1
|
Sory DR, Heyraud ACM, Jones JR, Rankin SM. Ionic release from bioactive SiO 2-CaO CME/poly(tetrahydrofuran)/poly(caprolactone) hybrids drives human-bone marrow stromal cell osteogenic differentiation. BIOMATERIALS ADVANCES 2025; 166:214019. [PMID: 39326252 DOI: 10.1016/j.bioadv.2024.214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study demonstrates that dissolution products of inorganic/organic SiO2-CaOCME/PTHF/PCL-diCOOH hybrid (70S30CCME-CL) drive human bone marrow stromal cells (h-BMSCs) down an osteogenic pathway with the production of mineralised matrix. We investigated osteogenesis through combined analyses of mRNA dynamics for key markers and targeted staining of mineralised matrix. We demonstrate that h-BMSCs undergo accelerated differentiation in vitro in response to the 70S30CCME-CL ionic milieu, as compared to incubation with osteogenic media. Extracts from 70S30CCME-CL promote osteogenesis by inducing changes in cellular metabolic activity, promoting changes in cell morphology consistent with the osteogenic lineage, and by enhancing mineralisation of hydroxyapatite in the extracellular matrix. Additionally, our results show that 70S30CCME-CL hybrids prove sustained functional resilience by maintaining osteostimulatory effects despite cumulated dissolution cycles. In co-differentiation medium, 70S30CCME-CL ionic release can modulate signalling pathways associated with non-osteogenic functions, further supporting their potential for bone regeneration applications. Overall, our study provides compelling experimental evidence that the 70S30CCME-CL hybrid is a promising biomaterial for bone tissue regeneration applications.
Collapse
Affiliation(s)
- David R Sory
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M Rankin
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
3
|
Sun H, Yin X, Yang C, Kuang H, Luo W. Advances in autogenous dentin matrix graft as a promising biomaterial for guided bone regeneration in maxillofacial region: A review. Medicine (Baltimore) 2024; 103:e39422. [PMID: 39183415 PMCID: PMC11346879 DOI: 10.1097/md.0000000000039422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Autogenous dentin matrix (ADM), derived from a patient's extracted tooth, can be repurposed as an autologous grafting material in reconstructive dentistry. Extracted teeth provide a source for ADM, which distinguishes itself with its low rejection rate, osteoinductive capabilities and ease of preparation. Consequently, it presents a viable alternative to autogenous bone. Animal studies have substantiated its effective osteoinductive properties, while its clinical applications encompass post-extraction site preservation, maxillary sinus floor augmentation, and guided bone tissue regeneration. Nevertheless, the long-term efficacy of ADM applied in bone regeneration remains underexplored and there is a lack of standardization in the preparation processes. This paper comprehensively explores the composition, mechanisms underlying osteoinductivity, preparation methods, and clinical applications of ADM with the aim of establishing a fundamental reference for future studies on this subject.
Collapse
Affiliation(s)
- Honglan Sun
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiaoyunqing Yin
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Yang
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen, Guangdong Province, China
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen, Guangdong Province, China
| | - Huifang Kuang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Wen Luo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
4
|
Sam YH, Nibali L, Ghuman M. Periodontal granulation tissue - To remove or not to remove, that is the question. J Periodontal Res 2024; 59:636-646. [PMID: 38686698 DOI: 10.1111/jre.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
Formation of granulation tissue is a fundamental phase in periodontal wound healing with subsequent maturation leading to regeneration or repair. However, persistently inflamed granulation tissue presents in osseous defects as a result of periodontitis and is routinely disrupted and discarded with non-surgical and surgical therapy to facilitate wound healing or improve chances of regeneration. Histological assessment suggests that granulation tissue from periodontitis-affected sites is effectively a chronic inflammatory tissue resulting from impaired wound healing due to persistence of bacterial dysbiotic bioflim. Nevertheless, the immunomodulatory potential and stem cell characteristics in granulation tissue have also raised speculation about the tissue's regenerative potential. This has led to the conception and recent implementation of surgical techniques which preserve granulation tissue with the intention of enhancing innate regenerative potential and improve clinical outcomes. As knowledge of fundamental cellular and molecular functions regulating periodontitis-affected granulation tissue is still scarce, this review aimed to provide a summary of current understanding of granulation tissue in the context of periodontal wound healing. This may provide new insights into clinical practice related to the management of granulation tissue and stimulate further investigation.
Collapse
Affiliation(s)
- Ye Han Sam
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Tenkumo T, Koide R, Ogawa T, Yamaguchi H, Suzuki S, Miyashita M, Nakamura K, Wang H, Yoda N, Sasaki K. A triple growth factor strategy for optimizing bone augmentation in mice. J Biomed Mater Res B Appl Biomater 2024; 112:e35447. [PMID: 38997799 DOI: 10.1002/jbm.b.35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein-2 (BMP-2), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP-2, IGF-1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP-2 alone (BMP-2); BMP-2 and IGF-1 (BI); BMP-2, IGF-1, and VEGF (BIV); and BMP-2 and IGF-1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP-2 and IGF-1 induced a greater volume of hard tissue augmentation compared with that of BMP-2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP-2, IGF-1, and VEGF proved to be effective in promoting bone augmentation.
Collapse
Affiliation(s)
- Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Rie Koide
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Hirofumi Yamaguchi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Han Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
6
|
Studer JM, Kiefer ZE, Koester LR, Johnson EM, Schmitz-Esser S, Farkas A, Galina Pantoja L, Vonnahme KA, Greiner LL, Keating AF, Baumgard LH, Ross JW. Evaluation of circulating immune cells, analytes, and inflammatory markers in sows affected with postpartum dysgalactia syndrome. J Anim Sci 2024; 102:skae270. [PMID: 39298285 PMCID: PMC11452653 DOI: 10.1093/jas/skae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024] Open
Abstract
Postpartum dysgalactia syndrome (PDS) is a condition affecting periparturient sows, characterized by a reduction in milk and colostrum synthesis shortly after farrowing. Insufficient milk production results in substantial economic losses due to increased piglet morbidity/mortality and premature sow culling. Since PDS develops within a few days following farrowing, the study objectives were to determine if periparturient immune cell profiles and circulating biomarkers differ in sows affected by PDS. We hypothesized differences in immune cells, circulating analytes, and inflammatory markers would exist at farrowing in sows that subsequently developed PDS compared to healthy herd-mates. Thirty-six sows with PDS symptoms were matched by parity and day of lactation with 36 healthy control (CON) sows. Diagnosis of PDS (timepoint 2) occurred on average 9.25 ± 2.67 d after farrowing. Blood samples and litter weights were collected at farrowing (timepoint 1) and at the onset of clinical PDS (timepoint 2). Piglets from PDS sows had lower average daily gain and higher mortality than piglets from CON (P < 0.01). Aspartate aminotransferase was increased (20%; P ≤ 0.06) in PDS sows compared to CON at both timepoints. Additionally, blood urea nitrogen was increased in PDS sows at timepoint 1 and timepoint 2 (13%; P = 0.08 and 16%; P = 0.01, respectively). At timepoint 2, total protein, globulin, magnesium, and cholesterol were increased (P ≤ 0.03) while γ-glutamyl transferase and albumin were decreased (P ≤ 0.02) in PDS sows. Lipopolysaccharide-binding protein, an inflammatory biomarker, was increased (48%; P = 0.07) at timepoint 2 in PDS compared to CON sows. Collectively, these data indicate PDS sows have altered metabolism and appear immune activated compared to healthy herd-mates, and further investigation is needed to determine if PDS can be predicted at farrowing.
Collapse
Affiliation(s)
- Jamie M Studer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Zoë E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lucas R Koester
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Erika M Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Attila Farkas
- Carthage Veterinary Services, Carthage, IL 62321, USA
| | | | | | - Laura L Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Jung JW, Park SY, Seo EJ, Jang IH, Park Y, Lee D, Kim D, Kim JM. Functional expression of oxytocin receptors in pulp-dentin complex. Biomaterials 2023; 293:121977. [PMID: 36580714 DOI: 10.1016/j.biomaterials.2022.121977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dental pulp-derived stromal cells (DPSCs) are a crucial cell population for maintaining the tissue integrity of the pulp-dentin complex. The oxytocin receptor (OXTR), a member of the G protein-coupled receptor (GPCR) superfamily, plays versatile roles in diverse biological contexts. However, the role of OXTR in dental pulp has not yet been fully understood. Here, we demonstrate the biological functions and significance of OXTR in DPSCs through a multidisciplinary approach. Microarray data of 494 GPCR genes revealed high OXTR expression in human DPSCs (hDPSCs). Blocking OXTR activity increased the expression of osteogenic and odontogenic marker genes, promoting hDPSC differentiation. Additionally, we found that OXTR is involved in extracellular matrix (ECM) remodeling through the regulation of the gene expression related to ECM homeostasis. We further demonstrated that these genetic changes are mediated by trascriptional activity of Yes-associated protein (YAP). Based on the results, a preclinical experiment was performed using an animal model, demonstrating that the application of an OXTR inhibitor to damaged pulp induced significant hard tissue formation. These results provide new insight into the oxytocin-OXTR system in the regenerative process of pulp-dentin complex.
Collapse
Affiliation(s)
- Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Jin Seo
- Department of Oral Biochemistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Il Ho Jang
- Department of Oral Biochemistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Bengi V. U, Saygun I, Bal V, Ozcan E, Kose Ozkan C, Torun D, Avcu F, Kantarcı A. Effect of antioxidant lycopene on human osteoblasts. Clin Oral Investig 2022; 27:1637-1643. [PMID: 36416948 DOI: 10.1007/s00784-022-04789-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this in vitro study is to evaluate the effect of antioxidant lycopene on human osteoblasts. MATERIAL AND METHOD The human osteoblast cell line (CRL-11372) was obtained from the American Type Culture Collection (ATCC Manassas, Va) and grown in Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum (FCS), penicillin (100 U/ml), and streptomycin (100 mg/ ml) at 37 °C in a humidified atmosphere of 5% CO2 and 95% air. The effective dose of lycopene was determined by MTT assay and a real-time cell analysis (RTCA) system. Proliferative effects were analyzed by in vitro wound healing model. Gene expressions of type 1 collagen (COL1A1), osteocalcin (OCN), and growth differentiation factor-5 (GDF-5) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) at 72 h. Statistical differences between test groups were analyzed with a one-way ANOVA test. RESULTS MTT assay showed that the doses between 10-5 and 1 µmol of lycopene had dose-dependent proliferative effects. The doses between 10-5 and 10-1 µmol were most effective at 72 h. Lycopene accelerates the healing rate by increasing osteoblast proliferation. CONCLUSION Results suggested that lycopene had proliferative effects on human osteoblasts, which may help to increase bone regeneration, and thus, it can be useful in tissue engineering procedures. CLINICAL RELEVANCE By the help of antioxidants like lycopene capacity, velocity and quality of new bone forming may be increased in periodontal and dental implant treatments.
Collapse
|
9
|
Effects of Periodontal Treatment on Levels of Proinflammatory Cytokines in Patients with Chronic Periodontitis: A Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9349598. [PMID: 35928974 PMCID: PMC9345718 DOI: 10.1155/2022/9349598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
Background During the progression of chronic periodontitis (CP), changes in the levels of inflammatory factors are detected in serum and gingival sulcus fluid (GCF). The aim of this meta-analysis was to systematically evaluate the effect of periodontal treatment on GCF and serum proinflammatory cytokines (IL-6, TNF-α, and IL-8) in patients with CP. Methods Literature searches were performed through PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang Database. Randomized controlled trials comparing cytokine levels in periodontal treatment (experimental group) and control group between 2015 and 2020 were included. Results There were a total of 13 studies included with 1220 patients. There were 630 cases in the experimental group and 590 cases in the control group. The meta-analysis showed that IL-6 levels in the GCF (SMD = −2.88, 95% CI (-3.68, -2.09), P < 0.001) and serum (SMD = −1.27, 95% CI (-1.72, -0.81), P < 0.001) were significantly lower in the experimental group compared with those before treatment. In addition, IL-8 levels in the GCF (SMD = −2.08, 95% CI (-3.40, -0.76), P < 0.001) and serum (SMD = −1.73, 95% CI (-2.76, -0.70), P < 0.001) were decreased after periodontal treatment, but more than that, a decrease was observed in TNF-α levels of GCF (SMD = −3.98, 95% CI (-5.23, -2.73), P < 0.001) and serum (SMD = −1.80, 95% CI (-3.16, -0.45), P < 0.001) after treatment. Conclusion After periodontal therapy, the proinflammatory cytokines in the GCF and serum of patients with CP were significantly decreased compared with those before treatment, and the efficacy was remarkable.
Collapse
|
10
|
Dikilitaş A, Karaaslan F, Seçkin E. Comparison of gingival crevicular fluid levels of IL-1b and IL-6 in subjects with gingivitis and stage III grade C periodontitis. BALKAN JOURNAL OF DENTAL MEDICINE 2022. [DOI: 10.5937/bjdm2203142d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background/Aim: Periodontal diseases are inflammatory diseases that occur against microbial pathogens. Cytokines are biologically active molecules involved in this inflammatory process. This study aims to evaluate interleukin-1 beta (IL-1b) and interleukin-6 (IL-6) cytokine levels in the gingival crevicular fluid (GCF) of individuals with stage III grade C (SIIIGC) periodontitis, gingivitis (G) and periodontally healthy (PH). Material and Methods: A total of 64 individuals, including 22 PH, 22 G and 20 SIIIGC periodontitis were included in this study. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment loss (CAL) parameters were evaluated. GCF samples were analyzed by enzyme-linked immunosorbent assay (ELISA) kits. Results: IL-1b and IL-6 levels in the GCF were significantly higher in the SIII-GC periodontitis group compared to the other groups (P <0.05). There was no significant difference between IL-1b and IL-6 levels in the PH and G groups (P > 0.05). GCF IL-1b and IL-6 levels were positively associated with the whole mouth and sampling area clinical periodontal parameters (P < 0.001). Conclusions: GCF IL-1b and IL-6 total amounts are effective in determining the regions and individuals under risk in SIII-GC periodontitis. Moreover, GCF IL-1b and IL-6 levels were seen to be effective determinants in differentiating gingivitis and periodontitis.
Collapse
|
11
|
Dikilitaş A, Karaaslan F, Seçkin E. Comparison of gingival crevicular fluid levels of IL-1b and IL-6 in subjects with gingivitis and stage III grade C periodontitis. BALKAN JOURNAL OF DENTAL MEDICINE 2022. [DOI: 10.5937/bjdm20220824-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background/Aim: Periodontal diseases are inflammatory diseases that occur against microbial pathogens. Cytokines are biologically active molecules involved in this inflammatory process. This study aims to evaluate interleukin-1 beta (IL-1b) and interleukin-6 (IL-6) cytokine levels in the gingival crevicular fluid (GCF) of individuals with stage III grade C (SIII-GC) periodontitis, gingivitis (G) and periodontally healthy (PH). Material and Methods: A total of 64 individuals, including 22 PH, 22 G and 20 SIII-GC periodontitis were included in this study. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment loss (CAL) parameters were evaluated. GCF samples were analyzed by enzyme-linked immunosorbent assay (ELISA) kits. Results: IL-1b and IL-6 levels in the GCF were significantly higher in the SIII-GC periodontitis group compared to the other groups (P <0.05). There was no significant difference between IL-1b and IL-6 levels in the PH and G groups (P > 0.05). GCF IL-1b and IL-6 levels were positively associated with the whole mouth and sampling area clinical periodontal parameters (P < 0.001). Conclusions: GCF IL-1b and IL-6 total amounts are effective in determining the regions and individuals under risk in SIII-GC periodontitis. Moreover, GCF IL-1b and IL-6 levels were seen to be effective determinants in differentiating gingivitis and periodontitis.
Collapse
|
12
|
Na W, Kang MK, Park SH, Kim DY, Oh SY, Oh MS, Park S, Kang IIJ, Kang YH. Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization. Int J Mol Sci 2021; 22:ijms222212391. [PMID: 34830274 PMCID: PMC8621655 DOI: 10.3390/ijms222212391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1–10 μM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1–5 μM aesculetin was added to differentiating cells for 15–18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 μM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - II-Jun Kang
- Correspondence: (I.-J.K.); (Y.-H.K.); Tel.: +82-33-248-2135 (I.-J.K.); +82-33-248-2132 (Y.-H.K.)
| | - Young-Hee Kang
- Correspondence: (I.-J.K.); (Y.-H.K.); Tel.: +82-33-248-2135 (I.-J.K.); +82-33-248-2132 (Y.-H.K.)
| |
Collapse
|
13
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
14
|
Huang TY, Shahrousvand M, Hsu YT, Su WT. Polycaprolactone/Polyethylene Glycol Blended with Dipsacus asper Wall Extract Nanofibers Promote Osteogenic Differentiation of Periodontal Ligament Stem Cells. Polymers (Basel) 2021; 13:polym13142245. [PMID: 34301001 PMCID: PMC8309225 DOI: 10.3390/polym13142245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Dipsacus asper wall (DA) is an ancient Chinese medicinal material that has long been used to maintain the health of human bones. The present study aimed to evaluate the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) of Dipsacus asper wall extracts (DAE). Microwave-assisted alcohol extraction of 100 mesh DA powder under optimal conditions can obtain 58.66% (w/w) yield of the crude extract. PDLSCs have excellent differentiation potential. PDLSCs treated with DA extract (DAE) underwent osteogenesis, exhibiting a higher expression of the Col-1, ALP, Runx2, and OCN genes, and had a 1.4-fold increase in mineralization, demonstrating the potential of DAE to promote osteogenic differentiation. After the addition of PI3K inhibitor LY294002, the expression of osteogenic genes was significantly inhibited, confirming that PI3K is an important pathway for DAE to induce osteogenesis. Mix DAE with polycaprolactone/polyethylene glycol (PCL/PEO) to obtain nanofibers with a diameter of 488 nm under optimal electrospinning conditions. The physical property analysis of nanofibers with and without DAE includes FTIR, mechanical strength, biodegradability, swelling ratio and porosity, and cell compatibility. When cells induced by nanofibers with or without DAE, the mineralization of PDLSCs cultured on PCL/PEO/DAE was 2.6-fold higher than that of PCL/PEO. The results of the study confirm that both DAE and PCL/PEO nanofibers have the effect of promoting osteogenic differentiation. In order to obtain the best induction effect, the optimal amount of DAE can be discussed in future research.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan;
| | - Mohsen Shahrousvand
- Department of Caspian Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran;
| | - Yu-Teng Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
- Correspondence: ; Tel.: +886-2-27712171 (ext. 2554)
| |
Collapse
|
15
|
Son HE, Jang WG. Cip2A modulates osteogenic differentiation via the ERK-Runx2 pathway in MG63 cells. Biofactors 2021; 47:658-664. [PMID: 34077593 DOI: 10.1002/biof.1760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 01/25/2023]
Abstract
Cancerous inhibitor of protein phosphatase 2A (Cip2A) is an oncoprotein that promotes the development of several types of cancer. However, its molecular function in osteoblast differentiation remains unclear. In this study, we found that Cip2A was upregulated under osteogenic conditions in MG63 cells. Besides, overexpression of Cip2A significantly increased the expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). Inversely, the knockdown of Cip2A in MG63 cells suppressed osteoblast differentiation. Cip2A expression during osteogenic differentiation was mediated by extracellular signal-regulated kinase (ERK) activation. Taken together, our results suggest that Cip2A plays important role in regulating osteoblast differentiation by inducing ERK phosphorylation in MG63 cells.
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk, Republic of Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
16
|
Jing Z, Wang C, Wen S, Jin Y, Meng Q, Liu Q, Wu J, Sun H, Liu M. Phosphocreatine Promotes Osteoblastic Activities in H 2O 2-Induced MC3T3-E1 Cells by Regulating SIRT1/FOXO1/PGC-1α Signaling Pathway. Curr Pharm Biotechnol 2021; 22:609-621. [PMID: 33198615 DOI: 10.2174/1389201021999201116160247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis, characterized by bone loss, usually occurs with the increased bone resorption and decreased bone formation. H2O2-induced MC3T3-E1 cells are commonly used for the study of osteoblastic activities, which play a crucial role in bone formation. OBJECTIVE This study aimed to investigate the effects of Phosphocreatine (PCr) on the osteoblastic activities in H2O2-induced MC3T3-E1 cells and elaborate on the possible molecular mechanism. METHODS The Osteoprotegerin (OPG)/Receptor Activator of NF-κB Ligand (RANKL) ratio and osteogenic markers were detected to investigate the effects of PCr on osteoblastic activities, and the osteoblastic apoptosis was detected using Hochest staining. Moreover, oxidative stress, Adenosine Triphosphate (ATP) generation and the expression of Sirtuin 1 (SIRT1), Forkhead Box O 1 (FOXO1) and Peroxisome Proliferator-Activated Receptor Γ Coactivator-1α (PGC-1α) were also examined to uncover the possible molecular mechanism in H2O2-induced MC3T3-E1 cells. RESULT The results showed that PCr promoted the osteoblastic differentiation by increasing the expression levels of osteogenic markers of Alkaline Phosphatase (ALP) and Runt-related transcription factor 2 (Runx2), as well as increased the OPG/RANKL ratio and suppressed the osteoblastic apoptosis in H2O2-induced MC3T3-E1 cells. Moreover, treatment with PCr suppressed reactive oxygen species (ROS) over-generation and promoted the ATP production as well as increased the PGC-1α, FOXO1 and SIRT1 protein expression levels in H2O2-induced MC3T3-E1 cells. CONCLUSION PCr treatment could promote osteoblastic activities via suppressing oxidative stress and increasing the ATP generation in H2O2-induced MC3T3-E1 cells. In addition, the positive effects of PCr on osteoblasts might be regulated by SIRT1/FOXO1/ PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shijie Wen
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
An X, Oh JH, Jeong SM, Choi BH. Natural Bone Healing In Compromised Sockets After Tooth Extraction: Digital Measurement Methods With Cone-Beam Computed Tomography. J ORAL IMPLANTOL 2021; 47:236-241. [PMID: 32663266 DOI: 10.1563/aaid-joi-d-19-00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate bone regeneration within infected extraction sockets with bone defects using cone-beam computed tomography (CBCT) at a 1-year follow-up after implant placement in a prosthetically driven implant position. Forty-eight patients requiring premolar or molar tooth extraction due to bone defects caused by periodontal diseases were included. Vertical and horizontal bone volumes were assessed by overlapping the CBCT scan images with the full digital process. At 1-year post-extraction, a prosthetically-driven implant was planned using virtual implant planning software. At 1 year after extraction, CBCT revealed significant horizontal and vertical bone gains; an overall mean buccolingual bone width gain of 5.46 ± 2.87 mm, and an overall mean vertical bone gain of 0.27 ± 1.28 mm for the lingual bone plate level and 3.50 ± 1.81 mm for the buccal bone plate level were observed. Except for 4 (out of 48) sites, implants were virtually positioned in the center of the edentulous spaces. In summary, despite the dimensional changes after tooth extraction in compromised posterior sockets, there was sufficient bone for placing an implant using the prosthetically driven approach.
Collapse
Affiliation(s)
- Xueyin An
- Department of Dentistry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji-Hyeon Oh
- Department of Dentistry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seung-Mi Jeong
- Department of Dentistry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Byung-Ho Choi
- Department of Dentistry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
18
|
Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci 2021; 22:ijms22083971. [PMID: 33921417 PMCID: PMC8069718 DOI: 10.3390/ijms22083971] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.
Collapse
|
19
|
Lim YJ, Kim KM, Jang WG. Chrysophanol increases osteoblast differentiation via AMPK/Smad1/5/9 phosphorylation in vitro and in vivo. Clin Exp Pharmacol Physiol 2021; 48:515-523. [PMID: 33300218 DOI: 10.1111/1440-1681.13443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/20/2023]
Abstract
Chrysophanol (Chrysophanic acid; CA) is a natural anthraquinone found in Senna tora and rhubarb that has various characteristic features, including the ability to suppress adipogenesis. However, its effects on osteoblast differentiation have not been investigated. Herein, this study aimed to demonstrate the mechanism by which CA induces the osteoblast differentiation. CA increased the expression of osteogenic genes. The staining levels Alkaline phosphatase (ALP) and Alizarin Red S (ARS) were increased by chrysophanol. CA induced osteoblast differentiation through AMP-activated protein kinase (AMPK)/Small mothers against decapentaplegic (Smad1/5/9) activation in MC3T3-E1 cells. In addition, compound C, AMPK inhibitor (Comp. C)-induced cells suppressed osteogenic genes expression and AMPK/Smad1/5/9 activation. Interestingly, AMPK in the CA-induced AMPK/Smad1/5/9 signalling pathway was an upstream regulator of Smad1/5/9. In order to further dissect in bone development, we used a zebrafish model to investigate the effect of CA on bone development. These results suggest that CA stimulated bone development via AMPK/Smad1/5/9. Overall, our results demonstrate that CA promotes osteoblast differentiation via AMPK/Smad1/5/9 expression in vitro and in vivo.
Collapse
Affiliation(s)
- Young-Ju Lim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| | - Kyeong-Min Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Korea
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Korea
| |
Collapse
|
20
|
Xiang C, Tenkumo T, Ogawa T, Kanda Y, Nakamura K, Shirato M, Sokolova V, Epple M, Kamano Y, Egusa H, Sasaki K. Gene transfection achieved by utilizing antibacterial calcium phosphate nanoparticles for enhanced regenerative therapy. Acta Biomater 2021; 119:375-389. [PMID: 33166711 DOI: 10.1016/j.actbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Protamine-coated multi-shell calcium phosphate (CaP) was developed as a non-viral vector for tissue regeneration therapy. CaP nanoparticles loaded with different amounts of plasmid DNA encoding bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) were used to treat MC3T3E1 cells, and the yield of the released BMP-2 or IGF-1 was measured using ELISA 3 days later. Collagen scaffolds containing CaP nanoparticles were implanted into rat cranial bone defects, and BMP-2 and IGF-1 yields, bone formation, and bone mineral density enhancement were evaluated 28 days after gene transfer. The antibacterial effects of CaP nanoparticles against Streptococcus mutans and Aggregatibacter actinomycetemcomitans increased with an increase in the protamine dose, while they were lower for Staphylococcus aureus and Porphyromonas gingivalis. In the combination treatment with BMP-2 and IGF-1, the concentration ratio of BMP-2 and IGF-1 is an important factor affecting bone formation activity. The calcification activity and OCN mRNA of MC3T3E1 cells subjected to a BMP-2:IGF-1 concentration ratio of 1:4 was higher at 14 days. During gene transfection treatment, BMP-2 and IGF-1 were released simultaneously after gene transfer; the loaded dose of the plasmid DNA encoding IGF-1 did not impact the BMP-2 or IGF-1 yield or new bone formation ratio in vitro and in vivo. In conclusion, two growth factor-releasing systems were developed using an antibacterial gene transfer vector, and the relationship between the loaded plasmid DNA dose and resultant growth factor yield was determined in vitro and in vivo.
Collapse
|
21
|
Bas N, Kayar NA, Baba ZF, Avunduk MC, Haliloğlu S, Alptekin NÖ. Systemic treatment with alpha-tocopherol and/or sodium selenite decreases the progression of experimental periodontitis. Clin Oral Investig 2020; 25:2677-2688. [PMID: 32986166 DOI: 10.1007/s00784-020-03579-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/10/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the effects of sodium selenite (Se) and/or α-tocopherol (αT) applications on the alveolar bone loss (ABL), the number of gingival collagen fibers, inducible nitric oxide synthase (iNOS)+ and CD95+ cell numbers, and serum cytokine concentrations in experimental periodontitis in rats. MATERIALS AND METHODS Forty Sprague Dawley rats were divided into four groups of ten as follows: group A: Se group, group B: αT group, group C: Se and αT combined group, and group D: control group (intraperitoneal (IP) saline injection applied). Using the image analysis method in the connective tissue under the connective epithelium, the numbers of iNOS, CD95 positive cells, and collagen fibers were counted. ELISA kits were used to test the concentrations of serum interleukin (IL)-1β, IL-6, and IL-4. RESULTS The combination of Se and αT (group C) suppressed ABL compared with the control group (group D) (P < 0.05). In group A (Se), the number of iNOS+ cells was smaller than in group D (P < 0.05). CONCLUSION Se has been concluded to inhibit inflammation of the gum due to iNOS. Se and αT can have a remarkable important role in preventing alveolar bone loss, and particularly in combination. CLINICAL RELEVANCE Se and/or αT application may be useful in preventing the destruction of periodontal tissue and treatment of periodontal disease.
Collapse
Affiliation(s)
- Nurgül Bas
- Kayseri Nimet Bayraktar Oral and Dental Health Center, Republic of Turkey Ministry of Health, Kayseri, Turkey
| | - Nezahat Arzu Kayar
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey.
| | - Z Füsun Baba
- Patology Laboratory, Acıbadem International Hospital, İstanbul, Turkey
| | - Mustafa Cihat Avunduk
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Seyfullah Haliloğlu
- Department of Biochemistry, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Nilgün Özlem Alptekin
- Department of Periodontology, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|
22
|
Giannoni P, Marini C, Cutrona G, Matis S, Capra MC, Puglisi F, Luzzi P, Pigozzi S, Gaggero G, Neri A, Todoerti K, Morabito F, Ibatici A, Miglino M, Bergamaschi M, Bruno S, Sambuceti GM, Ravetti JL, Ferrarini M, Fais F, de Totero D. Chronic lymphocytic leukemia cells impair osteoblastogenesis and promote osteoclastogenesis: role of TNFα, IL-6 and IL-11 cytokines. Haematologica 2020; 106:2598-2612. [PMID: 32855274 PMCID: PMC8485691 DOI: 10.3324/haematol.2019.231456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 01/18/2023] Open
Abstract
Bone skeletal alterations are no longer considered a rare event in Chronic Lymphocytic Leukemia (CLL), especially at more advanced stages of the disease. This study is aimed at elucidating the mechanisms underlying this phenomenon. Bone marrow stromal cells, induced to differentiate toward osteoblasts in osteogenic medium, appeared unable to complete their maturation upon co-culture with CLL cells, CLL cells-derived conditioned media (CLL-cm) or CLL-sera (CLL-sr). Inhibition of osteoblast differentiation was documented by decreased levels of RUNX2 and osteocalcin mRNA expression, by increased osteopontin and DKK-1 mRNA levels, and by a marked reduction of mineralized matrix deposition. The addition of neutralizing TNFα, IL-11 or anti-IL-6R monoclonal antibodies to these co-cultures resulted into restoration of bone mineralization, indicating the involvement of these cytokines: these findings were further supported by silencing TNFα, IL-11 and IL-6 in leukemic cells. We also demonstrated that the addition of CLL-cm to monocytes, previously stimulated with MCSF and RANKL, significantly amplified the formation of large mature osteoclasts as well as their bone resorption activity. Moreover enhanced osteoclastogenesis, induced by CLL-cm, was significantly reduced by treating cultures with the anti-TNFα moAb Infliximab; an analogous effect was observed by the use of the BTK inhibitor Ibrutinib. CLL cells, co-cultured with mature osteoclasts, were interestingly protected from apoptosis and upregulated Ki-67. These experimental results parallel the direct correlation between TNFα amounts in CLL sera and the degree of compact bone erosion we previously described, further strengthening the indication of a reciprocal influence between leukemic cells expansion and bone structure derangement.
Collapse
Affiliation(s)
- Paolo Giannoni
- Dept. of Experimental Medicine, Biology Section, University of Genoa, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Serena Matis
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Francesca Puglisi
- Dept. of Experimental Medicine, Biology Section, University of Genoa, Italy
| | - Paola Luzzi
- Dept. of Experimental Medicine, Biology Section, University of Genoa, Italy
| | - Simona Pigozzi
- Pathological Anatomy Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Gabriele Gaggero
- Pathologycal Anatomy Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Dept. of Oncology and Hemato-Oncology,University of Milan, Italy
| | - Katia Todoerti
- Dept. of Oncology and Hemato-Oncology,University of Milan, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Azienda Ospedaliera Aprigliano, Cosenza, Italy
| | - Adalberto Ibatici
- Hematology Clinic, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Miglino
- Hematology Clinic, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Silvia Bruno
- Dept. of Experimental Medicine, Anatomy Section, University of Genoa, Italy
| | | | - Jean Louis Ravetti
- Pathological Anatomy Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Manlio Ferrarini
- Dept. of Experimental Medicine, Anatomy Section, University of Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy;
| |
Collapse
|
23
|
Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected Nanomaterials' Application Enhanced with the Use of Stem Cells in Acceleration of Alveolar Bone Regeneration during Augmentation Process. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1216. [PMID: 32580409 PMCID: PMC7353104 DOI: 10.3390/nano10061216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023]
Abstract
Regenerative properties are different in every human tissue. Nowadays, with the increasing popularity of dental implants, bone regenerative procedures called augmentations are sometimes crucial in order to perform a successful dental procedure. Tissue engineering allows for controlled growth of alveolar and periodontal tissues, with use of scaffolds, cells, and signalling molecules. By modulating the patient's tissues, it can positively influence poor integration and healing, resulting in repeated implant surgeries. Application of nanomaterials and stem cells in tissue regeneration is a newly developing field, with great potential for maxillofacial bony defects. Nanostructured scaffolds provide a closer structural support with natural bone, while stem cells allow bony tissue regeneration in places when a certain volume of bone is crucial to perform a successful implantation. Several types of selected nanomaterials and stem cells were discussed in this study. Their use has a high impact on the efficacy of the current and future procedures, which are still challenging for medicine. There are many factors that can influence the regenerative process, while its general complexity makes the whole process even harder to control. The aim of this study was to evaluate the effectiveness and advantage of both stem cells and nanomaterials in order to better understand their function in regeneration of bone tissue in oral cavity.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maciej Dobrzynski
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
24
|
Kim KM, Kim EJ, Jang WG. Carbohydrate responsive element binding protein (ChREBP) negatively regulates osteoblast differentiation via protein phosphatase 2A Cα dependent manner. Int J Biochem Cell Biol 2020; 124:105766. [PMID: 32416328 DOI: 10.1016/j.biocel.2020.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022]
Abstract
Carbohydrate responsive element binding protein (ChREBP) is a major transcription factor of lipogenesis regulated by glucose status in the liver. However, the function of ChREBP in osteogenic differentiation is unclear. The present study examined the role of ChREBP in osteoblast differentiation in MC3T3-E1 preosteoblast cell line. The mRNA expression of ChREBP, protein phosphatase 2A catalytic subunit-α (PP2A Cα) and the osteogenic genes such as, DNA-binding protein inhibitor (Id1), runt-related transcription factor-2 (Runx2), and alkaline phosphatase (ALP) was measured by qPCR and RT-PCR. Runx2, ChREBP, and PP2A Cα, protein levels were evaluated by Western blotting. ALP staining experiment was carried out to evaluate ALP enzyme activity, and a luciferase reporter assay was performed to analyze Runx2 transcriptional activity. Expression of ChREBP and PP2A Cα did not change during bone morphogenetic protein-2 (BMP2)-induced osteoblast differentiation. Overexpression of ChREBP reduced the osteogenic genes (Runx2 and ALP) expression and ALP activity, while knockdown of ChREBP had the opposite effects. Overexpression of PP2A Cα increased ChREBP expression, while inhibition of PP2A Cα using okadaic acid not only inhibited the expression of ChREBP, but also restored the mRNA and protein expression of Runx2 and activity of ALP enzyme. These results demonstrate that ChREBP inhibits BMP2-induced osteoblast differentiation in a PP2A Cα- dependent manner.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| | - Eun-Jung Kim
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
25
|
Resveratrol Nanoparticles: A Promising Therapeutic Advancement over Native Resveratrol. Processes (Basel) 2020. [DOI: 10.3390/pr8040458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the application of RES in in vivo conditions, encapsulation processes have been carried out using various nanoparticles that are made of biocompatible biomaterials, which are easily digested or metabolized, and RES is absorbed effectively. These biomaterials are non-toxic and are safe to be used as components in the biotherapeutics. They are made from naturally available by-products of food materials like zein or corn or components of the physiological system as with lipids. The versatility of the RES nanoparticles in their different materials, working range sizes, specificity in their targeting in various human diseases, and the mechanisms associated with them are discussed in this review.
Collapse
|
26
|
Calciolari E, Donos N. Proteomic and Transcriptomic Approaches for Studying Bone Regeneration in Health and Systemically Compromised Conditions. Proteomics Clin Appl 2020; 14:e1900084. [PMID: 32131137 DOI: 10.1002/prca.201900084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Indexed: 01/04/2023]
Abstract
Bone regeneration is a complex biological process, where the molecular mechanisms are only partially understood. In an ageing population, where the prevalence of chronic diseases with an impact on bone metabolism is increasing, it becomes crucial to identify new strategies that would improve regenerative outcomes also in medically compromised patients. In this context, omics are demonstrating a great potential, as they offer new insights on the molecular mechanisms regulating physiologic/pathologic bone healing and, at the same time, allow the identification of new diagnostic and therapeutic targets. This review provides an overview on the current evidence on the use of transcriptomic and proteomic approaches in bone regeneration research, particularly in relation to type 1 diabetes and osteoporosis, and discusses future scenarios and potential benefits and limitations on the integration of multi-omics. It is suggested that future research will leverage the synergy of omics with statistical modeling and bioinformatics to prompt the understanding of the biology underpinning bone formation in health and medically compromised conditions. With an eye toward personalized medicine, new strategies combining the mining of large datasets and bioinformatic data with a detailed characterization of relevant phenotypes will need to be pursued to further the understanding of disease mechanisms.
Collapse
Affiliation(s)
- Elena Calciolari
- Centre for Oral Immunobiology and Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.,Department of Medicine and Surgery, School of Dental Medicine, University of Parma, via Gramsci 14, Parma, 43126, Italy
| | - Nikolaos Donos
- Centre for Oral Immunobiology and Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|
27
|
Wang J, Chen X, Yang X, Guo B, Li D, Zhu X, Zhang X. Positive role of calcium phosphate ceramics regulated inflammation in the osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2020; 108:1305-1320. [PMID: 32064734 DOI: 10.1002/jbm.a.36903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
Recently, researches have confirmed the crucial role of inflammatory response in Ca-P ceramic-induced osteogenesis, however, the underlying mechanism has not yet been fully understood. In this study, BCP and β-TCP ceramics were used as material models to investigate the effect of physicochemical properties on inflammatory response in vitro. The results showed that BCP and β-TCP could support macrophages attachment, proliferation, and spreading favorably, as well as promote gene expressions of inflammatory related cytokines (IL-1, IL-6, MCP-1, and TNF-α) and growth factors (TGF-β, FGF, PDGF, VEGF, IGF, and EGF). BCP showed a facilitating function on the gene expressions earlier than β-TCP. Further coculture experiments performed in vitro demonstrated that the CMs containing various increased cytokines for macrophages pre-culture could significantly promote MSCs osteogenic differentiation, which was confirmed by the gene expressions of osteogenic specific markers and the intracellular OCN product accumulation under the stimulation of BCP and β-TCP ceramics. Further evidence was found from the formation of mineralized nodules in BCM and TCM. In addition, this study showed a concise relationship between Ca-P ceramic induced inflammation and its osteoinductivity that the increased cytokines and growth factors from macrophages could promote MSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Danyang Li
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Giménez-Siurana A, Gómez García F, Pagan Bernabeu A, Lozano-Pérez AA, Aznar-Cervantes SD, Cenis JL, López-Jornet P. Chemoprevention of Experimental Periodontitis in Diabetic Rats with Silk Fibroin Nanoparticles Loaded with Resveratrol. Antioxidants (Basel) 2020; 9:antiox9010085. [PMID: 31963913 PMCID: PMC7022414 DOI: 10.3390/antiox9010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: the objective of the present work is to study the effectiveness of treatment with silk fibroin nanoparticles loaded with resveratrol in experimental periodontitis in a diabetic rat model. Introduction: Periodontitis is an inflammatory pathology highly related to other diseases, such as type II diabetes. Both diseases have a specific inflammatory condition, with Interleukin (IL)-6, IL-1β and Transforming Grow Factor (TGF)-1β being the most relevant proinflammatory factors. Silk fibroin (SF) nanoparticles loaded with resveratrol (Res-SFN) are a new alternative as a treatment. Methods: 40 diabetic Sprague Dawley male rats were used and periodontitis was induced by ligation. The animals were divided into 5 treatment groups, and 1 mL of treatment was administered once a day for 4 weeks. The groups were: I: Carboxymethyl cellulose (CMC) 0.8%, II: CMC 0.8% + SF 1%, III: CMC 0.8% + RES-SFN 3 mg/mL, IV: CMC 0.8% + SF 1% + RES-SFN 3 mg/mL, V: Water. A peripheral blood sample was taken every week to quantify the inflammatory profile by ELISA (IL-6, IL-1β and TGF-1β). After 4 weeks the sacrifice was carried out and biopsies of the gum were taken. Results: Treatment with SF and RES-SFN reduced the amount of chemical inflammation mediators (with the exception of IL-1β in comparisons I-IV and II-IV (p > 0.05)), as well as the anatomopathological variables linked to it, in a significant way (p < 0.05). Conclusion: treatment with RES-SFN has reduced local inflammation in this experimental periodontitis model.
Collapse
Affiliation(s)
- Ana Giménez-Siurana
- Department of Bucal Medicine, Faculty of Medicine, University of Murcia, Av. Marqués de los Vélez, 2 Floor. 3008, Murcia, Spain; (A.G.-S.); (F.G.G.)
| | - Francisco Gómez García
- Department of Bucal Medicine, Faculty of Medicine, University of Murcia, Av. Marqués de los Vélez, 2 Floor. 3008, Murcia, Spain; (A.G.-S.); (F.G.G.)
| | - Ana Pagan Bernabeu
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor 30150 La Alberca, Murcia, Spain; (A.P.B.); (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - Antonio Abel Lozano-Pérez
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor 30150 La Alberca, Murcia, Spain; (A.P.B.); (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - Salvador D. Aznar-Cervantes
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor 30150 La Alberca, Murcia, Spain; (A.P.B.); (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - José Luis Cenis
- Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor 30150 La Alberca, Murcia, Spain; (A.P.B.); (A.A.L.-P.); (S.D.A.-C.); (J.L.C.)
| | - Pía López-Jornet
- Department of Bucal Medicine, Faculty of Medicine, University of Murcia, Av. Marqués de los Vélez, 2 Floor. 3008, Murcia, Spain; (A.G.-S.); (F.G.G.)
- Correspondence:
| |
Collapse
|
29
|
Carter SSD, Barbe L, Tenje M, Mestres G. Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomater Sci 2020; 8:6309-6321. [DOI: 10.1039/d0bm00964d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
When evaluating the biological properties of titanium under dynamic conditions, cell proliferation was shown to be dominant over cell differentiation.
Collapse
Affiliation(s)
- Sarah-Sophia D. Carter
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| | - Laurent Barbe
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| | - Maria Tenje
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| | - Gemma Mestres
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| |
Collapse
|
30
|
Almeida AR, Bessa-Gonçalves M, Vasconcelos DM, Barbosa MA, Santos SG. Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal stem/stromal osteogenic differentiation. J Biomed Mater Res A 2019; 108:851-862. [PMID: 31845492 DOI: 10.1002/jbm.a.36863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Fibrinogen (Fg) is a pro-inflammatory protein with pro-healing properties. Previous work showed that fibrinogen 3D scaffolds (Fg-3D) promote bone regeneration, but the cellular players were not identified. Osteoclasts are bone resorbing cells that promote bone remodeling in close crosstalk with osteoblasts. Herein, the capacity of osteoclasts differentiated on Fg-3D to degrade the scaffolds and promote osteoblast differentiation was evaluated in vitro. Fg-3D scaffolds were prepared by freeze-drying and osteoclasts were differentiated from primary human peripheral blood monocytes. Results obtained showed osteoclasts expressing the enzymes cathepsin K and tartrate resistant acid phosphatase colonizing Fg-3D scaffolds. Osteoclasts were able to significantly degrade Fg-3D, reducing the scaffold's area, and increasing D-dimer concentration, a Fg degradation product, in their culture media. Osteoclast conditioned media from the first week of differentiation promoted significantly stronger human primary mesenchymal stem/stromal cell (MSC) osteogenic differentiation, evaluated by alkaline phosphatase activity. Moreover, week 1 osteoclast conditioned media promoted earlier MSC osteogenic differentiation, than chemical osteogenesis inductors. TGF-β1 was found increased in osteoclast conditioned media from week 1, when compared to week 3 of differentiation. Taken together, our results suggest that osteoclasts are able to differentiate and degrade Fg-3D, producing factors like TGF-β1 that promote MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Ana R Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mafalda Bessa-Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel M Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| |
Collapse
|
31
|
Karst NA, Sidler X, Liesegang A. Influence of mastitis metritis agalactia (MMA) on bone and fat metabolism. J Anim Physiol Anim Nutr (Berl) 2019; 105 Suppl 2:138-146. [PMID: 31637783 DOI: 10.1111/jpn.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022]
Abstract
Mastitis metritis agalactia (MMA) is a common disease in post-partum sows and has a negative effect on sows' longevity as well as on sows' and piglets' health. MMA leads to an inflammatory state. The aim was to investigate the impact of MMA on bone and fat metabolism. The hypothesis was that it is possible to predict MMA by measuring ketone bodies and bone markers. Blood samples from 175 sows were taken within 72 hr after farrowing. Serum was analysed for 25-hydroxyvitamin D (25-(OH)-D), serum crosslaps (CTX-I), osteocalcin (OC), alkaline phosphatase (ALP), calcium (Ca), magnesium (Mg), phosphorus (P), parathyroid hormone (PTH), triglycerides (TG), beta-hydroxybutyric acid (BHB), tumour necrosis factor-alpha (TNF-α) and haptoglobin. Spontaneous urine was collected, and pH value was measured in addition to Ca and P. A proximate analysis of the sows' diets was performed. Age, litter size, body condition score (BCS) and clinical signs of MMA were recorded for each sow. A multivariable logistic regression was undertaken with disease status (MMA or healthy) as the dependent variable. Significance was accepted at p < .05. MMA sows had a poorer BCS (p < .001) in relation to healthy sows. Age and number of piglets did not differ. MMA sows showed increased serum CTX-I (p = .004) and decreased serum OC (p < .001). Concentrations of P (p = .007), activity of ALP (p = .002) and BHB (p = .019) as well as TNF-α (p < .001) and haptoglobin (p = .048) concentrations were increased in MMA sows. No difference in urinary pH value between MMA and healthy sows was found. Our results are in accordance with the known fact that sows are in an extreme catabolic state peripartum. Bone metabolism in MMA sows is much more negatively affected than in healthy sows post-partum, due to inflammatory processes shown by higher concentrations of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Niklas A Karst
- Vetsuisse-Faculty, Institute of Animal Nutrition, University of Zurich, Zurich, Switzerland.,Vetsuisse-Faculty, Centre for Clinical Studies, University of Zurich, Zurich, Switzerland
| | - Xaver Sidler
- Division of Swine Medicine, Department of Farm Animals, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Annette Liesegang
- Vetsuisse-Faculty, Institute of Animal Nutrition, University of Zurich, Zurich, Switzerland.,Vetsuisse-Faculty, Centre for Clinical Studies, University of Zurich, Zurich, Switzerland.,Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Age and metabolic disorders result in the accumulation of advanced glycation endproducts (AGEs), oxidative stress, and inflammation, which cumulatively cause a decline in skeletal health. Bone becomes increasingly vulnerable to fractures and its regenerative capacity diminishes under such conditions. With a rapidly aging population in the USA and the global increase in diabetes, efficacious, multi-dimensional therapies that can treat or prevent skeletal diseases associated with metabolic dysfunction and inflammatory disorders are acutely needed. RECENT FINDINGS Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of nutrient intake, glucose metabolism, insulin production, and adipogenesis. Recent studies suggest a pivotal role for CaMKK2 in bone metabolism, fracture healing, and inflammation. Aside from rekindling previous concepts of CaMKK2 as a potent regulator of whole-body energy homeostasis, this review emphasizes CaMKK2 as a potential therapeutic target to treat skeletal diseases that underlie metabolic conditions and inflammation.
Collapse
Affiliation(s)
- Justin N Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS-5055, Indianapolis, IN, 46202, USA
| | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS-5055, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Curr Genomics 2019; 20:184-198. [PMID: 31929726 PMCID: PMC6935951 DOI: 10.2174/1389202920666190422142053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Microgravity (μG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. μG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods We systematically reviewed research data from genomic studies performed in real or simulat-ed μG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results Osteoblastic cells under μG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin-6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the ex-pression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under μG conditions and become sensitized to RANKL. Conclusion Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George N Katsaras
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George I Lambrou
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| |
Collapse
|
34
|
de Vasconcellos LMR, do Prado RF, Sartori EM, Mendonça DBS, Mendonça G, Marciano FR, Lobo AO. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:81. [PMID: 31254104 DOI: 10.1007/s10856-019-6271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanotubes combine high bend and mechanical strength, which is advantageous for many structural and biomedical purposes. Recently, some biomaterials, based on carbon nanostructures and nanohydroxyapatite (nHAp), have been investigated as bone substitutes in order to improve regeneration. The aim of this study was to access the expression of some RNA transcripts (involved in the process of osteoblast differentiation) by mesenchymal stem cells cultured over different nanocomposite surfaces. A multi-walled carbon nanotube (MWCNT) was firstly grown using chemical vapor deposition and then exfoliated using chemical and oxygen plasma treatments to obtain graphene nanoribbons (GNR). The hybrid composites nHAp/GNR were prepared using the wet method assisted by ultrasound irradiation with different amounts of GNR (1.0, 2.0 and 3.0 wt %). Five groups were tested in cell cultures. Group 1: synthesized nHAp; Group 2: synthesized GNR; Group 3: nHAp and 1.0% of GNR; Group 4: nHAp and 2.0% of GNR and group 5: nHAp and 3.0% of GNR. Real time reverse transcription polymerase chain reactions were performed, and all data was submitted to Kruskal Wallis and Dunn tests, at a significance level of 5%. As a result, three nanocomposites with different proportions of GNR were successfully produced. After cell culture, the expression of osteogenic genes demonstrated no significant differences among the groups and periods. However, bone morphogenetic protein II (BMP II), integrin binding sialoprotein (IBSP), and Osterix highest expressions were observed in the group containing 3.0% of GNR. In conclusion, our hybrid composites may be useful in bone interventions requiring mesenchymal stem cell differentiation into osteoblasts for healing.
Collapse
Affiliation(s)
- Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Elisa Mattias Sartori
- Department of Surgery and Integrated Clinics, School of Dentistry of Araçatuba, Sao Paulo State University, Araçatuba, Brazil
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Fernanda Roberta Marciano
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil
| | - Anderson Oliveira Lobo
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil.
- Interdisciplinary Laboratory for Advanced Materials, Post-graduation Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil.
| |
Collapse
|
35
|
Zhang Z, Zhang X, Zhao D, Liu B, Wang B, Yu W, Li J, Yu X, Cao F, Zheng G, Zhang Y, Liu Y. TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep 2019; 19:3505-3518. [PMID: 30896852 PMCID: PMC6471541 DOI: 10.3892/mmr.2019.10051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) has been suggested to be a candidate cytokine in the field of bone tissue engineering. Cytokines serve important roles in tissue engineering, particularly in the repair of bone damage; however, the underlying molecular mechanisms remain unclear. In the present study, the effects of TGF-β1 on the osteogenesis and motility of hFOB1.19 human osteoblasts were demonstrated via the phenotype and gene expression of cells. Additionally, the role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin/S6 kinase 1 (PI3K/AKT/mTOR/S6K1) signalling pathway in the effects of TGF-β1 on osteoblasts was investigated. It was demonstrated using Cell Counting Kit-8 and flow cytometry assays that the proliferation of human osteoblasts was promoted by 1 ng/ml TGF-β1. In addition, alkaline phosphatase activity, Alizarin red staining, scratch-wound and Transwell assays were conducted. It was revealed that osteogenesis and the migration of cells were regulated by TGF-β1 via the upregulation of osteogenic and migration-associated genes. Alterations in the expression of osteogenesis- and migration-associated genes were evaluated following pre-treatment with a PI3K/AKT inhibitor (LY294002) and an mTOR/S6K1 inhibitor (rapamycin), with or without TGF-β1. The results indicated that TGF-β1 affected the osteogenesis and mineralisation of osteoblasts via the PI3K/AKT signalling pathway. Furthermore, TGF-β1 exhibited effects on mTOR/S6K1 downstream of PI3K/AKT. The present study demonstrated that TGF-β1 promoted the proliferation, differentiation and migration of human hFOB1.19 osteoblasts, and revealed that TGF-β1 affected the biological activity of osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Our findings may provide novel insight to aid the development of bone tissue engineering methods for the treatment of bone injury.
Collapse
Affiliation(s)
- Zhaodong Zhang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiuzhi Zhang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Dewei Zhao
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Baoyi Liu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Benjie Wang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Weiting Yu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Junlei Li
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiaobing Yu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Fang Cao
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Guoshuang Zheng
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yao Zhang
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yupeng Liu
- Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
36
|
Xu Z, Zhao F, Chen H, Xu S, Fan F, Shi P, Tu M, Wang Z, Du M. Nutritional properties and osteogenic activity of enzymatic hydrolysates of proteins from the blue mussel (Mytilus edulis). Food Funct 2019; 10:7745-7754. [DOI: 10.1039/c9fo01656b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seafood provides a range of health benefits due to its nutritional and bioactive components. The proteins and peptides from Mytilus edulis have good bone growth promoting activities.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Fujunzhu Zhao
- Food Science Department
- College of Agriculture Science
- Pennsylvania State University, Commonwealth of Pennsylvania
- PA 16802
- United States
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Shiqi Xu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Fengjiao Fan
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Pujie Shi
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Maolin Tu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Ziye Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Ming Du
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| |
Collapse
|
37
|
Li H, Ma T, Zhang M, Zhu J, Liu J, Tan F. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:187. [PMID: 30535592 DOI: 10.1007/s10856-018-6199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
To improve the biological performance of poly(ethylene glycol)-diacrylate (PEGDA) hydrogel as an injectable bone grafting scaffold, sodium methallyl sulphonate (SMAS) was incorporated into PEGDA hydrogel. The physiochemical properties of the resultant polymers were assessed via Fourier transform infrared spectroscopy (FTIR), swelling ratio, zeta potential, surface morphology, and protein adsorption analysis. MC3T3-E1 cells were seeded on the hydrogel to evaluate the effect of the sulphonated modification on their attachment, proliferation, and differentiation. The results of FTIR and zeta potential evaluations revealed that SMAS was successfully incorporated into PEGDA. With increasing concentrations of SMAS, the swelling ratio of the hydrogels increased in deionized water but stayed constant in phosphate buffered saline. The protein adsorption also increased with increasing concentration of SMAS. Moreover, the sulphonated modification of PEGDA hydrogel not only enhanced the attachment and proliferation of osteoblast-like MC3T3-E1 cells but also up-regulated alkaline phosphatase activity as well as gene expression of osteogenic markers and related growth factors, including collagen type I, osteocalcin, runt related transcription factor 2, bone morphogenetic protein 2, and transforming growth factor beta 1. These findings indicate that the sulphonated modification could significantly improve the biological performance of PEGDA hydrogel. Thus, the sulphonated PEGDA is a promising scaffold candidate for bone grafting.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Tingting Ma
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Man Zhang
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Jiani Zhu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Jie Liu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Fei Tan
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
38
|
Kim KM, Jeon WJ, Kim EJ, Jang WG. CRTC2 suppresses BMP2-induced osteoblastic differentiation via Smurf1 expression in MC3T3-E1 cells. Life Sci 2018; 214:70-76. [PMID: 30449452 DOI: 10.1016/j.lfs.2018.10.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
AIMS CREB (cAMP response element-binding protein)-regulated transcription coactivator (CRTC2) has been reported to act as a coactivator of CREB during gluconeogenesis. The role of CRTC2 in osteoblastic differentiation has not yet been elucidated. The aim of this study is to identify the mechanism of CRTC2 in osteoblast differentiation. MAIN METHODS The mRNA expression was determined by RT-PCR and qPCR. Protein levels were measured using Western blot assay. Alkaline phosphatase (ALP) staining was performed to evaluate ALP activity. Alizarin red S (ARS) staining was performed to measure extracellular mineralization. Transcriptional activity was detected using a luciferase assay. KEY FINDINGS In the present study, TNF-α was found to stimulate CRTC2 expression. However, TNF-α did not increase the gene expression of osteoblast differentiation markers and inhibited BMP2-induced osteoblastic differentiation. Overexpression of CRTC2 decreased the expression of osteogenic genes, ALP activity and extracellular matrix mineralization. Knockdown of CRTC2 restored BMP2-induced osteogenic gene expression and ALP activity. CRTC2 increased Smurf1 mRNA expression, Smurf 1 promoter activity, and protein level. Furthermore, Smurf 1 decreased Smad 1/5/9 protein levels. These results suggest that CRTC2 decreased BMP2-induced osteoblastic differentiation via Smurf 1 expression. SIGNIFICANCE Our results indicate that CRTC2 regulates the expression of Smurf1 in osteoblast differentiation.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Wan-Jin Jeon
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Eun-Jung Kim
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
39
|
Baudequin T, Legallais C, Bedoui F. In Vitro Bone Cell Response to Tensile Mechanical Solicitations: Is There an Optimal Protocol? Biotechnol J 2018; 14:e1800358. [PMID: 30350925 DOI: 10.1002/biot.201800358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Bone remodeling is strongly linked to external mechanical signals. Such stimuli are widely used in vitro for bone tissue engineering by applying mechanical solicitations to cell cultures so as to trigger specific cell responses. However, the literature highlights considerable variability in devices and protocols. Here the major biological, mechanical, and technical parameters implemented for in vitro tensile loading applications are reviewed. The objective is to identify which values are used most, and whether there is an optimal protocol to obtain a functional tissue-engineering construct. First, a shift that occurred from fundamental comprehension of bone formation, to its application in rebuilt tissues and clinical fields is shown. Despite the lack of standardized protocols, consensual conditions relevant for in vitro bone development, in particular cell differentiation, could be highlighted. Culture processes are guided by physiological considerations, although out-of-range conditions are sometimes used without implying negative results for the development of rebuilt tissue. Consensus can be found on several parameters, such as strain frequency (1 Hz) or the use of rest periods, but other points have not yet been fully established, especially synergies with other solicitations. It is believed that the present work will be useful to develop new tissue-engineering processes based on stretching.
Collapse
Affiliation(s)
- Timothée Baudequin
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique - Bioingénierie, Compiègne 60205, France
| | - Cécile Legallais
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique - Bioingénierie, Compiègne 60205, France
| | - Fahmi Bedoui
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7337 Laboratoire Roberval, Compiègne 60205, France
| |
Collapse
|
40
|
Zhou R, Shen L, Yang C, Wang L, Guo H, Yang P, Song A. Periodontitis May Restrain the Mandibular Bone Healing via Disturbing Osteogenic and Osteoclastic Balance. Inflammation 2018; 41:972-983. [PMID: 29460020 DOI: 10.1007/s10753-018-0751-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Periodontitis has been advocated as a systematic chronic low-grade infection burden. However, the relationship between periodontitis and bone defect healing has not been elucidated. One hundred and eight male Wister rats were randomly assigned into three groups: control (healthy) group, periodontitis group, and periodontitis plus human tumor necrosis factor receptorII:IgG Fc fusion protein (rhTNFR:Fc) group. The experimental periodontitis model was established by ligaturing with orthodontic wire and silk suture plus local administration of 20 μl of lipopolysaccharide (LPS). Mandibular bone defects in size of 4 × 2 × 1 mm were created for all the rats and rhTNFR:Fc subcutaneously injected at neck at a dose of 2.5 mg/kg every 3 days for the periodontitis plus rhTNFR:Fc group. The gene and protein expressions of bone-related markers in the healing tissue were monitored and new bone formation was histologically evaluated. Tartrate-resistant acid phosphatase (TRAP) staining was performed to determine the number of osteoclasts. The results showed that the mRNA and protein expressions of osteogenesis-related markers were significantly lower while nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) gene expression was significantly higher in the periodontitis group. The periodontitis group showed decreased new bone formation and increased number of osteoclasts when compared to the control group. However, there was no significant difference between the periodontitis plus rhTNFR:Fc group and the control group. These results demonstrated that periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance in which tumor necrosis factor-α (TNF-α) could act as a leverage.
Collapse
Affiliation(s)
- Rongjing Zhou
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
- Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lili Shen
- Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chengzhe Yang
- Department of Oral & Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Limei Wang
- Department of Stomatology, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Hongmei Guo
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, 250000, China
| | - Pishan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, 250000, China.
| | - Aimei Song
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, Shandong, 250000, China.
| |
Collapse
|
41
|
Osteoblastic Differentiation of Functionalized Biphasic Hydroxyapatite and b-Tricalcium Phosphate with Recombinant Human Growth and Differentiation (rhGDF-5). Macromol Res 2018. [DOI: 10.1007/s13233-018-6142-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Chatzopoulos G, Doufexi AE, Wolff L, Kouvatsi A. Interleukin-6 and interleukin-10 gene polymorphisms and the risk of further periodontal disease progression. Braz Oral Res 2018. [PMID: 29538476 DOI: 10.1590/1807-3107bor-2018.vol32.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Susceptible genotypes to periodontal disease are associated with disease onset and progression. The aim of this study was to examine the effect of gene polymorphisms on the risk of further disease progression and the need for further treatment among adults with chronic periodontal disease. Sixty-seven patients diagnosed with chronic periodontitis were grouped according to genotype status and risk of further progression of disease and tooth loss. All individuals were clinically evaluated for probing pocket depth, clinical attachment loss and bleeding on probing at baseline and 45 days after treatment. Blood samples were collected at baseline and genotyping of the polymorphisms in IL-6 (rs1800796) and IL-10 (rs1800872) genes were performed by PCR. Following DNA separation and genotyping, 65.7% of the patients were homozygous carriers of the IL-6 -572G and 49.3% were carriers of the IL-10 -592A allele. Individuals at risk of disease progression ranged from 7.5% to 62.7% based on the criteria used. Carriers of the IL-10 -592A allele were significantly associated with BOP ≥ 30% and therefore exhibited a higher risk of further periodontal breakdown (p = 0.018) with an odds ratio of 1.18. None of the other definitions of disease progression were significantly associated with the examined IL-6 and IL-10 genotypes (p > 0.05). IL-10 polymorphism was associated with an increased risk of further disease progression and the potential need for further treatment following non-surgical periodontal treatment. Susceptible IL-6 genotypes were not associated with the risk of persisting or recurrent disease activity.
Collapse
Affiliation(s)
- Georgios Chatzopoulos
- University of Minnesota, School of Dentistry, Department of Surgical and Developmental Sciences, Minneapolis, MN, USA
| | | | - Larry Wolff
- University of Minnesota, School of Dentistry, Department of Surgical and Developmental Sciences, Minneapolis, MN, USA
| | - Anastasia Kouvatsi
- Aristotle University of Thessaloniki, Faculty of Sciences, Department of Genetics, Development and Molecular Biology, Thessaloniki, Greece
| |
Collapse
|
43
|
Zhang F, Xie J, Wang G, Zhang G, Yang H. Anti-osteoporosis activity of Sanguinarine in preosteoblast MC3T3-E1 cells and an ovariectomized rat model. J Cell Physiol 2018; 233:4626-4633. [PMID: 28926099 DOI: 10.1002/jcp.26187] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Fuzhan Zhang
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou P.R. China
| | - Jile Xie
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou P.R. China
| | - Genlin Wang
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou P.R. China
| | - Ge Zhang
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou P.R. China
| | - Huilin Yang
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou P.R. China
| |
Collapse
|
44
|
Oftadeh MO, Bakhshandeh B, Dehghan MM, Khojasteh A. Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis. J Biomed Mater Res A 2018; 106:1200-1210. [DOI: 10.1002/jbm.a.36316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Mohammad Omid Oftadeh
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
- Stem Cell Technology Research Center; Tehran Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology; Faculty of Veterinary Medicine, University of Tehran; Tehran Iran
- Institute of Biomedical Research; University of Tehran; Tehran Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
45
|
Siaili M, Chatzopoulou D, Gillam D. An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dent J 2018; 30:26-37. [PMID: 30166868 PMCID: PMC6112342 DOI: 10.1016/j.sdentj.2017.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The complete regeneration of the periodontal tissues following periodontal disease remains an unmet challenge, and has presented clinicians with a remarkably difficult clinical challenge to solve given the extensive research in this area and our current understanding of the biology of the periodontal tissues. In particular as clinicians we look for treatments that will improve the predictability of the procedure, improve the magnitude of the effect of treatment, and perhaps most importantly in the long term would extend the indications for treatment beyond the need for single enclosed bony defects to allow for suprabony regeneration, preferably with beneficial effects on the gingival soft tissues. A rapid development in both innovative methods and products for the correction of periodontal deficiencies have been reported during the last three decades. For example, guided tissue regeneration with or without the use of bone supplements has been a well-proven treatment modality for the reconstruction of bony defects prior to the tissue engineering era. Active biomaterials have been subsequently introduced to the periodontal community with supporting dental literature suggesting that certain factors should be taken into consideration when undertaking periodontal regenerative procedures. These factors as well as a number of other translational research issues will need to be addressed, and ultimately it is vital that we do not extrapolate results from pre-clinical and animal studies without conducting extensive randomized clinical trials to substantiate outcomes from these procedures. Whatever the outcomes, the pursuit of regeneration of the periodontal tissues remains a goal worth pursuing for our patients. The aim of the review, therefore is to update clinicians on the recent advances in both materials and techniques in periodontal regenerative procedures and to highlight the importance of both patient factors and the technical aspects of regenerative procedures.
Collapse
Affiliation(s)
| | | | - D.G. Gillam
- Centre for Adult Oral Health, Barts and the London School of Medicine and Dentistry QMUL, London, United Kingdom
| |
Collapse
|
46
|
Odero-Marah V, Hawsawi O, Henderson V, Sweeney J. Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1095:101-110. [PMID: 30229551 DOI: 10.1007/978-3-319-95693-0_6] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Typically the normal epithelial cells are a single layer, held tightly by adherent proteins that prevent the mobilization of the cells from the monolayer sheet. During prostate cancer progression, the epithelial cells can undergo epithelial-mesenchymal transition or EMT, characterized by morphological changes in their phenotype from cuboidal to spindle-shaped. This is associated with biochemical changes in which epithelial cell markers such as E-cadherin and occludins are down-regulated, which leads to loss of cell-cell adhesion, while mesenchymal markers such as vimentin and N-cadherin are up-regulated, thereby allowing the cells to migrate or metastasize to different organs. The EMT transition can be regulated directly and indirectly by multiple molecular mechanisms including growth factors and cytokines such as transforming growth factor-beta (TGF-β), epidermal growth factor (EGF) and insulin-like growth factor (IGF), and signaling pathways such as mitogen-activated protein kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3K). This signaling subsequently induces expression of various transcription factors like Snail, Twist, Zeb1/2, that are also known as master regulators of EMT. Various markers associated with EMT have been reported in prostate cancer patient tissue as well as a possible association with health disparities. There has been consideration to therapeutically target EMT in prostate cancer patients by targeting the EMT signaling pathways.
Collapse
Affiliation(s)
| | - Ohuod Hawsawi
- Department of Biology, Clark Atlanta University, Atlanta, GA, USA
| | | | - Janae Sweeney
- Department of Biology, Clark Atlanta University, Atlanta, GA, USA
| |
Collapse
|
47
|
Oliveira K, Reis A, Silva A, Silva C, Goes A, Serakides R, Ocarino N. Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells cultured with different concentrations of prolactin. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The objective was to evaluate the in vitro effect of prolactin in osteogenic potential of adipose tissue-derived mesenchymal stem cells (ADSCs) in female rats. ADSCs were cultured in osteogenic medium with and without the addition of prolactin and distributed into three groups: 1) ADSCs (control), 2) ADSCs with addition of 100ng/mL of prolactin and 3) ADSCs with addition of 300ng/mL of prolactin. At 21 days of differentiation, the tests of MTT conversion into formazan crystals, percentage of mineralized nodules and cells per field and quantification of genic transcript for alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I by real-time RT-PCR were made. The addition of prolactin reduced the conversion of MTT in group 3 and increased the percentage of cells per field in the groups 2 and 3, however without significantly increasing the percentage of mineralized nodules and the expression of alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I. In conclusion, the addition of prolactin in concentrations of 100ng/mL and 300ng/mL does not change the osteogenic differentiation to the ADSCs of female rats despite increase in the cellularity of the culture.
Collapse
Affiliation(s)
| | - A.M.S. Reis
- Universidade Federal de Minas Gerais, Brazil
| | - A.P. Silva
- Universidade Federal de Minas Gerais, Brazil
| | | | - A.M. Goes
- Universidade Federal de Minas Gerais, Brazil
| | | | | |
Collapse
|
48
|
Kim B, Yang S, You H, Shin H, Lee J. Fucoidan‐induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. J Tissue Eng Regen Med 2017; 12:e1311-e1324. [DOI: 10.1002/term.2509] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 02/12/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Beom‐Su Kim
- Wonkwang Bone Regeneration Research InstituteWonkwang University Iksan Jeonbuk Republic of Korea
- Bonecell Biotech Inc. Daejeon Republic of Korea
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN)Chonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea
| | - Sun‐Sik Yang
- Wonkwang Bone Regeneration Research InstituteWonkwang University Iksan Jeonbuk Republic of Korea
| | - Hyung‐Keun You
- Department of Periodontology, School of DentistryWonkwang University Iksan Jeonbuk Republic of Korea
| | - Hong‐In Shin
- IHBR, Department of Oral Pathology, School of DentistryKyungpook National University Daegu Republic of Korea
| | - Jun Lee
- Wonkwang Bone Regeneration Research InstituteWonkwang University Iksan Jeonbuk Republic of Korea
- Departments of Oral and Maxillofacial SurgeryWonkwang University Iksan Jeonbuk South Korea
| |
Collapse
|
49
|
Lee JH, Koak JY, Lim YJ, Kwon HB, Kong H, Kim MJ. Effects of fluoride-modified titanium surfaces with the similar roughness on RUNX2 gene expression of osteoblast-like MG63 cells. J Biomed Mater Res A 2017; 105:3102-3109. [DOI: 10.1002/jbm.a.36159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 06/13/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Ji-Hyoun Lee
- Department of Prosthodontics and Dental Research Institute, School of Dentistry; Seoul National University; 101 Daehak-ro Jongno-gu, Seoul 03080 Republic of Korea
| | - Jai-Young Koak
- Department of Prosthodontics and Dental Research Institute, School of Dentistry; Seoul National University; 101 Daehak-ro Jongno-gu, Seoul 03080 Republic of Korea
| | - Young-Jun Lim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry; Seoul National University; 101 Daehak-ro Jongno-gu, Seoul 03080 Republic of Korea
| | - Ho-Beom Kwon
- Department of Prosthodontics and Dental Research Institute, School of Dentistry; Seoul National University; 101 Daehak-ro Jongno-gu, Seoul 03080 Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical & Biomolecular Engineering; University of Illinois, Urbana-Champaign; 600 S Mathews Avenue, Urbana Illinois 61801
| | - Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry; Seoul National University; 101 Daehak-ro Jongno-gu, Seoul 03080 Republic of Korea
| |
Collapse
|
50
|
Shanbhag S, Stavropoulos A, Suliman S, Hervig T, Mustafa K. Efficacy of Humanized Mesenchymal Stem Cell Cultures for Bone Tissue Engineering: A Systematic Review with a Focus on Platelet Derivatives. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:552-569. [PMID: 28610481 DOI: 10.1089/ten.teb.2017.0093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement for ex vivo expansion of human mesenchymal stem cells (hMSCs) for bone tissue engineering applications. However, from a clinical standpoint, it is important to substitute animal-derived products according to current good manufacturing practice (cGMP) guidelines. Humanized alternatives to FBS include three categories of products: human serum (HS), human platelet derivatives (HPDs)-including platelet lysate (PL) or platelet releasate (PR), produced by freeze/thawing or chemical activation of platelet concentrates, respectively, and chemically defined media (serum-free) (CDM). In this systematic literature review, the in vitro and in vivo osteogenic potential of hMSCs expanded in humanized (HS-, HPD-, or CDM-supplemented) media versus hMSCs expanded in FBS-supplemented media, was compared. In addition, PL and PR were compared in terms of their growth factor (GF)/cytokine-content and cell-culture efficacy. When using either 10-20% autologous or pooled HS, 3-10% pooled HPDs or CDM supplemented with GFs, in comparison with 10-20% FBS, a majority of studies reported similar or superior in vitro proliferation and osteogenic differentiation, and in vivo bone formation in ectopic or orthotopic rodent models. Moreover, a trend for higher GF content was observed in PL versus PR, although evidence for cell culture efficacy is limited. In summary, humanized supplements seem at least equally effective as FBS for hMSC expansion and osteogenic differentiation. Although pooled HPDs appear to be the most favorable supplement for large-scale hMSC expansion, further efforts are needed to standardize the preparation and composition of these products in compliance with cGMP standards.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Salwa Suliman
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Tor Hervig
- 3 Department of Immunology and Transfusion Medicine, Haukeland University Hospital , Bergen, Norway
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| |
Collapse
|