that time point, we found a significant downregulation of the number of interleukin-17A-producing T cells and a significant upregulation of the number of interleukin-4-producing T cells in the colon of the SmSEA-treated colitis mice. CONCLUSIONS Our results demonstrated that the administration of SmSEA reduces the severity of colitis in the adoptive transfer mouse model characterized by an increased Th2 response and a suppressed Th17 response in the colon.
Collapse
Affiliation(s)
- Marthe Heylen
- *Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; †Department of Experimental Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany; and ‡Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Glycans expressed on Trichinella spiralis excretory-secretory antigens are important for anti-inflamatory immune response polarization. Comp Immunol Microbiol Infect Dis 2014; 37:355-67. [PMID: 25467036 DOI: 10.1016/j.cimid.2014.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023]
Abstract
Trichinella spiralis muscle larvae excretory-secretory antigens (ES L1) are most likely responsible for the induction of immune response during infection by this parasitic. The antigens bear carbohydrate structures that may contribute to immune system activation resulting in a Th2/anti-inflammatory immune response. We show that T. spiralis glycans affect the expression and the production of IL-4 and IL-10 in vivo. Alteration of carbohydrate structures on ES L1 altered dendritic cell (DC) maturation. Periodate treatment of ES L1 led to the reduction in both ERK and p38 phosphorylation which may be the cause of reduced IL-10 and IL-12p70 production. In vitro priming of naïve T cells with DCs stimulated with native and periodate-treated ES L1 emphasized the importance of intact glycans for IL-10 production. We conclude that T. spiralis glycans affect the anti-inflammatory environment and can interfere with the development of inflammatory diseases.
Collapse
|
36
|
Pineda MA, Al-Riyami L, Harnett W, Harnett MM. Lessons from helminth infections: ES-62 highlights new interventional approaches in rheumatoid arthritis. Clin Exp Immunol 2014; 177:13-23. [PMID: 24666108 PMCID: PMC4089150 DOI: 10.1111/cei.12252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
Parasitic worms are able to survive in their mammalian host for many years due to their ability to manipulate the immune response by secreting immunomodulatory products. It is increasingly clear that, reflecting the anti-inflammatory actions of such worm-derived immunomodulators, there is an inverse correlation between helminth infection and autoimmune diseases in the developing world. As the decrease in helminth infections due to increased sanitation has correlated with an alarming increase in prevalence of such disorders in industrialized countries, this ‘hygiene hypothesis’ has led to the proposal that worms and their secreted products offer a novel platform for the development of safe and effective strategies for the treatment of autoimmune disorders. In this study we review the anti-inflammatory effects of one such immunomodulator, ES-62 on innate and adaptive immune responses and the mechanisms it exploits to afford protection in the murine collagen-induced arthritis (CIA) model of rheumatoid arthritis (RA). As its core mechanism involves targeting of interleukin (IL)-17 responses, which despite being pathogenic in RA are important for combating infection, we discuss how its selective targeting of IL-17 production by T helper type 17 (Th17) and γδ T cells, while leaving that of CD49b+ natural killer (NK and NK T) cells intact, reflects the ability of helminths to modulate the immune system without immunocompromising the host. Exploiting helminth immunomodulatory mechanisms therefore offers the potential for safer therapies than current biologicals, such as ‘IL-17 blockers’, that are not able to discriminate sources of IL-17 and hence present adverse effects that limit their therapeutic potential.
Collapse
Affiliation(s)
- M A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
37
|
Chauhan A, Sun Y, Pani B, Quenumzangbe F, Sharma J, Singh BB, Mishra BB. Helminth induced suppression of macrophage activation is correlated with inhibition of calcium channel activity. PLoS One 2014; 9:e101023. [PMID: 25013939 PMCID: PMC4094426 DOI: 10.1371/journal.pone.0101023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/29/2014] [Indexed: 02/04/2023] Open
Abstract
Helminth parasites cause persistent infections in humans and yet many infected individuals are asymptomatic. Neurocysticercosis (NCC), a disease of the central nervous system (CNS) caused by the cestode Taenia solium, has a long asymptomatic phase correlated with an absence of brain inflammation. However, the mechanisms of immune suppression remain poorly understood. Here we report that murine NCC displays a lack of cell surface maturation markers in infiltrating myeloid cells. Furthermore, soluble parasite ligands (PL) failed to induce maturation of macrophages, and inhibited TLR-induced inflammatory cytokine production. Importantly, PL treatment abolished both LPS and thapsigargin-induced store operated Ca2+ entry (SOCE). Moreover, electrophysiological recordings demonstrated PL-mediated inhibition of LPS or Tg-induced currents that were TRPC1-dependent. Concomitantly STIM1-TRPC1 complex was also impaired that was essential for SOCE and sustained Ca2+ entry. Likewise loss of SOCE due to PL further inhibited NFkB activation. Overall, our results indicate that the negative regulation of agonist induced Ca2+ signaling pathway by parasite ligands may be a novel immune suppressive mechanism to block the initiation of the inflammatory response associated with helminth infections.
Collapse
Affiliation(s)
- Arun Chauhan
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Yuyang Sun
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Biswaranjan Pani
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Fredice Quenumzangbe
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jyotika Sharma
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Brij B. Singh
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Bibhuti B. Mishra
- Department of Basic Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
38
|
The effect of glycosylation of antigens on the antibody responses against Echinostoma caproni (Trematoda: Echinostomatidae). Parasitology 2014; 141:1333-40. [PMID: 24828858 DOI: 10.1017/s0031182014000596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, we analyse the effect of glycosylation in Echinostoma caproni (Trematoda: Echinostomatidae) antigens in antibody responses against the parasite in experimentally infected mice. It has been previously demonstrated that the mouse is a host of high compatibility with E. caproni and develops elevated responses of IgG, IgG1, IgG3 and IgM as a consequence of the infection, though the role of glycans in these responses remains unknown. To this purpose, the responses generated in mice against non-treated excretory/secretory antigens of E. caproni were compared with those observed after N-deglycosylation, O-deglycosylation and double deglycosylation of the antigens by indirect ELISA and western blot. Our results suggest that E. caproni-expressed glycans play a major role in the modulation of the immune responses. The results obtained indicate that IgG subclass responses generated in mice against E. caproni are essentially due to glycoproteins and may affect the Th1/Th2 biasing. The reactivity significantly decreased after any of the deglycosylation treatments and the N-glycans appears to be of greater importance than O-glycans. Interestingly, the IgM response increased after N-deglycosylation suggesting that carbohydrates may mask peptide antigens.
Collapse
|
39
|
Immunomodulatory glycan lacto-N-fucopentaose III requires clathrin-mediated endocytosis to induce alternative activation of antigen-presenting cells. Infect Immun 2014; 82:1891-903. [PMID: 24566617 DOI: 10.1128/iai.01293-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of alternative activation of antigen-presenting cells (APCs) is largely unknown. Lacto-N-fucopentaose III (LNFPIII) is a biologically conserved pentasaccharide that contains the Lewis(x) trisaccharide. LNFPIII conjugates and schistosome egg antigens, which contain the Lewis(x) trisaccharide, drive alternative activation of APCs and induce anti-inflammatory responses in vivo, preventing inflammation-based diseases, including psoriasis, transplant organ rejection, and metabolic disease. In this study, we show that LNFPIII conjugates and schistosome egg antigens interact with APCs via a receptor-mediated process, requiring internalization of these molecules through a clathrin/dynamin-dependent but caveolus-independent endocytic pathway. Using inhibitors/small interfering RNA (siRNA) against dynamin and clathrin, we show for the first time that endocytosis of Lewis(x)-containing glycans is required to drive alternative maturation of antigen-presenting cells and Th2 immune responses. We identified mouse SIGNR-1 as a cell surface receptor for LNFPIII conjugates. Elimination of SIGNR-1 showed no effect on uptake of LNFPIII conjugates, suggesting that other receptors bind to and facilitate uptake of LNFPIII conjugates. We demonstrate that disruption of actin filaments partially prevented the entry of LNFPIII conjugates into APCs and that LNFPIII colocalizes with both early and late endosomal markers and follows the classical endosomal pathway leading to lysosome maturation. The results of this study show that the ability of LNFPIII to induce alternative activation utilizes a receptor-mediated process that requires a dynamin-dependent endocytosis. Thus, key steps have been defined in the previously unknown mechanism of alternative activation that ultimately leads to induction of anti-inflammatory responses.
Collapse
|
40
|
Hotaling NA, Ratner DM, Cummings RD, Babensee JE. Presentation Modality of Glycoconjugates Modulates Dendritic Cell Phenotype. Biomater Sci 2014; 2:1426-1439. [PMID: 26146546 DOI: 10.1039/c4bm00138a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The comparative dendritic cell (DC) response to glycoconjugates presented in soluble, phagocytosable, or non-phagocytosable display modalities is poorly understood. This is particularly problematic, as the probing of immobilized glycans presented on the surface of microarrays is a common screen for potential candidates for glycan-based therapeutics. However, the assumption that carbohydrate-protein interactions on a flat surface can be translatable to development of efficacious therapies, such as vaccines, which are delivered in soluble or phagocytosable particles, has not been validated. Thus, a preliminary investigation was performed in which mannose or glucose was conjugated to cationized bovine serum albumin and presented to DCs in soluble, phagocytosable, or non-phagocytosable display modalities. The functional DC response to the glycoconjugates was assessed via a high throughput assay. Dendritic cell phenotypic outcomes were placed into a multivariate, general linear model (GLM) and shown to be statistically different amongst display modalities when comparing similar surface areas. The GLM showed that glycoconjugates that were adsorbed to wells were the most pro-inflammatory while soluble conjugates were the least. DC interactions with mannose conjugates were found to be calcium dependent and could be inhibited via anti-DC-SIGN antibodies. The results of this study aim to resolve conflicts in reports from multiple laboratories showing differential DC profiles in response to similar, if not identical, ligands delivered via different modalities. Additionally, this study begins to bridge the gap between microarray binding data and functional cell responses by highlighting the phenotypes induced from adsorbed glycoconjugates as compared to those in solution or displayed on microparticles.
Collapse
Affiliation(s)
- N A Hotaling
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA, 30332
| | - D M Ratner
- Dept. of Bioengineering, University of Washington, Seattle WA, 98195
| | - R D Cummings
- Dept. of Biochemistry, Emory University, Atlanta GA 30322
| | - J E Babensee
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA, 30332
| |
Collapse
|
41
|
Abstract
Activation of receptors of the innate immune system is a critical step in the initiation of immune responses. It has been shown that dominant allergens have properties that could allow them to interact with toll-like and C-type lectin receptors to favour Th2-biased responses and many bind lipids and glycans that could associate with ligands to mimic pathogen-associated microbial patterns. In accord with the proposed allergen-specific innate interactions it has been shown that the immune responses to different allergens and antigens from the same source are not necessarily coordinately regulated.
Collapse
Affiliation(s)
- W R Thomas
- Centre for Child Health Research, University of Western Australia, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia.
| |
Collapse
|
42
|
Abstract
Nematodes represent a diverse phylum of both free living and parasitic species. While the species Caenorhabditis elegans is a valuable model organism, parasitic nematodes or helminths pose a serious threat to human health. Indeed, helminths cause many neglected tropical diseases that afflict humans. Nematode glycoconjugates have been implicated in evasive immunomodulation, a hallmark of nematode infections. One monosaccharide residue present in the glycoconjugates of several human pathogens is galactofuranose (Galf). This five-membered ring isomer of galactose has not been detected in mammals, making Galf metabolic enzymes attractive therapeutic targets. The only known pathway for biosynthetic incorporation of Galf into glycoconjugates depends upon generation of the glycosyl donor UDP-Galf by the flavoenzyme uridine 5'-diphosphate (UDP) galactopyranose mutase (UGM or Glf). A putative UGM encoding gene (glf-1) was recently identified in C. elegans. We sought to assess the catalytic activity of the corresponding gene product (CeUGM). CeUGM catalyzes the isomerization of UDP-Galf and UDP-galactopyranose (UDP-Galp). In the presence of enzyme, substrate, and a hydride source, a galactose-N5-FAD adduct was isolated, suggesting the CeUGM flavin adenine dinucleotide (FAD) cofactor serves as a nucleophile in covalent catalysis. Homology modeling and protein variants indicate that CeUGM possesses an active site similar to that of prokaryotic enzymes, despite the low sequence identity (∼15%) between eukaryotic and prokaryotic UGM proteins. Even with the primary sequence differences, heterocyclic UGM inhibitors developed against prokaryotic proteins also inhibit CeUGM activity. We postulate that inhibitors of CeUGM can serve as chemical probes of Galf in nematodes and as anthelmintic leads. The available data suggest that CeUGM facilitates the biosynthetic incorporation of Galf into nematode glycoconjugates through generation of the glycosyl donor UDP-Galf.
Collapse
Affiliation(s)
- Darryl A. Wesener
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - John F. May
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - Elizabeth M. Huffman
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| | - Laura L. Kiessling
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| |
Collapse
|
43
|
Zaccone P, Cooke A. Vaccine against autoimmune disease: can helminths or their products provide a therapy? Curr Opin Immunol 2013; 25:418-23. [PMID: 23465465 DOI: 10.1016/j.coi.2013.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/12/2013] [Indexed: 12/25/2022]
Abstract
There is an increasing interest in exploiting the immunomodulatory effects of helminths and their products in treatment of diseases such as allergy, autoimmunity and inflammatory bowel disease. Detailed examination of the ways in which helminth derived products interact with the host immune system and with host physiology has revealed that these may be multifaceted and have almost certainly arisen following co-evolution of helminths and their hosts. Clinical trials have been initiated with encouraging results in the treatment of inflammatory bowel disease and also Multiple Sclerosis. Identification of key pathways that are manipulated by helminths to ameliorate ongoing inflammatory conditions increases the prospect of developing novel therapies for the treatment and possible prevention of a range of debilitating and life threatening conditions.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd., Cambridge, UK
| | | |
Collapse
|
44
|
Denis O, Vincent M, Havaux X, De Prins S, Treutens G, Huygen K. Induction of the specific allergic immune response is independent of proteases from the fungusAlternaria alternata. Eur J Immunol 2013; 43:907-17. [DOI: 10.1002/eji.201242630] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/26/2012] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Olivier Denis
- Program Allergology; WIV-ISP (site Ukkel); Brussels; Belgium
| | - Muriel Vincent
- Program Allergology; WIV-ISP (site Ukkel); Brussels; Belgium
| | - Xavier Havaux
- Cardiology Unit, Université Catholique de Louvain; UCL; Brussels; Belgium
| | - Sofie De Prins
- Program Allergology; WIV-ISP (site Ukkel); Brussels; Belgium
| | - Greta Treutens
- Program Allergology; WIV-ISP (site Ukkel); Brussels; Belgium
| | - Kris Huygen
- Scientific Service Immunology; WIV-ISP (site Ukkel); Brussels; Belgium
| |
Collapse
|
45
|
McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol 2013; 43:301-10. [PMID: 23291463 DOI: 10.1016/j.ijpara.2012.11.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Epidemiological and interventional human studies, as well as experiments in animal models, strongly indicate that helminth parasitic infections can confer protection from immune dysregulatory diseases such as allergy, autoimmunity and colitis. Here, we review the immunological pathways that helminths exploit to downregulate immune responses, both against bystander specificities such as allergens and against antigens from the parasites themselves. In particular, we focus on a highly informative laboratory system, the mouse intestinal nematode, Heligmosomoides polygyrus, as a tractable model of host-parasite interaction at the cellular and molecular levels. Analysis of the molecules released in vitro (as excretory-secretory products) and their cellular targets is identifying individual parasite molecules and gene families implicated in immunomodulation, and which hold potential for future human therapy of immunopathological conditions.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
46
|
Zaccone P, Cooke A. Helminth mediated modulation of Type 1 diabetes (T1D). Int J Parasitol 2013; 43:311-8. [PMID: 23291464 DOI: 10.1016/j.ijpara.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes is increasing dramatically in incidence in the developed world. While there may be several reasons for this, improved sanitation and public health measures have altered our interactions with certain infectious agents such as helminths. There is increasing interest in the use of helminths or their products to alleviate inflammatory or allergic conditions. Using rodent models of diabetes, it has been possible to explore the therapeutic potential of both live infections as well as helminth-derived products on the development of autoimmunity. This review provides an overview of the findings from animal models and additionally explores the potential for translation to the clinic.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
47
|
Abstract
The increasing incidence of type 1 diabetes (T1D) and autoimmune diseases in industrialized countries cannot be exclusively explained by genetic factors. Human epidemiological studies and animal experimental data provide accumulating evidence for the role of environmental factors, such as infections, in the regulation of allergy and autoimmune diseases. The hygiene hypothesis has formally provided a rationale for these observations, suggesting that our co-evolution with pathogens has contributed to the shaping of the present-day human immune system. Therefore, improved sanitation, together with infection control, has removed immunoregulatory mechanisms on which our immune system may depend. Helminths are multicellular organisms that have developed a wide range of strategies to manipulate the host immune system to survive and complete their reproductive cycles successfully. Immunity to helminths involves profound changes in both the innate and adaptive immune compartments, which can have a protective effect in inflammation and autoimmunity. Recently, helminth-derived antigens and molecules have been tested in vitro and in vivo to explore possible applications in the treatment of inflammatory and autoimmune diseases, including T1D. This exciting approach presents numerous challenges that will need to be addressed before it can reach safe clinical application. This review outlines basic insight into the ability of helminths to modulate the onset and progression of T1D, and frames some of the challenges that helminth-derived therapies may face in the context of clinical translation.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
48
|
Abstract
Background It is well known that carbohydrates play fundamental roles in cell signaling and infection processes as well as tumor formation and progression. However, the interaction pathways and cellular receptors targeted by carbohydrates and glycoconjugates remain poorly examined and understood. This lack of research stems, at least to a major part, from accessibility problems of large, branched oligosaccharides. Results To test glycan - cell interactions in vitro, a variety of tailored oligosaccharides was synthesized chemo-enzymatically. Glycosyltransferases from the GRAS organisms Bacillus megaterium (SacB) and Aspergillus niger (Suc1) were used in this study. Substrate engineering of these glycosyltransferases generally acting on sucrose leads to the controlled formation of novel tailored di-, tri- and tetrasaccharides. Already industrially used as prebiotics in functional food, the immunogenic potential of novel oligosaccharides was characterized in this study. A differential secretion of CXCL8 and CCL2 was observed upon oligosaccharide co-cultivation with colorectal epithelial Caco-2 cells. Conclusion Pure carbohydrates are able to stimulate a cytokine response in human endothelial cells in vitro. The type and amount of cytokine secretion depends on the type of co-cultivated oligosaccharide.
Collapse
|
49
|
Bhargava P, Li C, Stanya KJ, Jacobi D, Dai L, Liu S, Gangl MR, Harn DA, Lee CH. Immunomodulatory glycan LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med 2012; 18:1665-72. [PMID: 23104131 PMCID: PMC3493877 DOI: 10.1038/nm.2962] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/30/2012] [Indexed: 02/06/2023]
Abstract
Parasitic worms express host-like glycans to attenuate the immune response of human hosts. The therapeutic potential of this immunomodulatory mechanism in controlling metabolic dysfunction associated with chronic inflammation remains unexplored. We demonstrate here that administration of Lacto-N-fucopentaose III (LNFPIII), a LewisX containing immunomodulatory glycan found in human milk and on parasitic helminths, improves glucose tolerance and insulin sensitivity in diet-induced obese mice. This effect is mediated partly through increased Il-10 production by LNFPIII activated macrophages and dendritic cells, which reduces white adipose tissue inflammation and sensitizes the insulin response of adipocytes. Concurrently, LNFPIII treatment up-regulates nuclear receptor Fxr-α (or Nr1h4) to suppress lipogenesis in the liver, conferring protection against hepatosteatosis. At the signaling level, the extracellular signal-regulated kinase (Erk)-Ap1 pathway appears to mediate the effects of LNFPIII on both inflammatory and metabolic pathways. Our results suggest that LNFPIII may provide novel therapeutic approaches to treat metabolic diseases.
Collapse
Affiliation(s)
- Prerna Bhargava
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pernthaner A, Stasiuk S, Roberts J, Sutherland I. The response of monocyte derived dendritic cells following exposure to a nematode larval carbohydrate antigen. Vet Immunol Immunopathol 2012; 148:284-92. [DOI: 10.1016/j.vetimm.2012.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/08/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
|