1
|
de Souza Araújo I, Perkins RS, Ibrahim MM, Huang GTJ, Zhang W. Bioprinting PDLSC-Laden Collagen Scaffolds for Periodontal Ligament Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59979-59990. [PMID: 39467547 PMCID: PMC11551894 DOI: 10.1021/acsami.4c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Periodontitis and severe trauma are major causes of damage to the periodontal ligament (PDL). Repairing the native conditions of the PDL is essential for the stability of the tissue and its interfaces. Bioprinting periodontal ligament stem cells (PDLSCs) is an interesting approach to guide the regeneration of PDL and interfacial integration. Herein, a collagen-based bioink mimicking the native extracellular matrix conditions and carrying PDLSCs was tested to guide the periodontal ligament organization. The bioink was tested at two different concentrations (10 and 15 mg/mL) and characterized by swelling and degradation, microstructural organization, and rheological properties. The biological properties were assessed after loading PDLSCs into bioinks for bioprinting. The characterization was performed through cell viability, alizarin red assay, and expression for ALP, COL1A1, RUNX2, and OCN. The in vivo biocompatibility of the PDLSC-laden bioinks was verified using subcutaneous implantation in mice. Later, the ability of the bioprinted PDLSC-laden bioinks on dental root fragments to form PDL was also investigated in vivo in mice for 4 and 10 weeks. The bioinks demonstrated typical shear-thinning behavior, a porous microstructure, and stable swelling and degradation characteristics. Both concentrations were printable and provided suitable conditions for a high cell survival, proliferation, and differentiation. PDLSC-laden bioinks demonstrated biocompatibility in vivo, and the bioprinted scaffolds on the root surface evidenced PDLSC alignment, organization, and PDLSC migration to the root surface. The versatility of collagen-based bioinks provides native ECM conditions for PDLSC proliferation, alignment, organization, and differentiation, with translational applications in bioprinting scaffolds for PDL regeneration.
Collapse
Affiliation(s)
- Isaac
J. de Souza Araújo
- Department
of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rachel S. Perkins
- Department
of Orthopaedic Surgery and Biomedical Engineering, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mohamed Moustafa Ibrahim
- Department
of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Pharmaceutics, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - George T.-J. Huang
- Department
of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Endodontics, The University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
| | - Wenjing Zhang
- Department
of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
2
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Hamano S, Yamashita D, Hasegawa D, Sugii H, Itoyama T, Maeda H. Effect of Fibrillin-2 on Differentiation into Periodontal Ligament Stem Cell-Like Cells Derived from Human-Induced Pluripotent Stem Cells. Stem Cells Dev 2024; 33:228-238. [PMID: 38534877 DOI: 10.1089/scd.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Periodontal tissue regeneration is important for preserving teeth. Periodontal ligament stem cells (PDLSCs) are useful in periodontal tissue regeneration; however, tooth extraction is required to obtain these cells. Therefore, we focused on induced pluripotent stem (iPS) cells and established a method to obtain PDLSC-like cells from iPS cells. Specifically, we first differentiated iPS cells into neural crest-like cells (iNCs). Next, we obtained PDLSC-like cells (iPDLSCs) by culturing iNCs on extracellular matrix (ECM) derived from human primary periodontal ligament cells (HPDLCs). This differentiation method suggested that ECM derived from HPDLCs is important for iPDLSC differentiation. Thus, we aimed to identify the PDLSC-inducing factor present in HPDLC-derived ECM in this study. We first performed comprehensive analyses of HPDLC genes and identified fibrillin-2 (FBN2), an ECM-related factor. Furthermore, to clarify the effect of FBN2 on iPDLSC differentiation, we cultured iNCs using ECM derived from HPDLCs with FBN2 knocked down. As a result, expression of PDL-related markers was reduced in iNCs cultured on ECM derived from HPDLCs transfected with FBN2 siRNA (iNC-siFBN2) compared with iPDLSCs. Furthermore, the expression of CD105 (a mesenchymal stem cell marker), proliferation ability, and multipotency of iNC-siFBN2 were lower compared with iPDLSCs. Next, we cultured iNCs on FBN2 recombinant protein; however, expression of PDL-related markers did not increase compared with iPDLSC. The present results suggest the critical involvement of FBN2 in inducing iPDLSCs from iNCs when in fact it does not promote iPDLSC differantiation. Therefore, we need to elucidate the entire HPDLC-ECMs, responsible for iPDLSCs induction.
Collapse
Affiliation(s)
- Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Diaki Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
4
|
Hu W, Lu Y, Duan Y, Yang Y, Wang M, Guo J, Xu J, Lu X, Ma Q. Regulation of Immune Inflammation and Promotion of Periodontal Bone Regeneration by Irisin-Loaded Bioactive Glass Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315709 DOI: 10.1021/acs.langmuir.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Clinical solutions of bone defects caused by periodontitis involve surgical treatment and subsequent anti-infection treatment using antibiotics. Such a strategy faces a key challenge in that the excessive host immune response results in the damage of periodontal tissues. Consequently, it is of great importance to develop novel periodontitis treatment that allows the regulation of the host immune response and promotes the generation of periodontal tissues. Irisin has a good bone regeneration ability and could reduce the inflammatory reaction by regulating the differentiation of macrophages. In this study, we loaded irisin onto bioactive glass nanoparticles (BGNs) to prepare a composite, irisin-BGNs (IR-BGNs) with anti-inflammatory, bacteriostatic, and tissue regeneration functions, providing a novel idea for the design of ideal materials for repairing oral tissue defects caused by periodontitis. We also verified that the IR-BGNs had better anti-inflammatory properties on RAW264.7 cells compared to irisin and BGNs alone. Strikingly, when hPDLCs were stimulated with IR-BGNs, they exhibited increased expression of markers linked to osteogenesis, ALP activity, and mineralization ability in comparison to the negative control. Furthermore, on the basis of RNA sequencing results, we validated that the p38 pathway can contribute to the osteogenic differentiation of the IR-BGNs. This work may offer new thoughts on the design of ideal materials for repairing oral tissue defects.
Collapse
Affiliation(s)
- Wenzhu Hu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yanlai Lu
- . Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiyuan Duan
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yuxin Yang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Mingxin Wang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jingyao Guo
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jing Xu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaolin Lu
- . State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Qian Ma
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Dederichs M, Joedecke P, Weber CT, Guentsch A. Functional Load Capacity of Teeth with Reduced Periodontal Support: A Finite Element Analysis. Bioengineering (Basel) 2023; 10:1330. [PMID: 38002454 PMCID: PMC10669356 DOI: 10.3390/bioengineering10111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the functional load capacity of the periodontal ligament (PDL) in a full arch maxilla and mandible model using a numerical simulation. The goal was to determine the functional load pattern in multi- and single-rooted teeth with full and reduced periodontal support. CBCT data were used to create 3D models of a maxilla and mandible. The DICOM dataset was used to create a CAD model. For a precise description of the surfaces of each structure (enamel, dentin, cementum, pulp, PDL, gingiva, bone), each tooth was segmented separately, and the biomechanical characteristics were considered. Finite Element Analysis (FEA) software computed the biomechanical behavior of the stepwise increased force of 700 N in the cranial and 350 N in the ventral direction of the muscle approach of the masseter muscle. The periodontal attachment (cementum-PDL-bone contact) was subsequently reduced in 1 mm increments, and the simulation was repeated. Quantitative (pressure, tension, and deformation) and qualitative (color-coded images) data were recorded and descriptively analyzed. The teeth with the highest load capacities were the upper and lower molars (0.4-0.6 MPa), followed by the premolars (0.4-0.5 MPa) and canines (0.3-0.4 MPa) when vertically loaded. Qualitative data showed that the areas with the highest stress in the PDL were single-rooted teeth in the cervical and apical area and molars in the cervical and apical area in addition to the furcation roof. In both single- and multi-rooted teeth, the gradual reduction in bone levels caused an increase in the load on the remaining PDL. Cervical and apical areas, as well as the furcation roof, are the zones with the highest functional stress. The greater the bone loss, the higher the mechanical load on the residual periodontal supporting structures.
Collapse
Affiliation(s)
- Marco Dederichs
- Policlinic of Prosthetic Dentistry and Material Science, Centre for Dental Medicine, Jena University Hospital, D-07743 Jena, Germany;
| | - Paul Joedecke
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, D-39114 Magdeburg, Germany (C.-T.W.)
| | - Christian-Toralf Weber
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, D-39114 Magdeburg, Germany (C.-T.W.)
| | - Arndt Guentsch
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
6
|
Zhao Z, Behm C, Rausch MA, Tian Z, Rausch-Fan X, Andrukhov O. Cyclic tensile strain affects the response of human periodontal ligament stromal cells to tumor necrosis factor-α. Clin Oral Investig 2022; 26:609-622. [PMID: 34185172 PMCID: PMC8791913 DOI: 10.1007/s00784-021-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. MATERIALS AND METHODS hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. RESULTS TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. CONCLUSIONS Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. CLINICAL RELEVANCE Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment.
Collapse
Affiliation(s)
- Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Chen H, Liu L, Li Y, Guo L, Sun D. Comparison of cytokine level changes in gingival crevicular fluid between the aligner and pendulum appliance during early molar distalization : A single-center, prospective, observational study. J Orofac Orthop 2021:10.1007/s00056-021-00359-2. [PMID: 34677622 DOI: 10.1007/s00056-021-00359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE There is currently a lack of evidence pertaining to gingival crevicular fluid cytokine levels in patients treated with the pendulum appliance. This study aimed to compare changes in cytokine secretion levels in gingival crevicular fluid (GFC) between the aligner and pendulum appliance in patients undergoing molar distalization. METHODS GFC samples were collected from 28 participants with asymmetrical dental class II malocclusion who were undergoing molar distalization using aligners or pendulum appliances. An enzyme-linked immunosorbent assay was used to detect cytokine secretion levels during asymmetrical molar distalization for up to 14 days. Periodontal health indices and tooth movements were also assessed. RESULTS No significant difference was found for the distalization distance between the two appliances. The Silness and Loe Plaque Index and Lobene Modified Gingival Index increased in the pendulum group but not in the aligner group at 14 days. Interleukin-1β and tumor necrosis factor‑α were upregulated in both groups. In the pendulum group, receptor activator of nuclear factor kappa‑Β ligand and osteoprotegerin secretion levels were significantly upregulated and downregulated, respectively; smaller changes in these two cytokines were observed in the aligner group. CONCLUSIONS Pendulum appliances exert stronger forces than aligners, which cause more changes in the secretion of inflammatory mediators in young patients.
Collapse
Affiliation(s)
- Huijuan Chen
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liuhui Liu
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lingyun Guo
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Dongmei Sun
- Department of Stomatology, Renhe Hospital, Shanghai, China.
| |
Collapse
|
8
|
Yang Y, Pullisaar H, Landin MA, Heyward CA, Schröder M, Geng T, Grano M, Reseland JE. FNDC5/irisin is expressed and regulated differently in human periodontal ligament cells, dental pulp stem cells and osteoblasts. Arch Oral Biol 2021; 124:105061. [PMID: 33508625 DOI: 10.1016/j.archoralbio.2021.105061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the expression and regulation of fibronectin type III domain-containing protein 5/irisin (FNDC5/irisin) in primary human periodontal ligament (hPDL) cells, dental pulp stem cells (hDPCs) and osteoblasts (hOBs). METHODS FNDC5/irisin was identified in sections of paraffin embedded rat maxillae, cryo-sections of 3D cultured spheroids hPDL cells, hDPCs and hOBs, 2D cultured hPDL cells, hDPCs and hOBs by immunohistochemistry. The expression of FNDC5/irisin was identified by qPCR, followed by sequencing of the qPCR product. Regulation of FNDC5/irisin expression in hPDL cells, hDPCs and hOBs were evaluated after administration of different concentrations of irisin and all-trans retinoic acid (ATRA). qPCR and ELISA were used to identify expression and secretion of FNDC5/irisin in odontoblast-like differentiation of hDPCs. RESULTS FNDC5/irisin was confirmed to be present in rat periodontium and dental pulp regions, as well as in 2D and 3D cultured hPDL cells, hDPCs and hOBs. BLAST analyses verified the generated nucleotide alignments matched human FNDC5/irisin. FNDC5/irisin gene expression was enhanced during odontoblast-like differentiation of hDPCs whereas the secretion of the protein was decreased compared to control. The protein signals in rat periodontal and pulpal tissues were higher than that of alveolar bone, and the expression of FNDC5/irisin was differently regulated by recombinant irisin and ATRA in hPDL cells and hDPCs compared to hOBs. CONCLUSIONS FNDC5/irisin expression was verified in rodent periodontium and dental pulp, and in hPDL cells, hDPCs and hOBs. The FNDC5/irisin expression was regulated by recombinant irisin and ATRA. Finally, expression and secretion of FNDC5/irisin were affected during odontoblast-like differentiation of hDPCs.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Maria A Landin
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Maria Schröder
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tianxiang Geng
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Chen Y, Guan Q, Han X, Bai D, Li D, Tian Y. Proteoglycans in the periodontium: A review with emphasis on specific distributions, functions, and potential applications. J Periodontal Res 2021; 56:617-632. [PMID: 33458817 DOI: 10.1111/jre.12847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Proteoglycans (PGs) are largely glycosylated proteins, consisting of a linkage sugar, core proteins, and glycosaminoglycans (GAGs). To date, more than 40 kinds of PGs have been identified, and they can be classified as intracellular, cell surface, pericellular, and extracellular PGs according to cellular locations. To illustrate, extracellular PGs are known for regulating the homeostasis of the extracellular matrix; cell-surface PGs play a role in mediating cell adhesion and binding various growth factors. In the field of periodontology, PGs are implicated in cellular proliferation, migration, adhesion, contractility, and anoikis, thereby exerting a profound influence on periodontal tissue development, wound repair, the immune response, biomechanics, and pathological process. Additionally, the expression patterns of some PGs are dynamic and cell-specific. Therefore, determining the roles and spatial-temporal expression patterns of PGs in the periodontium could shed light on treatments for wound healing, tissue regeneration, periodontitis, and gingival overgrowth. In this review, close attention is paid to the distributions, functions, and potential applications of periodontal PGs. Related genetically modified animal experiments and involved signal transduction cascades are summarized for improved understanding of periodontal PGs. To date, however, there is a large amount of speculation on this topic that requires rigorous experiments for validation.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuyue Guan
- Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wang Y, Hu B, Hu R, Tong X, Zhang M, Xu C, He Z, Zhao Y, Deng H. TAZ contributes to osteogenic differentiation of periodontal ligament cells under tensile stress. J Periodontal Res 2019; 55:152-160. [PMID: 31539181 DOI: 10.1111/jre.12698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/14/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Bone remodeling during orthodontic treatment is achieved by the osteogenesis of human periodontal ligament cells (PDLCs) subjected to mechanical loadings. Transcriptional co-activator with PDZ-binding motif (TAZ) mediates bone remodeling in response to extracellular mechanical signals. This study aims to investigate the role of TAZ in osteogenesis of PDLCs under tensile strain. MATERIALS AND METHODS A uniaxial cyclic tensile stress (CTS) at 12% elongation and 6 cycles/min (5 s on and 5 s off) was applied to PDLCs. The osteogenic differentiation was determined by the protein and gene expressions of osteogenic markers using qRT-PCR and Western blot, respectively, and further by alkaline phosphatase (ALP) activity and Alizarin Red S staining. The interaction of TAZ with core-binding factor α1 (Cbfα1) was examined by co-immunoprecipitation. The immunofluorescence histochemistry was used to examine the nucleus aggregation of TAZ and the reorganization of actin filaments. Moreover, small interfering RNA-targeting TAZ (TAZsiRNA) was used for TAZ inhibition and Y-27632 was employed for Ras homologue-associated coiled-coil protein kinase (ROCK) signaling blockage. RESULTS CTS clearly stimulated the nucleus accumulation of TAZ and its interaction with Cbfα1. CTS-induced osteogenesis in PDLCs was significantly abrogated by the infection with TAZsiRNA, as shown by the decreased stained nodules and protein expressions of Cbfα1, collagen type I, osterix, and osteocalcin, along with the inhibition of β-catenin signaling. Moreover, ROCK inhibition by Y-27632 hindered TAZ nucleus aggregation and its binding with Cbfα1, which subsequently lead to the decreased osteoblastic differentiation of PDLCs. CONCLUSIONS Taken together, we propose that TAZ nucleus localization and its interaction with Cbfα1 are essential for the CTS-induced osteogenic differentiation in PDLCs. And such TAZ activation by CTS could be mediated by ROCK signaling, indicating the pivot role of ROCK-TAZ pathway for PDLCs differentiation.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Bibo Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xianqin Tong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Menghan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chuchu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhiqi He
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ya Zhao
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hui Deng
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Cyclic Stretch Enhances Osteogenic Differentiation of Human Periodontal Ligament Cells via YAP Activation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2174824. [PMID: 30519570 PMCID: PMC6241358 DOI: 10.1155/2018/2174824] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022]
Abstract
Periodontal remodeling and alveolar bone resorption and formation play essential roles during orthodontic tooth movement (OTM). In the process, human periodontal ligament cells (HPDLCs) sense and respond to orthodontic forces, contributing to the alveolar bone formation. However, the underlying mechanism in this process is not fully elucidated. In the present study, cyclic stress stimulus was applied on HPDLCs to mimic the orthodontic forces during OTM. Our results demonstrated that cyclic stretch promoted the osteogenic differentiation of HPDLCs. Moreover, our data suggested that yes-associated protein (YAP), the Hippo pathway effector, which also involved in mechanical signaling transduction, was activated as we found that the nuclear translocation of YAP was significantly increased in the cyclic stress treated HPDLCs. The mRNA expression of CTGF and CYR61, the target genes of YAP, was also remarkably increased. Furthermore, knockdown of YAP suppressed the cyclic stretch induced osteogenesis in HPDLCs, while overexpression of YAP in HPDLCs enhanced osteogenesis. We also noticed that YAP activities could be suppressed by the ROCK and nonmuscle myosin II inhibitors, Y-27632 and Blebbistatin. The inhibitors also significantly inhibited the cyclic stretch induced osteogenesis in HPDLCs. Finally, in the murine OTM model, our results revealed that YAP was upregulated and nuclearly translocated in the PDLCs at the tension side. In summary, our present study demonstrated that cytoskeleton remodeling induced activation of YAP signaling pathway was crucial for the cyclic stretch-induced osteogenesis of HPDLCs, which might play important roles during OTM.
Collapse
|
12
|
Omar NF, Gomes JR, Neves JS, Novaes PD. Effects of loss of occlusal contact on the expression of matrix metalloproteinase‐2, membrane type 1‐MMP, tissue inhibitor of the MMP‐2, eruption rate, organization and resistance of collagen fibers of the rat incisor periodontal ligament. J Periodontal Res 2017; 53:40-46. [DOI: 10.1111/jre.12484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- N. F. Omar
- Departamento de Biologia Estrutural, Molecular e Genética UEPG Ponta Grossa PR Brazil
| | - J. R. Gomes
- Departamento de Biologia Estrutural, Molecular e Genética UEPG Ponta Grossa PR Brazil
| | - J. S. Neves
- Departamento de Morfologia – Histologia FOP‐UNICAMP Piracicaba SP Brazil
| | - P. D. Novaes
- Departamento de Morfologia – Histologia FOP‐UNICAMP Piracicaba SP Brazil
| |
Collapse
|
13
|
Abstract
STUDY DESIGN An experimental model study and a short review of literature. OBJECTIVE The purpose of this study was to explore a new hypothesis suggesting that the curvatures seen in adolescent idiopathic scoliosis (AIS) originate from restrained differential growth between the vertebral column and the surrounding musculo-ligamentary structures. SUMMARY OF BACKGROUND DATA Despite decades of research, there is no generally accepted theory on the physical origin of the severe spinal deformations seen in AIS. The prevailing theories tend to focus on left-right asymmetry, rotational instability, or the sagittal spinal profile in idiopathic scoliosis. METHODS We test our hypothesis with a physical model of the spine that simulates growth, counteracted by ligaments and muscles, modeled by tethers and springs. Growth of the spine is further restrained by an anterior band representing the thorax, the linea alba, and abdominal musculature. We also explore literature in search of molecular mechanisms that may induce differential growth. RESULTS Differential growth in the restrained spine model first induces hypokyphosis and mild lateral bending of the thoracic spine, but then suddenly escalates into a scoliotic deformity, consistent with clinical observations of AIS. The band simulating the ventral structures of the body had a pivotal effect on sagittal curvature and the initiation of lateral bending and rotation. In literature, several molecular mechanisms were found that may explain the occurrence of differential growth between the spine and the musculo-ligamentary structures. CONCLUSION While AIS is a three-dimensional deformation of the spine, it appears that restrained differential growth in the sagittal plane can result in lateral bending and rotation without a pre-existing left-right asymmetry. This supports the concept that AIS may result from a growth imbalance rather than a local anatomical defect. LEVEL OF EVIDENCE N/A.
Collapse
|
14
|
Wu Y, Zhao D, Zhuang J, Zhang F, Xu C. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells. PLoS One 2016; 11:e0168268. [PMID: 27942018 PMCID: PMC5152893 DOI: 10.1371/journal.pone.0168268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Sa G, Xiong X, Ren J, Zhao Y, He S. Expression of fibrosis-related molecules in the oral mucosa of six animal species: A reference for selecting animal models. Eur J Pharm Sci 2016; 96:472-478. [PMID: 27769912 DOI: 10.1016/j.ejps.2016.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/24/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Several animal models have been used in studies associated with oral submucous fibrosis (OSF); however, an appropriate model based on the histopathological characteristics of OSF is still needed. This study aimed to provide histological references for selecting a potential model. The expression intensities of collagen type I (Col I), type III (Col III), type IV (Col IV), fibronectin (FN), transforming growth factors β (TGF-β), and connective tissue growth factor (CCN2) in the oral mucosa of the human and six non-human animal species were measured by immunohistochemistry. There was little variation in the expression intensity of Col I while the expression of Col III, Col IV, and FN showed differences. The expression intensities of TGF-β in dog, rat, sheep, and pig oral mucosae, and those of CCN2 in dog, minipig, rat, and buffalo oral mucosae were equivalent to the expression intensities in human mucosa. The expression of fibrosis-related molecules in the dog oral mucosa optimally mimics the human condition, suggesting its suitability with regard to histopathology as an animal model for the study of OSF.
Collapse
Affiliation(s)
- Guoliang Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Xuepeng Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Jiangang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Yifang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China.
| | - Sangang He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China.
| |
Collapse
|
16
|
Abellán R, Gómez C, Oteo MD, Scuzzo G, Palma JC. Short- and Medium-Term Effects of Low-Level Laser Therapy on Periodontal Status in Lingual Orthodontic Patients. Photomed Laser Surg 2016; 34:284-90. [DOI: 10.1089/pho.2015.4024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosa Abellán
- Departamento de Estomatología IV, Facultad de Odontología, UCM, Madrid, Spain
| | - Clara Gómez
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - María Dolores Oteo
- Departamento de Estomatología IV, Facultad de Odontología, UCM, Madrid, Spain
| | - Giuseppe Scuzzo
- Departamento de Estomatología IV, Facultad de Odontología, UCM, Madrid, Spain
| | - Juan Carlos Palma
- Departamento de Estomatología IV, Facultad de Odontología, UCM, Madrid, Spain
| |
Collapse
|
17
|
Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering. PLoS One 2016; 11:e0149967. [PMID: 26989897 PMCID: PMC4798756 DOI: 10.1371/journal.pone.0149967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Mohamed Eltohamy
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016; 7:2041731415618342. [PMID: 26977284 PMCID: PMC4765821 DOI: 10.1177/2041731415618342] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jung-Ju Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Mark P Lewis
- Musculo-Skeletal Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea
| |
Collapse
|
19
|
Kaku M, Yamauchi M. Mechano-regulation of collagen biosynthesis in periodontal ligament. J Prosthodont Res 2014; 58:193-207. [PMID: 25311991 DOI: 10.1016/j.jpor.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
Periodontal ligament (PDL) plays critical roles in the development and maintenance of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical properties of PDL are mainly derived from fibrillar type I collagen, the most abundant extracellular component. The biosynthesis of type I collagen is a long, complex process including a number of intra- and extracellular post-translational modifications. The final modification step is the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with stability and connectivity. It is now clear that collagen post-translational modifications are regulated by groups of specific enzymes and associated molecules in a tissue-specific manner; and these modifications appear to change in response to mechanical force. This review focuses on the effect of mechanical loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, which is an important molecular aspect to understand in the field of prosthetic dentistry.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
20
|
Li L, Han MX, Li S, Xu Y, Wang L. Hypoxia regulates the proliferation and osteogenic differentiation of human periodontal ligament cells under cyclic tensile stress via mitogen-activated protein kinase pathways. J Periodontol 2014; 85:498-508. [PMID: 23805815 DOI: 10.1902/jop.2013.130048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies have shown that periodontal ligament exists in a hypoxic microenvironment, especially under the condition of periodontitis or physical stress. The present study is designed to investigate the effects and mechanisms of hypoxia on regulating the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs) under cyclic tensile stress (CTS). METHODS hPDLCs were cultured in 2% O2 (hypoxia) or 20% O2 (normoxia) and then subjected to a cyclic in-plane tensile deformation of 10% at 0.5 Hz. The following parameters were measured: 1) cell proliferation by flow cytometry; 2) cell ultrastructure by transmission electron microscopy; 3) expression of hypoxia-inducible factor-1α (HIF-1α) and osteogenic relative factors (i.e., secreted phosphoprotein 1 [SPP1; also known as bone sialoprotein I/osteopontin], runt-related transcription factor 2 [RUNX2], and transcription factor Sp7 [SP7]) by real-time polymerase chain reaction and Western blot; and 4) involvement of mitogen-activated protein kinase (MAPK) signaling pathways by Western blot with specific inhibitor. RESULTS Proliferation index in the hypoxia with CTS group was significantly higher than in other groups. Significant increases in HIF-1α, SPP1, RUNX2, and SP7 occurred in the presence of hypoxia for 24 hours. In addition, MAPK inhibitor (PD 98,059) significantly attenuated hypoxia and CTS-induced phosphor-ERK1/2 (extracellular regulated kinase 1/2), phosphor-JNK (c-jun N-terminal kinase), and phosphor-P38 expression. CONCLUSIONS Hypoxia regulates CTS-responsive changes in proliferation and osteogenic differentiation of hPDLCs via MAPK pathways. Hypoxia-treated hPDLCs may serve as an in vitro model to explore the molecular mechanisms of periodontitis.
Collapse
Affiliation(s)
- Lu Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
21
|
Spyropoulou A, Basdra EK. Mechanotransduction in bone: Intervening in health and disease. World J Exp Med 2013; 3:74-86. [DOI: 10.5493/wjem.v3.i4.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 11/03/2013] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction has been proven to be one of the most significant variables in bone remodeling and its alterations have been shown to result in a variety of bone diseases. Osteoporosis, Paget’s disease, orthopedic disorders, osteopetrosis as well as hyperparathyroidism and hyperthyroidism all comprise conditions which have been linked with deregulated bone remodeling. Although the significance of mechanotransduction for bone health and disease is unquestionable, the mechanisms behind this important process have not been fully understood. This review will discuss the molecules that have been found to be implicated in mechanotransduction, as well as the mechanisms underlying bone health and disease, emphasizing on what is already known as well as new molecules potentially taking part in conveying mechanical signals from the cell surface towards the nucleus under physiological or pathologic conditions. It will also focus on the model systems currently used in mechanotransduction studies, like osteoblast-like cells as well as three-dimensional constructs and their applications among others. It will also examine the role of mechanostimulatory techniques in preventing and treating bone degenerative diseases and consider their applications in osteoporosis, craniofacial development, skeletal deregulations, fracture treatment, neurologic injuries following stroke or spinal cord injury, dentistry, hearing problems and bone implant integration in the near future.
Collapse
|
22
|
Yu N, Prodanov L, Riet JT, Yang F, Walboomers XF, Jansen JA. Regulation of Periodontal Ligament Cell Behavior by Cyclic Mechanical Loading and Substrate Nanotexture. J Periodontol 2013; 84:1504-13. [DOI: 10.1902/jop.2012.120513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Janmey PA, Wells RG, Assoian RK, McCulloch CA. From tissue mechanics to transcription factors. Differentiation 2013; 86:112-20. [PMID: 23969122 PMCID: PMC4545622 DOI: 10.1016/j.diff.2013.07.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/09/2013] [Accepted: 07/23/2013] [Indexed: 02/08/2023]
Abstract
Changes in tissue stiffness are frequently associated with diseases such as cancer, fibrosis, and atherosclerosis. Several recent studies suggest that, in addition to resulting from pathology, mechanical changes may play a role akin to soluble factors in causing the progression of disease, and similar mechanical control might be essential for normal tissue development and homeostasis. Many cell types alter their structure and function in response to exogenous forces or as a function of the mechanical properties of the materials to which they adhere. This review summarizes recent progress in identifying intracellular signaling pathways, and especially transcriptional programs, that are differentially activated when cells adhere to materials with different mechanical properties or when they are subject to tension arising from external forces. Several cytoplasmic or cytoskeletal signaling pathways involving small GTPases, focal adhesion kinase and transforming growth factor beta as well as the transcriptional regulators MRTF-A, NFκB, and Yap/Taz have emerged as important mediators of mechanical signaling.
Collapse
Affiliation(s)
- Paul A Janmey
- Departments of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
24
|
Li L, Han M, Li S, Wang L, Xu Y. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway. DNA Cell Biol 2013; 32:488-97. [PMID: 23781879 PMCID: PMC3752521 DOI: 10.1089/dna.2013.2070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022] Open
Abstract
Physiological occlusal force constitutively exists in the oral environment and is important for periodontal homeostasis and remodeling. Cyclic tensile stress (CTS) triggers the biological response of periodontal ligament (PDL). However, a few reports have studied the correlation between CTS during physiological occlusal force and PDL cell activities such as osteogenic differentiation. In the present study, human PDL cells (hPDLCs) were subjected to 10% elongation CTS loading at 0.5 Hz for 24 h, which represents the physiological conditions of occlusal force. Gene expression microarray was used to investigate the mechano-induced differential gene profile and pathway analysis in vitro. The osteogenic relative factors, that is, SPP1, RUNX2, and SP7, were assessed by real-time PCR and Western blot. The involvement of mitogen-activated protein kinase (MAPK) signaling pathways was investigated by Western blot with a specific inhibitor. The expressions of SPP1, RUNX2, SP7, p-ERK1/2, and p-Elk1 were up-regulated after 10% CTS exposure. However, these up-regulated expressions were prevented by ERK1/2 inhibitor U0126 in the physiological occlusal force-applied hPDLCs. These results showed that 10% CTS could enhance osteogenic differentiation of hPDLCs via ERK1/2-Elk1 MAPK pathway, indicating that CTS during physiological occlusal force is a potent agent for PDL remodeling.
Collapse
Affiliation(s)
- Lu Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Minxuan Han
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Jacobs C, Grimm S, Ziebart T, Walter C, Wehrbein H. Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Arch Oral Biol 2013; 58:896-904. [PMID: 23422327 DOI: 10.1016/j.archoralbio.2013.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 01/15/2013] [Accepted: 01/19/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE During orthodontic therapy the correct strength of mechanical strain plays a key role for bone remodelling during tooth movement. Aim of this study was to investigate the osteogenic differentiation of human periodontal ligament fibroblasts (HPdLF) depending on the applied strength of mechanical strain compared to osteoblasts (HOB). DESIGN HPdLF and HOB were loaded with different strengths (1%, 5% and 10%) of static mechanical strain (SMS) for 12h in vitro. Viability was verified by MTT and apoptosis by TUNEL assay. Gene expression of cyclin D1, collagen type-1 (COL-I), alkaline phosphatase (ALP), osteocalcin, osteoprotegerin (OPG) and receptor activator of the NF-κB ligand (RANKL) were investigated using RT-PCR. OPG and RANKL synthesis was measured by ELISA and ALP activity by colorimetric assay. RESULTS 10% of SMS led to a decrease in cell viability of both cells lines, but no increased rate of apoptosis. RT-PCR showed the highest increase of cyclin D1 expression for HPdLF and HOB when applied to 5% of SMS, and HOB showed a doubling of COL-I gene expression. HPdLF and HOB showed a strength-dependent synthesis of OPG and ALP activity, whereas HOB demonstrated a decrease in OPG synthesis and ALP activity when applied to 10% of SMS. CONCLUSION Osteogenic differentiation of HPdLF correlates with increasing strength of SMS. HOB show decreased activity when applied to high SMS, demonstrating potential damage to the bone remodelling due to strain of high strength. SMS up to 5% provides the best conditions for bone formation at the tension site of tooth movement.
Collapse
Affiliation(s)
- Collin Jacobs
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
26
|
Park JH, Ushida T, Akimoto T. Control of cell differentiation by mechanical stress. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Chen YJ, Jeng JH, Chang HH, Huang MY, Tsai FF, Yao CCJ. Differential regulation of collagen, lysyl oxidase and MMP-2 in human periodontal ligament cells by low- and high-level mechanical stretching. J Periodontal Res 2012. [PMID: 23190051 DOI: 10.1111/jre.12028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Mechanical stretching modulates extracellular matrix (ECM) protein synthesis by periodontal ligament (PDL) cells. However, the mechanoregulation of lysyl oxidase (LOX), a key enzyme for collagen cross-linking, is not fully understood. In the present study, we hypothesized that low-level and high-level mechanical stretching differentially regulates collagen deposition and the expression of LOX and the enzymes responsible for ECM degradation, such as MMP-2 in PDL cells. MATERIAL AND METHODS Human PDL cells were cultured on flexible-bottom culture plates and subjected to cyclic mechanical stretching (3% and 10% elongation at 0.1 Hz) for 24 and 48 h in a Flexercell FX-4000 strain unit. The levels of expression of type I collagen alpha 1 (COL1A1), type III collagen alpha 1 (COL3A1), lysyl oxidase (LOX), MMP2 and TIMP2 mRNAs were analyzed using an RT-PCR technique. The cell layer and the culture medium were separately collected and processed for detection of the following ECM-related molecules: (i) total collagen content using a Sircol dye-binding method; (ii) LOX protein expression by western blotting; (iii) LOX activity using a fluorometric assay; and (iv) MMP-2 enzyme activity by gelatin zymography. RESULTS Low-level (3%) mechanical stretching of PDL cells upregulated the expression of COL1A1, COL3A1 and LOX mRNAs, enhanced the production of collagen and increased the LOX activity but did not change the level of expression of MMP2 or TIMP2 mRNA. The collagen content and LOX activity showed obvious elevation in the medium, but not in the cell layer. High-level (10%) mechanical stretching downregulated COL1A1 mRNA but upregulated COL3A1 mRNA; however, the effect on COL3A1 was smaller, and occurred earlier, compared with the effect on the COL1A1 gene. High-level mechanical stretching upregulated the expression of MMP2 and TIMP2 mRNAs but did not change collagen production or LOX activity. Moreover, high-level mechanical stretching increased the level of pro-MMP-2, especially in the cell layer. CONCLUSIONS This study substantiates the mechanoregulation of the expression of ECM-related molecules in PDL cells. High-level mechanical stretching upregulated the expression of MMP2 and TIMP2 mRNAs, but did not affect collagen production or LOX activity. In addition to increasing the transcription of COL1A1, COL3A1 and LOX genes, low-level mechanical stretching enhanced total collagen production and LOX activity, which should favor ECM stabilization. As an effective regulator of ECM remodeling, mechanical stretching can be exploited in periodontal regeneration and ligament tissue engineering via application of appropriate mechanical stimulation.
Collapse
Affiliation(s)
- Y-J Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Wenger KH, El-Awady AR, Messer RLW, Sharawy MM, White G, Lapp CA. Pneumatic pressure bioreactor for cyclic hydrostatic stress application: mechanobiology effects on periodontal ligament cells. J Appl Physiol (1985) 2011; 111:1072-9. [PMID: 21757574 DOI: 10.1152/japplphysiol.01175.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A bioreactor system was developed to provide high-amplitude cyclic hydrostatic compressive stress (cHSC) using compressed air mixed commercially as needed to create partial pressures of oxygen and carbon dioxide appropriate for the cells under investigation. Operating pressures as high as 300 psi are achievable in this system at cyclic speeds of up to 0.2 Hz. In this study, ligamentous fibroblasts from human periodontal ligaments (n = 6) were compressed on two consecutive days at 150 psi for 3 h each day, and the mRNA for families of extracellular matrix protein and protease isoforms was evaluated by real-time PCR array. Several integrins were significantly upregulated, most notably alpha-3 (6.4-fold), as was SPG7 (12.1-fold). Among the collagens, Col8a1 was highly upregulated at 53.5-fold, with Col6a1, Col6a2, and Col7a1 also significantly upregulated 4.4- to 8.5-fold. MMP-1 was the most affected at 122.9-fold upregulation. MMP-14 likewise increased 17.8-fold with slight reductions for the gelatinases and a significant increase of TIMP-2 at 5.8-fold. The development of this bioreactor system and its utility in characterizing periodontal ligament fibroblast mechanobiology in intermediate-term testing hold promise for better simulating the conditions of the musculoskeletal system and the large cyclic compressive stresses joints may experience in gait, exertion, and mastication.
Collapse
Affiliation(s)
- Karl H Wenger
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Klein J, Gonzalez J, Miravete M, Caubet C, Chaaya R, Decramer S, Bandin F, Bascands JL, Buffin-Meyer B, Schanstra JP. Congenital ureteropelvic junction obstruction: human disease and animal models. Int J Exp Pathol 2011; 92:168-92. [PMID: 20681980 PMCID: PMC3101490 DOI: 10.1111/j.1365-2613.2010.00727.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023] Open
Abstract
Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin-angiotensin system activation and fibrosis, based on both human and animal data. Also we propose that during obstructive nephropathy, hydrodynamic modifications are early inducers of the tubular lesions, which are potentially at the origin of the pathology. Finally, an important observation in animal models is that relief of obstruction during kidney development has important effects on renal function later in adult life. A major short-coming is the absence of data on the impact of UPJ obstruction on long-term adult renal function to elucidate whether these animal data are also valid in humans.
Collapse
Affiliation(s)
- Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Julien Gonzalez
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Mathieu Miravete
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Cécile Caubet
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Rana Chaaya
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
- Department of Pediatric Nephrology, Hôpital des Enfants, Centre de Référence du Sud Ouest des Maladies Rénales RaresToulouse, France
| | - Flavio Bandin
- Department of Pediatric Nephrology, Hôpital des Enfants, Centre de Référence du Sud Ouest des Maladies Rénales RaresToulouse, France
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM)Toulouse, France
- Université Toulouse III Paul-Sabatier, Institut de Médecine Moléculaire de RangueilToulouse, France
| |
Collapse
|
30
|
Enokiya Y, Hashimoto S, Muramatsu T, Jung HS, Tazaki M, Inoue T, Abiko Y, Shimono M. Effect of stretching stress on gene transcription related to early-phase differentiation in rat periodontal ligament cells. THE BULLETIN OF TOKYO DENTAL COLLEGE 2011; 51:129-37. [PMID: 20877159 DOI: 10.2209/tdcpublication.51.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanical stress such as occlusal and orthodontic loading has been suggested to induce a homeostatic and regenerative response in periodontal ligament (PDL), but the underlying mechanism remains to be clarified. The purpose of this study was to investigate expression of mRNAs encoding proteins involved in osteogenesis and homeostasis by PDL cells following application of tensile stress and characterize the relationship between such expression and the regenerative and homeostatic functions of the PDL. PDL cells were obtained from rats and stretched by 9% or 18% at a frequency of 6 cycles/min for 12 hr to 5 days in a FX-4000T™ culture system. After stretching, expression of mRNAs encoding collagen type I (Col-I), alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2), bone morphogenetic protein-4 (BMP-4), heat shock protein 70 (HSP70) and basic fibroblast growth factor (bFGF) was investigated. The highest levels of Col-I, ALP and BMP-2 mRNA expression occurred at 12 hr, while those of BMP-4 and HSP70 occurred at 1 day and 5 days, respectively. Expression levels of Col-I, ALP, BMP-2, BMP-4 and HSP70 increased magnitude-dependently with stretching force in the stretching groups. In contrast, expression of bFGF mRNA showed statistically significant reduction in both stretching groups, with the largest reduction seen in the 9% stretching group (p<0.01). These results suggest that stretching of PDL cells provokes significant increases in expression of factors promoting osteogenic differentiation and HSP70, which protects PDL cells undergoing mechanical stress and contributes to maintenance of PDL homeostasis. However, expression of bFGF was restrained. Reduced expression of bFGF mRNA suggested that there was an optimum magnitude of stretching force for increasing expression.
Collapse
|
31
|
Fujihara C, Yamada S, Ozaki N, Takeshita N, Kawaki H, Takano-Yamamoto T, Murakami S. Role of mechanical stress-induced glutamate signaling-associated molecules in cytodifferentiation of periodontal ligament cells. J Biol Chem 2010; 285:28286-97. [PMID: 20576613 DOI: 10.1074/jbc.m109.097303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we analyzed the effects of tensile mechanical stress on the gene expression profile of in vitro-maintained human periodontal ligament (PDL) cells. A DNA chip analysis identified 17 up-regulated genes in human PDL cells under the mechanical stress, including HOMER1 (homer homolog 1) and GRIN3A (glutamate receptor ionotropic N-methyl-d-aspartate 3A), which are related to glutamate signaling. RT-PCR and real-time PCR analyses revealed that human PDL cells constitutively expressed glutamate signaling-associated genes and that mechanical stress increased the expression of these mRNAs, leading to release of glutamate from human PDL cells and intracellular glutamate signal transduction. Interestingly, exogenous glutamate increased the mRNAs of cytodifferentiation and mineralization-related genes as well as the ALP (alkaline phosphatase) activities during the cytodifferentiation of the PDL cells. On the other hand, the glutamate signaling inhibitors riluzole and (+)-MK801 maleate suppressed the alkaline phosphatase activities and mineralized nodule formation during the cytodifferentiation and mineralization. Riluzole inhibited the mechanical stress-induced glutamate signaling-associated gene expressions in human PDL cells. Moreover, in situ hybridization analyses showed up-regulation of glutamate signaling-associated gene expressions at tension sites in the PDL under orthodontic tooth movement in a mouse model. The present data demonstrate that the glutamate signaling induced by mechanical stress positively regulates the cytodifferentiation and mineralization of PDL cells.
Collapse
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Takeuchi N, Ekuni D, Yamamoto T, Morita M. Relationship between the prognosis of periodontitis and occlusal force during the maintenance phase--a cohort study. J Periodontal Res 2010; 45:612-7. [PMID: 20546114 DOI: 10.1111/j.1600-0765.2010.01273.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Few studies have longitudinally investigated the relationship between periodontal disease progression and occlusal factors in individual subjects during the maintenance phase of periodontal therapy. The aim of this cohort study was to investigate the relationship between biting ability and the progression of periodontal disease in the maintenance phase. MATERIAL AND METHODS A total of 194 patients were monitored for 3 years during the maintenance phase of periodontal therapy. The subjects with disease progression (Progress group) were defined based on the presence of >or= 2 teeth demonstrating a longitudinal loss of proximal attachment of >or= 3 mm or tooth-loss experience as a result of periodontal disease during the study period. The subjects with high occlusal force were diagnosed as men who showed an occlusal force of more than 500 N and women who showed an occlusal force of more than 370 N. The association between biting ability and the progression of periodontitis was investigated using logistic regression analysis. RESULTS There were 83 subjects in the Progress group and 111 subjects in the Non-progress group. A backward, stepwise logistic regression model showed that the progression of periodontal disease was significantly associated with the presence of one or more teeth with a high clinical attachment level (CAL) of >or= 7 mm (odds ratio: 2.397; 95% confidence interval: 1.306-4.399) ( p = 0.005) and low occlusal force (odds ratio: 2.352; 95% confidence interval: 1.273-4.346) ( p = 0.006). CONCLUSION The presence of one or more teeth with a high CAL of >or= 7 mm and low occlusal force might be possible risk factors for periodontal progression in the maintenance phase of periodontal therapy.
Collapse
Affiliation(s)
- N Takeuchi
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kita-ku, Okayama, Japan
| | | | | | | |
Collapse
|
33
|
Effect of stretching force on the cells of epithelial rests of malassez in vitro. Int J Dent 2010; 2010:458408. [PMID: 20396676 PMCID: PMC2853867 DOI: 10.1155/2010/458408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/28/2009] [Accepted: 02/08/2010] [Indexed: 12/05/2022] Open
Abstract
Background and Objective. The aim of this study was to investigate the behavior of cells from epithelial rest of Malassez (ERM) against stretching force. Material and Methods. ERM-cultured cells were stretched for 1 hour, at the cycle of 18% elongation for 1 second followed by 1-second relaxation. The cells without addition of stretching force were used as controls. The cells were observed by immunohistochmical staining using actin 0, 12, 24, 36, 48, and 72 hours. Furthermore, expressions of HSP70-, VEGF-, and OPN-mRNAs of cells were also evaluated using quantitative RT-PCR. Results. Actin filaments were randomly orientated in the cytoplasm in the control group, whereas in the stretching group, actin filaments were orientated comparatively parallel to the stretching direction. Expression of HSP70-mRNA in the stretching group was significantly higher than that of control group at 12, 24, 36 hours (P < .05). Expression of VEGF-mRNA in the stretching group was significantly higher than that of control group at 24, 36, 48, and 72 hours (P < .05). Expression of OPN-mRNA in the stretching group was significantly higher than that of control group at 12 and 24 hours (P < .05). Conclusion. ERM cells response against the stretching force by expressing HSP70, VEGF, and OPN.
Collapse
|
34
|
Chan MWC, Hinz B, McCulloch CA. Mechanical induction of gene expression in connective tissue cells. Methods Cell Biol 2010; 98:178-205. [PMID: 20816235 DOI: 10.1016/s0091-679x(10)98008-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular matrices of mammals undergo coordinated synthesis and degradation, dynamic remodeling processes that enable tissue adaptations to a broad range of environmental factors, including applied mechanical forces. The soft and mineralized connective tissues of mammals also exhibit a wide repertoire of mechanical properties, which enable their tissue-specific functions and modulate cellular responses to forces. The expression of genes in response to applied forces are important for maintaining the support, attachment, and function of various organs including kidney, heart, liver, lung, joint, and periodontium. Several high-prevalence diseases of extracellular matrices including arthritis, heart failure, and periodontal diseases involve pathological levels of mechanical forces that impact the gene expression repertoires and function of bone, cartilage, and soft connective tissues. Recent work on the application of mechanical forces to cultured connective tissue cells and various in vivo force models have enabled study of the regulatory networks that control mechanically induced gene expression in connective tissue cells. In addition to the influence of mechanical forces on the expression of type 1 collagen, which is the most abundant protein of mammals, new work has shown that the expression of a wide range of matrix, signaling, and cytoskeletal proteins are regulated by exogenous mechanical forces and by the forces generated by cells themselves. In this chapter, we first discuss the fundamental nature of the extracellular matrix in health and the impact of mechanical forces. Next we consider the utilization of several, widely employed model systems for mechanical stimulation of cells. Finally, we consider in detail how application of tensile forces to cultured cardiac fibroblasts can be used for the characterization of the signaling systems by which mechanical forces regulate myofibroblast differentiation that is seen in cardiac pressure overload.
Collapse
Affiliation(s)
- Matthew W C Chan
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
35
|
Lisboa RA, Lisboa FA, de Castro Santos G, Andrade MVM, Cunha-Melo JR. Matrix metalloproteinase 2 activity decreases in human periodontal ligament fibroblast cultures submitted to simulated orthodontic force. In Vitro Cell Dev Biol Anim 2009; 45:614-21. [PMID: 19760465 DOI: 10.1007/s11626-009-9235-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/18/2009] [Indexed: 01/06/2023]
Abstract
Orthodontic force compresses the periodontal ligament promoting the expression of pro-inflammatory mediators and matrix metalloproteinases responsible for tooth movement. The extent in time while periodontal cells are being treated and the increment in the amount of mechanical stress caused by the orthodontic force is thought to regulate the levels of metalloproteinases in the periodontal tissue. To study the possible regulation in the activity of metalloproteinases 2, 3, 7, 9, and 10 by simulated orthodontic force, human periodontal ligament fibroblast cultures were centrifuged (141 × g) for 30, 60, 90, and 120 min, simulating the orthodontic force. Cell viability, protein quantification, and activity of metalloproteinases by zymography were evaluated at 24, 48, and 72 h after centrifugation in both cell lysates and growth medium. The activity of the 72-kDa matrix metalloproteinase 2 was decreased at 24 h regardless of the duration of centrifugation and at 48 h in cells centrifuged for 30 min only. Decrease in the amount of total protein in lysates was seen at 48 and 72 h with no change in cell viability. The data seem to indicate that the amount of mechanical stress regulates the levels of secreted matrix metalloproteinase 2. In addition, the centrifugation as a model for simulated orthodontic force may be used as a simple and reliable method to study the role played by matrix metalloproteinases in periodontal ligament when submitted to mechanical force as occurring during tooth movement.
Collapse
Affiliation(s)
- Rodolfo Assis Lisboa
- Department of Pathology, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Iyomasa MM, Issa JPM, De Moura Leite Naves L, Regalo SCH, Siéssere S, Pitol DL, Watanabe IS. Histological and histomorphometrical alterations of the periodontal ligament in gerbils submitted to teeth extraction. Anat Histol Embryol 2008; 37:257-62. [PMID: 18307578 DOI: 10.1111/j.1439-0264.2007.00838.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study verified the effect of unilateral teeth extraction on the periodontal ligament in gerbils (Meriones unguiculatus). Ten adult male gerbils weighing about 50 g had induced occlusal alterations by upper left molar extractions while the other ten animals, only submitted to surgical stress, were considered as controls. The periodontal ligament was characterized by qualitative and quantitative analysis, histological description and histomorphometric quantification. Significant alterations were observed on the left side of the experimental group (P < 0.05), the hypofunctional region, when it was compared with the contralateral side and the corresponding region of the control group. Two months after occlusal alterations induced by unilateral teeth extraction, atrophic histological alterations and a decrease in the periodontal space on the ipsilateral side characterized the periodontal ligament. In this study it was possible to conclude that the gerbil can be used in experimental models attempting to correlate the periodontium's biological response to various mechanical stresses, as the periodontal ligament was shown to be highly sensitive to occlusal alterations.
Collapse
Affiliation(s)
- M M Iyomasa
- Faculty of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH. Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 2008; 49:7-14. [PMID: 18293173 DOI: 10.1080/03008200701818561] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to explore the influences of cyclic mechanical stretching on the mRNA expressions of tendon/ligament-related and osteoblast-specific marker genes in human MSCs seeded onto a collagen type I-coated surface. The stretch-induced mRNA expressions of mesenchymal stem cell protein (MSCP), matrix metalloproteinase-3 (MMP-3), and marker genes related to tendon/ligament cells (type I collagen, type III collagen, and tenascin-C) and those typical of osteoblasts (core binding factor alpha 1 (Cbfa1), alkaline phosphatase (ALP), and osteocalcin (OCN)) were analyzed by quantitative real-time PCR. The results revealed significant downregulation of MSCP and upregulation of MMP-3 genes in MSCs subjected to mechanical loading, regardless of the magnitude of the stretching (high or low). Moreover, the typical marker genes of the osteoblast lineage were upregulated by low-magnitude stretching, whereas tendon/ligament-related genes were upregulated by high-magnitude stretching for a long period. Cbfa1 and ALP were upregulated starting as early at 8 hr, followed by a downward trend and no significant change in expression at the other time points. The mRNA expressions of type I collagen, type III collagen, and tenascin-C significantly increased in MSCs subjected to 10% stretching for 48 hr, and this effect still existed after the stretched cells had rested for 48 hr. This study demonstrated the effect of cyclic mechanical stretching on differential transcription of marker genes related to different cell lineages. Low-magnitude stretching increased mRNA expressions of Cbfa1 and ALP and was possibly involved in the early osteoblastic differentiation of MSCs, whereas high-magnitude stretching upregulated the mRNA expressions of tendon/ligament-related genes.
Collapse
Affiliation(s)
- Yi-Jane Chen
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Li J, Zhao Z, Wang J, Chen G, Yang J, Luo S. The role of extracellular matrix, integrins, and cytoskeleton in mechanotransduction of centrifugal loading. Mol Cell Biochem 2007; 309:41-8. [PMID: 18026855 DOI: 10.1007/s11010-007-9641-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/18/2007] [Indexed: 12/24/2022]
Abstract
The study was aimed to investigate the role of the "extracellular matrix (ECM)-integrins-cytoskeleton" signal pathway in mechanotransduction of centrifugal loading. MG-63 osteoblasts were exposed to centrifugal loading at 209xg for 10 min. Uncentrifuged cells and centrifuged cells that have been trypsinized and suspended in liquors were designed as control. The changes in F-actin and alpha-actin cytoskeleton, gene transcription of ECM components, and integrins expression were analyzed by LSCM, Real-Time RT-PCR and FCM, respectively. A temporary and fast reversible change was observed in F-actin and alpha-actin cytoskeleton. And the change was paralleled with the fast autoregulation in gene transcription of ECM components of fibronection, osteopontin and Collagen I, and integrins expression of both alpha2 and beta1 subunits. The result suggested that cytoskeleton was a possible mechanical sensor to centrifugal stimuli, and the cytoskeleton regulation to centrifugal loading was in an ECM-dependent and integrin-mediated manner.
Collapse
Affiliation(s)
- Juan Li
- Department of Orthodontics, West China College of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu 610041, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
41
|
Yanagisawa M, Suzuki N, Mitsui N, Koyama Y, Otsuka K, Shimizu N. Effects of compressive force on the differentiation of pluripotent mesenchymal cells. Life Sci 2007; 81:405-12. [PMID: 17644142 DOI: 10.1016/j.lfs.2007.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 05/15/2007] [Accepted: 06/05/2007] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to determine the effect of mechanical stress on the differentiation of the pluripotent mesenchymal cell line C2C12. C2C12 cells were cultured continuously under compressive force (0.25-2.0 g/cm(2)). After mechanical stress loading, the levels of expression of mRNAs and proteins for phenotype-specific markers of osteoblasts (Runx2, Msx2, Dlx5, Osterix, AJ18), chondroblasts (Sox5, Sox9), myoblasts (MyoD), and adipocytes (PPAR gamma) were measured by real-time polymerase chain reaction analysis and Western blot analysis, respectively. The expression of activated p38 mitogen-activated protein kinase (p38 MAPK) was measured by Western blotting and/or ELISA. Loading 0.5 g/cm(2) of compressive force significantly increased the expression levels of Runx2, Msx2, Dlx5, Osterix, Sox5, and Sox9. In contrast, the expression levels of AJ18, MyoD, and PPAR gamma were decreased by exposure to 0.5 g/cm(2) of compressive force. Loading 0.5 g/cm(2) of compressive force also induced the phosphorylation of p38 MAPK. SB203580, which is a specific inhibitor of p38 MAPK, inhibited the compressive force-induced phosphorylation of p38 MAPK and partially blocked compressive force-induced Runx2 mRNA expression. These results demonstrate that compressive force stimulation directs the differentiation pathway of C2C12 cells into the osteoblast and chondroblast lineage via activated phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Momoko Yanagisawa
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Gauthier M, Nourine M. Capillary Force Disturbances on a Partially Submerged Cylindrical Micromanipulator. IEEE T ROBOT 2007. [DOI: 10.1109/tro.2007.898964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Abstract
The influence of alveolar bone support on the functional capability of a tooth remains unclear. It was hypothesized that a reduction in alveolar support causes an increase of maximum stress in the periodontal structures. Mathematical models of the maxillary incisor to simulate in vivo tooth movement were constructed with periodontium of normal or reduced bone height, and normal or widened periodontal ligament (PDL) space. Under simulated bite force, the maximum tensile stress at the lingual cervical region in the PDL increased with bone height reduction, but decreased with PDL widening. The compressive stress at the cervical region in the cortical bone was no more than 22% of the yield strength of bone, and did not increase by the height reduction with widened PDL. The result suggests that the height reduction potentially causes mechanical damage to the PDL, but, of itself, is not likely to have a negative effect on the bone.
Collapse
Affiliation(s)
- M Ona
- Removable Partial Prosthodontics, Masticatory Function Rehabilitation, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | | |
Collapse
|
44
|
Karacay S, Saygun I, Bengi AO, Serdar M. Tumor Necrosis Factor–α Levels during Two Different Canine Distalization Techniques. Angle Orthod 2007; 77:142-7. [PMID: 17029549 DOI: 10.2319/120905-430r.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 02/01/2006] [Indexed: 11/23/2022] Open
Abstract
Abstract
Objectives: To compare levels of tumor necrosis factor (TNF)-α while applying continuous and heavy interrupted forces.
Materials and Methods: A hybrid retractor was used in the first group. In the second group, rapid canine distalization through periodontal distraction was performed. Gingival crevicular fluid samples were collected from the distal sides of the canine teeth before attaching the appliances and at 1 hour, 24 hours, and 1 week after the force was applied.
Results: In the hybrid reactor group, concentration of TNF-α decreased at 1 week according to 24-hour measurements. In the rapid canine distalization group, it severely increased at 1 hour. In the evaluation of between-group differences, significantly higher values were determined in the rapid canine distalization group at 1 hour and 1 week.
Conclusions: Heavy interrupted force induces a rapid release of TNF-α, and the tissue response continues for a longer time period. To avoid the harmful effects of heavy interrupted force, there might be feedback mechanisms that prevent the mediators from increasing excessively.
Collapse
Affiliation(s)
- Seniz Karacay
- Dental Science Center Department of Orthodontics, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | |
Collapse
|
45
|
Sengupta A, McCulloch CA. Functional Interactions of the Extracellular Matrix with Mechanosensitive Channels. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Cantarella G, Cantarella R, Caltabiano M, Risuglia N, Bernardini R, Leonardi R. Levels of matrix metalloproteinases 1 and 2 in human gingival crevicular fluid during initial tooth movement. Am J Orthod Dentofacial Orthop 2006; 130:568.e11-6. [PMID: 17110252 DOI: 10.1016/j.ajodo.2006.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/28/2006] [Accepted: 04/04/2006] [Indexed: 11/26/2022]
Abstract
INTRODUCTION During orthodontic treatment, the early response of periodontal tissues to mechanical stress involves several metabolic changes that allow tooth movement. Many studies have evaluated these modifications through the analysis of various metabolites released into gingival crevicular fluid (GCF). The purpose of this investigation was to evaluate matrix metalloproteinase (MMP)-1 and MMP-2 in the GCF of human teeth exposed to orthodontic force on both the tension and compression sides in the initial phase of orthodontic tooth movement. METHODS GCF samples were obtained from 11 healthy orthodontic patients (8 girls, 3 boys; age, 13-15 years; mean, 13.9 years) who needed their 4 first premolars extracted for orthodontic reasons. In each patient, the left maxillary canine having the fixed orthodontic appliance was used as the test tooth, and its antagonist, with no appliance, was the control tooth. Orthodontic force was applied by using a Sentalloy coil-spring (GAC International, Bohemia, NY) of 150 g. The GCF sampling on the mesiobuccal and distobuccal aspects of each experimental and control tooth was performed at specific times up to 8 hours with paper strips. Processing was carried out with western blot analysis to detect MMP-1 and MMP-2 levels on the compression and tension sides. RESULTS Compression force induced a significant increase of MMP-1 protein after 1 hour; the increase lasted until the third hour of force application and disappeared thereafter. The tension force induced significantly increased levels of the MMP-1 protein after just 1 hour of force application. MMP-2 protein was induced by compression and increased significantly in a time-dependent fashion, reaching a peak after 8 hours of force application. On the tension side, MMP-2 was significantly increased after 1 hour but gradually returned to basal levels within 8 hours. CONCLUSIONS Orthodontic forces affect both MMP-1 and MMP-2 protein levels on the compression and the tension sides, although to different extents, whereas MMP-1 and MMP-2 protein levels change in a time-dependent fashion.
Collapse
|
47
|
Kim HJ, Choi YS, Jeong MJ, Kim BO, Lim SH, Kim DK, Kim CK, Park JC. Expression of UNCL during development of periodontal tissue and response of periodontal ligament fibroblasts to mechanical stress in vivo and in vitro. Cell Tissue Res 2006; 327:25-31. [PMID: 17004066 DOI: 10.1007/s00441-006-0304-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/13/2006] [Indexed: 02/06/2023]
Abstract
Mutations in two genes, uncoordinated (unc) and uncoordinated-like (uncl), lead to a failure of mechanotransduction in Drosophila. UNCL, the human homolog of unc and uncl, is preferentially expressed in periodontal ligament (PDL) fibroblasts compared with gingival fibroblasts. However, the precise role of UNCL in the PDL remains unclear. The aim of the present study has been to examine whether mechanical stimuli modulate the expression of UNCL in the human PDL in vivo and in vitro and to examine the roles of UNCL in the development, regeneration, and repair of the PDL. We have investigated the expression pattern of UNCL during the development of periodontal tissue and the response of PDL fibroblasts to mechanical stress in vivo and in vitro. The expression of UNCL mRNA and protein increases with PDL fibroblast differentiation from the confluent to multilayer stage but slightly decreases on mineralized nodule formation. UNCL has also been localized in ameloblasts and adjacent cells, differentiating cementoblasts, and osteoblasts of the developing tooth. Strong distinct UNCL expression has further been observed in the differentiating cementoblasts of the tooth periodontium at the site of tension after orthodontic tooth movement. Application of cyclic mechanical stress on PDL fibroblasts increases the expression of UNCL mRNA. These results indicate that UNCL plays important roles in the development, differentiation, and maintenance of periodontal tissues and also suggest a potential role of UNCL in the mechanotransduction of PDL fibroblasts.
Collapse
Affiliation(s)
- Heung-Joong Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, Gwang-Ju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|