1
|
Kitamura Y, Okuyama K, Saito A. Periodontal Surgery Using Recombinant Human Fibroblast Growth Factor-2 in Combination with Carbonate Apatite Granules for Stage III Grade C Periodontitis: A 30-month Case Report. THE BULLETIN OF TOKYO DENTAL COLLEGE 2025; 66:31-40. [PMID: 39956573 DOI: 10.2209/tdcpublication.2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
This report describes a case of generalized aggressive periodontitis requiring periodontal treatment including regenerative therapy. The patient was a 34-year-old woman who visited the Tokyo Dental College Suidobashi Hospital with the chief complaint of pain in tooth #14. An initial examination revealed that 35.8% of sites had a probing depth of ≥4 mm, while 19.1% showed bleeding on probing. Radiographic examination revealed angular bone resorption in #14, 33, 36, and 46, with horizontal resorption in other areas. Based on a clinical diagnosis of Stage III Grade C periodontitis, initial periodontal therapy consisting of plaque control, and scaling and root planing was performed. After reevaluation, periodontal regenerative therapy using recombinant human fibroblast growth factor-2 (rhFGF-2) in combination with carbonate apatite (CO3Ap) granules was performed for #14 and 33, while regenerative therapy using rhFGF-2 alone was performed for #46. Following reevaluation, the patient was placed on supportive periodontal therapy (SPT). During SPT, CAD/CAM crowns were placed on #26 and 46. Periodontal regenerative therapy using rhFGF-2 with CO3Ap granules yielded a resolution of angular bone defects in #14 and 33. This improvement has been adequately maintained over a 30-month period.
Collapse
|
2
|
Kojima K, Kamata Y, Shimizu T, Sato S, Suzuki S, Takanashi Y, Hojo S, Yoshino T, Fuchida S, Tamura T, Minabe M, Kodama T, Kessoku T, Oyamada S. Recombinant human fibroblast growth factor and autogenous bone for periodontal regeneration: Alone or in combination? A randomized clinical trial. J Periodontal Res 2024; 59:1162-1174. [PMID: 38853125 PMCID: PMC11626695 DOI: 10.1111/jre.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
AIM To compare the outcomes of therapy using recombinant human fibroblast growth factor (rhFGF)-2 combined with autologous bone grafting (ABG) therapy with those of rhFGF-2 alone and ABG alone in the treatment of periodontal intraosseous defects. METHODS Periodontal intraosseous defects were randomized to receive rhFGF-2 therapy + ABG, rhFGF-2 therapy alone, or ABG alone. Periodontal examination and periapical radiography were performed preoperatively and at 3, 6, and 12 months postoperatively. RESULTS At the 12 months follow-up, all three groups showed significant improvement in the clinical attachment level (CAL): 5.6 ± 1.6, 5.8 ± 1.7, and 5.2 ± 1.6 mm in the rhFGF-2 + ABG, rhFGF-2 alone, and ABG alone groups, respectively, with no significant inter-group differences (p < .05). rhFGF-2 therapy (alone or in combination) resulted in greater bone defect filling (BDF) (2.3 ± 1.2 mm and 2.6 ± 1.9 mm, respectively) than ABG therapy alone (1.2 ± 1.2 mm). Gingival recession was lesser in the ABG alone (1.2 ± 1.1 mm) and rhFGF-2 + ABG groups (1.4 ± 0.8 mm) than in the rhFGF-2 alone group (2.2 ± 1.2 mm). CONCLUSION The results of this study showed that at 12 months postoperatively, all treatments resulted in statistically significant clinical improvements compared to the baseline. From these results, it can be concluded that rhFGF-2 promotes hard tissue regeneration in intraosseous defects.
Collapse
Affiliation(s)
- Kosuke Kojima
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Yohei Kamata
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Tomoko Shimizu
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Satsuki Sato
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Sota Suzuki
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Yuya Takanashi
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Sawako Hojo
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Takeshi Yoshino
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Shinya Fuchida
- Department of Education PlanningKanagawa Dental UniversityYokosukaJapan
| | - Toshiyuki Tamura
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | | | - Toshiro Kodama
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Takaomi Kessoku
- Department of GastroenterologyInternational University Health and Welfare Graduate School of MedicineChibaJapan
| | - Shunsuke Oyamada
- Department of BiostatisticsJORTC Data Center 2‐54‐6‐302TokyoJapan
| |
Collapse
|
3
|
Sexton B, Han Y, Dal-Fabbro R, Xu J, Kaigler D, Bottino MC. The role of fibroblast growth factor-2 in modulating the differentiation of periodontal ligament and alveolar bone-derived stem cells. Arch Oral Biol 2024; 165:106027. [PMID: 38870610 DOI: 10.1016/j.archoralbio.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.
Collapse
Affiliation(s)
- Benjamin Sexton
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuanyuan Han
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Shakya A, Li Y, Chang NW, Liu X. Supra-Alveolar Bone Regeneration: Progress, Challenges, and Future Perspectives. COMPOSITES. PART B, ENGINEERING 2024; 283:111673. [PMID: 39071449 PMCID: PMC11270636 DOI: 10.1016/j.compositesb.2024.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Periodontitis is a highly prevalent disease that damages the supporting tissues of a tooth, including the alveolar bone. Alveolar bone loss owing to periodontitis is broadly categorized as supra-alveolar and intra-alveolar bone loss. In intra-alveolar bone loss, the defect has an angular or oblique orientation to the long axis of the tooth in an apical direction. In contrast, the defect is perpendicular to the long axis of the tooth in supra-alveolar bone loss. Unlike intra-alveolar bone defects, supra-alveolar bone defects lack supporting adjacent space, which makes supra-alveolar bone regeneration more challenging. In addition, the limited availability of resources in terms of vascularity and underlying tissues is another obstacle to supra-alveolar bone regeneration. Currently, supra-alveolar bone loss is the least predictable periodontal defect type in regenerative periodontal therapy. In addition, supra-alveolar bone loss is much more common than other alveolar bone loss. Despite its prevalence, research on supra-alveolar bone regeneration remains sparse, indicating an unmet need for significant research efforts in this area. This review summarize recent advances, obstacles, and future directions in the field of supra-alveolar bone regeneration. We discuss the biomaterials, bioactive molecules, and cells that have been tested for supra-alveolar bone regeneration, followed by pre-clinical and clinical approaches employed in this field. Additionally, we highlight obstacles and present future directions that will propel supra-alveolar bone research forward.
Collapse
Affiliation(s)
- Ajay Shakya
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246
| | - Yingzi Li
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, MO 65211
| | - Nai-wen Chang
- Department of Periodontology, Texas A&M University School of Dentistry, Dallas, TX 75246
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, MO 65211
| |
Collapse
|
5
|
Matsuda S, Ueda T, Nakashima F, Ninomiya Y, Yasuda K, Sasaki S, Hamamoto Y, Iwata T, Ouhara K, Mihara N, Kakimoto N, Mizuno N. Predictive factors of periodontal regeneration outcomes using rhFGF-2: A case-control study. J Periodontal Res 2024; 59:679-688. [PMID: 38527968 DOI: 10.1111/jre.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the factors influencing the clinical outcomes of regenerative therapy using recombinant human fibroblast growth factor-2 (rhFGF-2). BACKGROUND rhFGF-2 promotes periodontal regeneration, and identifying the factors influencing this regeneration is important for optimizing the effectiveness of rhFGF-2. METHODS AND MATERIALS This study used a hospital information-integrated database to identify patients who underwent periodontal regenerative therapy with rhFGF-2. Factors included age, smoking status, diabetes mellitus (DM), periodontal inflamed surface area (PISA) at the initial visit, whether the most posterior tooth was involved or not, and preoperative radiological bone defect angle. Periodontal regenerative therapy outcomes were defined as good if radiographic bone fill ≥35% or periodontal pocket closure at 9-15 months after surgery. Bone fill rate (%) and periodontal pocket depth (mm) were also used as outcome measures. Factors were evaluated by simple regression analysis, and then the association between factors and the outcomes was determined by multivariate analysis. RESULTS PISA and age at the first visit did not significantly influence the success or failure of bone fill rate byrhFGF-2. However, DM, radiographic bone defect angle, and the most posterior tooth significantly influenced the regenerative effect (success/failure in bone fill) of rhFGF-2. The most posterior tooth was significantly associated with bone fill rate by rhFGF-2. Examination of the association between pocket closure and factors shows that the most posterior tooth significantly influenced. The most posterior tooth and preoperative PPD were significantly associated with pocket reduction depth. For the most posterior tooth, a significantly higher bone regeneration rate (p < .05) was observed with a combination of autologous bone graft and rhFGF-2 than with rhFGF-2 alone, and the effect was significant in multivariate analysis. CONCLUSIONS The radiographic bone defect angle, the involvement of most posterior teeth, and the presence of DM influenced the effectiveness of rhFGF-2 in periodontal regeneration. However, PISA values and age at the initial visit had no significant effect.
Collapse
Affiliation(s)
- Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoya Ueda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fuminori Nakashima
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yurika Ninomiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Yasuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Mihara
- Hiroshima University Hospital, Medical Informatics & Systems Management, Hiroshima, Japan
| | - Naoya Kakimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Nakayama Y, Tabe S, Igarashi K, Moriya S, Katsumata T, Kobayashi R, Nakagawa S, Nishino T, Fukuoka N, Hosono K, Yamasaki M, Yamazaki Y, Ogihara-Takeda M, Ito S, Saito Y, Yamaguchi A, Tsuruya Y, Yamazaki-Takai M, Yoshino S, Takai H, Ogata Y. Comparison of early wound healing using modified papilla preservation technique between enamel matrix derivative and recombinant human fibroblast growth factor. J Periodontal Implant Sci 2024; 54:236-252. [PMID: 38014774 PMCID: PMC11377897 DOI: 10.5051/jpis.2303080154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
PURPOSE Enamel matrix derivative (EMD) has demonstrated beneficial effects on wound healing following surgery. However, the effects of recombinant human fibroblast growth factor 2 (rhFGF-2) in periodontal regeneration therapy have not been extensively studied. This retrospective study was conducted to compare the wound healing outcomes of the modified papilla preservation technique (mPPT) between EMD and rhFGF-2 therapies. METHODS A total of 79 sites were evaluated for early wound healing using the modified early wound healing index (mEHI), which included 6 items: incision, fibrin clotting, step, redness, swelling, and dehiscence. A numeric analog scale, along with postoperative images of the 6 mEHI items, was established and used for the evaluations. The inter-rater reliability of the mEHI was assessed via intraclass correlation coefficients (ICCs). After adjusting for factors influencing the mPPT, the differences in mEHI scores between the EMD and rhFGF-2 groups were statistically analyzed. Additionally, radiographic bone fill (RBF) was evaluated 6 months after surgery. RESULTS The ICC of the mEHI was 0.575. The mEHI, redness score, and dehiscence scores were significantly higher in the rhFGF-2 group (n=33) than in the EMD group (n=46). Similar results were observed in the subgroup of patients aged 50 years or older, but not in those younger than 50 years. In the subgroup with non-contained bone defects, related results were noted, but not in the subgroup with contained bone defects. However, early wound healing did not correlate with RBF at 6 months after surgery. CONCLUSIONS Within the limitations of this study, the findings suggest that early wound healing following the use of mPPT with rhFGF-2 is somewhat superior to that observed after mPPT with EMD. However, mEHI should be improved for use as a predictive tool for early wound healing and to reflect clinical outcomes after surgery.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.
| | - Shinichi Tabe
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kazuma Igarashi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Satoshi Moriya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Tsuyoshi Katsumata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Ryo Kobayashi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Shuta Nakagawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Tomoko Nishino
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Namiko Fukuoka
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kota Hosono
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Mai Yamasaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yosuke Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Moe Ogihara-Takeda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Shoichi Ito
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yumi Saito
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Arisa Yamaguchi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Mizuho Yamazaki-Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Shoichi Yoshino
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
7
|
Sam YH, Nibali L, Ghuman M. Periodontal granulation tissue - To remove or not to remove, that is the question. J Periodontal Res 2024; 59:636-646. [PMID: 38686698 DOI: 10.1111/jre.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
Formation of granulation tissue is a fundamental phase in periodontal wound healing with subsequent maturation leading to regeneration or repair. However, persistently inflamed granulation tissue presents in osseous defects as a result of periodontitis and is routinely disrupted and discarded with non-surgical and surgical therapy to facilitate wound healing or improve chances of regeneration. Histological assessment suggests that granulation tissue from periodontitis-affected sites is effectively a chronic inflammatory tissue resulting from impaired wound healing due to persistence of bacterial dysbiotic bioflim. Nevertheless, the immunomodulatory potential and stem cell characteristics in granulation tissue have also raised speculation about the tissue's regenerative potential. This has led to the conception and recent implementation of surgical techniques which preserve granulation tissue with the intention of enhancing innate regenerative potential and improve clinical outcomes. As knowledge of fundamental cellular and molecular functions regulating periodontitis-affected granulation tissue is still scarce, this review aimed to provide a summary of current understanding of granulation tissue in the context of periodontal wound healing. This may provide new insights into clinical practice related to the management of granulation tissue and stimulate further investigation.
Collapse
Affiliation(s)
- Ye Han Sam
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Miyata N, Mori S, Murakami T, Bizenjima T, Seshima F, Imamura K, Saito A. Combined Effects of Fibroblast Growth Factor-2 and Carbonate Apatite Granules on Periodontal Healing: An In Vivo and In Vitro Study. Biomedicines 2024; 12:1664. [PMID: 39200129 PMCID: PMC11352071 DOI: 10.3390/biomedicines12081664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The aim of this study was to investigate in vivo and in vitro the effectiveness of the use of fibroblast growth factor (FGF)-2 with carbonate apatite (CO3Ap) on periodontal healing. Periodontal defects created in the maxillary first molars in rats were treated with FGF-2, CO3Ap, FGF-2 + CO3Ap or left unfilled. Healing was evaluated using microcomputed tomography, histological, and immunohistochemical analyses. In vitro experiments were performed to assess cellular behaviors and the expression of osteoblastic differentiation markers in MC3T3-E1 cells. At 4 weeks, the bone volume fraction in the FGF-2 + CO3Ap group was significantly greater than that in the CO3Ap group, but there was no significant difference from the FGF-2 group. The FGF-2 + CO3Ap group demonstrated greater new bone compared with the FGF-2 or CO3Ap group. The FGF-2 + CO3Ap group showed greater levels of osteocalcin-positive cells compared with the CO3Ap group, but there was no significant difference from the FGF-2 group. In vitro, the FGF-2 + CO3Ap group exhibited a greater extent of cell attachment and more elongated cells compared with the CO3Ap group. Compared with the CO3Ap group, the FGF-2 + CO3Ap group showed significantly higher viability/proliferation, but the expressions of Runx2 and Sp7 were reduced. The results indicated that the use of FGF-2 with CO3Ap enhanced healing in the periodontal defects. FGF-2 promoted cell attachment to and proliferation on CO3Ap and regulated osteoblastic differentiation, thereby contributing to novel bone formation.
Collapse
Affiliation(s)
- Naoki Miyata
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
| | - Shinta Mori
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
| | - Takahiro Bizenjima
- Chiba Dental Center, Tokyo Dental College, Mihama-ku, Chiba 2618502, Japan;
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| |
Collapse
|
9
|
Sirisereephap K, Tamura H, Lim JH, Surboyo MDC, Isono T, Hiyoshi T, Rosenkranz AL, Sato-Yamada Y, Domon H, Ikeda A, Hirose T, Sunazuka T, Yoshiba N, Okada H, Terao Y, Maeda T, Tabeta K, Chavakis T, Hajishengallis G, Maekawa T. A novel macrolide-Del-1 axis to regenerate bone in old age. iScience 2024; 27:108798. [PMID: 38261928 PMCID: PMC10797555 DOI: 10.1016/j.isci.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Aging is associated with increased susceptibility to chronic inflammatory bone loss disorders, such as periodontitis, in large part due to the impaired regenerative potential of aging tissues. DEL-1 exerts osteogenic activity and promotes bone regeneration. However, DEL-1 expression declines with age. Here we show that systemically administered macrolide antibiotics and a non-antibiotic erythromycin derivative, EM-523, restore DEL-1 expression in 18-month-old ("aged") mice while promoting regeneration of bone lost due to naturally occurring age-related periodontitis. These compounds failed to induce bone regeneration in age-matched DEL-1-deficient mice. Consequently, these drugs promoted DEL-1-dependent functions, including alkaline phosphatase activity and osteogenic gene expression in the periodontal tissue while inhibiting osteoclastogenesis, leading to net bone growth. Macrolide-treated aged mice exhibited increased skeletal bone mass, suggesting that this treatment may be pertinent to systemic bone loss disorders. In conclusion, we identified a macrolide-DEL-1 axis that can regenerate bone lost due to aging-related disease.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hikaru Tamura
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meircurius Dwi Condro Surboyo
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Andrea L. Rosenkranz
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yurie Sato-Yamada
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Akari Ikeda
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
10
|
Miki K, Takeshita N, Yamashita M, Kitamura M, Murakami S. Calcitonin gene-related peptide regulates periodontal tissue regeneration. Sci Rep 2024; 14:1344. [PMID: 38228723 PMCID: PMC10791604 DOI: 10.1038/s41598-024-52029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide composed of 37 amino acids secreted from the sensory nerve endings, reportedly possesses various physiological effects, such as vasodilation and neurotransmission. Recently, there have been increasing reports of the involvement of CGRP in bone metabolism; however, its specific role in the pathogenesis of periodontitis, particularly in the repair and healing processes, remains to be elucidated. Therefore, this study aimed to investigate dynamic expression patterns of CGRP during the destruction and regeneration processes of periodontal tissues in a mouse model of experimental periodontitis. We also explored the effects of CGRP on periodontal ligament cells, which can differentiate to hard tissue-forming cells (cementoblasts or osteoblasts). Our findings demonstrated that CGRP stimulation promotes the differentiation of periodontal ligament cells into hard tissue-forming cells. Experimental results using a ligature-induced periodontitis mouse model also suggested fluctuations in CGRP expression during periodontal tissue healing, underscoring the vital role of CGRP signaling in alveolar bone recovery. The study results highlight the important role of nerves in the periodontal ligament not only in sensory reception in the periphery, as previously known, but also in periodontal tissue homeostasis and tissue repair processes.
Collapse
Affiliation(s)
- Koji Miki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noboru Takeshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Najeeb S, Manekia FA, Sadiq MSK, Adanir N, Khurshid Z, Zafar MS, Heboyan A. The effect of fibroblast growth factor-2 on the outcomes of tooth replantation: A systematic review of animal studies. Sci Prog 2024; 107:368504241228964. [PMID: 38489928 PMCID: PMC10943733 DOI: 10.1177/00368504241228964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background/Aim: The ideal treatment of tooth avulsion is replantation. However, replanting teeth may lead to root resorption. Fibroblast growth factor-2 (FGF-2) is a cytokine that plays an important role in wound repair and tissue regeneration. Recently, FGF-2 has been studied a potential regenerative agent to prevent root resorption and ankylosis. The aim of this review is to analyze and summarize the currently available literature focusing on using FGF-2 based regenerative modalities to improve the outcomes of tooth replantation. Materials and Methods: An electronic search was conducted via PubMed/Medline, Google Scholar and ISI Web of Knowledge, using the Medical Subject Headings (MeSH) terms "Basic fibroblast growth factor," "Fibroblast growth factor-2," "tooth replantation," and "replantation" for studies published between January 2001 and June 2021. Data was extracted and quality assessment was carried using the ARRIVE guidelines. Results: Nine animal studies were included in this review. In six studies, FGF-2 had a favorable effect on the tissue regeneration around roots of replanted teeth when compared to other treatment groups. However, quality assessment of the studies revealed many sources of bias and deficiencies in the studies. Conclusions: Within the limitations of this study, it may be concluded that FGF-2 may improve the outcomes of delayed replantation of avulsed teeth. However, more long-term animal studies, with improved experimental designs, and clinical trials are required to determine the clinical potential of the growth factor in improving the outcomes of delayed tooth replantation.
Collapse
Affiliation(s)
- Shariq Najeeb
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Evidentia Dental Outcomes Research, Calgary, AB, Canada
| | | | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Ciences, Karachi, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Kingdom of Saudi Arabia
- Current affiliation: Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
- Current affiliation: Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, Armenia
| |
Collapse
|
12
|
Geisinger ML. NexGen regen? Challenges and opportunities for growth factors and signaling agents in periodontal regeneration at intrabony defects. FRONTIERS IN DENTAL MEDICINE 2023; 4:1239149. [PMID: 39916925 PMCID: PMC11797756 DOI: 10.3389/fdmed.2023.1239149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 02/09/2025] Open
Abstract
Regeneration of periodontal tissues that have been destroyed by inflammatory periodontitis involves the initiation of tissue engineering and wound healing of multiple tissues involved in the function of the teeth, including the periodontal ligament, cementum, and alveolar bone. Such regeneration is termed guided tissue regeneration and the unique challenges to reconstruct these tissues involve a complex interplay of cells, signaling molecules, and scaffolds. While traditional guided tissue regeneration treatments have involved cell occlusive membranes, bone replacement graft scaffolds, and endogenous multipotent mesenchymal stem cells, the use of adjunctive materials to enhance healing outcomes has been studied and many such adjunctive factors are in common current clinical use. This report will focus on the current and emerging adjunctive growth factors and signaling molecules that can be used to optimize periodontal regeneration in periodontal intrabony defects, their mechanisms of action, the challenges associated with periodontal regeneration, and future avenues for research.
Collapse
Affiliation(s)
- Maria L. Geisinger
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
14
|
Pouliou MM, Fragkioudakis I, Doufexi AE, Batas L. The role of rhFGF-2 in periodontal defect bone fill: A systematic review of the literature. J Periodontal Res 2023. [PMID: 37130815 DOI: 10.1111/jre.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Growth factors have been used with success in periodontal regeneration, especially in intrabony defects. Among those, the recombined form of fibroblast growth factor-2 (rhFGF-2) has been also examined. OBJECTIVE To address the outcomes of periodontal regeneration using rhFGF-2 alone or in combination with bone substitutes primarily in terms of Radiographic Bone Fill (RBF%) and secondary Probing Pocket Depth (PPD), and Probing Attachment Levels (PAL). MATERIAL AND METHODS A search in MEDLINE and EMBASE using the Ovid interface was conducted from 2000 up to and including the 12th of November 2022. Starting from the initially identified 1289 articles, 34 studies were selected for further analysis. Following the full-text screening, 7 of the 34 studies met the inclusion criteria and thus were included in the systematic review after assessing their quality according to the Newcastle-Ottawa scale (NOS). Clinical and radiographic results (bone gain, pocket depth, and clinical attachment level) after the application of FGF-2 alone or in combination with different carriers were studied in patients with intrabony defects of at least one wall and pocket depth greater than 4 mm. RESULTS Primary outcomes: RBF% was higher in studies using a combination of rhFGF-2 and bone substitutes (74.6 ± 20.0%) compared to others using the specific growth factor alone or negative controls (22.7 ± 20.7%). In terms of secondary outcomes, the analysis failed to show an additional benefit from the use of the rhFGF-2 alone or in combination with bone substitutes. CONCLUSION rhFGF-2 can improve RBF% in the treatment of periodontal defects, especially when it is used in combination with a bone substitute.
Collapse
Affiliation(s)
| | - Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology, and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini-Elisavet Doufexi
- Department of Preventive Dentistry, Periodontology, and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leonidas Batas
- Department of Preventive Dentistry, Periodontology, and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Kitamura M, Yamashita M, Miki K, Ikegami K, Takedachi M, Kashiwagi Y, Nozaki T, Yamanaka K, Masuda H, Ishihara Y, Murakami S. An exploratory clinical trial to evaluate the safety and efficacy of combination therapy of REGROTH® and Cytrans® granules for severe periodontitis with intrabony defects. Regen Ther 2022; 21:104-113. [PMID: 35785043 PMCID: PMC9234541 DOI: 10.1016/j.reth.2022.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Currently, flap operation (FOP) using REGROTH® (0.3% basic fibroblast growth factor [FGF-2]) is the standard treatment for periodontal regenerative therapy in Japan. However, the periodontal tissue regenerative effect with REGROTH® monotherapy is inadequate for severe alveolar bone defects. Therefore, in this study, we evaluated the safety and effectiveness of periodontal regenerative therapy for patients with severe periodontitis using REGROTH® (test medicine) combined with Cytrans® Granules (test device: carbonated apatite granules), which is a new artificial bone. Methods The study participants included 10 patients with severe periodontitis (mean age: 47.4 years). All participants provided written informed consents. In each patient, the intrabony defect site (mean bone defect depth: 5.7 mm) was defined as the test site. FOP was performed for the test site after the baseline investigation; moreover, the test medicine and test device were administered simultaneously. Furthermore, the observation of subjects’ general condition and test sites was conducted and the blood, urine, and periodontal tissue tests were performed up to 36 weeks after FOP. The rate of bone increase (%), clinical attachment level (CAL), probing pocket depth (PPD), bleeding on probing (BOP), tooth mobility (Mo), width of keratinized gingiva (KG), gingival recession (REC), gingival index (GI), and plaque index (PlI) were evaluated during the periodontal tissue investigation. Results As the primary endpoint, no adverse events related to the test medicine and test device occurred during the entire observation period of this study. Regarding the secondary endpoints, there was a significant increase in new alveolar bone (p = 0.003) and CAL acquisition (p = 0.001) as well as decrease in PPD (p = 0.002) and BOP (p = 0.016) at 36 weeks after administration of the test medicine and test device compared with the preoperative values. Furthermore, at 36 weeks after surgery, the Mo, GI, and PlI decreased to preoperative levels at 40%, 60%, and 30% of sites, respectively. However, at 36 weeks after surgery, there was no difference in KG and REC compared with their preoperative values. Conclusions The safety of periodontal regenerative therapy using the test medicine in combination with the abovementioned test device was confirmed. In addition, it was suggested that this periodontal regenerative therapy is effective for tissue regeneration in severe alveolar bone defects. This clinical trial was conducted after registering and publicizing as a specified clinical trial in the Japan registry of clinical trials (jRCTs051190045). The safety of flap operation using 0.3% FGF-2 and carbonated apatite was confirmed. The administration of 0.3% FGF-2 and carbonated apatite improved periodontitis. Combining 0.3% FGF-2 and carbonated apatite for severe alveolar bone defects. Periodontal regenerative therapy combining both could be effective.
Collapse
|
16
|
Mikami R, Sudo T, Fukuba S, Takeda K, Matsuura T, Kariya T, Takeuchi S, Ochiai A, Kawamoto S, Toyoshima K, Mizutani K, Arakawa S, Aoki A, Iwata T. Prognostic factors affecting periodontal regenerative therapy using recombinant human fibroblast growth factor-2: A 3-year cohort study. Regen Ther 2022; 21:271-276. [PMID: 36092500 PMCID: PMC9440263 DOI: 10.1016/j.reth.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Fibroblast growth factor-2 (FGF-2) has been reported to promote periodontal tissue regeneration. However, no study has investigated the long-term prognosis of periodontal regenerative therapy using FGF-2 to date. The aim of this study was to observe the long-term outcomes as well as to investigate the factors affecting the prognosis of periodontal regenerative therapy using FGF-2. Methods Sixty intrabony defects were prospectively investigated for three years after periodontal regenerative therapy with recombinant human FGF-2 (rhFGF-2) by evaluating probing pocket depth (PPD) and radiographic bone defect depth (RBD). The factors influencing RBD were assessed by conducting a multivariate linear regression analysis after adjusting for confounders. Results The mean age of the participants was 62.4 ± 13.4 years, and baseline PPD and RBD were 6.1 ± 1.9 mm and 4.5 ± 1.8 mm, respectively. At six months, one year, and three years after surgery, PPD and RBD had significantly improved to 4.2 ± 1.7, 3.7 ± 1.4, 4.0 ± 1.9 mm and to 3.08 ± 2.05, 2.73 ± 1.90, 2.51 ± 2.15 mm, respectively. At the three-year examination, a significant positive association was deteced between RBD reduction and RBD at baseline, while the association was not significant between RBD reduction and the radiographic bony angle, number of bony walls of the defect, or the furcation involvement at baseline. Conclusions rhFGF-2 was effective for alveolar bone regeneration in patients with periodontitis and maintained the improved parameters over the three-year observation period. The radiographic bone defect depth at baseline was found to be the factor affecting the periodontal regenerative therapy using rhFGF-2 in the intrabony defects. Trial registration number UMIN000027979. Mid-term observation following periodontal regenerative therapy using rhFGF-2. Reductions in PPD and radiographic defect depth were maintained for 3 years. Evaluation of prognostic factors of rhFGF-2 application in intrabony defects. Preoperative radiographic defect depth predicts postoperative bone fill.
Collapse
Affiliation(s)
- Risako Mikami
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, CA, USA
| | - Tomoaki Kariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Shunsuke Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Akane Ochiai
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Sakurako Kawamoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
- Corresponding author. Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan. Fax: +81 3 5803-0196.
| | - Shinichi Arakawa
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Zebrowitz E, Aslanukov A, Kajikawa T, Bedelbaeva K, Bollinger S, Zhang Y, Sarfatti D, Cheng J, Messersmith PB, Hajishengallis G, Heber-Katz E. Prolyl-hydroxylase inhibitor-induced regeneration of alveolar bone and soft tissue in a mouse model of periodontitis through metabolic reprogramming. FRONTIERS IN DENTAL MEDICINE 2022; 3:992722. [PMID: 37641630 PMCID: PMC10462383 DOI: 10.3389/fdmed.2022.992722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Bone injuries and fractures reliably heal through a process of regeneration with restoration to original structure and function when the gap between adjacent sides of a fracture site is small. However, when there is significant volumetric loss of bone, bone regeneration usually does not occur. In the present studies, we explore a particular case of volumetric bone loss in a mouse model of human periodontal disease (PD) in which alveolar bone surrounding teeth is permanently lost and not replaced. This model employs the placement a ligature around the upper second molar for 10 days leading to inflammation and bone breakdown and faithfully replicates the bacterially-induced inflammatory etiology of human PD to induce bone degeneration. After ligature removal, mice are treated with a timed-release formulation of a small molecule inhibitor of prolylhydroxylases (PHDi; 1,4-DPCA) previously shown to induce epimorphic regeneration of soft tissue in non-regenerating mice. This PHDi induces high expression of HIF-1α and is able to shift the metabolic state from OXPHOS to aerobic glycolysis, an energetic state used by stem cells and embryonic tissue. This regenerative response was completely blocked by siHIF1a. In these studies, we show that timed-release 1,4-DPCA rapidly and completely restores PD-affected bone and soft tissue with normal anatomic fidelity and with increased stem cell markers due to site-specific stem cell migration and/or de-differentiation of local tissue, periodontal ligament (PDL) cell proliferation, and increased vascularization. In-vitro studies using gingival tissue show that 1,4-DPCA indeed induces de-differentiation and the expression of stem cell markers but does not exclude the role of migrating stem cells. Evidence of metabolic reprogramming is seen by the expression of not only HIF-1a, its gene targets, and resultant de-differentiation markers, but also the metabolic genes Glut-1, Gapdh, Pdk1, Pgk1 and Ldh-a in jaw periodontal tissue.
Collapse
Affiliation(s)
- Elan Zebrowitz
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Current address: New York Medical College, 40 Sunshine Cottage Rd, Valhalla New York, United States of America
| | - Azamat Aslanukov
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Tetsuhiro Kajikawa
- University of Pennsylvania School of Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, Pennsylvania, United States of America
| | - Kamila Bedelbaeva
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Sam Bollinger
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Current address: Cancer Biology Graduate Group, Stanford, California, United States of America
| | - Yong Zhang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Current address: Rockland Immunochemicals, Inc., Limerick, Pennsylvania, United States of America
| | - David Sarfatti
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Jing Cheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Current address: Alcon Laboratories, 11460 Johns Creek Pkwy, Duluth, Georgia, United States of America
| | - Phillip B. Messersmith
- Department of Bioengineering and Materials Science and Engineering, UC Berkeley, Berkeley California, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, Pennsylvania, United States of America
| | - Ellen Heber-Katz
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| |
Collapse
|
18
|
Seshima F, Bizenjima T, Aoki H, Imamura K, Kita D, Irokawa D, Matsugami D, Kitamura Y, Yamashita K, Sugito H, Tomita S, Saito A. Periodontal Regenerative Therapy Using rhFGF-2 and Deproteinized Bovine Bone Mineral versus rhFGF-2 Alone: 4-Year Extended Follow-Up of a Randomized Controlled Trial. Biomolecules 2022; 12:1682. [PMID: 36421696 PMCID: PMC9688011 DOI: 10.3390/biom12111682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 08/06/2023] Open
Abstract
The aim of this study was to evaluate longitudinal outcomes of recombinant human fibroblast growth factor (rhFGF)-2 plus deproteinized bovine bone mineral (DBBM) therapy in comparison with rhFGF-2 alone for treating periodontal intrabony defects. This study describes 4-year follow-up outcomes of the original randomized controlled trial. Intrabony defects in periodontitis patients were treated with rhFGF-2 (control) or rhFGF-2 plus DBBM (test). Clinical, radiographic, and patient-reported outcome (PRO) measures were used to evaluate the outcomes. Thirty-two sites were able to be followed up. At 4 years postoperatively, clinical attachment level (CAL) gains in the test and control groups were 3.5 ± 1.4 mm and 2.7 ± 1.4 mm, respectively, showing significant improvement from preoperative values but no difference between groups. Both groups showed an increase in radiographic bone fill (RBF) over time. At 4 years, the mean value for RBF in the test group (62%) was significantly greater than that in the control group (42%). In 1-2-wall defects, the test treatment yielded significantly greater RBF than the control treatment. No significant difference in PRO scores was noted between the groups. Although no significant difference in CAL gain was found between the groups at the 4-year follow-up, the combination treatment significantly enhanced RBF. Favorable clinical, radiographic outcomes, and PRO in both groups can be maintained for at least 4 years.
Collapse
Affiliation(s)
- Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | | | - Hideto Aoki
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo 1010061, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo 1010061, Japan
| | - Daichi Kita
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Daisuke Irokawa
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Yurie Kitamura
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Keiko Yamashita
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Hiroki Sugito
- Department of Dental Hygiene, Tokyo Dental Junior College, Tokyo 1010061, Japan
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo 1010061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo 1010061, Japan
| |
Collapse
|
19
|
Iwayama T, Sakashita H, Takedachi M, Murakami S. Periodontal tissue stem cells and mesenchymal stem cells in the periodontal ligament. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:172-178. [PMID: 35607404 PMCID: PMC9123259 DOI: 10.1016/j.jdsr.2022.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal tissue stem cells, which play a crucial role in maintaining the homeostasis of periodontal tissues, are found in the periodontal ligament (PDL). These cells have long been referred to as mesenchymal stem/stromal cells (MSCs), and their clinical applications have been extensively studied. However, tissue stem cells in the PDL have not been thoroughly investigated, and they may be different from MSCs. Recent advances in stem cell biology, such as genetic lineage tracing, identification of label-retaining cells, and single-cell transcriptome analysis, have made it possible to analyze tissue stem cells in the PDL in vivo. In this review, we summarize recent findings on these stem cell populations in PDL and discuss future research directions toward developing periodontal regenerative therapy.
Collapse
|
20
|
Effects of Human Deciduous Dental Pulp-Derived Mesenchymal Stem Cell-Derived Conditioned Medium on the Metabolism of HUVECs, Osteoblasts, and BMSCs. Cells 2022; 11:cells11203222. [PMID: 36291089 PMCID: PMC9600042 DOI: 10.3390/cells11203222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we assessed the effects of human deciduous dental pulp-derived mesenchymal stem cell-derived conditioned medium (SHED-CM) on the properties of various cell types. The effects of vascular endothelial growth factor (VEGF) in SHED-CM on the luminal architecture, proliferative ability, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) were determined. We also investigated the effects of SHED-CM on the proliferation of human-bone-marrow mesenchymal stem cells (hBMSCs) and mouse calvarial osteoblastic cells (MC3T3-E1) as well as the expression of ALP, OCN, and RUNX2. The protein levels of ALP were examined using Western blot analysis. VEGF blockade in SHED-CM suppressed the proliferative ability and angiogenic potential of HUVECs, indicating that VEGF in SHED-CM contributes to angiogenesis. The culturing of hBMSCs and MC3T3-E1 cells with SHED-CM accelerated cell growth and enhanced mRNA expression of bone differentiation markers. The addition of SHED-CM enhanced ALP protein expression in hBMSCs and MT3T3-E1 cells compared with that of the 0% FBS group. Furthermore, SHED-CM promoted the metabolism of HUVECs, MC3T3-E1 cells, and hBMSCs. These findings indicate the potential benefits of SHED-CM in bone tissue regeneration.
Collapse
|
21
|
Murakami T, Imamura K, Watanabe-Egawa N, Tomita S, Saito A. Surgical Periodontal Therapy Using Recombinant Human Fibroblast Growth Factor-2 in Combination with Carbonate Apatite Granules for Stage III Grade B Periodontitis: A Case Report with 1-year Follow-up. THE BULLETIN OF TOKYO DENTAL COLLEGE 2022; 63:145-153. [PMID: 35965084 DOI: 10.2209/tdcpublication.2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This report describes a case of generalized chronic periodontitis requiring periodontal treatment including regenerative therapy. The patient was a 60-year-old woman who visited the Tokyo Dental College Suidobashi Hospital with the chief complaint of tooth mobility and pain in tooth #26. Periodontal examination at the first visit revealed that 32.0% of sites had a probing depth of ≥4 mm and 43.8% bleeding on probing. Radiographic examination revealed vertical bone resorption in #17. Horizontal resorption was noted in other areas. Initial periodontal therapy consisting of plaque control, scaling and root planing, and caries treatment was performed based on a clinical diagnosis of Stage III Grade B periodontitis. Tooth #26 was extracted due to bone resorption extending as far as the root apex. After reevaluation, periodontal regenerative therapy using recombinant human fibroblast growth factor-2 (rhFGF-2) in combination with carbonate apatite (CO3Ap) granules was performed for #17. Following reevaluation, a zirconia crown (#16) and zirconia bridge (#24-27) were placed. Following further reevaluation, the patient was placed on supportive periodontal therapy (SPT). The periodontal regenerative therapy using rhFGF-2 with CO3Ap granules yielded an improvement in the vertical bone resorption observed in #17. This improvement has been adequately maintained over a 1-year period postoperatively. Continued SPT is needed to maintain stable periodontal conditions.
Collapse
|
22
|
Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis 2022; 60:e23499. [PMID: 36086991 PMCID: PMC9787372 DOI: 10.1002/dvg.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
The periodontal complex involves the hard and soft tissues which support dentition, comprised of cementum, bone, and the periodontal ligament (PDL). Periodontitis, a prevalent infectious disease of the periodontium, threatens the integrity of these tissues and causes irreversible damage. Periodontal therapy aims to repair and ultimately regenerate these tissues toward preserving native dentition and improving the physiologic integration of dental implants. The PDL contains multipotent stem cells, which have a robust capacity to differentiate into various types of cells to form the PDL, cementum, and alveolar bone. Selection of appropriate growth factors and biomaterial matrices to facilitate periodontal regeneration are critical to recapitulate the physiologic organization and function of the periodontal complex. Herein, we discuss the current state of clinical periodontal regeneration including a review of FDA-approved growth factors. We will highlight advances in preclinical research toward identifying additional growth factors capable of robust repair and biomaterial matrices to augment regeneration similarly and synergistically, ultimately improving periodontal regeneration's predictability and long-term efficacy. This review should improve the readers' understanding of the molecular and cellular processes involving periodontal regeneration essential for designing comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- W. Benton Swanson
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yao Yao
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
23
|
Nakane-Koyachi S, Imamura K, Saito A. Treatment of Chronic Periodontitis with Periodontal Surgery Including Regenerative Therapy Using Recombinant Human Fibroblast Growth Factor-2 and Papilla Preservation Technique: A Case Report with a Two-year Follow-up. THE BULLETIN OF TOKYO DENTAL COLLEGE 2022; 63:95-103. [PMID: 35613866 DOI: 10.2209/tdcpublication.2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This report describes a case of generalized chronic periodontitis requiring periodontal therapy including periodontal regeneration. The patient was a 59-year-old man who visited the Tokyo Dental College Suidobashi Hospital with the chief complaint of mobility in tooth #47. Periodontal examination at the first visit revealed that 32.1% of sites had a probing depth of ≥4 mm and 32.7% of sites bleeding on probing. Radiographic examination revealed vertical bone resorption in #26 and horizontal resorption in #12, 13, 42, and 43. Based on a clinical diagnosis of severe chronic periodontitis, initial periodontal therapy consisting of plaque control, scaling and root planing, occlusal adjustment, caries treatment, and placement of an occlusal splint was performed. Tooth #47 was extracted due to bone resorption extending as far as the root apex. After reevaluation, surgical periodontal treatment was performed at the selected site. Periodontal regenerative therapy using recombinant human fibroblast growth factor (rhFGF)-2 and papilla preservation technique was performed for #26. To reduce periodontal pockets, open flap debridement was implemented for #12, 13, 42, and 43. After reevaluation, the patient was placed on supportive periodontal therapy (SPT). Periodontal regenerative therapy with rhFGF-2 and modified papilla preservation technique yielded an improvement in angular bone resorption which has been properly maintained for two years. Periodontal therapy with open flap debridement resulted in an improvement in horizontal bone resorption. Continued SPT is needed to maintain a stable periodontal condition.
Collapse
|
24
|
Bin Homran FM, Alaskari AA, Devaraj A, Udeabor SE, Al-Hakami A, Joseph B, Haralur SB, Chandramoorthy HC. Chronic metabolic and induced stress impacts mesenchymal stromal cell differentiation and modulation of dental origin in-vitro. Saudi J Biol Sci 2022; 29:2230-2237. [PMID: 35531217 PMCID: PMC9072879 DOI: 10.1016/j.sjbs.2021.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The impact of induced (smoking) and metabolic stress (diabetes) on dental stem cells with respect to pre-impact consideration on differentiation and bone formation were investigated. The progenitor stem cells isolated from dental pulp, follicle and gingival tissues were phenotyped and subjected to nicotine and high glucose stress mimicking the smoking and diabetic condition in-vitro. The results showed that the cellular viability post treatment with 100 µM nicotine and 10uM glucose was about 86% to 89% respectively in all the three cell types while about 73% in combined nicotine and glucose treatment. No variation in the expression of pro-inflammatory TNF-α, IL-1β and IL-12 in all the three cell types were noticed. The observed viability in nicotine treated cells were due to elevated IL-6, IL-10 while in glucose was due to brain derived neurotropic factor (BDNF). Higher expression of IL-4, IL-6, IL-10, TGF-β and heme oxygenase −1 (HO-1) were found high in both stressors treated cells. Differentiation and mineralization markers Alkaline phosphatase (ALP), Collagenase I (COL1), Osteocalcin, Runt related transcription factor 2 (RUNX2), Osteopontin and Bone sialoprotein were expressed in the dental pulp stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) at varying levels post nicotine or glucose treatment while not significantly observed in dental follicular stem cells (DFSCs). Therefore, it is evident that the stem cells of varied dental origin responded to the stress are more or less uniform with physiological delay in differentiation into osteoblast. It is evident from the study that, the metabolic or induced stress subverts the process of regenerative healing by mesenchymal stromal cells with their anatomical niche.
Collapse
Affiliation(s)
- Faris M Bin Homran
- Department of Prosthodontics , College of Dentistry, King Khalid University, Abha, Saudi Arabia.,Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed A Alaskari
- Department of Prosthodontics , College of Dentistry, King Khalid University, Abha, Saudi Arabia.,Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samuel Ebele Udeabor
- Department Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Betsy Joseph
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Satheesh B Haralur
- Department of Prosthodontics , College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
25
|
Castro JPGD, Aguiar TRDS, Tristão GC, Alves GG, Pinheiro MPF, Quinelato V, Casado PL, Romanos GE. Peri-implant health after supportive mucositis therapy is associated with increased levels of FGF-2. Braz Dent J 2021; 32:55-66. [PMID: 34877978 DOI: 10.1590/0103-6440202104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to analyze Fibroblast Growth Factor-2 (FGF-2) levels in the peri-implant crevicular fluid throughout supportive mucositis therapy. Twenty-six participants with Branemark protocol prosthesis were divided into two groups: the control group, characterized by healthy peri-implants, and the mucositis group, presenting a diagnosis of peri-implant mucositis. All participants underwent clinical examination, radiographic analysis, prosthesis removal, and non-invasive peri-implant therapy (mechanical debridement associated with chlorhexidine 0.12%) during a period of 36 days divided into three intervals. Peri-implant crevicular fluid samples were collected at each interval in order to analyze FGF-2 levels by immuno-enzymatic assay. The control and mucositis groups showed difference in keratinized mucosa. The smaller the range of keratinized mucosa the higher susceptibility of peri-implant mucositis. Throughout the treatment intervals, participants were diagnosed in different groups indicating whether or not the non-invasive therapy was able to treat peri-implant mucositis. There was a significant difference of FGF-2 levels between groups, with the higher FGF-2 levels in the control group (p=0.01). After supportive therapy, the mucositis group showed significantly increased FGF-2 levels (p<0.01) compared to initial levels. After 36 days of supportive therapy, there was a reduction of peri-implant mucositis from 70% to 23%. Clinical and laboratory outcomes showed a clear correlation since FGF-2 levels increased after 36 days. It was concluded that the therapy protocol was effective and promoted a regenerative reaction and FGF-2 can be considered a future target for peri-implant mucositis understanding.
Collapse
Affiliation(s)
| | - Telma Regina da Silva Aguiar
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - Gilson Coutinho Tristão
- Department of Clinical dentistry, Fluminense Federal University - School of Dentistry- Niterói- RJ- Brazil
| | - Gutemberg Gomes Alves
- Cellular and Molecular Biology Department, Fluminense Federal University - School of Biology - Niterói- RJ- Brazil
| | | | - Valquiria Quinelato
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - Priscila Ladeira Casado
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - George E Romanos
- Stony Brook University - School of Dental Medicine - United States
| |
Collapse
|
26
|
Inhibition of c-Jun N-terminal kinase signaling promotes osteoblastic differentiation of periodontal ligament stem cells and induces regeneration of periodontal tissues. Arch Oral Biol 2021; 134:105323. [PMID: 34896864 DOI: 10.1016/j.archoralbio.2021.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Few clinical treatments to regenerate periodontal tissue lost due to severe endodontic and periodontal disease have yet been developed. Therefore, the development of new treatment methods for the regeneration of periodontal tissue is expected. The purpose of this study was to investigate the effects of a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, on the osteoblastic differentiation of periodontal ligament stem cells (PDLSCs) in vitro, and the function of SP600125 on the regeneration of alveolar bone in vivo. DESIGN Alizarin red S staining, quantitative RT-PCR, and western blotting analysis was performed to determine whether SP600125 affects osteoblastic differentiation of human PDLSCs (HPDLSCs) and bone-related intracellular signaling. The effect of SP600125 on the regeneration of alveolar bone was assessed by using a rat periodontal defect model. The healing of periodontal defects was evaluated using micro-CT scans and histological analysis. RESULTS SP600125 promoted the osteoblastic differentiation such as Alizarin red S-positive mineralized nodule formation and the expression of osteoblast-related genes in HPDLSCs under osteogenic conditions. In addition, this inhibitor upregulated the BMP2 expression and the phosphorylation of Smad1/5/8 in HPDLSCs under the same conditions. The inhibition of Smad1/5/8 signaling by LDN193189 suppressed the SP600125-induced osteoblastic differentiation of HPDLSCs. Furthermore, the application of SP600125 promoted the regeneration of not only alveolar bone but also PDL tissue in periodontal defects. CONCLUSION This study suggested that inhibition of JNK signaling promotes the osteoblastic differentiation of HPDLSCs through BMP2-Smad1/5/8 signaling, leading to the regeneration of periodontal tissues such as alveolar bone and PDL tissue.
Collapse
|
27
|
Abstract
Technological innovations in cellular and molecular aspects of tissue engineering --scaffolds, stem cells and 3D printed tissues --have been dramatically increased in the last decade. However, regenerative treatment still has challenges in translation to clinic. This is partly due to failure of addressing an essential element of wound healing, inflammation. It is now well-recognized that inflammation is an active process. This paradigm shift opened up a new avenue of therapeutic approaches called "host-modulation." Host-modulation therapies capable of modulating inflammatory response at multiple levels and mimicking the natural sequence of wound healing offer a new direction and promising clinical translation.
Collapse
|
28
|
Kanemoto Y, Miyaji H, Nishida E, Miyata S, Mayumi K, Yoshino Y, Kato A, Sugaya T, Akasaka T, Nathanael AJ, Santhakumar S, Oyane A. Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma- and precursor-assisted biomimetic process. J Periodontal Res 2021; 57:205-218. [PMID: 34786723 DOI: 10.1111/jre.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES In the treatment of severe periodontal destruction, there is a strong demand for advanced scaffolds that can regenerate periodontal tissues with adequate quality and quantity. Recently, we developed a plasma- and precursor-assisted biomimetic process by which a porous collagen scaffold (CS) could be coated with low-crystalline apatite. The apatite-coated collagen scaffold (Ap-CS) promotes cellular ingrowth within the scaffold compared to CS in rat subcutaneous tissue. In the present study, the osteogenic activity of Ap-CS was characterized by cell culture and rat skull augmentation tests. In addition, the periodontal tissue reconstruction with Ap-CS in a beagle dog was compared to that with CS. METHODS The plasma- and precursor-assisted biomimetic process was applied to CS to obtain Ap-CS with a low-crystalline apatite coating. The effects of apatite coating on the scaffold characteristics (i.e., surface morphology, water absorption, Ca release, protein adsorption, and enzymatic degradation resistance) were assessed. Cyto-compatibility and the osteogenic properties of Ap-CS and CS were assessed in vitro using preosteoblastic MC3T3-E1 cells. In addition, we performed in vivo studies to evaluate bone augmentation and periodontal tissue reconstruction with Ap-CS and CS in a rat skull and canine furcation lesion, respectively. RESULTS As previously reported, the plasma- and precursor-assisted biomimetic process generated a low-crystalline apatite layer with a nanoporous structure that uniformly covered the Ap-CS surface. Ap-CS showed significantly higher water absorption, Ca release, lysozyme adsorption, and collagenase resistance than CS. Cell culture experiments revealed that Ap-CS was superior to CS in promoting the osteoblastic differentiation of MC3T3-E1 cells while suppressing their proliferation. Additionally, Ap-CS significantly promoted (compared to CS) the augmentation of the rat skull bone and showed the potential to regenerate alveolar bone in a dog furcation defect. CONCLUSION Ap-CS fabricated by the plasma- and precursor-assisted biomimetic process provided superior promotion of osteogenic differentiation and bone neoformation compared to CS.
Collapse
Affiliation(s)
- Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kayoko Mayumi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Arputharaj Joseph Nathanael
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Syama Santhakumar
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Liu B, Ouyang X, Kang J, Zhou S, Suo C, Xu L, Liu J, Liu W. Efficacy of periodontal minimally invasive surgery with and without regenerative materials for treatment of intrabony defect: a randomized clinical trial. Clin Oral Investig 2021; 26:1613-1623. [PMID: 34414521 DOI: 10.1007/s00784-021-04134-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The minimally invasive surgical technique was modified in suture (MISTms) in this study. The trial was to determine the efficacy of MISTms with and without regenerative materials for the treatment of intrabony defect and to identify factors influencing 1-year clinical attachment level (CAL) gain. METHODS Thirty-six patients with interdental intrabony defects were randomly assigned to MISTms (MISTms alone, 18) or MISTms plus deproteinized bovine bone mineral and collagen membrane (MISTms combined, 18). Wound healing was evaluated by early healing index (EHI) at 1, 2, 3, and 6 weeks. Probing depth (PD), CAL, gingival recession, radiographic defect depth, and distance from the base of defect to the cementoenamel junction were recorded at baseline and 1 year postoperatively. A one-year composite outcome measure based on the combination of CAL gain and post-surgery PD was evaluated. Factors influencing 1-year CAL gain were analyzed. RESULTS Fifteen patients in MISTms-alone and 16 in the MISTms-combined group finished the study. The MISTms-alone group showed significantly better wound healing at 1 week. CAL significantly gained in the MISTms-alone and MISTms-combined group, with 2.53 ± 1.80 mm and 2.00 ± 1.38 mm respectively. The radiographic bone gain was 3.00 ± 1.56 mm and 3.85 ± 1.69 mm respectively. However, there were no significant differences between the two groups about 1-year outcomes. Lower EHI (optimal wound healing) and more baseline CAL positively influenced 1-year CAL gain. CONCLUSIONS MISTms is an effective treatment for intrabony defects. The regenerative materials do not show an additional effect on 1-year outcomes. Early wound healing and baseline CAL are factors influencing 1-year CAL gain. CLINICAL RELEVANCE MISTms with and without regenerative materials are both effective treatments for intrabony defect. TRIAL REGISTRATION ClinicalTrials.gov Identifier: ChiCTR2100043272.
Collapse
Affiliation(s)
- Bei Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Jun Kang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Shuangying Zhou
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Chao Suo
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Lingqiao Xu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| |
Collapse
|
30
|
Li K, Ishida Y, Hatano-Sato K, Ongprakobkul N, Hosomichi J, Usumi-Fujita R, Kaneko S, Yamaguchi H, Ono T. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotide-loaded poly lactic-co-glycolic acid (PLGA) nanospheres promote periodontal tissue healing after tooth replantation in rats. J Periodontol 2021; 93:458-470. [PMID: 34319612 DOI: 10.1002/jper.21-0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Excessive inflammation in the periodontal tissue after tooth replantation can lead to inflammatory root resorption and interrupt periodontal tissue regeneration. We tested the hypothesis that NF-κB decoy oligodeoxynucleotide-loaded poly lactic-co-glycolic acid nanospheres (NF-PLGA) inhibit excessive inflammation and promote healing of periodontal tissue after replantation in rats. METHODS The upper right incisors of rats were extracted, immersed in different specific solutions, and replanted. The rats were euthanized at 7, 14, and 28 days after replantation. Morphological evaluation with micro-CT and histological assessment with hematoxylin and eosin and tartrate-resistant acid phosphatase (TRAP) staining was performed. Additionally, we examined the expression of interleukin (IL)-1β, IL-6, transforming growth factor-β1 (TGF-β1), and fibroblast growth factor-2 (FGF-2) in the periodontal ligament (PDL) by performing immunohistological assessment. RESULTS The NF-PLGA group showed significantly greater dental root thickness than the other experimental groups. Root resorption was not observed after the application of NF-PLGA on day 7. The application of NF-PLGA also resulted in a significantly lower number of TRAP-positive osteoclasts on days 7 and 14 after replantation. Significantly lower expression of IL-1β and IL-6 and higher expression of TGF-β1 and FGF-2 were observed under the application of NF-PLGA in the PDL. CONCLUSIONS NF-PLGA promoted the healing process by inhibiting the initial excessive inflammatory response in the PDL, preventing root resorption, and promoting periodontal tissue regeneration. The findings also suggested that the PLGA nanospheres-mediated transfection of the decoy oligodeoxynucleotides can be useful for the clinical application of replanted tooth root surfaces. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Li
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kasumi Hatano-Sato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Narubhorn Ongprakobkul
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sawa Kaneko
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Yamaguchi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
31
|
Murakami T, Matsugami D, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Healing of Experimental Periodontal Defects Following Treatment with Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral. Biomolecules 2021; 11:biom11060805. [PMID: 34072351 PMCID: PMC8226676 DOI: 10.3390/biom11060805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the effects of fibroblast growth factor (FGF)-2 used in combination with deproteinized bovine bone mineral (DBBM) on the healing of experimental periodontal defects. Periodontal defects created in rats were treated by FGF-2, DBBM, FGF-2 + DBBM, or left unfilled. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing. In vitro cell viability/proliferation on DBBM with/without FGF-2 was assessed by WST-1. Cell behavior was analyzed using scanning electron and confocal laser scanning microscopy. Osteogenic differentiation was evaluated by staining with alkaline phosphatase and alizarin red. Bone volume fraction was significantly greater in FGF-2 and FGF-2 + DBBM groups than in other groups at 2 and 4 weeks postoperatively. In histological assessment, newly formed bone in FGF-2 and FGF-2 + DBBM groups appeared to be greater than other groups. Significantly greater levels of proliferating cell nuclear antigen-, vascular endothelial growth factor-, and osterix-positive cells were observed in FGF-2 and FGF-2 + DBBM groups compared to Unfilled group. In vitro, addition of FGF-2 to DBBM promoted cell viability/proliferation, attachment/spreading, and osteogenic differentiation. The combination therapy using FGF-2 and DBBM was similarly effective as FGF-2 alone in the healing of experimental periodontal defects. In certain bone defect configurations, the combined use of FGF-2 and DBBM may enhance healing via promotion of cell proliferation, angiogenesis, and osteogenic differentiation.
Collapse
Affiliation(s)
- Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Takahiro Bizenjima
- Chiba Dental Center, Tokyo Dental College, Mihama-ku, Chiba 2618502, Japan;
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
- Correspondence:
| |
Collapse
|
32
|
Chandra RV, Sneha K, Pushpalatha S, Chakravarthy Y. Efficacy of recombinant human fibroblast growth factor 2 impregnated absorbable collagen membrane in the treatment of Miller's Class I and II gingival recession defects Preliminary results from the first in human clinical trial. J Indian Soc Periodontol 2021; 24:541-546. [PMID: 33424171 PMCID: PMC7781258 DOI: 10.4103/jisp.jisp_76_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/16/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
Aims: This study was a single-arm trial to obtain preliminary data on the efficacy of collagen membranes impregnated with recombinant human fibroblast growth factor-2 (rhFGF-2) in the treatment of Miller's Class I and II gingival recessions. Materials and Methods: Twenty-one individuals (34 sites) presenting with localized Miller's Class I and II gingival recessions were included in this study. Following a standard surgical protocol, rhFGF-2-impregnated membranes were placed in sites with gingival recession. Clinical parameters such as width of keratinized gingiva (wKG), recession depth (RD), and probing depth were measured at baseline and after therapy completion at 3 and 6 months. Results: Most of the sites exhibited favorable clinical healing; the most common complications were persistent edematous and inflamed gingivae beyond 1 week (n = 3), development of residual periodontal pockets (n = 2), and no reduction in RDs (n = 2). Significant improvements in wKG and RD were noted from baseline to 6 months. Conclusion: rhFGF-2-impregnated collagen membranes showed promising results in terms of increasing the wKG and recession coverage. A comparison with other standard therapies and agents in subsequent trials may shed more light on the clinical efficacy of this material.
Collapse
Affiliation(s)
- Rampalli Viswa Chandra
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Kidambi Sneha
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Sabbani Pushpalatha
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Yarabham Chakravarthy
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| |
Collapse
|
33
|
Fukuba S, Akizuki T, Matsuura T, Okada M, Nohara K, Hoshi S, Shujaa Addin A, Iwata T, Izumi Y. Effects of combined use of recombinant human fibroblast growth factor-2 and β-tricalcium phosphate on ridge preservation in dehiscence bone defects after tooth extraction: A split-mouth study in dogs. J Periodontal Res 2020; 56:298-305. [PMID: 33314140 DOI: 10.1111/jre.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Following tooth extraction, bone resorption is especially severe in cases complicated with buccal dehiscence bone defects. To minimize this, various bone graft materials have been used for alveolar ridge preservation. This study aimed to evaluate additional effects of the concomitant use of recombinant human fibroblast growth factor-2 (rhFGF-2) with β-tricalcium phosphate (β-TCP) on ridge preservation in a dehiscence defect model after tooth extraction in dogs. MATERIALS AND METHODS The maxillary first premolars of six beagle dogs were extracted and dehiscence defects of 4 × 4 × 5 mm (mesio-distal width × bucco-palatal width × depth) were created. Bilateral defects were filled with β-TCP combined with 0.3% (w/v) rhFGF-2 (test sites) or the scaffold alone (control sites). Twelve weeks post-surgery, histologic and histometric evaluations were performed. RESULTS Morphological measurements using micro-computed tomography revealed a significantly greater bone volume at the test sites (48.9 ± 9.06 mm3 ) than at the control sites (38.8 ± 7.24 mm3 ). Horizontal widths of the alveolar ridge at the coronal and middle position at the test sites (2.18 ± 0.71 mm, 2.93 ± 0.53 mm) were significantly greater than those at the control sites (1.47 ± 0.41 mm, 2.36 ± 0.45 mm, respectively). Regarding the histological parameters, the occupation rate of mineralized bone in the original defects was slightly higher at the test sites (44.07 ± 10.19%) than that at the control site (41.15 ± 6.56%). CONCLUSIONS These results indicate that the adjunct use of rhFGF-2 with β-TCP is effective for alveolar ridge preservation in fresh extraction sockets with dehiscence defects.
Collapse
Affiliation(s)
- Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Tatsuya Akizuki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Munehiro Okada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Kohei Nohara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Shu Hoshi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Ammar Shujaa Addin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan.,Oral Care Perio Center, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Japan
| |
Collapse
|
34
|
Raveau S, Jordana F. Tissue Engineering and Three-Dimensional Printing in Periodontal Regeneration: A Literature Review. J Clin Med 2020; 9:jcm9124008. [PMID: 33322447 PMCID: PMC7763147 DOI: 10.3390/jcm9124008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.
Collapse
Affiliation(s)
- Simon Raveau
- Dental Faculty, University of Nantes, 44000 Nantes, France;
- Dentistry Department, University Health Centre, 44000 Nantes, France
| | - Fabienne Jordana
- Dental Faculty, University of Nantes, 44000 Nantes, France;
- Dentistry Department, University Health Centre, 44000 Nantes, France
- Correspondence: ; Tel.: +33-24041-2928
| |
Collapse
|
35
|
Nakayama Y, Matsuda H, Itoh S, Iwai Y, Takai H, Mezawa M, Yoshino S, Ogata Y. Impact of adjunctive procedures on recombinant human fibroblast growth factor-2-mediated periodontal regeneration therapy: A retrospective study. J Periodontol 2020; 92:983-994. [PMID: 33128399 DOI: 10.1002/jper.20-0481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Human fibroblast growth factor-2 (rhFGF-2) therapy has been used for periodontal tissue regeneration. However, few studies have reported their adjunctive procedures based on strategy of tissue engineering. The aim of this retrospective study is to assess the adjunctive effects of modified papilla preservation technique (mPPT) and combination with autogenous bone grafts (AG) on the rhFGF-2 therapy. METHODS Total of 44 sites underwent rhFGF-2 therapies and the evaluations in the survey periods. The primary outcome was set to the radiographic bone fill by radiographic examinations at 6 and 12 months after surgeries. We analyzed the correlation between influencing factors and the primary outcome, and differences of therapeutic effect by combination therapy with mPPT and that with AG. RESULTS After surgeries, probing depth (PD), clinical attachment level (CAL) and bone defects significantly improved. The improvements of radiographic bone fill were significantly positive correlated with a number of bone walls, combination with mPPT, and AG at 6 months after surgeries, and with combination with mPPT and AG at 12 months after surgeries. The significant differences of improvements of radiographic bone fill were demonstrated between combination with or without mPPT at 12 months after surgeries, and with or without AG at 6 and 12 months after surgeries. Moreover, the multiple linear regression analysis for the radiographic bone fill indicated the significant regression coefficient with conducts of mPPT. CONCLUSIONS mPPT and AG had powerfully adjunctive effects on rhFGF-2 therapy. Further studies are needed in order to verify by randomized clinical trials.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Hideo Matsuda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Shoichi Itoh
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Masaru Mezawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Shoichi Yoshino
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
36
|
Aoki H, Bizenjima T, Seshima F, Sato M, Irokawa D, Yoshikawa K, Yoshida W, Imamura K, Matsugami D, Kitamura Y, Kita D, Sugito H, Tomita S, Saito A. Periodontal surgery using rhFGF-2 with deproteinized bovine bone mineral or rhFGF-2 alone: 2-year follow-up of a randomized controlled trial. J Clin Periodontol 2020; 48:91-99. [PMID: 33030228 PMCID: PMC7984167 DOI: 10.1111/jcpe.13385] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
AIM To compare outcomes of rhFGF-2 + DBBM therapy with rhFGF-2 alone in the treatment of intrabony defects. This study provides 2-year follow-up results from the previous randomized controlled trial. MATERIALS AND METHODS Defects were randomly allocated to receive rhFGF-2 + DBBM (test) or rhFGF-2 (control). Treated sites were re-evaluated at 2 years postoperatively, using original clinical and patient-centred measures. RESULTS Thirty-eight sites were available for re-evaluation. At 2 years, both groups showed a significant improvement in clinical attachment level (CAL) from baseline. A gain in CAL of 3.4 ± 1.3 mm in the test group and 3.1 ± 1.5 mm in the control group was found. No significant inter-group difference was noted. Both groups showed a progressive increase in radiographic bone fill (RBF). The test treatment yielded greater RBF (56%) compared with the control group (41%). The control treatment performed better in contained defects in terms of CAL and RBF. There was no significant difference in patient-reported outcomes between groups. CONCLUSIONS At 2-year follow-up, the test and cotrol treatments were similarly effective in improving CAL, whereas the test treatment achieved a significantly greater RBF. In both treatments, favourable clinical, radiographic, and patient-reported outcomes can be sustained for at least 2 years. TRIAL REGISTRATION The University Hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR) 000025257.
Collapse
Affiliation(s)
- Hideto Aoki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | | | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Masahiro Sato
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Irokawa
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kouki Yoshikawa
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yurie Kitamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Daichi Kita
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Hiroki Sugito
- Department of Dental Hygiene, Tokyo Dental Junior College, Tokyo, Japan
| | - Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
37
|
Yoshida W, Takeuchi T, Imamura K, Seshima F, Saito A, Tomita S. Treatment of Chronic Periodontitis with Recombinant Human Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral in Wide Intrabony Defects:12-month Follow-up Case Series. THE BULLETIN OF TOKYO DENTAL COLLEGE 2020; 61:231-241. [PMID: 33177268 DOI: 10.2209/tdcpublication.2019-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical use of 0.3% recombinant human fibroblast growth factor (rhFGF)-2 for periodontal regeneration received formal approval in Japan in 2016. The combination of growth factor and bone graft material is used to enhance periodontal healing in regenerative therapy. The exact effects of combination therapy on periodontal healing remain unknown, however. Here, we report three cases of chronic periodontitis treated with the combination of rhFGF-2 and deproteinized bovine bone mineral (DBBM). Following initial periodontal therapy, periodontal regenerative therapy using rhFGF-2 in combination with DBBM was performed to treat wide intrabony defects. Periodontal parameters and radiographic bone fill were reevaluated at 3 months, 6 months, and 1 year postoperatively. Oral health-related quality of life (OHRQL) was assessed as a patient-reported measure of outcome. At 1 year postoperatively, probing pocket depth and clinical attachment level showed a significant improvement in comparison with at baseline. An improvement was also noted in radiographic evidence of bone fill and total OHRQL scores. Combination therapy yielded clinically favorable results in the present cases.
Collapse
Affiliation(s)
| | | | | | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College
| | | | | |
Collapse
|
38
|
Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020; 163:9-18. [DOI: 10.1016/j.ijbiomac.2020.06.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
39
|
Nagai K, Ideguchi H, Kajikawa T, Li X, Chavakis T, Cheng J, Messersmith PB, Heber-Katz E, Hajishengallis G. An injectable hydrogel-formulated inhibitor of prolyl-4-hydroxylase promotes T regulatory cell recruitment and enhances alveolar bone regeneration during resolution of experimental periodontitis. FASEB J 2020; 34:13726-13740. [PMID: 32812255 DOI: 10.1096/fj.202001248r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
The hypoxia-inducible factor 1α (HIF-1α) is critically involved in tissue regeneration. Hence, the pharmacological prevention of HIF-1α degradation by prolyl hydroxylase (PHD) under normoxic conditions is emerging as a promising option in regenerative medicine. Using a mouse model of ligature-induced periodontitis and resolution, we tested the ability of an injectable hydrogel-formulated PHD inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA/hydrogel), to promote regeneration of alveolar bone lost owing to experimental periodontitis. Mice injected subcutaneously with 1,4-DPCA/hydrogel at the onset of periodontitis resolution displayed significantly increased gingival HIF-1α protein levels and bone regeneration, as compared to mice treated with vehicle control. The 1,4-DPCA/hydrogel-induced increase in bone regeneration was associated with elevated expression of osteogenic genes, decreased expression of pro-inflammatory cytokine genes, and increased abundance of FOXP3+ T regulatory (Treg) cells in the periodontal tissue. The enhancing effect of 1,4-DPCA/hydrogel on Treg cell accumulation and bone regeneration was reversed by AMD3100, an antagonist of the chemokine receptor CXCR4 that mediates Treg cell recruitment. In conclusion, the administration of 1,4-DPCA/hydrogel at the onset of periodontitis resolution promotes CXCR4-dependent accumulation of Treg cells and alveolar bone regeneration, suggesting a novel approach for regaining bone lost due to periodontitis.
Collapse
Affiliation(s)
- Kosuke Nagai
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Hidetaka Ideguchi
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuhiro Kajikawa
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaofei Li
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jing Cheng
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA.,Formulation Group in R&D, Alcon, Duluth, GA, USA
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 2020; 5:297-308. [PMID: 32154444 PMCID: PMC7052441 DOI: 10.1016/j.bioactmat.2020.02.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
41
|
Shaikh MS, Ullah R, Lone MA, Matabdin H, Khan F, Zafar MS. Periodontal regeneration: a bibliometric analysis of the most influential studies. Regen Med 2020; 14:1121-1136. [PMID: 31957597 DOI: 10.2217/rme-2019-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: The aim of the present study is to identify the most influential research articles and their main characteristics in the specialty of periodontal regeneration. Materials & methods: The Web of Science database advance search was performed in the subject category of 'Dentistry, Oral surgery and medicine' from January 2004 to October 2018 to retrieve citations data. Results: The majority of the articles were published in journals dedicated to the specialty of periodontology. Among the top-cited articles most emphasized study types were randomized control trials (n = 25) and reviews (n = 20). Conclusion: The present bibliometric analysis provides comprehensive information regarding the contributions made in the advancement of regenerative periodontal research. The authors from developed countries and affiliated with interdisciplinary/multicenter institutions have predominantly contributed.
Collapse
Affiliation(s)
- Muhammad S Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Rizwan Ullah
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Mohid A Lone
- Department of Oral Pathology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University Karachi, Pakistan
| | - Hesham Matabdin
- Department of Periodontics, Eastman Dental Institute, University College London, London, UK
| | - Fahad Khan
- Faculty of Healthcare & Medical Sciences, Anglia Ruskin University Cambridge, UK
| | - Muhammad S Zafar
- Department of Restorative Dentistry, Taibah University, Madina Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
42
|
Ouchi T, Nakagawa T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen Ther 2020; 14:72-78. [PMID: 31970269 PMCID: PMC6962327 DOI: 10.1016/j.reth.2019.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is commonly observed and is an important concern in dental health. It is characterized by a multifactorial etiology, including imbalance of oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include elimination of the microbial pathogen and application of biomaterials for treating bone defects. However, the periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. To elucidate the process of periodontal regeneration, it is essential to understand the developmental background and intercellular cross-talk. Several recent studies have reported the efficacy of transplantation of mesenchymal stem cells for periodontal tissue regeneration. In this review, we discuss the basic knowledge of periodontal tissue regeneration using mesenchymal stem cells and highlight the potential of stem cell-based periodontal regenerative medicine. Neural crest cells regulate the development and homeostasis of periodontal tissues. Dental mesenchymal stem cells (MSCs) are used for treating alveolar bone defects. Non-odontogenic MSCs can be investigated for periodontal tissue regeneration. Using appropriate growth factors and scaffold may improve periodontium regeneration.
Collapse
Key Words
- BMMSCs, bone marrow MSCs
- BMP, bone morphogenetic protein
- C-MSCs, clumps of MSC/ECM complexes
- DFSCs, dental follicle stem cells
- ECM, extracellular matrix
- FGF, fibroblast growth factor
- GDF-5, growth/differentiation factor-5
- HERS, Hertwig epithelial root sheath
- IFN-γ, interferon-gamma
- IGFBP-6, insulin-like growth factor binding protein-6
- LepR, leptin receptor
- MSCs, mesenchymal stem cells
- Mesenchymal stem cells
- NCCs, neural crest cells
- PDGFRα, platelet derived growth factor receptor α
- PDL, periodontal ligament
- PDLSCs, periodontal ligament stem cells
- Periodontal tissue
- Periodontitis
- Pluripotent stem cells
- TNF-α, tumor necrosis factor-alpha
- Tissue regeneration
- Wnt, wingless-INT
- iPSC-MSCs, iPSC-derived MSCs
- iPSCs, induced pluripotent stem cells
- scRNA-seq, single-cell RNA sequence
Collapse
Affiliation(s)
- Takehito Ouchi
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
43
|
Sano K, Usui M, Moritani Y, Nakazawa K, Hanatani T, Kondo H, Nakatomi M, Onizuka S, Iwata T, Sato T, Togari A, Ariyoshi W, Nishihara T, Nakashima K. Co-cultured spheroids of human periodontal ligament mesenchymal stem cells and vascular endothelial cells enhance periodontal tissue regeneration. Regen Ther 2020; 14:59-71. [PMID: 31988996 PMCID: PMC6965649 DOI: 10.1016/j.reth.2019.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction Human periodontal ligament mesenchymal stem cells (hPDLMSCs) have been known that they play important roles in homeostasis and regeneration of periodontal tissues. Additionally, spheroids are superior to monolayer-cultured cells. We investigated the characteristics and potential of periodontal tissue regeneration in co-cultured spheroids of hPDLMSCs and human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. Methods Co-cultured spheroids were prepared with cell ratios of hPDLMSCs: HUVECs = 1:1, 1:2, and 2:1, using microwell chips. Real-time polymerase chain reaction (PCR) analysis, Enzyme-Linked Immuno Sorbent Assay (ELISA), and nodule formation assay were performed to examine the properties of co-cultured spheroids. Periodontal tissue defects were prepared in the maxillary first molars of rats and subjected to transplantation assay. Results The expression levels of stemness markers, vascular endothelial growth factor (VEGF), osteogenesis-related genes were up-regulated in co-cultured spheroids, compared with monolayer and spheroid-cultured hPDLMSCs. The nodule formation was also increased in co-cultured spheroids, compared with monolayer and spheroid cultures of hPDLMSCs. Treatment with co-cultured spheroids enhanced new cementum formation after 4 or 8 weeks of transplantation, although there was no significant difference in the new bone formation between co-cultured spheroids and hPDLMSC spheroids. Conclusions We found that co-cultured spheroids enhance the periodontal tissue regeneration. Co-cultured spheroids of hPDLMSCs and HUVECs may be a useful therapy that can induce periodontal tissue regeneration.
Collapse
Affiliation(s)
- Kotaro Sano
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Yuki Moritani
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Kohji Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Tomoya Hanatani
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Wataru Ariyoshi
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tatsuji Nishihara
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
44
|
Oyane A, Araki H, Nakamura M, Aiki Y, Higuchi K, Pyatenko A, Adachi M, Ito Y. Controlled release of basic fibroblast growth factor from a water-floatable polyethylene nonwoven fabric sheet for maintenance culture of iPSCs. RSC Adv 2019; 10:95-104. [PMID: 35492512 PMCID: PMC9047564 DOI: 10.1039/c9ra06906b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is an essential supplement for culture media to support the proliferation of human pluripotent stem cells, while preserving their pluripotency. However, it is extremely unstable under cell culture conditions at 37 °C. Therefore, a culture medium supplemented with bFGF needs to be changed every day to maintain an effective concentration of bFGF. This study aimed to create a bFGF-releasing material via simple bFGF adsorption following oxygen plasma treatment by using a water-floatable polyethylene (PE) nonwoven fabric sheet as a bFGF-adsorbent material. Preliminary oxygen plasma treatment enhanced bFGF adsorption onto the sheet by increasing its surface water wettability. Based on the bFGF concentration in the adsorption solution, the resulting bFGF-adsorbed sheet showed different bFGF-release profiles in the culture medium. The bFGF-adsorbed sheet prepared under optimum conditions released bFGF in a sustained manner, maintaining the bFGF concentration in the culture medium of human induced pluripotent stem cells (iPSCs) at ≥10 ng mL-1 even without medium change for as long as 3 d. The bFGF released from the sheet retained its biological activity to support colony formation of iPSCs while preserving their pluripotency. This type of bFGF-releasing sheet can be used as a new form of bFGF supplement for the culture media of stem cells and would make a significant contribution to stem cell-based research and development.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Hiroko Araki
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yasuhiko Aiki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Kumiko Higuchi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Alexander Pyatenko
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Masaki Adachi
- R&D Center, Katayama Chemical Industries Co., Ltd. 4-1-7 Ina Minoh Osaka 562-0015 Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| |
Collapse
|
45
|
Tavelli L, McGuire MK, Zucchelli G, Rasperini G, Feinberg SE, Wang HL, Giannobile WV. Biologics-based regenerative technologies for periodontal soft tissue engineering. J Periodontol 2019; 91:147-154. [PMID: 31479158 DOI: 10.1002/jper.19-0352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023]
Abstract
This manuscript provides a state-of-the-art review on the efficacy of biologics in root coverage procedures, including enamel matrix derivative, platelet-derived growth factor, platelet concentrates, and fibroblast-growth factor-2. The mechanism of action and the rationale for using biologics in periodontal plastic surgery, as well as their anticipated benefits when compared with conventional approaches are discussed. Although the clinical significance is still under investigation, preclinical data and histologic evidence demonstrate that biologic-based techniques are able to promote periodontal regeneration coupled with the provision of tooth root coverage.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Michael K McGuire
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Private practice, Houston, TX, USA.,Department of Periodontics, Dental Branch Houston and Health Science Center at San Antonio, University of Texas, San Antonio, TX, USA
| | - Giovanni Zucchelli
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulio Rasperini
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Biomedical, Surgical and Dental Sciences, Foundation IRCCS Ca' Granda Policlinic, University of Milan, Milan, Italy
| | - Stephen E Feinberg
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - William V Giannobile
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Biomedical Engineering & Biointerfaces Institute, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Chen P, Huang Y, Wang Y, Li S, Chu H, Rong M. MALAT1 overexpression promotes the proliferation of human periodontal ligament stem cells by upregulating fibroblast growth factor 2. Exp Ther Med 2019; 18:1627-1632. [PMID: 31410118 PMCID: PMC6676173 DOI: 10.3892/etm.2019.7748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) has been revealed to promote human periodontal ligament stem cell (PDLSC) proliferation. The abnormal proliferation of PDLSCs has also been associated with the pathogenesis of periodontitis. The long non-coding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), has been demonstrated to regulate FGF2 secretion. Therefore, MALAT1 may also be associated with periodontitis. The aim of the present study was to investigate the effect of MALAT1 overexpression on the proliferation of PDLSCs. In the current study, PDLSCs derived from healthy and periodontitis-affected teeth were collected. MALAT1 and FGF2 mRNA expression in PDLSCs was detected using reverse transcription-quantitative PCR. PDLSCs overexpressing MALAT1 were subsequently generated. PDLSC proliferation was analyzed using a Cell Counting kit-8 assay. FGF2 protein expression was detected using western blot analysis. The results revealed that MALAT1 and FGF2 mRNA were significantly upregulated in PDLSCs derived from periodontitis-affected teeth when compared with PDLSCs derived from healthy teeth. PDLSCs derived from periodontitis-affected teeth also demonstrated a significantly higher proliferation rate than PDLSCs derived from healthy teeth. MALAT1 and FGF2 mRNA expression were positively correlated in both PDLSC groups. MALAT1 overexpression promoted the proliferation of healthy and periodontitis-affected PDLSC groups and upregulated FGF2 protein expression. The present study concluded that MALAT1 overexpression promoted the proliferation of human PDLSC potentially via upregulating FGF2.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanhong Huang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shaobing Li
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hongxing Chu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
47
|
Nakamura S, Ito T, Okamoto K, Mima T, Uchida K, Siddiqui YD, Ito M, Tai M, Okubo K, Yamashiro K, Omori K, Yamamoto T, Matsushita O, Takashiba S. Acceleration of bone regeneration of horizontal bone defect in rats using collagen-binding basic fibroblast growth factor combined with collagen scaffolds. J Periodontol 2019; 90:1043-1052. [PMID: 30889294 PMCID: PMC6850180 DOI: 10.1002/jper.18-0674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/28/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Background Basic fibroblast growth factor (bFGF) has been applied for periodontal regeneration. However, the application depends on bone defect morphology because bFGF diffuses rapidly from defect sites. In a previous study, collagen‐binding bFGF (CB‐bFGF) has been shown to enhance bone formation by collagen‐anchoring in the orthopedic field. The aim of this study is to demonstrate the efficacy of CB‐bFGF with collagen scaffolds in bone regeneration of horizontal bone defect. Methods Cell proliferation activity and collagen binding activity of CB‐bFGF was confirmed by WST‐8 assay and collagen binding assay, respectively. The retention of CB‐bFGF in the collagen sheet (CS) was measured by fluorescence imaging. The rat horizontal alveolar bone defect model was employed to investigate the efficacy of CB‐bFGF with collagen powder (CP). After 4 and 8 weeks, the regenerative efficacy was evaluated by microcomputed tomography, histological, and immunohistochemical analyses. Results CB‐bFGF had a comparable proliferation activity to bFGF and a collagen binding activity. CB‐bFGF was retained in CS longer than bFGF. At 8 weeks postoperation, bone volume, bone mineral content, and new bone area in CB‐bFGF/CP group were significantly increased compared with those in other groups. Furthermore, epithelial downgrowth was significantly suppressed in CB‐bFGF/CP group. At 4 weeks, the numbers of osteocalcin, proliferating cell nuclear antigen, and osteopontin‐positive cells at the regeneration site in CB‐bFGF/CP group were greater than those in other groups. Conclusions CB‐bFGF/CP effectively promoted bone regeneration of horizontal bone defect possibly by sustained release of bFGF. The potential of CB‐bFGF composite material for improved periodontal regeneration in vertical axis was shown.
Collapse
Affiliation(s)
- Shin Nakamura
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takashi Ito
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.,Ministry of Health, Labour and Welfare Medical Politics Economic Section, Medical Equipment Policy Office, Tokyo, Japan
| | - Kentaro Okamoto
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takehiko Mima
- Department of Bacteriology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yasir D Siddiqui
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Ito
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masako Tai
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Okubo
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
48
|
Kang W, Liang Q, Du L, Shang L, Wang T, Ge S. Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. J Periodontal Res 2019; 54:424-434. [DOI: 10.1111/jre.12644] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Qianyu Liang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Lingqian Du
- Department of Stomatology; The Second Hospital of Shandong University; Jinan China
| | - Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology; Shandong University; Jinan China
- Department of Periodontology; School of Stomatology; Shandong University; Jinan China
| |
Collapse
|
49
|
Abellán R, Gómez C, Iglesias-Linares A, Palma JC. Impact of photodynamic therapy versus ultrasonic scaler on gingival health during treatment with orthodontic fixed appliances. Lasers Surg Med 2018; 51:256-267. [PMID: 30575059 DOI: 10.1002/lsm.23035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Poor oral hygiene during treatment with fixed appliances results in plaque accumulation. The presence of bacteria in the gingival crevice triggers an inflammatory reaction in the gingival tissues. The aim of this study was to compare the impact of two preventive treatments, photodynamic therapy (PDT), and ultrasonic scaler (US), on gingival health in patients under fixed orthodontic treatment. METHODS Twenty orthodontic patients were randomly allocated to two groups: PDT or US. Each group received seven sessions [days 0, 15, 30, 45, 90 (3-months follow-up), 180 (6-months follow-up), 270 (9-months follow-up)] of experimental interventions, and clinical parameters [Plaque index(PI); gingival index(GI); probing depth(PD)], periodontopathogens [Agreggatibacter actinomycetemcomitans; Porphyromonas gingivalis; Prevotella intermedia; Micromonas micros; Fusobacterium nucleatum; Tannerella forsythia; Campylobacter rectus; Eikenella corrodens; Capnocytopaga sp.] and protein markers [IL-1β;IL-1ra;IL-6;IL-10;TNF-α;FGF-2/FGF basic] were monitored at baseline and at 3, 6, and 9 months. ANOVA, Student's t-test with Bonferroni correction and ANOVA with multiple rank test were used to identify differences between groups (P < 0.05). RESULTS Clinical assessments [PI, GI, and PD] yielded no differences (P > 0.05) between groups, which showed a major decrease at the start of the trial. Reductions in total colony forming units (log CFU reduction) were observed with both treatments, although to a greater extent in the PDT group, but with no differences between groups (P > 0.05). Similar reductions in log CFU counts of P. gingivalis, P. intermedia, and F. nucleatum were observed in both groups (P > 0.05). The two groups also showed similar trends for inflammatory mediators with decreased levels of IL-1β, IL-10, and TNF-α, whereas IL-6 and IL-1ra levels remained stable and those of FGF-2 were increased after both interventions, with no differences (P > 0.05) between groups. CONCLUSION Both PDT and US methods proved similar effectiveness for the treatment of gingival inflammation induced by fixed orthodontic appliances. Lasers Surg. Med. 51:256-267, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosa Abellán
- Complutense University of Madrid, School of Dentistry, Stomatology IV Department, Plaza Ramón y Cajal sn, 28040, Madrid, Spain
| | - Clara Gómez
- Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, Stomatology IV Department, Plaza Ramón y Cajal sn, 28040, Madrid, Spain
| | - Juan Carlos Palma
- Complutense University of Madrid, School of Dentistry, Stomatology IV Department, Plaza Ramón y Cajal sn, 28040, Madrid, Spain
| |
Collapse
|
50
|
Fujihara C, Kanai Y, Masumoto R, Kitagaki J, Matsumoto M, Yamada S, Kajikawa T, Murakami S. Fibroblast growth factor‐2 inhibits CD40‐mediated periodontal inflammation. J Cell Physiol 2018; 234:7149-7160. [DOI: 10.1002/jcp.27469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Yu Kanai
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Risa Masumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Jirouta Kitagaki
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Masahiro Matsumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology Tohoku University Graduate School of Dentistry Miyagi Japan
| | - Tetsuhiro Kajikawa
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Shinya Murakami
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| |
Collapse
|