1
|
Jeepipalli S, Gurusamy P, Luz Martins AR, Colella E, Nadakuditi SR, Desaraju T, Yada A, Onime J, William J, Bhattacharyya I, Chan EKL, Kesavalu L. Altered microRNA Expression Correlates with Reduced TLR2/4-Dependent Periodontal Inflammation and Bone Resorption Induced by Polymicrobial Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632435. [PMID: 39829929 PMCID: PMC11741372 DOI: 10.1101/2025.01.10.632435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health. Many factors modulate the TLR-mediated signaling pathway, including specific miRNAs. The present study was designed to characterize the function of TLR2/4 signaling to the miRNA profile after polybacterial infection with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in C57BL6/J wild-type, TLR2 -/- , and TLR4 -/- mice (n=16/group) using RT-qPCR. The selection of 15 dominant miRNAs for RT-qPCR analysis was based on prior NanoString global miRNA expression profiling in response to polymicrobial and monobacterial infection. Polybacterial infections established gingival colonization in wild-type, TLR2 -/- and TLR4 -/- mice with induction of bacterial-specific IgG. A significant reduction in alveolar bone resorption (ABR) and gingival inflammation was observed in the mandibles of TLR2/4 -/- mice compared to C57BL6/J wild-type mice ( p <0.0001). Periodontal bacteria disseminated from gingival tissue to the multiple organs in wild-type and TLR2 -/- mice (heart, lungs, brain, kidney) and limited to heart ( F. nucleatum ), lungs ( P. gingivalis ), kidney ( T. forsythia ) in TLR4 -/- mice. The diagnostic potential of miRNAs was assessed by receiver operating characteristic (ROC) curves. Among 15 miRNAs, three were upregulated in C57BL6/J wild-type mice, two in TLR2 -/- , and seven in TLR4 -/- mice. Notably, the anti-inflammatory miR-146a-5p was consistently upregulated in all the mice. Additionally, miR-15a-5p was upregulated in wild-type and TLR2 -/- mice. let-7c-5p was upregulated in TLR4 -/- mice and downregulated in the wild-type mice. Multi-species oral bacterial infection alters the TLR2/4 signaling pathways by modulating the expression of several potential biomarker miRNAs in periodontium. IMPORTANCE Periodontitis is the most prevalent chronic immuno-infectious multispecies dysbiotic disease of the oral cavity. The Toll-like receptors (TLR) provide the first line of defense, one of the best-characterized pathogens-detection systems and play a vital role in recognizing multiple microbial products. Multispecies infection with periodontal bacteria S. gordonii, F. nucleatum, P. gingivalis, T. denticola, and T. forsythia induced gingival inflammation, alveolar bone resorption (ABR) and miRNA expression in the C57BL6/J wild-type mice and whereas infection did not increase significant ABR in the TLR2/4 deficient mice. Among the 15 miRNAs investigated, miR-146a - 5p, miR-15a-5p were upregulated in wild-type and TLR2 -/- mice and miR-146a-5p, miR-30c-5p, let-7c-5p were upregulated in the TLR4 -/- mice compared to sham-infected controls. Notably, inflammatory miRNA miR-146a-5p was upregulated uniquely among the three different infection groups. The upregulated miRNAs (miR-146a, miR-15-a-5p, let-7c-5p) and downregulated miRNAs could be markers for TLRs-mediated induction of periodontitis.
Collapse
|
2
|
Janson TM, Ramenzoni LL, Hatz CR, Schlagenhauf U, Attin T, Schmidlin PR. Limosilactobacillus reuteri supernatant attenuates inflammatory responses of human gingival fibroblasts to LPS but not to elevated glucose levels. J Periodontal Res 2024; 59:974-981. [PMID: 38764133 DOI: 10.1111/jre.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
AIM We investigated the in vitro effect of Limosilactobacillus reuteri DSM 17938 supernatant on the inflammatory response of human gingival fibroblasts (HGF) challenged by lipopolysaccharide (LPS) or elevated glucose levels. METHODS HGF were exposed to LPS (1 μg/mL), glucose (5, 12 mM or 25 mM), and dilutions of supernatant prepared from L. reuteri DSM 17938 (0.5 × 107, 1.0 × 107, 2.5 × 107, and 5.0 × 107 CFU/mL). After 24 h cell viability and levels of cytokines (IL-1β, IL-6 and IL-8) and TLR-2 were determined. RESULTS None of the tested L. reuteri (DSM 17938) supernatant concentrations reduced the viability of HGF. Supernatant concentrations (2.5 × 107 and 5 × 107 CFU/mL) significantly (p < .05) decreased the production of IL-1β, IL-6, IL-8, and TLR-2 in the presence of LPS. In contrast, inflammatory markers were not reduced by L. reuteri supernatant in the presence of glucose. Glucose concentrations of 12 mM and 24 mM still lead to an elevated production of the investigated biochemical mediators. CONCLUSION While L. reuteri (DSM 17938) supernatant attenuates the inflammatory response of HGF to LPS in a dose-dependent manner, elevated glucose levels suppress this action. These in vitro results support the overall anti-inflammatory efficacy of L. reuteri supplementation in plaque-associated periodontal inflammations.
Collapse
Affiliation(s)
- T M Janson
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - L L Ramenzoni
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - C R Hatz
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - U Schlagenhauf
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Conservative Dentistry and Periodontology, Center for Oral Health, University Hospital Wuerzburg, Wuerzburg, Germany
| | - T Attin
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - P R Schmidlin
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Kapp M, Holtfreter B, Kocher T, Friedrich N, Pink C, Völzke H, Nauck M. Serum lipoprotein subfractions are associated with the periodontal status: Results from the population-based cohort SHIP-TREND. J Clin Periodontol 2024; 51:390-405. [PMID: 38098273 DOI: 10.1111/jcpe.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 03/16/2024]
Abstract
AIM To investigate the medium-term associations of serum protein subfractions derived from proton nuclear magnetic resonance (1 H-NMR) spectroscopy with periodontitis and tooth loss. MATERIALS AND METHODS A total of 3031 participants of the cohort Study of Health in Pomerania (SHIP-TREND) were included. In addition to conventional serum testing, serum lipoprotein contents and subfractions were analysed by 1 H-NMR spectroscopy. Confounder-adjusted associations of lipoprotein variables with periodontitis and the number of missing teeth variables were analysed using mixed-effects models with random intercepts for time across individuals, accounting for multiple testing. RESULTS While only spurious associations between lipoprotein levels from conventional blood tests were found-that is, triglycerides were associated with mean clinical attachment level (CAL) and low-density lipoprotein cholesterol/high-density lipoprotein cholesterol (LDL-C/HDL-C) ratio with the number of missing teeth - several associations emerged from serum lipoprotein subfractions derived from 1 H-NMR analysis. Specifically, elevated LDL triglycerides were associated with higher levels of mean probing depth (PD), mean CALs, and increased odds of having <20 teeth. HDL-4 cholesterol levels were inversely associated with mean PD. Systemic inflammation (C-reactive protein) might mediate the effects of LDL and HDL triglyceride contents on periodontitis severity. CONCLUSIONS Several associations between serum lipoprotein subfractions and periodontitis were observed. As the underlying biochemical mechanisms remain unclear, further research is needed.
Collapse
Affiliation(s)
- Marius Kapp
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christiane Pink
- Department of Orthodontics, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, SHIP/Clinical-Epidemiological Research, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Uchida-Fukuhara Y, Shimamura S, Sawafuji R, Nishiuchi T, Yoneda M, Ishida H, Matsumura H, Tsutaya T. Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus. Sci Rep 2024; 14:5938. [PMID: 38467689 PMCID: PMC10928219 DOI: 10.1038/s41598-024-55779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition.
Collapse
Affiliation(s)
- Yoko Uchida-Fukuhara
- Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan.
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.
| | - Shigeru Shimamura
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan
| | - Rikai Sawafuji
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Mt. Olive Hospital, Okinawa, 903-0804, Japan
| | - Hirofumi Matsumura
- School of Health Sciences, Sapporo Medical University, Hokkaido, 060-8556, Japan
| | - Takumi Tsutaya
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan.
| |
Collapse
|
5
|
Anestino TA, Queiroz-Junior CM, Cruz AMF, Souza DG, Madeira MFM. The impact of arthritogenic viruses in oral tissues. J Appl Microbiol 2024; 135:lxae029. [PMID: 38323434 DOI: 10.1093/jambio/lxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1β, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.
Collapse
Affiliation(s)
- Thales Augusto Anestino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Amanda Medeiros Frota Cruz
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Mila Fernandes Moreira Madeira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
- Department of Oral Biology, Biomedical Research Institute, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
6
|
Lima Teixeira JF, Henning P, Cintra Magalhães FA, Coletto-Nunes G, Floriano-Marcelino T, Westerlund A, Movérare-Skrtic S, Oliveira GJPL, Lerner UH, Souza PPC. Osteoprotective effect by interleukin-4 (IL-4) on lipoprotein-induced periodontitis. Cytokine 2023; 172:156399. [PMID: 37898012 DOI: 10.1016/j.cyto.2023.156399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
Lipoproteins are immunostimulatory bacterial components suggested to participate in inflammation-induced bone loss in periodontal disease through stimulation of osteoclast differentiation. Toll-like receptor 2 activation by Pam2CSK4 (PAM2), known to mimic bacterial lipoproteins, was previously shown to enhance periodontal bone resorption in mice. The anti-inflammatory cytokine interleukin-4 (IL-4) is a known inhibitor of RANKL-induced bone resorption in vitro. Here, we have investigated whether IL-4 could decrease PAM2-induced periodontal bone loss and osteoclastogenesis in vivo. In a model of periodontitis induced by gingival injections of PAM2 in mice, concomitant injections of IL-4 reduced bone loss. Histologically, IL-4 reduced the recruitment of inflammatory cells and the formation of TRAP+ osteoclasts stimulated by PAM2. Mouse bone marrow macrophages (BMMs) and neonatal calvarial osteoblasts were used to assess the effect of IL-4 on PAM2-induced osteoclastogenesis in vitro. In RANKL-primed BMMs stimulated by PAM2 Nfatc1, Ctsk, and Acp5 gene expression was up-regulated and resulted in robust formation of TRAP+ multinucleated osteoclasts, effects which were impaired by IL-4. These effects were mediated by impairment in PAM2-induced c-fos expression. In primary calvarial osteoblast cultures, IL-4 decreased PAM2-induced Tnfsf11 (encoding RANKL) mRNA and enhanced Tnfrsf11b (encoding OPG) expression. Our data demonstrate that the osteoprotective effect by IL-4 on lipoprotein-induced periodontal disease occurs through the inhibition of osteoclastogenesis by three mechanisms, one by acting directly on osteoclast progenitors, another by acting indirectly through decreasing the expression of osteoclast-regulating cytokines in osteoblasts and a third by decreasing inflammation.
Collapse
Affiliation(s)
- Jorge F Lima Teixeira
- Department of Pathology and Physiology, School of Dentistry at Araraquara, Univ. Est. Paulista - UNESP, Araraquara, Brazil
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Glaucia Coletto-Nunes
- Department of Pathology and Physiology, School of Dentistry at Araraquara, Univ. Est. Paulista - UNESP, Araraquara, Brazil
| | - Thais Floriano-Marcelino
- Department of Pathology and Physiology, School of Dentistry at Araraquara, Univ. Est. Paulista - UNESP, Araraquara, Brazil
| | - Anna Westerlund
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Guilherme J P L Oliveira
- Department of Periodontology and Implantodontology, Dental School, Federal University of Uberlândia - UFU, Uberlândia, Brazil
| | - Ulf H Lerner
- Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pedro Paulo C Souza
- Innovation in Biomaterials Laboratory (iBioM), Faculty of Dentistry, Federal University of Goiás - UFG, Goiânia, Brazil.
| |
Collapse
|
7
|
Dopico J, Botelho J, Ouro A, Domínguez C, Machado V, Aramburu-Nuñez M, Custodia A, Blanco T, Vázquez-Reza M, Romaus-Sanjurjo D, Blanco J, Leira R, Sobrino T, Leira Y. Association between periodontitis and peripheral markers of innate immunity activation and inflammation. J Periodontol 2023; 94:11-19. [PMID: 35665930 DOI: 10.1002/jper.22-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Immune response leading to increased systemic inflammation is one of the mechanisms linking periodontitis to chronic inflammatory diseases. The aim of this study was to compare the expression of toll-like receptors 2 and 4 in monocytes and neutrophils (TLR2M, TLR2N, TLR4M, and TLR4N) and its endogenous ligands (cellular fibronectin [cFN] and heat shock protein 60 [HSP60]) in patients with and without periodontitis. Additionally, the relationship between cFN and HSP60 expression with innate immunity activation and systemic inflammatory response (interleukin 6 [IL-6]) was also evaluated. METHODS A case-controlled study was designed in which 30 patients with periodontitis (cases) and 30 age- and sex-matched participants without periodontitis (controls) were included. Fasting blood samples were collected to determine: (1) expression of TLR2N, TLR2M, TLR4N, and TLR4M by flow cytometry; and (2) serum concentrations of cFN, HSP60, and IL-6 by ELISA technique. RESULTS Expression of TLR2M (411.5 [314.2, 460.0] vs. 236.5 [204.0, 333.0] AFU), TLR2N (387.0 [332.0, 545.5] vs 230.0 [166.2, 277.7] AFU), TLR4M (2478.5 [1762.2, 2828.0] vs 1705.0 [1274.5, 1951.2] AFU), and TLR4N (2791.0 [2306.7, 3226.2] vs. 1866.0 [1547.5, 2687.2] AFU) as well as serum levels of cFN (301.1 [222.2, 410.9] vs. 156.4 [115.3, 194.0] ng/ml) and IL-6 (10.4 [6.5, 11.5] vs. 3.5 [2.6, 4.9] pg/ml) were significantly higher in periodontitis patients than those without periodontitis. A positive association was found between periodontitis and cFN (odds ratio [OR] = 1.028, p < 0.001), TLR2N (OR = 1.026, p < 0.001), TLR4M (OR = 1.001, p = 0.002), and IL-6 (OR = 1.774, p < 0.001). CONCLUSIONS Periodontitis patients exhibited high expression of TLRs, cFN, and IL-6.
Collapse
Affiliation(s)
- José Dopico
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - João Botelho
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz and Cooperative de Ensino Superior, Caparica, Portugal
| | - Alberto Ouro
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Domínguez
- Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Vanessa Machado
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz and Cooperative de Ensino Superior, Caparica, Portugal
| | - Marta Aramburu-Nuñez
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Teresa Blanco
- Allergy Department, University Hospital Puerta del Hierro, Madrid, Spain
| | - María Vázquez-Reza
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Blanco
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rogelio Leira
- Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Yago Leira
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain.,NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
8
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic Mechanisms of Fusobacterium nucleatum on Oral Epithelial Cells. FRONTIERS IN ORAL HEALTH 2022; 3:831607. [PMID: 35478496 PMCID: PMC9037381 DOI: 10.3389/froh.2022.831607] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants of the oral cavity and has been identified as a potential etiologic bacterial agent of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been shown to be of importance in the development of diverse human cancers. In the dental biofilm, it exhibits a structural role as a bridging organism, connecting primary colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and is able to induce host cell responses, including the upregulation of defensins and the release of chemokines and interleukins. Like other microorganisms, its detection is achieved through germline-encoded pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic mechanisms of F. nucleatum it will be possible to develop effective methods for the diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is involved. This review summarizes the recent progress in research targeting F. nucleatum and its impact on oral epithelial cells.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
- *Correspondence: Sabine Groeger
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
10
|
Yu B, Wang CY. Osteoporosis and periodontal diseases - An update on their association and mechanistic links. Periodontol 2000 2022; 89:99-113. [PMID: 35244945 DOI: 10.1111/prd.12422] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Periodontitis and osteoporosis are prevalent inflammation-associated skeletal disorders that pose significant public health challenges to our aging population. Both periodontitis and osteoporosis are bone disorders closely associated with inflammation and aging. There has been consistent intrigue on whether a systemic skeletal disease such as osteoporosis will amplify the alveolar bone loss in periodontitis. A survey of the literature published in the past 25 years indicates that systemic low bone mineral density (BMD) is associated with alveolar bone loss, while recent evidence also suggests a correlation between clinical attachment loss and other parameters of periodontitis. Inflammation and its influence on bone remodeling play critical roles in the pathogenesis of both osteoporosis and periodontitis and could serve as the central mechanistic link between these disorders. Enhanced cytokine production and elevated inflammatory response exacerbate osteoclastic bone resorption while inhibiting osteoblastic bone formation, resulting in a net bone loss. With aging, accumulation of oxidative stress and cellular senescence drive the progression of osteoporosis and exacerbation of periodontitis. Vitamin D deficiency and smoking are shared risk factors and may mediate the connection between osteoporosis and periodontitis, through increasing oxidative stress and impairing host response to inflammation. With the connection between systemic and localized bone loss in mind, routine dental exams and intraoral radiographs may serve as a low-cost screening tool for low systemic BMD and increased fracture risk. Conversely, patients with fracture risk beyond the intervention threshold are at greater risk for developing severe periodontitis and undergo tooth loss. Various Food and Drug Administration-approved therapies for osteoporosis have shown promising results for treating periodontitis. Understanding the molecular mechanisms underlying their connection sheds light on potential therapeutic strategies that may facilitate co-management of systemic and localized bone loss.
Collapse
Affiliation(s)
- Bo Yu
- Division of Regenerative and Constitutive Sciences, School of Dentistry, University of California at Los Angeles, Los Angeles, California, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
11
|
Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: A review of experimental studies and mechanisms related to periodontitis treatment. J Periodontal Res 2021; 56:837-847. [PMID: 34173676 DOI: 10.1111/jre.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.
Collapse
Affiliation(s)
- Yongli Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Junjie Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanzheng Qi
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Chang AM, Kantrong N, Darveau RP. Maintaining homeostatic control of periodontal epithelial tissue. Periodontol 2000 2021; 86:188-200. [PMID: 33690934 DOI: 10.1111/prd.12369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Years of coevolution with resident microbes has made them an essential component of health. Yet, little is known about oral commensal bacteria's contribution to and role in the maintenance of oral health and homeostasis. Commensal bacteria are speculated to play a host protective role in the maintenance of health. In this review, we describe and provide examples of the coordinate regulation that occurs between oral commensal bacteria and the host innate immune response to modulate and maintain oral homeostasis.
Collapse
Affiliation(s)
- Ana M Chang
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Nutthapong Kantrong
- Department of Periodontics, University of Washington, Seattle, Washington, USA.,Oral Biology Research Unit, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Richard P Darveau
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Zeng J, Jia N, Ji C, Zhong S, Chai Q, Zou C, Chen L. Plaque control alleviated renal damage that was aggravated by experimental periodontitis in obese rats. Oral Dis 2021; 28:1228-1239. [PMID: 33660360 DOI: 10.1111/odi.13813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to evaluate the influence of experimental periodontitis on renal damage in obese rats. MATERIALS AND METHODS Thirty-two male Sprague Dawley rats were randomly allocated into 4 groups with 8 animals each: obese rats (obese group), obese rats with periodontitis (periodontitis obese group), obese rats with periodontitis that underwent plaque control (plaque-control obese group), and healthy rats (healthy group). Rats were fed a high-fat diet to establish an obesity model. Experimental periodontitis was induced by local ligation with silk around the bilateral maxillary second molars. The plaque control was accomplished by removing ligations and local wiping with an antiseptic rinse. Histology was used to observe the gingival inflammation and clinical attachment level (CAL) to further assess bone loss and to also observe renal structure. Serum creatinine, urea nitrogen, and kidney injury molecule-1 (KIM-1) levels were measured to evaluate renal function. Renal Toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), serum C-reactive protein (CRP), lipopolysaccharides (LPS), and interleukin-1β (IL-1β) were measured to evaluate renal and systemic inflammation. RESULTS Periodontal histology showed that in the periodontitis obese group, the epithelial barrier was considerably eroded by inflammatory cells, which infiltrated into the subepithelial connective tissue and lamina propria. A periodontal pocket was forming accompanied by the loss of attachment. The extent of infiltration of inflammatory cells and the CAL were significantly higher than those of the obese group (p < .001). In the plaque-control obese group, although the inflammatory condition was significantly improved than in the periodontitis obese group, the clinical attachment level with the presence of fiber hyperplasia could not be restored. Renal histology showed that renal tubular structural damage was aggravated in the periodontitis obese group, including vacuolar degeneration, exfoliation of the proximal tubular epithelial cell lining, multifocal loss of the brush border, and movement of several nuclei from the basement membrane to the lumen. These alterations were improved in the plaque-control obese group. Kidney TLR4 and NF-κB mRNA levels increased significantly in the periodontitis obese group compared to the obese group (p = .015 and p = .015, respectively) and decreased significantly in the plaque-control obese group (p = .028 and p = .021, respectively). Kidney TLR4 and NF-κB protein expression in the plaque-control obese group were significantly lower than those in the periodontitis obese group (p < .001 and p = .043, respectively). Serum creatinine and KIM-1 levels significantly decreased in the plaque-control obese group compared to the periodontitis obese group (p = .001 and p = .002, respectively). At 21 weeks (1 week after periodontal ligation), serum CRP levels in the periodontitis obese group were significantly higher than that in the healthy group (p = .017). Other serum inflammatory markers (LPS and IL-1β) did not change significantly. CONCLUSION Experimental periodontitis induced dysfunction and structural destruction of the kidney in obese rats. Plaque control relieved renal damage.
Collapse
Affiliation(s)
- Jiahao Zeng
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China.,Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ni Jia
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chunlan Ji
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sulan Zhong
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoxue Chai
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuan Zou
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lei Chen
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
An T, Chen Y, Li M, Liu Y, Zhang Z, Yang Q. Inhibition of experimental periodontitis by a monoclonal antibody against Porphyromonas gingivalis HA2. Microb Pathog 2021; 154:104633. [PMID: 33667618 DOI: 10.1016/j.micpath.2020.104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
It is known that complexes of the multi-protein, gingipain, possess heme binding domains (hemagglutinin 2, HA2) that bind hemoglobin to provide heme and iron to the bacterium, Porphyromonas gingivalis. The DHYAVMISK peptide sequence was proposed to act as an inhibitor of hemin binding, and thus, it might be used to control or prevent periodontal disease. In this study, we created a monoclonal antibody (mAb) that targeted the DHYAVMISK peptide, aimed to determine whether it could inhibit the growth of P. gingivalis in vitro, and block its induction of experimental periodontitis and subsequent bone loss. Peptide DGFPG-DHYAVMISK conjugated to KLH (DK-KLH) was synthetic, and injected subcutaneously into BALB/c mice to generate specific mAbs with the hybridoma technique. We isolated mAb 1H11, which showed specific binding to DK. When we incubated these mAbs with P. gingivalis in vitro for 18 h, bacterial growth was significantly lower in cultures treated with mAb 1H11 compared to those treated with control (PBS; P < 0.05). Next, we induced experimental periodontitis in mouse models with a silk ligature and a P. gingivalis infection. When we injected the mAbs into the gingival sulcus, the group treated with mAb 1H11 displayed a reduction in bone loss compared to the other treatment groups. Thus, mAb 1H11 might provide protection against a P. gingivalis infection. Accordingly, this antibody could serve as a candidate therapy for periodontitis or other infections caused by P. gingivalis.
Collapse
Affiliation(s)
- Ting An
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Yuanyuan Chen
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Mingxia Li
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Ying Liu
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Zilu Zhang
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China
| | - Qiubo Yang
- Beijing Institute for Dental Research, Capital Medical University School of Stomatology, China.
| |
Collapse
|
15
|
Gupta S, Dogra S, Chahal GS, Prashar S, Singh AP, Gupta M. Psoriasis and Periodontitis: Exploring an association or lack thereof. Indian Dermatol Online J 2021; 12:281-284. [PMID: 33959525 PMCID: PMC8088189 DOI: 10.4103/idoj.idoj_445_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/07/2020] [Accepted: 09/13/2020] [Indexed: 11/05/2022] Open
Abstract
Objectives: Psoriasis is a common, chronic, non-communicable skin disease with no clear etiology or cure. Periodontitis is a chronic inflammatory condition which is now known to significantly influence various systemic diseases as an established risk factor. This study aimed at comparatively evaluating the periodontal status of Psoriatic patients vis. a vis. that of age and gender matched systemically healthy volunteers. An attempt was also made to explore a possible association, if any, amongst the two diseases. Materials and Methods: Forty two residents of Chandigarh, suffering from Psoriasis and attending the Psoriasis Clinic of Department of Dermatology & Venereology, Post Graduate Institute of Medical Education & Research, Chandigarh were recruited over a period of 10 months (Case group) and their periodontal status was compared with forty two age and gender matched systemically healthy volunteers (Control group) randomly selected from the Out Patient Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, India. Their serum IL-33 levels were evaluated and compared in an attempt to identify an underlying common pathological pathway. Results: The periodontal status was comparable in the two groups in terms of the debris index (p = 0.932), calculus index (p = 0.088), plaque index (p = 0.097), and mean clinical attachment loss (p = 0.401). A higher bleeding points index was recorded amongst healthy individuals as compared to the Psoriasis group, the difference being statistically significant (p = 0.001). The mean number of teeth were more in the Psoriasis group as compared to the healthy group (p=0.034). IL 33 levels were also not significantly different (p = 0.491). Conclusion: Contrary to currently available evidence in literature, the study did not find a statistically significant association between Psoriasis and Inflammatory Periodontal Disease.
Collapse
Affiliation(s)
- Shipra Gupta
- Unit of Periodontics, Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology and Venereology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurparkash Singh Chahal
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Savita Prashar
- Department of Biochemistry, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Angadveer Pal Singh
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Mili Gupta
- Department of Biochemistry, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Nik Mohamed Kamal NNS, Awang RAR, Mohamad S, Shahidan WNS. Plasma- and Saliva Exosome Profile Reveals a Distinct MicroRNA Signature in Chronic Periodontitis. Front Physiol 2020; 11:587381. [PMID: 33329037 PMCID: PMC7733931 DOI: 10.3389/fphys.2020.587381] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic periodontitis (CP) is an oral cavity disease arising from chronic inflammation of the periodontal tissues. Exosomes are lipid vesicles that are enriched in specific microRNAs (miRNAs), potentially providing a disease-specific diagnostic signature. To assess the value of exosomal miRNAs as biomarkers for CP, 8 plasma- and 8 salivary-exosomal miRNAs samples were profiled using Agilent platform (comparative study). From 2,549 probed miRNAs, 33 miRNAs were significantly down-regulated in CP as compared to healthy plasma samples. Whereas, 1,995 miRNAs (1,985 down-regulated and 10 up-regulated) were differentially expressed in the CP as compared to healthy saliva samples. hsa-miR-let-7d [FC = -26.76; AUC = 1; r = -0.728 [p-value = 0.04]), hsa-miR-126-3p (FC = -24.02; AUC = 1; r = -0.723 [p-value = 0.043]) and hsa-miR-199a-3p (FC = -22.94; AUC = 1; r = -0.731 [p-value = 0.039]) are worth to be furthered studied for plasma-exosomal samples. Meanwhile, for salivary-exosomal samples, hsa-miR-125a-3p (FC = 2.03; AUC = 1; r = 0.91 [p-value = 0.02]) is worth to be furthered studied. These miRNAs are the reliable candidates for the development of periodontitis biomarker, as they were significantly expressed differently between CP and healthy samples, have a good discriminatory value and strongly correlate with the mean of PPD. These findings highlight the potential of exosomal miRNAs profiling in the diagnosis from both sourced as well as provide new insights into the molecular mechanisms involved in CP.
Collapse
Affiliation(s)
| | - Raja Azman Raja Awang
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | | |
Collapse
|
17
|
Vijaya Kumar K, Faizuddin M, DSouza ND, Rao A. Estimation of soluble CD14 levels in gingival crevicular fluid and serum in diseased and healthy periodontium. J Oral Biosci 2020; 62:289-295. [PMID: 32771407 DOI: 10.1016/j.job.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To estimate the levels of sCD14 in gingival crevicular fluid and serum under periodontally-healthy and diseased conditions. METHODS The subjects were divided into three groups of 15, each as follows: healthy, gingivitis, and periodontitis. Periodontal parameters including Probing pocket depth, Clinical attachment level, Bleeding index, and Plaque index. Gingival crevicular fluid and serum samples were collected and analyzed for sCD14 levels using commercially-available ELISA kits. RESULTS The mean concentration of sCD14 in GCF was significantly lower in the gingivitis (134.5 ± 26.85 ng/mL) and periodontitis (103.23 ± 20.36 ng/mL) groups than in the healthy group (172.77 ± 46.33 ng/mL); p < 0.001. The mean serum concentration of sCD14 in the healthy group was 1528.13 ± 387.37 ng/mL, which was significantly less than that of the periodontitis group (2051.50 ± 381.10 ng/mL); p = 0.011. CONCLUSIONS The serum sCD14 levels in the periodontitis groups were significantly higher than those in the healthy controls. The levels of sCD14 in GCF were significantly lower in the gingivitis and periodontitis groups than in the healthy group.
Collapse
Affiliation(s)
- K Vijaya Kumar
- Department of Periodontics, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.
| | | | - Neevan Dr DSouza
- KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India.
| | - Anupama Rao
- Department of Periodontics, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.
| |
Collapse
|
18
|
Karlis GD, Schöningh E, Jansen IDC, Schoenmaker T, Hogervorst JMA, van Veen HA, Moonen CGJ, Łagosz-Ćwik KB, Forouzanfar T, de Vries TJ. Chronic Exposure of Gingival Fibroblasts to TLR2 or TLR4 Agonist Inhibits Osteoclastogenesis but Does Not Affect Osteogenesis. Front Immunol 2020; 11:1693. [PMID: 32793243 PMCID: PMC7390923 DOI: 10.3389/fimmu.2020.01693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic exposure to periodontopathogenic bacteria such as Porphyromonas gingivalis and the products of these bacteria that interact with the cells of the tooth surrounding tissues can ultimately result in periodontitis. This is a disease that is characterized by inflammation-related alveolar bone degradation by the bone-resorbing cells, the osteoclasts. Interactions of bacterial products with Toll-like receptors (TLRs), in particular TLR2 and TLR4, play a significant role in this chronic inflammatory reaction, which possibly affects osteoclastic activity and osteogenic capacity. Little is known about how chronic exposure to specific TLR activators affects these two antagonistic activities. Here, we studied the effect of TLR activation on gingival fibroblasts (GF), cells that are anatomically close to infiltrating bacterial products in the mouth. These were co-cultured with naive osteoclast precursor cells (i.e., monocytes), as part of the peripheral blood mononuclear cells (PBMCs). Activation of GF co-cultures (GF + PBMCs) with TLR2 or TLR4 agonists resulted in a weak reduction of the osteoclastogenic potential of these cultures, predominantly due to TLR2. Interestingly, chronic exposure, especially to TLR2 agonist, resulted in increased release of TNF-α at early time points. This effect, was reversed at later time points, thus suggesting an adaptation to chronic exposure. Monocyte cultures primed with M-CSF + RANKL, led to the formation of bone-resorbing osteoclasts, irrespective of being activated with TLR agonists. Late activation of these co-cultures with TLR2 and with TLR4 agonists led to a slight decrease in bone resorption. Activation of GF with TLR2 and TLR4 agonists did not affect the osteogenic capacity of the GF cells. In conclusion, chronic exposure leads to diverse reactions; inhibitory with naive osteoclast precursors, not effecting already formed (pre-)osteoclasts. We suggest that early encounter of naive monocytes with TLR agonists may result in differentiation toward the macrophage lineage, desirable for clearing bacterial products. Once (pre-)osteoclasts are formed, these cells may be relatively insensitive for direct TLR stimulation. Possibly, TLR activation of periodontal cells indirectly stimulates osteoclasts, by secreting osteoclastogenesis stimulating inflammatory cytokines.
Collapse
Affiliation(s)
- Gerasimos D. Karlis
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Emily Schöningh
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam University College, Amsterdam, Netherlands
| | - Ineke D. C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Henk A. van Veen
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Carolyn G. J. Moonen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Katarzyna B. Łagosz-Ćwik
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Amsterdam, Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
19
|
T Cell Proliferation Is Induced by Chronically TLR2-Stimulated Gingival Fibroblasts or Monocytes. Int J Mol Sci 2019; 20:ijms20246134. [PMID: 31817424 PMCID: PMC6940768 DOI: 10.3390/ijms20246134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
During inflammation of the gums, resident cells of the periodontium, gingival fibroblasts (GFs), interact with heterogeneous cell populations of the innate and adaptive immune system that play a crucial role in protecting the host from pathogenic infectious agents. We investigated the effects of chronic inflammation, by exposing peripheral blood mononuclear cells (PBMCs), peripheral blood lymphocyte (PBL) cultures, and GF–PBMC cocultures to Toll-like receptor 2 (TLR2) and TLR4 activators for 21 days and assessed whether this influenced leukocyte retention, survival, and proliferation. Chronic stimulation of PBMC–GF cocultures with TLR2 and TLR4 agonists induced a reduction of NK (CD56+CD3−), T (CD3+), and B (CD19+) cells, whereas the number of TLR-expressing monocytes were unaffected. TLR2 agonists doubled the T cell proliferation, likely of a selective population, given the net decrease of T cells. Subsequent chronic exposure experiments without GF, using PBMC and PBL cultures, showed a significantly (p < 0.0001) increased proinflammatory cytokine production of TNF-α and IL-1β up to 21 days only in TLR2-activated PBMC with concomitant T cell proliferation, suggesting a role for monocytes. In conclusion, chronic TLR activation mediates the shift in cell populations during infection. Particularly, TLR2 activators play an important role in T cell proliferation and proinflammatory cytokine production by monocytes, suggesting that TLR2 activation represents a bridge between innate and adaptive immunity.
Collapse
|
20
|
Blufstein A, Behm C, Gahn J, Uitz O, Naumovska I, Moritz A, Rausch‐Fan X, Andrukhov O. Synergistic effects triggered by simultaneous Toll-like receptor-2 and -3 activation in human periodontal ligament stem cells. J Periodontol 2019; 90:1190-1201. [PMID: 31049957 PMCID: PMC6852053 DOI: 10.1002/jper.19-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although periodontitis is associated with disruption of the host-microbial homeostasis, viruses are currently discussed to influence disease progression. Viral pathogens are recognized by Toll-like receptor (TLR)-3, which engages a different signaling pathway than other TLRs. This study aimed to investigate the effect of TLR-3 agonist polyinosinic:polycytidylic acid (Poly I:C) on the expression of inflammatory markers and bone metabolism proteins by human periodontal ligament stem cells (hPDLSCs) compared with TLR-2 agonist Pam3CSK4, which mimics the effect of bacterial lipoproteins. To assess potential combined effects of bacterial and viral infections, hPDLSCs response to simultaneous TLR-2 and TLR-3 activation was investigated. METHODS HPDLSCs were stimulated with Poly I:C (0.0001-1 µg/mL), Pam3CSK4 (1 µg/mL), and their combinations for 24 hours. Gene expression and protein levels of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, and osteoprotegerin (OPG) were measured with qPCR and ELISA. RESULTS Production of IL-6, IL-8, MCP-1, and OPG was significantly increased by Poly I:C or Pam3CSK4 to a similar extent. The levels of all inflammatory mediators induced by simultaneous stimulation with Poly I:C and Pam3CSK4 were significantly higher compared with single stimuli as well as to their summed response. Gene expression and protein levels of OPG were enhanced by Poly I:C, but by lesser extent than by Pam3CSK4. OPG levels upon simultaneous stimulation with Pam3CSK4 and Poly I:C were significantly lower compared with Pam3CSK4 stimulation alone. CONCLUSIONS Simultaneous TLR-2 and TLR-3 activation synergistically triggers IL-6, IL-8, and MCP-1 production, which was not observed for OPG. These findings suggest that TLR-3 activation by viral infections might promote periodontitis progression.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Christian Behm
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Johannes Gahn
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oksana Uitz
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Ivana Naumovska
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
21
|
Chang AM, Liu Q, Hajjar AM, Greer A, McLean JS, Darveau RP. Toll-like receptor-2 and -4 responses regulate neutrophil infiltration into the junctional epithelium and significantly contribute to the composition of the oral microbiota. J Periodontol 2019; 90:1202-1212. [PMID: 31111967 PMCID: PMC6791728 DOI: 10.1002/jper.18-0719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oral gingival tissue, especially the junctional epithelium (JE), is constantly exposed to sub-gingival plaque. A key component of gingival health is the regulation of the number of neutrophils that migrate into the gingival crevice to counteract its harmful effects. This report investigates the contribution of innate defense receptors, Toll-like receptor (TLR)2, TLR4, and both (TLR2/4) to the maintenance of neutrophil homeostasis in the JE. METHODS Bacterial composition was analyzed from whole oral swabs collected from 12- to 14-week-old TLR2, TLR4, TLR2/4 double knock-out (KO) mice using a MiSeq platform targeting the V3-V4 region of the 16S ribosomal RNA gene. Mandibles were histologically examined for quantification of neutrophils in the JE and bone loss. Lastly, total bacterial load was quantitated using quantitative real-time PCR. RESULTS Compared with wild-type, all TLR KO mice displayed significantly increased recruitment of neutrophils (P = 0.0079) into the JE. In addition, TLR4 and TLR2/4 KO mice demonstrated a significant increase in the number of bacteria (P = 0.0022 and P = 0.0152, respectively). Lastly, comparative compositional analyses of the oral microbiome revealed that each KO strain harbored unique microbial communities that are distinct from each other but maintained similar levels of alveolar bone. CONCLUSIONS Neutrophil migration into healthy mouse JE does not require TLR2 or TLR4. However, a significant increase in the number of neutrophils as well as a significant change in the oral microbial composition in both TLR2 and TLR4 KO mice demonstrate that these TLRs contribute to the homeostatic relationship between bacteria and the host in healthy mice periodontal tissue.
Collapse
Affiliation(s)
- Ana M. Chang
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195
| | - Quanhui Liu
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Ara Greer
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195
| | - Richard P. Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195
| |
Collapse
|
22
|
Song LT, Lai W, Li JS, Mu YZ, Li CY, Jiang SY. The interaction between serum amyloid A and Toll-like receptor 2 pathway regulates inflammatory cytokine secretion in human gingival fibroblasts. J Periodontol 2019; 91:129-137. [PMID: 31347700 DOI: 10.1002/jper.19-0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum amyloid A (SAA) has been identified to trigger inflammation response, and play a crucial role in chronic inflammatory diseases. However, the regulatory mechanism of SAA still remains unclear during the development of periodontitis METHODS: SAA mRNA and protein expression were detected in healthy and inflammatory gingival tissues using real-time polymerase chain reaction (PCR) and immunohistochemistry. Human recombinant SAA (Apo-SAA), Pam3CSK4 (a Toll-like receptor (TLR) 2 ligand), siRNA-SAA, or TLR2 neutralizing antibody was applied to treat human gingival fibroblasts, respectively, or combined. SAA, TLRs, and inflammatory cytokines interleukin (IL)-6 and IL-8 were analyzed by real-time PCR, western blotting, or enzyme-linked immunosorbent assay. RESULTS SAA expression increased in human inflammatory gingival tissues from patients with periodontitis (P <0.05). Apo-SAA could increase not only the mRNA expression of TLR2 (P <0.05), but also IL-6 and IL-8 mRNA and protein levels (P <0.05) which was suppressed by TLR2 antibody in human gingival fibroblasts. Pam3CSK4 increased SAA, IL-6, and IL-8 levels (P <0.05). However, the expression of SAA, IL-6, and IL-8 decreased after transfection of siRNA-SAA (P <0.05). CONCLUSION SAA not only increases in inflammatory gingiva, but also triggers inflammatory cytokine secretion via interacting with TLR2 pathway in human gingival fibroblasts, which indicates that SAA is involved in periodontal inflammation.
Collapse
Affiliation(s)
- Li-Ting Song
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, P. R. China
| | - Wen Lai
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, P. R. China
| | - Jia-Shan Li
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Zhu Mu
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, P. R. China
| | - Chang-Yi Li
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, P. R. China
| | - Shao-Yun Jiang
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, P. R. China.,Center of Stomatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
23
|
Göktürk Ö, Uçan Yarkaç F, Oğrum A. Evaluation of the association between psoriasis and periodontal status. ACTA ODONTOLOGICA TURCICA 2019. [DOI: 10.17214/gaziaot.481136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Pigossi SC, Anovazzi G, Finoti LS, de Medeiros MC, Mayer MP, Rossa Junior C, Scarel-Caminaga RM. Functionality of the Interleukin 8 haplotypes in lymphocytes and macrophages in response to gram-negative periodontopathogens. Gene 2019; 689:152-160. [DOI: 10.1016/j.gene.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
|
25
|
Lu W, Gu JY, Zhang YY, Gong DJ, Zhu YM, Sun Y. Tolerance induced by Porphyromonas gingivalis may occur independently of TLR2 and TLR4. PLoS One 2018; 13:e0200946. [PMID: 30040860 PMCID: PMC6057631 DOI: 10.1371/journal.pone.0200946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Periodontitis is a microbe-induced chronic inflammatory disease. Previous exposure of the host to bacteria or their virulence factors leads to refractory responses to further stimuli, which is called tolerance. Porphyromonas gingivalis (P. gingivalis) is one of the most important pathogenic microorganisms associated with periodontitis, and is a potent inducer of pro- and anti-inflammatory cytokines. The aim of this study was to explore the roles and possible mechanisms of tolerance induced by P. gingivalis. METHODS THP-1-derived macrophages were pretreated with 1x108 colony-forming units/ml P. gingivalis ATCC 33277 or 21 clinical isolates from moderate to severe chronic periodontitis patients (24 h), washed (2 h) and treated with P. gingivalis ATCC 33277 or the same clinical isolates again (24 h). Levels of pro-inflammatory cytokines TNF-α and IL-1β and anti-inflammatory cytokine IL-10 in supernatants were detected by ELISA. Moreover, to identify the possible mechanisms for the changes in cytokine secretion, Toll-like receptor 2 (TLR2) and TLR4 protein expressions were explored in these cells by flow cytometry. RESULTS After repeated challenge with P. gingivalis ATCC 33277 or clinical isolates, production of TNF-α and IL-1β in macrophages was decreased significantly compared with that following a single stimulation (p<0.05), while only comparable levels of IL-10 were detected in P. gingivalis ATCC 33277 or clinical isolate-tolerized cells (p>0.05). In addition, there was interstrain variability in the ability to induce IL-1β and IL-10 production after repeated P. gingivalis stimulation. However, no significant changes in TLR2 or TLR4 were detected in macrophages that were repeatedly treated with P. gingivalis ATCC 33277 or clinical isolates compared with those stimulated with P. gingivalis only once (p>0.05). CONCLUSIONS Repeated P. gingivalis stimulation triggered tolerance, which might contribute to limiting periodontal inflammation. However, tolerance induced by P. gingivalis might develop independently of TLR2 and TLR4 and be related to molecules in signaling pathways downstream of TLR2 and TLR4.
Collapse
Affiliation(s)
- Wei Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jian-yu Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yao-yao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dan-Jun Gong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Suzhou Hospital, Suzhou, China
| | - Yi-ming Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
26
|
Evaluation of tissue levels of Toll-like receptors and cytokine mRNAs associated with bovine periodontitis and oral health. Res Vet Sci 2018; 118:439-443. [DOI: 10.1016/j.rvsc.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
27
|
Issaranggun Na Ayuthaya B, Everts V, Pavasant P. The immunopathogenic and immunomodulatory effects of interleukin-12 in periodontal disease. Eur J Oral Sci 2018; 126:75-83. [PMID: 29411897 DOI: 10.1111/eos.12405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin 12 (IL-12) is an inflammatory cytokine that promotes the response of the immune system. This cytokine has been implicated as a potent stimulator of several diseases characterized by inflammatory-induced bone destruction, such as rheumatoid arthritis and periodontitis. Yet, the exact role of IL-12 in the development and progress of periodontitis has not been clarified. Several studies have demonstrated a positive correlation between the level of IL-12 and the severity of periodontal destruction. Deletion of IL-12 in mice with periodontitis significantly suppressed the level of bone destruction. Interestingly, next to a role in modulating the pathogenesis, IL-12 also has immunological-regulatory properties. This cytokine induces expression of immunosuppressive molecules, such as indoleamine-pyrrole 2,3-dioxygenase (IDO). Thus, these findings suggest both negative and positive influences of IL-12 in periodontal disease. It is currently proposed that the diversity of action of cytokines is a molecular key which regulates biological development and homeostasis. Accordingly, the actions of IL-12 might be one of the mechanisms that regulate homeostasis of periodontal tissue during and following inflammation. Therefore, this article aims to review both destructive and protective functionalities of IL-12 with an emphasis on periodontal disease.
Collapse
Affiliation(s)
- Benjar Issaranggun Na Ayuthaya
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Activation of the Innate Immune System by Treponema denticola Periplasmic Flagella through Toll-Like Receptor 2. Infect Immun 2017; 86:IAI.00573-17. [PMID: 29084899 DOI: 10.1128/iai.00573-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
Treponema denticola is an indigenous oral spirochete that inhabits the gingival sulcus or periodontal pocket. Increased numbers of oral treponemes within this environment are associated with localized periodontal inflammation, and they are also part of an anaerobic polymicrobial consortium responsible for endodontic infections. Previous studies have indicated that T. denticola stimulates the innate immune system through Toll-like receptor 2 (TLR2); however, the pathogen-associated molecular patterns (PAMPs) responsible for T. denticola activation of the innate immune system are currently not well defined. In this study, we investigated the role played by T. denticola periplasmic flagella (PF), unique motility organelles of spirochetes, in stimulating an innate immune response. Wild-type T. denticola stimulated the production of the cytokines tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, and IL-12 by monocytes from human peripheral blood mononuclear cells, while its isogenic nonmotile mutant lacking PF resulted in significantly diminished cytokine stimulation. In addition, highly purified PF were able to dose dependently stimulate cytokine TNF-α, IL-1β, IL-6, IL-10, and IL-12 production in human monocytes. Wild-type T. denticola and the purified PF triggered activation of NF-κB through TLR2, as determined using a variety of TLR-transfected human embryonic 293 cell lines, while the PF-deficient mutants lacked the ability to stimulate, and the complemented PF-positive T. denticola strain restored the activation. These findings suggest that T. denticola stimulates the innate immune system in a TLR2-dependent fashion and that PF are a key bacterial component involved in this process.
Collapse
|
29
|
Delitto AE, Rocha F, Decker AM, Amador B, Sorenson HL, Wallet SM. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation. Arch Oral Biol 2017; 87:125-130. [PMID: 29289808 DOI: 10.1016/j.archoralbio.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Periodontal diseases are a class of non-resolving inflammatory diseases, initiated by a pathogenic subgingival biofilm, in a susceptible host, which if left untreated can result in soft and hard tissue destruction. Oral epithelial cells are the first line of defense against microbial infection within the oral cavity, whereby they can sense the environment through innate immune receptors including toll-like receptors (TLRs). Therefore, oral epithelial cells directly and indirectly contribute to mucosal homeostasis and inflammation, and disruption of this homeostasis or over-activation of innate immunity can result in initiation and/or exacerbation of localized inflammation as observed in periodontal diseases. Dynamics of TLR signaling outcomes are attributable to several factors including the cell type on which it engaged. Indeed, our previously published data indicates that oral epithelial cells respond in a unique manner when compared to canonical immune cells stimulated in a similar fashion. Thus, the objective of this study was to evaluate the role of oral epithelial cell innate sensing on periodontal disease, using a murine poly-microbial model in an epithelial cell specific knockout of the key TLR-signaling molecule MyD88 (B6K5Cre.MyD88plox). Following knockdown of MyD88 in the oral epithelium, mice were infected with Porphorymonas gingivalis and Aggregatibacter actinomycetemcomitans by oral lavage 4 times per week, every other week for 6 weeks. Loss of oral epithelial cell MyD88 expression resulted in exacerbated bone loss, soft tissue morphological changes, soft tissue infiltration, and soft tissue inflammation following polymicrobial oral infection. Most interestingly while less robust, loss of oral epithelial cell MyD88 also resulted in mild but statistically significant soft tissue inflammation and bone loss even in the absence of a polymicrobial infection. Together these data demonstrate that oral epithelial cell MyD88-dependent TLR signaling regulates the immunological balance within the oral cavity under conditions of health and disease.
Collapse
Affiliation(s)
- Andrea E Delitto
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Fernanda Rocha
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ann M Decker
- Department of Periodontology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Byron Amador
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Heather L Sorenson
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
30
|
Ohno T, Yamamoto G, Hayashi JI, Nishida E, Goto H, Sasaki Y, Kikuchi T, Fukuda M, Hasegawa Y, Mogi M, Mitani A. Angiopoietin-like protein 2 regulates Porphyromonas gingivalis lipopolysaccharide-induced inflammatory response in human gingival epithelial cells. PLoS One 2017; 12:e0184825. [PMID: 28934245 PMCID: PMC5608282 DOI: 10.1371/journal.pone.0184825] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/31/2017] [Indexed: 11/27/2022] Open
Abstract
Angiopoietin-like protein 2 (ANGPTL2) maintains tissue homeostasis by inducing inflammation and angiogenesis. It is produced in infiltrating immune cells or resident cells, such as adipocytes, vascular endothelial cells, and tumor cells. We hypothesized that ANGPTL2 might play an important role as a unique mediator in both systemic and periodontal disease. We demonstrated an increased ANGPTL2 concentration in gingival crevicular fluid from chronic periodontitis patients. Porphyromonas gingivalis lipopolysaccharide (LPS) treatment strongly induced ANGPTL2 mRNA and protein levels in Ca9-22 human gingival epithelial cells. Recombinant human ANGPTL2 increased interleukin 1β (IL-1β), IL-8, and tumor necrosis factor-α (TNF-α) mRNA and protein levels in Ca9-22 cells. Small-interfering (si)RNA-mediated ANGPTL2 knockdown in Ca9-22 cells reduced IL-1β, IL-8 and TNF-α mRNA and protein levels compared with control siRNA (p<0.01) in P. gingivalis LPS-stimulated Ca9-22 cells. Antibodies against integrin α5β1, an ANGPTL receptor, blocked induction of these inflammatory cytokines in P. gingivalis LPS-treated Ca9-22 cells, suggesting that secreted ANGPTL induces inflammatory cytokines in gingival epithelial cells via an autocrine loop. The classic sequential cascade of P. gingivalis LPS → inflammatory cytokine induction is well established. However, in the current study, we reveal a novel cascade comprising sequential P. gingivalis LPS → ANGPTL2 → integrin α5β1 → inflammatory cytokine induction, which might be responsible for inducing potent periodontal disorganization activity in gingival epithelial cells. Via this pathway, ANGPTL2 functions in the pathogenesis of periodontitis and contributes to prolonging chronic inflammation in patients with systemic disease.
Collapse
Affiliation(s)
- Tasuku Ohno
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Genta Yamamoto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Jun-ichiro Hayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuyuki Sasaki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Mitsuo Fukuda
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Chikusa-ku, Aichi, Japan
| | - Makio Mogi
- Department of Integrative Education of Pharmacy, School of Pharmacy, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
31
|
Sumedha S, Kotrashetti VS, Nayak RS, Nayak A, Raikar A. Immunohistochemical localization of TLR2 and CD14 in gingival tissue of healthy individuals and patients with chronic periodontitis. Biotech Histochem 2017; 92:487-497. [PMID: 28910171 DOI: 10.1080/10520295.2017.1357192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We used immunohistochemistry to quantify and compare the expression of Toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) in gingival tissues of both healthy individuals and patients with chronic periodontitis. We also correlated the expression of TLR2 and CD14 with the histological grades of chronic periodontitis. We examined 30 gingival specimens from chronic periodontitis patients and 10 from healthy individuals. Tissues from both groups were immunostained with antibodies against TLR2 and CD14. TLR2 and CD14 were expressed by endothelial cells, fibroblasts, lymphocytes and plasma cells. The immunohistochemical expression of TLR2 and CD14 was significantly greater in inflammatory cells of the chronic periodontitis group than in healthy individuals. Expression of these molecules was greater in the inflammatory cells of connective tissue adjacent to pocket epithelium in both groups. The expression of TLR2 and CD14 was greatest in the periodontitis group that was classified as severe grade, followed by moderate and mild grades, which suggests a role of TLR2 and CD14 in the pathogenesis of chronic periodontitis. The positive correlation of TLR2 and CD14 expression levels with the severity grades of chronic periodontitis suggests that they are correlated also with disease severity; therefore, they may be useful for predicting disease progression. Our findings are consistent with the possibility that CD14 acts as a co-receptor for TLR2.
Collapse
Affiliation(s)
- S Sumedha
- a Departments of Oral Pathology and Microbiology
| | | | - R S Nayak
- a Departments of Oral Pathology and Microbiology
| | - A Nayak
- b Periodontology , Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre , Belgaum , Karnataka , India
| | - A Raikar
- b Periodontology , Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre , Belgaum , Karnataka , India
| |
Collapse
|
32
|
Yu X, Hu Y, Freire M, Yu P, Kawai T, Han X. Role of toll-like receptor 2 in inflammation and alveolar bone loss in experimental peri-implantitis versus periodontitis. J Periodontal Res 2017; 53:98-106. [PMID: 28872184 DOI: 10.1111/jre.12492] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Peri-implantitis and periodontitis are different entities in immune characteristics even though they share similar features in clinical and radiologic signs. Toll-like receptor 2 (TLR-2), one of the key pathogen-recognition receptors in the innate immune system, plays an important role in the progression of periodontitis. However, the role of TLR-2 in peri-implantitis remains unclear. The objective of this study was to investigate the role of TLR-2 in inflammation and alveolar bone loss in a murine model of ligature-induced peri-implantitis and to compare it with ligature-induced periodontitis. MATERIAL AND METHODS Smooth-surface titanium implants were placed in the alveolar bone of the left maxillary molars of wild-type (WT) and Tlr2 knockout (Tlr2-KO) mice 6 weeks after tooth extraction. Silk ligatures were applied to the left implant fixtures and the right maxillary second molars to induce peri-implantitis and periodontitis 4 weeks after implant placement. Two weeks after ligation, bone loss around the implants and maxillary second molars was analysed by micro-computed tomography (micro-CT), and inflammation around the implants and maxillary second molars was assessed at the same time point using histology and TRAP staining, respectively. Expression of mRNA for proinflammatory cytokines (interleukin-1β [Il1β], tumor necrosis factor-α [Tnfα]), an anti-inflammatory cytokine (interleukin-10 [Il10]) and osteoclastogenesis-related cytokines (Rankl, osteoprotegerin [Opg]) were evaluated, in gingival tissue, using real-time quantitative PCR (RT-qPCR). RESULTS The success rate of implant osseointegration was significantly higher in Tlr2-KO mice (85.71%) compared with WT mice (53.66%) (P = .0125). Micro-CT revealed significantly decreased bone loss in Tlr2-KO mice compared with WT mice (P = .0094) in peri-implantitis. The levels of mRNA for Il1β (P = .0055), Tnfα (P = .01) and Il10 (P = .0019) in gingiva were significantly elevated in the peri-implantitis tissues of WT mice, but not in Tlr2-KO mice, compared with controls. However, the gingival mRNA ratios of Rankl/Opg in peri-implant tissues were significantly upregulated in both WT (P = .0488) and Tlr2-KO (P = .0314) mice. Ligature-induced periodontitis exhibited similar patterns of bone loss and inflammatory cytokine profile in both groups of mice, except that the level of Il10 was elevated (P = .0114) whereas the Rankl/Opg ratio was not elevated (P = .9755) in Tlr2-KO mice compared with control mice. Histological findings showed increased numbers of TRAP-positive cells and infiltrated inflammatory cells in ligature-induced peri-implantitis in both WT (P < .01) and Tlr2-KO mice (P < .05), and the numbers of both types of cell were significantly higher in WT mice than in Tlr2-KO mice (P < .01). CONCLUSION This study suggests that TLR-2 mediates bone loss in both peri-implantitis and periodontitis. However, different molecular features may exist in the pathogenesis of the two diseases.
Collapse
Affiliation(s)
- X Yu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, Shandong, China.,Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Y Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - M Freire
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - P Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - X Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
33
|
Thumbigere Math V, Rebouças P, Giovani PA, Puppin-Rontani RM, Casarin R, Martins L, Wang L, Krzewski K, Introne WJ, Somerman MJ, Nociti FH, Kantovitz KR. Periodontitis in Chédiak-Higashi Syndrome: An Altered Immunoinflammatory Response. JDR Clin Trans Res 2017; 3:35-46. [PMID: 29276776 DOI: 10.1177/2380084417724117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chédiak-Higashi syndrome (CHS), a rare autosomal recessive disorder caused by mutations in the lysosomal trafficking regulator gene (LYST), is associated with aggressive periodontitis. It is suggested that LYST mutations affect the toll-like receptor (TLR)-mediated immunoinflammatory response, leading to frequent infections. This study sought to determine the periodontal status of patients with classic (severe) and atypical (milder) forms of CHS and the immunoregulatory functions of gingival fibroblasts in CHS patients. In contrast to aged-matched healthy controls, atypical (n = 4) and classic (n = 3) CHS patients presented with mild chronic periodontitis with no evidence of gingival ulceration, severe tooth mobility, or premature exfoliation of teeth. As a standard of care, all classic CHS patients had undergone bone marrow transplantation (BMT). Primary gingival fibroblasts obtained from atypical and BMT classic CHS patients displayed higher protein expression of TLR-2 (1.81-fold and 1.56-fold, respectively) and decreased expression of TLR-4 (-2.5-fold and -3.85-fold, respectively) at baseline when compared with healthy control gingival fibroblasts. When challenged with whole bacterial extract of Fusobacterium nucleatum, both atypical and classic CHS gingival fibroblasts failed to up-regulate TLR-2 and TLR-4 expression when compared with their respective untreated groups and control cells. Cytokine multiplex analysis following F. nucleatum challenge showed that atypical CHS gingival fibroblasts featured significantly increased cytokine expression (interleukin [IL]-2, IL-4, IL-5, IL-6, IL-10, IL-12, interferon-γ, tumor necrosis factor-α), whereas classic CHS cells featured similar/decreased cytokine expression when compared with treated control cells. Collectively, these results suggest that LYST mutations in CHS patients affect TLR-2 and TLR-4 expression/function, leading to dysregulated immunoinflammatory response, which in turn may influence the periodontal phenotype noted in CHS patients. Furthermore, our results suggest that atypical CHS patients and classic CHS patients who undergo BMT early in life are less susceptible to aggressive periodontitis and that hematopoietic cells play a critical role in mitigating the risk of aggressive periodontitis in CHS. Knowledge Transfer Statement: Results from this study can be used to create awareness among clinicians and researchers that not all CHS patients exhibit historically reported aggressive periodontitis, especially if they have atypical CHS disease or have received bone marrow transplantation. LYST mutations in CHS patients may affect TLR-2 and TLR-4 expression/function leading to dysregulated immunoinflammatory response, which in turn may influence the periodontal phenotype noted in CHS patients.
Collapse
Affiliation(s)
- V Thumbigere Math
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - P Rebouças
- Department of Pediatric Dentistry, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | - P A Giovani
- Department of Pediatric Dentistry, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | - R M Puppin-Rontani
- Department of Pediatric Dentistry, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | - R Casarin
- Department of Prosthodontics and Periodontics, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | - L Martins
- Department of Prosthodontics and Periodontics, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | - L Wang
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - W J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - M J Somerman
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - F H Nociti
- Department of Prosthodontics and Periodontics, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil
| | - K R Kantovitz
- Department of Pediatric Dentistry, State University of Campinas, Piracicaba Dental School, Piracicaba, SP, Brazil.,Department of Dental Materials, São Leopoldo Mandic Research Center, Dental School, Campinas, SP, Brazil
| |
Collapse
|
34
|
Gunpinar S, Alptekin NO, Dundar N. Gingival crevicular fluid levels of monocyte chemoattractant protein-1 in patients with aggressive periodontitis. Oral Dis 2017; 23:763-769. [PMID: 28231622 DOI: 10.1111/odi.12658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the gingival crevicular fluid (GCF) levels of monocyte chemoattractant protein (MCP)-1 in aggressive periodontitis (AgP) and whether GCF MCP-1 levels differ among localized (L) AgP and generalized (G) AgP. MATERIAL AND METHODS A total of 160 subjects including 80 AgP and 80 age- and gender-matched periodontally healthy (H) controls were recruited in this cross-sectional study (NCT02927704). GCF samples were collected from 160 patients including 50 LAgP, 30 GAgP, and 80 H. Volume of GCF was measured by Periotron 8000® , and enzyme-linked immunosorbent assay was used to assess MCP-1 levels. RESULTS Compared to H controls, all clinical parameters and total amounts (pg 30 s-1 ) of MCP-1 were significantly higher in subjects with LAgP and GAgP (P < 0.05). Although concentrations of GCF MCP-1 did not differ between LAgP and GAgP (P > 0.05), total amounts of MCP-1 were higher in GAgP than LAgP (P < 0.05). CONCLUSION It can be concluded that the total amount of MCP-1 level in GCF may be a potential determinant in AgP subjects. Increased MCP-1 levels in line with the degree of periodontal destruction in GAgP patients reveal that MCP-1 can be used to understand the disease pathogenesis of LAgP and GAgP.
Collapse
Affiliation(s)
- S Gunpinar
- Department of Periodontology, Faculty of Dentistry, Abant Izzet Baysal University, Bolu, Turkey
| | - N O Alptekin
- Department of Periodontology, Faculty of Dentistry, Baskent University, Ankara, Turkey
| | - N Dundar
- Research Center of Dental Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
35
|
Nemati R, Dietz C, Anstadt E, Clark R, Smith M, Nichols F, Yao X. Simultaneous Determination of Absolute Configuration and Quantity of Lipopeptides Using Chiral Liquid Chromatography/Mass Spectrometry and Diastereomeric Internal Standards. Anal Chem 2017; 89:3583-3589. [DOI: 10.1021/acs.analchem.6b04901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Reza Nemati
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Christopher Dietz
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Emily Anstadt
- Department
of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
| | - Robert Clark
- Department
of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
| | - Michael Smith
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Frank Nichols
- Department
of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut 06030, United States
| | - Xudong Yao
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
36
|
Anovazzi G, de Medeiros MC, Pigossi SC, Finoti LS, Mayer MPA, Rossa C, Scarel-Caminaga RM. Functional Haplotypes in Interleukin 4 Gene Associated with Periodontitis. PLoS One 2017; 12:e0169870. [PMID: 28114408 PMCID: PMC5256924 DOI: 10.1371/journal.pone.0169870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic periodontitis (CP) is an infectious inflammatory disease that affects tooth-supporting structures and in which dental plaque bacteria, immune mechanisms and genetic predisposition play important roles. Interleukin 4 (IL-4) is a key anti-inflammatory cytokine with relevant action in imbalances in inflamed periodontal tissue. Individuals carrying the TCI/CCI genotype (S-haplotype) of the IL-4 gene are 5 times more susceptible to CP, whereas the CTI/TTD genotype (P-haplotype) confers protection against CP. Compared with the S-haplotype, subjects with the P-haplotype produce higher levels of the IL-4 protein after non-surgical periodontal therapy. The present in vitro study aimed to investigate the functionality of IL-4 haplotypes in immune cells to obtain insight into the influence of these genetic variations in regulating immune responses to CP-associated bacteria. Peripheral blood was collected from 6 subjects carrying each haplotype, and their immune cells were challenged with periodontopathogens to compare responses of the different haplotypes with regard to gene expression, protein secretion and the immunophenotype of T helper responses. We found higher IL-4 mRNA and protein levels in the P-haplotype, which also presented higher levels of anti-inflammatory cytokines. In contrast, cells from S-haplotype subjects responded with higher levels of pro-inflammatory cytokines. S-haplotype individuals exhibited significantly greater polarization toward the Th1 phenotype, whereas the P-haplotype was associated with an attenuated response to periodontopathogens, with suggestive skewing toward Th2/M2 phenotypes. In conclusion, IL-4 genetic variations associated with susceptibility to or protection against chronic periodontitis are directly associated with influencing the response of immune cells to periodontopathogens.
Collapse
Affiliation(s)
- Giovana Anovazzi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Marcell Costa de Medeiros
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Suzane Cristina Pigossi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Livia Sertori Finoti
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Rossa
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | | |
Collapse
|
37
|
Sakalauskiene J, Giedrimiene D, Gleiznys D, Gleiznys A, Gleizniene R, Vitkauskiene A. Peripheral Blood Leukocytes Interleukin-1 Beta (IL-1β) Cytokine Hyper-Reactivity in Chronic Periodontitis. Med Sci Monit 2016; 22:4323-4329. [PMID: 27847385 PMCID: PMC5115217 DOI: 10.12659/msm.898422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Levels of pro-inflammatory cytokine (IL-1β) released by peripheral blood leukocyte medium (PBLM), isolated from chronic periodontitis patients (P) before therapy and matched to controls, were determined in the presence or absence of non-opsonized Escherichia coli and Staphylococcus aureus. Material/Methods In this investigation, 26 patients with untreated, severe, generalized, chronic periodontitis and 26 healthy subjects (H) were enrolled. Periodontal status was assessed by measuring bleeding on probing (BOP), clinical attachment loss (CAL), probing pocket depth (PPD), and Ramfjord index (PDI). The levels of IL-1β (μg/ml) were assayed by a standard Immunoenzymetric Assay Diasource IL-1β ELISA kit in PBLM. Results Our study showed that the values of IL-1β levels in PBLM of the P group (stimulated with non-opsonized E. coli and S. aureus) were significantly higher than in the analogous medium of H group subjects (P<0.001). All correlations between the cytokine levels of IL-1β in the samples of PBLM (stimulated with non-opsonized E. coli and S. aureus) and clinical parameters such as BOP, PPD, CAL, and PDI were significantly higher in the group of patients with periodontitis. Conclusions Levels of IL-1β secreted by leukocytes may help measure severe, generalized, chronic periodontitis, and can be predictive of future detrimental clinical sequelae associated with chronic periodontitis.
Collapse
Affiliation(s)
- Jurgina Sakalauskiene
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Giedrimiene
- School of Health and Natural Sciences and School of Pharmacy, University of Saint Joseph, West Hartford, CT, USA
| | - Darius Gleiznys
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alvydas Gleiznys
- Department of Dental and Maxillofacial Orthopedics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rymante Gleizniene
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
38
|
Mehlotra RK, Hall NB, Willie B, Stein CM, Weinberg A, Zimmerman PA, Vernon LT. Associations of Toll-Like Receptor and β-Defensin Polymorphisms with Measures of Periodontal Disease (PD) in HIV+ North American Adults: An Exploratory Study. PLoS One 2016; 11:e0164075. [PMID: 27727278 PMCID: PMC5058471 DOI: 10.1371/journal.pone.0164075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
Polymorphisms in toll-like receptor (TLR) and β-defensin (DEFB) genes have been recognized as potential genetic factors that can influence susceptibility to and severity of periodontal diseases (PD). However, data regarding associations between these polymorphisms and PD are still scarce in North American populations, and are not available in HIV+ North American populations. In this exploratory study, we analyzed samples from HIV+ adults (n = 115), who received primary HIV care at 3 local outpatient HIV clinics and were monitored for PD status. We genotyped a total of 41 single nucleotide polymorphisms (SNPs) in 8 TLR genes and copy number variation (CNV) in DEFB4/103A. We performed regression analyses for levels of 3 periodontopathogens in subgingival dental plaques (Porphyromonas gingivalis [Pg], Treponema denticola [Td], and Tannerella forsythia [Tf]) and 3 clinical measures of PD (periodontal probing depth [PPD], gingival recession [REC], and bleeding on probing [BOP]). In all subjects combined, 2 SNPs in TLR1 were significantly associated with Td, and one SNP in TLR2 was significantly associated with BOP. One of the 2 SNPs in TLR1 was significantly associated with Td in Caucasians. In addition, another SNP in TLR1 and a SNP in TLR6 were also significantly associated with Td and Pg, respectively, in Caucasians. All 3 periodontopathogen levels were significantly associated with PPD and BOP, but none was associated with REC. Instrumental variable analysis showed that 8 SNPs in 6 TLR genes were significantly associated with the 3 periodontopathogen levels. However, associations between the 3 periodontopathogen levels and PPD or BOP were not driven by associations with these identified SNPs. No association was found between DEFB4/103A CNV and any periodontopathogen level or clinical measure in all samples, Caucasians, or African Americans. Our exploratory study suggests a role of TLR polymorphisms, particularly TLR1 and TLR6 polymorphisms, in PD in HIV+ North Americans.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| | - Noemi B. Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barne Willie
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lance T. Vernon
- Department of Pediatric and Community Dentistry, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| |
Collapse
|
39
|
Ziauddin S, Montenegro Raudales JL, Sato K, Yoshioka H, Ozaki Y, Kaneko T, Yoshimura A, Hara Y. Analysis of Subgingival Plaque Ability to Stimulate Toll-Like Receptor 2 and 4. J Periodontol 2016; 87:1083-91. [DOI: 10.1902/jop.2016.150573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
El-Sharkawy HM, Anees MM, Van Dyke TE. Propolis Improves Periodontal Status and Glycemic Control in Patients With Type 2 Diabetes Mellitus and Chronic Periodontitis: A Randomized Clinical Trial. J Periodontol 2016; 87:1418-1426. [PMID: 27468795 DOI: 10.1902/jop.2016.150694] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Propolis is a natural resin made by bees from various plant sources and exerts antimicrobial, anti-inflammatory, immunomodulatory, antioxidant, and antidiabetic properties. The purpose of this study is to assess adjunctive benefit of propolis supplementation in individuals with chronic periodontitis (CP) and type 2 diabetes mellitus (DMt2) receiving scaling and root planing (SRP). METHODS A 6-month masked, randomized clinical trial comparing SRP with placebo (placebo + SRP group, n = 26) or SRP combined with a 6-month regimen of 400 mg oral propolis once daily (propolis + SRP group, n = 24) was performed in patients with long-standing DMt2 and CP. Treatment outcomes included changes in hemoglobin (Hb) A1c (primary outcome), fasting plasma glucose (FPG), serum N€-(carboxymethyl) lysine (CML), and periodontal parameters (secondary outcomes). RESULTS After 3 and 6 months, average HbA1c levels in the propolis group decreased significantly by 0.82% and 0.96% units, respectively (P <0.01); however, there were no significant differences in the placebo group. Likewise, FPG and CML levels were significantly reduced in the propolis group, but not in the placebo group. After therapy, periodontal parameters of CP were significantly improved in both groups. The propolis group showed significantly greater probing depth reduction and clinical attachment level gain than the control group after 3 and 6 months. CONCLUSION A 6-month regimen of 400 mg propolis once daily is a potentially viable adjunct to SRP that significantly reduces levels of HbA1c, FPG, and CML, and improves periodontal therapy outcome in people with DMt2 and CP.
Collapse
Affiliation(s)
- Hesham M El-Sharkawy
- Department of Periodontology and Oral Medicine, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mohamed M Anees
- Department of Periodontology and Oral Medicine, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA
| |
Collapse
|
41
|
Huang X, Yu T, Ma C, Wang Y, Xie B, Xuan D, Zhang J. Macrophages Play a Key Role in the Obesity-Induced Periodontal Innate Immune Dysfunction via Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Pathway. J Periodontol 2016; 87:1195-205. [PMID: 27212109 DOI: 10.1902/jop.2016.160102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity is associated with infiltration of macrophages into adipose tissue. However, effects of obesity on macrophage infiltration and activation in periodontal tissues with periodontitis are still to be elucidated. METHODS A diet-induced obesity 16-week mouse model was constructed, and periodontitis was induced by periodontal ligation for 10 days. The model consisted of periodontitis (P) and control (C) groups, with high fat (HF) and normal (N) diet conditions. Bone loss (BL) was analyzed by microcomputed tomography. In periodontal tissues, immunohistochemical staining and quantitative polymerase chain reaction (qPCR) detected expressions of: 1) nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) pathway; 2) macrophage-specific marker (F4/80); and 3) macrophage chemotactic protein 1 (MCP1). Bone marrow-derived macrophages (BMDMs) from the mouse model were stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS) in vitro (NC/NC + LPS: BMDMs from NC group without/with LPS stimulation; HFC/HFC + LPS: BMDMs from HFC group without/with LPS stimulation). Expressions of NLRP3 pathway in BMDMs were detected by immunocytochemical staining and qPCR. RESULTS BL increased significantly with periodontitis (NC versus NP; HFC versus HFP) and obesity (NP versus HFP). Expressions of NLRP3 pathway were significantly elevated in gingival tissues with periodontitis (NC versus NP; HFC versus HFP), but not with obesity (NC versus HFC; NP versus HFP). F4/80 and MCP1 expressions were significantly upregulated in gingival tissues with periodontitis (NC versus NP; HFC versus HFP) but significantly downregulated in the context of obesity (NP versus HFP). In vitro, NLRP3 pathway expressions were significantly upregulated in BMDMs after LPS stimulation (NC + LPS versus NC; HFC + LPS versus HFC), but significantly downregulated in HFC groups (HFC versus NC; HFC + LPS versus NC + LPS). CONCLUSION Obesity may paralyze innate immune response of periodontium via attenuating infiltration and activation of macrophages and further aggravate periodontal disease.
Collapse
Affiliation(s)
- Xin Huang
- Department of Periodontology, The Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Yu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chanjuan Ma
- Department of Periodontology, The Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixiong Wang
- Department of Periodontology, The Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baoyi Xie
- Department of Periodontology, The Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongying Xuan
- Department of Periodontology, Hangzhou Dental Hospital, Savaid Medical School, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jincai Zhang
- Department of Periodontology, The Affiliated Hospital of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Periodontology, Savaid Medical School, University of Chinese Academy of Sciences
| |
Collapse
|
42
|
|
43
|
Qin Y, Zhang L, Xu Z, Zhang J, Jiang YY, Cao Y, Yan T. Innate immune cell response upon Candida albicans infection. Virulence 2016; 7:512-26. [PMID: 27078171 DOI: 10.1080/21505594.2016.1138201] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.
Collapse
Affiliation(s)
- Yulin Qin
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Lulu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Zheng Xu
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Jinyu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yuan-Ying Jiang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yongbing Cao
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Tianhua Yan
- b Department of Pharmacology , School of Pharmacy, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
44
|
Allin N, Cruz-Almeida Y, Velsko I, Vovk A, Hovemcamp N, Harrison P, Huang H, Aukhil I, Wallet SM, Shaddox LM. Inflammatory Response Influences Treatment of Localized Aggressive Periodontitis. J Dent Res 2016; 95:635-41. [PMID: 26917438 DOI: 10.1177/0022034516631973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously reported a systemic hyperinflammatory response to bacterial lipopolysaccharide (LPS) in children with localized aggressive periodontitis (LAP). Additionally, different levels of this response were observed within the LAP group. It is unknown whether this hyperinflammatory response influences the clinical response to periodontal treatment in these children. Therefore, the goal of this study was to evaluate the influence of LPS responsiveness present prior to treatment on the clinical response to treatment within the LAP cohort. Prior to treatment, peripheral blood was collected from 60 African American participants aged 5 to 21 y, free of systemic diseases, and diagnosed with LAP. Blood was stimulated with ultrapure LPS from Escherichia coli, and Luminex assays were performed to quantify 14 cytokine/chemokine levels. Principal component and cluster analyses were used to find patterns of cytokine/chemokine expression among participants and subdivide them into clusters. Three distinct clusters emerged among LAP participants: a high responder group (high level of response for INFg, IL6, and IL12p40), a mixed responder group (low for some and high for other cytokines/chemokines), and a low responder group (low overall cytokine/chemokine response). Periodontal clinical parameters were compared among these groups prior to and 3, 6, and 12 mo following treatment with mechanical debridement and systemic antibiotics. High responders presented the lowest reductions in clinical parameters after treatment, whereas the low responders presented the highest reductions. In our LAP participants, distinct patterns of LPS response were significantly predictive of changes in clinical parameters after treatment. Future studies are needed to evaluate the underlying mechanisms predicting the heterogeneity of LAP activity, severity, and response to treatment (ClinicalTrials.gov NCT01330719).
Collapse
Affiliation(s)
- N Allin
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Y Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - I Velsko
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - A Vovk
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - N Hovemcamp
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - P Harrison
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - H Huang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - I Aukhil
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - S M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - L M Shaddox
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
45
|
Shikama Y, Kudo Y, Ishimaru N, Funaki M. Possible Involvement of Palmitate in Pathogenesis of Periodontitis. J Cell Physiol 2015; 230:2981-9. [PMID: 25921577 DOI: 10.1002/jcp.25029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell-surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high-fat diet-induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro-inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate-induced interleukin (IL)-6, IL-8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL-8 production. Docosahexaenoic acid (DHA), which is one of the omega-3 polyunsaturated fatty acids, significantly suppressed palmitate-induced IL-6 and IL-8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate-induced pro-inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat-killed P.g. augmented palmitate-induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Yosuke Shikama
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
46
|
Marques CPC, Maor Y, de Andrade MS, Rodrigues VP, Benatti BB. Possible evidence of systemic lupus erythematosus and periodontal disease association mediated by Toll-like receptors 2 and 4. Clin Exp Immunol 2015; 183:187-92. [PMID: 26386242 DOI: 10.1111/cei.12708] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) participate in the innate immune response and trigger the immune responses of the body. Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown aetiology, characterized by an excessive autoimmune response in the body affecting the connective tissues. The disease is possibly triggered by both environmental aetiological factors and pathological organic processes such as exposure to sunlight, chronic infectious processes and genetic factors. Conversely, periodontal disease is an infectious disease caused by microorganisms in the oral cavity, resulting in a chronic inflammatory process which continuously stimulates the immune response, thus causing damage to the periodontal tissues. The expression of both TLR-2 and TLR-4 receptors are increased in both SLE and periodontal disease. Periodontitis might trigger excessive activation of immune response occurring in SLE by maintaining a high expression of TLRs, leading in turn to the acceleration of the onset and progression of autoimmune reactions. In addition, periodontal treatment is able to reduce the expression of these receptors and therefore the symptoms of SLE. Here we discuss the possible interaction between SLE and periodontitis, and suggest further studies evaluating common features in both factors that could explored, due to morbidity and mortality of SLE and the high incidence of periodontal infections around the world.
Collapse
Affiliation(s)
- C P C Marques
- Department of Dentistry, Federal University of Maranhão, São Luís, Brazil
| | - Y Maor
- Division of Public Health, The Hebrew University Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel
| | - M S de Andrade
- Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - V P Rodrigues
- Department of Dentistry, Federal University of Maranhão, São Luís, Brazil
| | - B B Benatti
- Department of Dentistry, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
47
|
Martins MD, Jiao Y, Larsson L, Almeida LO, Garaicoa-Pazmino C, Le JM, Squarize CH, Inohara N, Giannobile WV, Castilho RM. Epigenetic Modifications of Histones in Periodontal Disease. J Dent Res 2015; 95:215-22. [PMID: 26496800 DOI: 10.1177/0022034515611876] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Periodontitis is a chronic infectious disease driven by dysbiosis, an imbalance between commensal bacteria and the host organism. Periodontitis is a leading cause of tooth loss in adults and occurs in about 50% of the US population. In addition to the clinical challenges associated with treating periodontitis, the progression and chronic nature of this disease seriously affect human health. Emerging evidence suggests that periodontitis is associated with mechanisms beyond bacteria-induced protein and tissue degradation. Here, we hypothesize that bacteria are able to induce epigenetic modifications in oral epithelial cells mediated by histone modifications. In this study, we found that dysbiosis in vivo led to epigenetic modifications, including acetylation of histones and downregulation of DNA methyltransferase 1. In addition, in vitro exposure of oral epithelial cells to lipopolysaccharides resulted in histone modifications, activation of transcriptional coactivators, such as p300/CBP, and accumulation of nuclear factor-κB (NF-κB). Given that oral epithelial cells are the first line of defense for the periodontium against bacteria, we also evaluated whether activation of pathogen recognition receptors induced histone modifications. We found that activation of the Toll-like receptors 1, 2, and 4 and the nucleotide-binding oligomerization domain protein 1 induced histone acetylation in oral epithelial cells. Our findings corroborate the emerging concept that epigenetic modifications play a role in the development of periodontitis.
Collapse
Affiliation(s)
- M D Martins
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Y Jiao
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - L Larsson
- Department of Periodontology, Institute of Odontology, University of Gothenburg, Sweden
| | - L O Almeida
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - C Garaicoa-Pazmino
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J M Le
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - C H Squarize
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - N Inohara
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - W V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - R M Castilho
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Wallet MA, Calderon NL, Alonso TR, Choe CS, Catalfamo DL, Lalane CJ, Neiva KG, Panagakos F, Wallet SM. Triclosan alters antimicrobial and inflammatory responses of epithelial cells. Oral Dis 2015; 19:296-302. [PMID: 24079913 DOI: 10.1111/odi.12001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Periodontal diseases are a class of pathologies wherein oral microbes induce harmful immune responses in a susceptible host. Therefore, an agent that can both reduce microbial burden and lessen pathogenesis of localized inflammation would have beneficial effects in periodontal disease; 2,4,4-trichloro-2-hydroxydiphenyl-ether [triclosan] is currently used in oral care products owing to broad spectrum antimicrobial and anti-inflammatory properties. OBJECTIVE To determine effects of triclosan on the response of oral epithelial cells to stimulation with the inflammatory microbial product lipopolysaccharide (LPS), a ligand for toll-like receptor 4 [TLR4]. MATERIALS/METHODS Primary human oral epithelial cells were stimulated with LPS in the presence and/or absence of triclosan after which expression of pro-inflammatory cytokines, β-defensins, micro-RNAs [miRNAs], or TLR-signaling pathway proteins were evaluated. RESULTS Here, we demonstrate that triclosan is a potent inhibitor of oral epithelial cell LPS-induced pro-inflammatory responses by inducing miRNA regulation of the TLR-signaling pathway. Triclosan was not a pan-suppresser of oral epithelial cell responses as β-defensin 2 [βD2] and βD3 were upregulated by triclosan following LPS-stimulation. CONCLUSIONS These data demonstrate both a novel antimicrobial mechanism by which triclosan improves plaque control and an additional anti-inflammatory property, which could have beneficial effects in periodontal disease resolution.
Collapse
Affiliation(s)
- M A Wallet
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
50
|
Sonnenschein SK, Meyle J. Local inflammatory reactions in patients with diabetes and periodontitis. Periodontol 2000 2015; 69:221-54. [DOI: 10.1111/prd.12089] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 12/14/2022]
|