1
|
Bose D, Deb Adhikary N, Xiao P, Rogers KA, Ferrell DE, Cheng-Mayer C, Chang TL, Villinger F. SHIV-C109p5 NHP induces rapid disease progression in elderly macaques with extensive GI viral replication. J Virol 2024; 98:e0165223. [PMID: 38299866 PMCID: PMC10878093 DOI: 10.1128/jvi.01652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1β+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.
Collapse
Affiliation(s)
- Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Douglas E. Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | | | - Theresa L. Chang
- The Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| |
Collapse
|
2
|
Lee MYH, Upadhyay AA, Walum H, Chan CN, Dawoud RA, Grech C, Harper JL, Karunakaran KA, Nelson SA, Mahar EA, Goss KL, Carnathan DG, Cervasi B, Gill K, Tharp GK, Wonderlich ER, Velu V, Barratt-Boyes SM, Paiardini M, Silvestri G, Estes JD, Bosinger SE. Tissue-specific transcriptional profiling of plasmacytoid dendritic cells reveals a hyperactivated state in chronic SIV infection. PLoS Pathog 2021; 17:e1009674. [PMID: 34181694 PMCID: PMC8270445 DOI: 10.1371/journal.ppat.1009674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.
Collapse
Affiliation(s)
- Michelle Y.-H. Lee
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Hasse Walum
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Chi N. Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Reem A. Dawoud
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Christine Grech
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Sydney A. Nelson
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Ernestine A. Mahar
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kyndal L. Goss
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Diane G. Carnathan
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Kiran Gill
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | | | - Vijayakumar Velu
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Steven E. Bosinger
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Dickinson M, Kliszczak AE, Giannoulatou E, Peppa D, Pellegrino P, Williams I, Drakesmith H, Borrow P. Dynamics of Transforming Growth Factor (TGF)-β Superfamily Cytokine Induction During HIV-1 Infection Are Distinct From Other Innate Cytokines. Front Immunol 2020; 11:596841. [PMID: 33329587 PMCID: PMC7732468 DOI: 10.3389/fimmu.2020.596841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection triggers rapid induction of multiple innate cytokines including type I interferons, which play important roles in viral control and disease pathogenesis. The transforming growth factor (TGF)-β superfamily is a pleiotropic innate cytokine family, some members of which (activins and bone morphogenetic proteins (BMPs)) were recently demonstrated to exert antiviral activity against Zika and hepatitis B and C viruses but are poorly studied in HIV-1 infection. Here, we show that TGF-β1 is systemically induced with very rapid kinetics (as early as 1-4 days after viremic spread begins) in acute HIV-1 infection, likely due to release from platelets, and remains upregulated throughout infection. Contrastingly, no substantial systemic upregulation of activins A and B or BMP-2 was observed during acute infection, although plasma activin levels trended to be elevated during chronic infection. HIV-1 triggered production of type I interferons but not TGF-β superfamily cytokines from plasmacytoid dendritic cells (DCs) in vitro, putatively explaining their differing in vivo induction; whilst lipopolysaccharide (but not HIV-1) elicited activin A production from myeloid DCs. These findings underscore the need for better definition of the protective and pathogenic capacity of TGF-β superfamily cytokines, to enable appropriate modulation for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew Dickinson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Pham TNQ, Meziane O, Miah MA, Volodina O, Colas C, Béland K, Li Y, Dallaire F, Keler T, Guimond JV, Lesage S, Cheong C, Haddad É, Cohen ÉA. Flt3L-Mediated Expansion of Plasmacytoid Dendritic Cells Suppresses HIV Infection in Humanized Mice. Cell Rep 2020; 29:2770-2782.e5. [PMID: 31775044 DOI: 10.1016/j.celrep.2019.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Plasmacytoid dendritic cells (plasmacytoid DC, pDC) are major IFN-I producers and have been shown to be affected by HIV through ill-defined mechanisms. In this study, we directly assess the role of pDC in early infection, evaluating whether modulating their abundance can alter viral replication. First, HIV infection of humanized mice induces systemic depletion of pDC, and in the presence of soluble FMS-like tyrosine kinase 3 ligand (Flt3L), pDC levels remain elevated. Flt3L significantly delays the onset of viremia and reduces viral replication via a process that is dependent on pDC and mediated through an enhanced early IFN-I response. pDC from Flt3L-treated mice are more prone to express IFN-α following TLR7 stimulation, but this propensity is gradually decreased during infection. In conclusion, maintaining pDC levels and function is key to effective early viral control, and in this context, these findings provide practical insights for anti-HIV strategies and vaccine design.
Collapse
Affiliation(s)
- Tram N Q Pham
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada.
| | - Oussama Meziane
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Mohammad Alam Miah
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Olga Volodina
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Chloé Colas
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Kathie Béland
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Yuanyi Li
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | | | - Tibor Keler
- Celldex Therapeutics, Hampton, NJ 08827, USA
| | - Jean V Guimond
- Centre de Santé et de Services Sociaux Jeanne-Mance, Montreal, QC H2T 1H4, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Cheolho Cheong
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Élie Haddad
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric A Cohen
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
6
|
Coxiella burnetii antibody seropositivity is not a risk factor for AIDS-related non-Hodgkin lymphoma. Blood 2017; 129:3262-3264. [PMID: 28396496 DOI: 10.1182/blood-2016-12-756569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Bosinger SE, Utay NS. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr HIV/AIDS Rep 2016; 12:41-53. [PMID: 25662992 DOI: 10.1007/s11904-014-0244-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of research, the contribution of type I interferons (IFN-Is) to both the control of HIV replication and initiation of immunologic damage remains debated. In acute infection, IFN-Is, likely from plasmacytoid dendritic cells (pDCs), activate NK cells and upregulate restriction factors targeting virtually the entire HIV life cycle. In chronic infection, IFN-Is may also contribute to CD4 T cell loss and immune exhaustion. pDCs subsequently infiltrate lymphoid and mucosal tissues, and their circulating populations wane in chronic infection; IFN-I may be produced by other cells. Data from nonhuman primates indicate prompt IFN-I signaling is critical in acute infection. Whereas some studies showed IFN-I administration without combination antiretroviral therapy (cART) is beneficial, others suggest that stimulating or blocking IFN-I signaling in chronic ART-suppressed HIV infection has had positive results. Here, we describe the history of HIV and IFN-I, IFN-I's sources, IFN-I's effects on HIV control and host defense, and recent interventional studies in SIV and HIV infection.
Collapse
Affiliation(s)
- Steven E Bosinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory Vaccine Center Bldg. 3028, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
8
|
Soulas C, Autissier PJ, Burdo TH, Piatak M, Lifson JD, Williams KC. Distinct phenotype, longitudinal changes of numbers and cell-associated virus in blood dendritic cells in SIV-infected CD8-lymphocyte depleted macaques. PLoS One 2015; 10:e0119764. [PMID: 25915601 PMCID: PMC4410956 DOI: 10.1371/journal.pone.0119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs.
Collapse
Affiliation(s)
- Caroline Soulas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick J. Autissier
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Tricia H. Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702, United States of America
| | - Kenneth C. Williams
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
9
|
Li H, Evans TI, Gillis J, Connole M, Reeves RK. Bone marrow-imprinted gut-homing of plasmacytoid dendritic cells (pDCs) in acute simian immunodeficiency virus infection results in massive accumulation of hyperfunctional CD4+ pDCs in the mucosae. J Infect Dis 2014; 211:1717-25. [PMID: 25489000 DOI: 10.1093/infdis/jiu671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/24/2014] [Indexed: 01/31/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a primary source of interferon α (IFN-α), provide a first line of innate immune defense against human immunodeficiency virus infection. However, their kinetics and functions during acute infection are poorly understood. In mucosal tissues of normal rhesus macaques, we found CD4(+) pDCs to be the subset responsible for most IFN-α and tumor necrosis factor α (TNF-α) production in response to Toll-like receptor (TLR) 7/8 stimulation, compared with relatively anergic CD4(-) pDCs. During acute simian immunodeficiency virus (SIV) infection, gut homing was imprinted on pDCs in the bone marrow, resulting in a decline in pDCs from circulation and secondary lymphoid tissues. Although the accumulated pDCs in the gut mucosae had robust cytokine responses to TLR7/8 stimulation in vitro, pDC gut migration occurred after infection and detection of SIV in plasma. Our data suggest that innate pDC responses do not control initial SIV seeding and dissemination but instead may contribute to ongoing immune activation in the gut.
Collapse
Affiliation(s)
- Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston
| | - Tristan I Evans
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Jacqueline Gillis
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - Michelle Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts
| |
Collapse
|
10
|
Reeves RK, Bosinger SE. Innate Immunity in Simian Immunodeficiency Virus Infection. NATURAL HOSTS OF SIV 2014. [PMCID: PMC7149674 DOI: 10.1016/b978-0-12-404734-1.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The past decade has seen the emergence of innate immunity as a mature field. The study of innate immunity has had a significant impact on the concepts of HIV immunity, pathogenesis, and vaccines. In this chapter, basic concepts of innate immunity at the anatomical, cellular, and molecular levels will be introduced from the perspective of their interplay with HIV and simian immunodeficiency virus (SIV). An emphasis will be placed on studies using SIV/non-human primate (NHP) models that shape current models of HIV pathogenesis. Finally, studies modulating the innate system in vivo in NHPs will be discussed.
Collapse
|
11
|
Koopman G, Beenhakker N, Burm S, Bouwhuis O, Bajramovic J, Sommandas V, Mudde G, Mooij P, 't Hart BA, Bogers WMJM. Whole blood stimulation with Toll-like receptor (TLR)-7/8 and TLR-9 agonists induces interleukin-12p40 expression in plasmacytoid dendritic cells in rhesus macaques but not in humans. Clin Exp Immunol 2013; 174:161-71. [PMID: 23750720 DOI: 10.1111/cei.12155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/14/2022] Open
Abstract
Macaques provide important animal models in biomedical research into infectious and chronic inflammatory disease. Therefore, a proper understanding of the similarities and differences in immune function between macaques and humans is needed for adequate interpretation of the data and translation to the human situation. Dendritic cells are important as key regulators of innate and adaptive immune responses. Using a new whole blood assay we investigated functional characteristics of blood plasmacytoid dendritic cells (pDC), myeloid dendritic cells (mDC) and monocytes in rhesus macaques by studying induction of activation markers and cytokine expression upon Toll-like receptor (TLR) stimulation. In a head-to-head comparison we observed that rhesus macaque venous blood contained relatively lower numbers of pDC than human venous blood, while mDC and monocytes were present at similar percentages. In contrast to humans, pDC in rhesus macaques expressed the interleukin (IL)-12p40 subunit in response to TLR-7/8 as well as TLR-9 stimulation. Expression of IL-12p40 was confirmed by using different monoclonal antibodies and by reverse transcription-polymerase chain reaction (RT-PCR). Both in humans and rhesus macaques, TLR-4 stimulation induced IL-12p40 expression in mDC and monocytes, but not in pDC. The data show that, in contrast to humans, pDC in macaques are able to express IL-12p40, which could have consequences for evaluation of human vaccine candidates and viral infection.
Collapse
Affiliation(s)
- G Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
All-trans-retinoic acid imprints expression of the gut-homing marker α4β7 while suppressing lymph node homing of dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1642-6. [PMID: 23966557 DOI: 10.1128/cvi.00419-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue-directed trafficking of dendritic cells (DCs) as natural adjuvants and/or direct vaccine carriers is highly attractive for the next generation of vaccines and immunotherapeutics. Since these types of studies would undoubtedly be first conducted using nonhuman primate models, we evaluated the ability of all-trans-retinoic acid (ATRA) to induce gut-homing α4β7 expression on rhesus macaque plasmacytoid and myeloid DCs (pDCs and mDCs, respectively). Induction of α4β7 occurred in both a time-dependent and a dose-dependent manner with up to 8-fold increases for mDCs and 2-fold increases for pDCs compared to medium controls. ATRA treatment was also specific in inducing α4β7 expression, but not expression of another mucosal trafficking receptor, CCR9. Unexpectedly, upregulation of α4β7 was associated with a concomitant downregulation of CD62L, a marker of lymph node homing, indicating an overall shift in the trafficking repertoire. These same phenomena occurred with ATRA treatment of human and chimpanzee DCs, suggesting a conserved mechanism among primates. Collectively, these data serve as a first evaluation for ex vivo modification of primate DC homing patterns that could later be used in reinfusion studies for the purposes of immunotherapeutics or mucosa-directed vaccines.
Collapse
|
13
|
Jasny E, Geer S, Frank I, Vagenas P, Aravantinou M, Salazar A, Lifson J, Piatak M, Gettie A, Blanchard J, Robbiani M. Characterization of peripheral and mucosal immune responses in rhesus macaques on long-term tenofovir and emtricitabine combination antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 61:425-35. [PMID: 22820802 PMCID: PMC3494791 DOI: 10.1097/qai.0b013e318266be53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to suppress virus replication to limit immune system damage. Some have proposed combining ART with immune therapies to boost antiviral immunity. For this to be successful, ART must not impair physiological immune function. METHODS We studied the impact of ART (tenofovir and emtricitabine) on systemic and mucosal immunity in uninfected and simian immunodeficiency (SIV)-infected Chinese rhesus macaques. Subcutaneous ART was initiated 2 weeks after tonsillar inoculation with SIVmac239. RESULTS There was no evidence of immune dysregulation as a result of ART in either infected or uninfected animals. Early virus-induced alterations in circulating immune cell populations (decreased central memory T cells and myeloid dendritic cells) were detected, but normalized shortly after ART initiation. ART-treated animals showed marginal SIV-specific T-cell responses during treatment, which increased after ART discontinuation. Elevated expression of CXCL10 in oral, rectal, and blood samples and APOBEC3G mRNA in oral and rectal tissues was observed during acute infection and was down regulated after starting ART. ART did not impact the ability of the animals to respond to tonsillar application of polyICLC with increased CXCL10 expression in oral fluids and CD80 expression on blood myeloid dendritic cells. CONCLUSION Early initiation of ART prevented virus-induced damage and did not impede mucosal or systemic immune functions.
Collapse
Affiliation(s)
- E. Jasny
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - S. Geer
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I. Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - P. Vagenas
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - M. Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - J.D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - M Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Frederick, Maryland, USA
| | - A. Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - J. Blanchard
- Tulane National Primate Research Center (TNPRC), Tulane University, Covington, Louisiana, USA
| | - M. Robbiani
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
14
|
Characteristics of plasmacytoid dendritic cell and CD4+ T cell in HIV elite controllers. Clin Dev Immunol 2012; 2012:869505. [PMID: 23243424 PMCID: PMC3517220 DOI: 10.1155/2012/869505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022]
Abstract
Despite variability, the majority of HIV-1-infected individuals progress to AIDS characterized by high viral load and massive CD4+ T-cell depletion. However, there is a subset of HIV-1-positive individuals that does not progress and spontaneously maintains an undetectable viral load. This infrequent patient population is defined as HIV-1 controllers (HIV controllers), and represents less than 1% of HIV-1-infected patients. HIV-1-specific CD4+ T cells and the pool of central memory CD4+ T cells are also preserved despite immune activation due to HIV-1 infection. The majority of HIV controllers are also defined by the absence of massive CD4+ T-cell depletion, even after 10 years of infection. However, the mechanisms involved in protection against HIV-1 disease progression have not been elucidated yet. Controllers represent a heterogeneous population; we describe in this paper some common characteristics concerning innate immune response and CD4+ T cells of HIV controllers.
Collapse
|
15
|
Wonderlich ER, Barratt-Boyes SM. A dendrite in every pie: myeloid dendritic cells in HIV and SIV infection. Virulence 2012; 3:647-53. [PMID: 23154284 PMCID: PMC3545946 DOI: 10.4161/viru.22491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous population of innate immune cells that are fundamental to initiating responses against invading pathogens and regulating immune responses. Myeloid DC (mDC) act as a bridge between the innate and adaptive immune response during virus infections but their role in immunity to human immunodeficiency virus (HIV) remains ill-defined. This review examines aspects of the mDC response to HIV and its simian counterpart, simian immunodeficiency virus (SIV), and emphasizes areas where our knowledge of mDC biology and function is incomplete. Defining the potentially beneficial and detrimental roles mDC play during pathogenic and stable infection of humans and nonhuman primates is crucial to our overall understanding of AIDS pathogenesis.
Collapse
|
16
|
Gougeon ML, Herbeuval JP. IFN-α and TRAIL: A double edge sword in HIV-1 disease? Exp Cell Res 2012; 318:1260-8. [DOI: 10.1016/j.yexcr.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
17
|
Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells. AIDS 2012; 26:263-73. [PMID: 22095196 DOI: 10.1097/qad.0b013e32834ed8df] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether the ability of primary myeloid dendritic cells (mDCs) to induce regulatory T cells (Treg) is affected by chronic simian immunodeficiency virus (SIV) infection. DESIGN Modulation of dendritic cell activity with the aim of influencing Treg frequency may lead to new treatment options for HIV and strategies for vaccine development. METHODS Eleven chronically infected SIV(+) Rhesus macaques were compared with four uninfected animals. Immature and mature mDCs were isolated from mesenteric lymph nodes and spleen by cell sorting and cultured with purified autologous non-Treg (CD4(+)CD25(-) T cells). CD25 and FOXP3 up-regulation was used to assess Treg induction. RESULTS The frequency of splenic mDC and plasmacytoid dendritic cell was lower in infected animals than in uninfected animals; their frequency in the mesenteric lymph nodes was not significantly altered, but the percentage of mature mDCs was increased in the mesenteric lymph nodes of infected animals. Mature splenic or mesenteric mDCs from infected animals were significantly more efficient at inducing Treg than mDCs from uninfected animals. Mature mDCs from infected macaques induced more conversion than immature mDCs. Splenic mDCs were as efficient as mesenteric mDCs in this context and CD103 expression by mDCs did not appear to influence the level of conversion. CONCLUSIONS Tissue mDCs from SIV-infected animals exhibit an enhanced capability to induce Treg and may contribute to the accumulation of Treg in lymphoid tissues during progressive infection. The activation status of dendritic cell impacts this process but the capacity to induce Treg was not restricted to mucosal dendritic cells in infected animals.
Collapse
|
18
|
Teleshova N, Derby N, Martinelli E, Pugach P, Calenda G, Robbiani M. Simian immunodeficiency virus interactions with macaque dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:155-81. [PMID: 22975875 DOI: 10.1007/978-1-4614-4433-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
Collapse
Affiliation(s)
- Natalia Teleshova
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Plasmacytoid dendritic cells in HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:71-107. [PMID: 22975872 DOI: 10.1007/978-1-4614-4433-6_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells that are specialized to produce interferon-alpha (IFNα) and participate in activating adaptive immune responses. Although IFNα inhibits HIV-1 (HIV) replication in vitro, pDCs may act as inflammatory and immunosuppressive dendritic cells (DCs) rather than classical antigen-presenting cells during chronic HIV infection in vivo, contributing more to HIV pathogenesis than to protection. Improved understanding of HIV-pDC interactions may yield potential new avenues of discovery to prevent HIV transmission, to blunt chronic immune activation and exhaustion, and to enhance beneficial adaptive immune responses. In this chapter we discuss pDC biology, including pDC development from progenitors, trafficking and localization of pDCs in the body, and signaling pathways involved in pDC activation. We focus on the role of pDCs in HIV transmission, chronic disease progression and immune activation, and immunosuppression through regulatory T cell development. Lastly, we discuss potential future directions for the field which are needed to strengthen our current understanding of the role of pDCs in HIV transmission and pathogenesis.
Collapse
|
20
|
Generalized immune activation and innate immune responses in simian immunodeficiency virus infection. Curr Opin HIV AIDS 2011; 6:411-8. [PMID: 21743324 DOI: 10.1097/coh.0b013e3283499cf6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Chronic immune activation is a key factor driving the immunopathogenesis of AIDS. During pathogenic HIV/simian immunodeficiency virus (SIV) infections, innate and adaptive antiviral immune responses contribute to chronic immune activation. In contrast, nonpathogenic SIV infections of natural hosts such as sooty mangabeys and African green monkeys (AGMs) are characterized by low immune activation despite similarly high viremia. This review focuses on the role of innate immune responses in SIV infection. RECENT FINDINGS Several studies have examined the role of innate immune responses to SIV as potential drivers of immune activation. The key result of these studies is that both pathogenic SIV infection of macaques and nonpathogenic SIV infections of natural hosts are associated with strong innate immune responses to the virus, high production of type I interferons by plasmacytoid dendritic cells, and upregulation of interferon-stimulated genes (ISGs). However, SIV-infected sooty mangabeys and AGMs (but not SIV-infected macaques) rapidly downmodulate the interferon response within 4-6 weeks of infection, thus resulting in a state of limited immune activation during chronic infection. SUMMARY Studies in nonhuman primates suggest that chronic innate/interferon responses may contribute to AIDS pathogenesis. Further, the ability of natural host species to resolve innate immune responses after infection provides a novel avenue for potential immunotherapy.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Acute HIV-1 infection (AHI) is composed of the eclipse phase, during which the transmitted virus struggles to avoid eradication and achieve amplification/spread; the expansion phase when virus disseminates and undergoes exponential replication associated with extensive CD4⁺ T-cell destruction; and the containment phase when set-point levels of viremia and immune activation are established. The importance of interactions between HIV-1 and innate responses in determining events throughout AHI is increasingly recognized, and is reviewed here. RECENT FINDINGS During the eclipse phase, HIV-1 subverts dendritic cell functions to promote its replication at mucosal sites and employs multiple strategies to minimize control by type 1 interferons. Systemic virus dissemination is associated with widespread activation of innate responses which fuels HIV-1 replication. To minimize the protective effects of innate responses, HIV-1 resists control by natural killer cells and may impair innate regulation of adaptive responses. Innate responses remain chronically activated after HIV-1 containment which is thought to drive HIV-1 pathogenesis. SUMMARY Innate responses are pivotal determinants of events at all stages of AHI. Increased understanding of mechanisms involved in innate control of HIV-1 and pathways regulating innate activation during HIV-1 infection could facilitate development of novel approaches to combating this infection.
Collapse
|
22
|
Dissecting the role of dendritic cells in simian immunodeficiency virus infection and AIDS. Immunol Res 2011; 50:228-34. [PMID: 21717075 DOI: 10.1007/s12026-011-8220-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV) infection is associated with the loss of the two principal types of dendritic cell (DC), myeloid DC (mDC) and plasmacytoid DC (pDC), but the mechanism of this loss and its relationship to AIDS pathogenesis remain ill-defined. The nonhuman primate is a powerful model to dissect this response for several reasons. Both DC subsets have been well characterized in nonhuman primates and shown to have strikingly similar phenotypic and functional characteristics to their counterparts in the human. Moreover, decline of mDC and pDC occurs in rhesus macaques with end-stage simian immunodeficiency virus (SIV) infection, the model of HIV infection in humans. In this brief review, we discuss what is known about DC subsets in pathogenic and nonpathogenic nonhuman primate models of HIV infection and highlight the advances and controversies that currently exist in the field.
Collapse
|
23
|
Alammar L, Gama L, Clements JE. Simian immunodeficiency virus infection in the brain and lung leads to differential type I IFN signaling during acute infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:4008-18. [PMID: 21368232 DOI: 10.4049/jimmunol.1003757] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using an accelerated and consistent SIV pigtailed macaque model of HIV-associated neurologic disorders, we have demonstrated that virus enters the brain during acute infection. However, neurologic symptoms do not manifest until late stages of infection, suggesting that immunological mechanisms exist within the CNS that control viral replication and associated inflammation. We have shown that IFN-β, a type I IFN central to viral innate immunity, is a major cytokine present in the brain during acute infection and is responsible for limiting virus infection and inflammatory cytokine expression. However, the induction and role of IFN-α in the CNS during acute SIV infection has never been examined in this model. In the classical model of IFN signaling, IFN-β signals through the IFN-α/β receptor, leading to expression of IFN-α. Surprisingly, although IFN-β is upregulated during acute SIV infection, we found that IFN-α is downregulated. We demonstrate that this downregulation is coupled with a suppression of signaling molecules downstream of the IFN receptor, namely tyrosine kinase 2, STAT1, and IFN regulatory factor 7, as indicated by either lack of protein phosphorylation, lack of nuclear accumulation, or transcriptional and/or translational repression. In contrast to brain, IFN-α is upregulated in lung and accompanied by activation of tyrosine kinase 2 and STAT1. These data provide a novel observation that during acute SIV infection in the brain, there is differential signaling through the IFN-α/β receptor that fails to activate expression of IFN-α in the brain.
Collapse
Affiliation(s)
- Luna Alammar
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
24
|
Blood myeloid dendritic cells from HIV-1-infected individuals display a proapoptotic profile characterized by decreased Bcl-2 levels and by caspase-3+ frequencies that are associated with levels of plasma viremia and T cell activation in an exploratory study. J Virol 2010; 85:397-409. [PMID: 20962079 DOI: 10.1128/jvi.01118-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduced frequencies of myeloid and plasmacytoid dendritic cell (DC) subsets (mDCs and pDCs, respectively) have been observed in the peripheral blood of HIV-1-infected individuals throughout the course of disease. Accumulation of DCs in lymph nodes (LNs) may partly account for the decreased numbers observed in blood, but increased DC death may also be a contributing factor. We used multiparameter flow cytometry to evaluate pro- and antiapoptotic markers in blood mDCs and pDCs from untreated HIV-1-infected donors, from a subset of infected donors before and after receiving antiretroviral therapy (ART), and from uninfected control donors. Blood mDCs, but not pDCs, from untreated HIV-1-infected donors expressed lower levels of antiapoptotic Bcl-2 than DCs from uninfected donors. A subset of HIV-1-infected donors had elevated frequencies of proapoptotic caspase-3(+) blood mDCs, and positive correlations were observed between caspase-3(+) mDC frequencies and plasma viral load and CD8(+) T-cell activation levels. Caspase-3(+) mDC frequencies, but not mDC Bcl-2 expression, were reduced with viral suppression on ART. Apoptosis markers on DCs in blood and LN samples from a cohort of untreated, HIV-1-infected donors with chronic disease were also evaluated. LN mDCs displayed higher levels of Bcl-2 and lower caspase-3(+) frequencies than did matched blood mDCs. Conversely, LN pDCs expressed lower Bcl-2 levels than their blood counterparts. In summary, blood mDCs from untreated HIV-1-infected subjects displayed a proapoptotic profile that was partially reversed with viral suppression, suggesting that DC death may be a factor contributing to blood DC depletion in the setting of chronic, untreated HIV disease.
Collapse
|