1
|
Carvajal-Serna M, Martínez de Los Reyes N, Marigorta P, Bermejo-Álvarez P, Ramos-Ibeas P. Melatonin supplementation does not improve ovine pre- or post-hatching development in vitro. Theriogenology 2025; 241:117428. [PMID: 40209473 DOI: 10.1016/j.theriogenology.2025.117428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Melatonin plays a crucial role in the regulation of reproductive seasonality in sheep. Melatonin supplementation has been widely used both in vivo to increase fertility and prolificacy, and in vitro during oocyte maturation, fertilization, and embryo culture. However, its effects have only been assessed in vitro up to the hatched blastocyst stage in conventional embryo culture systems. This study aimed to evaluate the effects of melatonin supplementation from oocyte in vitro maturation (IVM) through post-hatching embryonic stages in vitro on the development of the first three embryonic lineages. Supplementation with melatonin at 10-8 or 10-6 M during IVM, in vitro fertilization (IVF), and in vitro culture (IVC) did not affect cleavage and blastocyst rates at day (D) 8, nor embryo survival and growth at D12. While hypoblast development was not affected, epiblast survival was reduced in D12 embryos treated with 10-6 M melatonin from the blastocyst stage onward. In conclusion, melatonin supplementation did not show a clear beneficial effect on ovine in vitro embryo production or lineage development during post-hatching embryo culture.
Collapse
Affiliation(s)
- M Carvajal-Serna
- Departamento de Reproducción Animal, INIA, CSIC, Madrid, Spain; Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | | | - P Marigorta
- Departamento de Reproducción Animal, INIA, CSIC, Madrid, Spain
| | | | - P Ramos-Ibeas
- Departamento de Reproducción Animal, INIA, CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Wang C, Zhang Y, He S, Jiang B, Huang J, Peng H. Melatonin regulates rabbit sperm motility and kinematics via the MT1/PKC signaling pathway. Anim Biosci 2025; 38:929-940. [PMID: 40045627 DOI: 10.5713/ab.24.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/14/2024] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE Melatonin, a highly conserved molecule, plays an essential role in various physiological functions. Research suggests that incorporating melatonin into semen extender enhances livestock sperm viability. However, the effect of melatonin on rabbit sperm and the molecular mechanisms underlying melatonin-regulated rabbit sperm motility and kinematics remain unclear. This study aimed to reveal the molecular mechanism by which melatonin regulates rabbit sperm motility and kinematics. METHODS This study investigated the expression and localization of melatonin-related proteins in rabbit testis and epididymis. Rabbit sperm was incubated at different concentrations of melatonin for 60 min or 90 min at 37°C, followed by an evaluation of sperm motility parameters using IVOS II computer assisted sperm analyzer system (CASA). Then we examined the integrity of the sperm plasma membrane, mitochondrial membrane potentials and intracellular reactive oxygen species. Furthermore, melatonin receptor antagonists were added to the extender and investigated the involvement of the melatonin receptors in the regulation of sperm motility parameters. We carried out phosphoproteomics analysis and verified regulation of rabbit sperm kinematics by melatonin via the inhibition of potential signaling pathway. RESULTS Melatonin-related proteins were expressed and localized in testes and epididymis of rabbits. Melatonin (5 mM) markedly increased rabbit sperm motility, kinematics, and overall sperm quality. Melatonin regulated rabbit sperm motility and kinematics via the MT1 receptor. Phosphoproteomics combined with GPS 5.0 software revealed the potential signaling pathway by which melatonin regulates sperm kinematics. Moreover, the inhibition of protein kinase C (PKC) markedly reduced rabbit sperm kinematics, whereas the inhibition of ERK1/2, p38 MAPK, PKG and JNKs using kinase inhibitors did not result in obvious changes in sperm kinematics. In addition, inhibition of the MT1 receptor significantly weakened PKC activity, suggesting that PKC is downstream of MT1. CONCLUSION We conclude that melatonin regulates rabbit sperm kinematics through the MT1/PKC signaling pathway.
Collapse
Affiliation(s)
- Chongchong Wang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Yanyan Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Shiwen He
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| |
Collapse
|
3
|
Phuong LDT, Thien LC, Su Pham CD, Minh NU, Huy Bao NT, Thien Truc LN, Huyen TTN, Minh DT, Nguyen NT, Van Thuan N, Bui HT. Melatonin and cyclic adenosine monophosphate enhance the meiotic and developmental competence of porcine oocytes from early antral follicles during in vitro growth and pre-maturation culture. Theriogenology 2025; 237:129-142. [PMID: 40015084 DOI: 10.1016/j.theriogenology.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Melatonin has been studied for its ability to improve oocyte quality and modulate cyclic adenosine monophosphate (cAMP) production. However, the effects of melatonin on the in vitro growth (IVG) of oocyte-cumulus-granulosa complexes (OCGCs) derived from early antral follicles (EAFs) have not been fully investigated. This study aimed to examine the effects of melatonin during IVG on the developmental competence and blastocyst quality of porcine oocytes isolated from EAFs. In addition, the combination of melatonin with dibutyl cAMP (Mela + dbcAMP) or hypoxanthine (Mela + HX) during IVG and pre-in vitro maturation (pre-IVM) was also investigated. The result showed that the modified medium supplemented with 10 μM melatonin after 4-day IVG enhanced antrum formation, survival rate, and oocyte diameter, especially, the melatonin-treated group enhanced expression of histone acetylation (Ac-H3-K9) higher than the untreated group. In addition, the combination of 10 μM melatonin with dbcAMP during IVG and during 7h of pre-IVM had significantly improved meiotic competence and cumulus expansion after IVM compared to Mela + HX groups. Finally, the combination of Mela + dbcAMP improved parthenogenetic blastocyst formation rather than the untreated group, and expression of histone methylation (Me-H3-K4) and Ac-H3-K9 in blastocyst comparable group derived from oocytes of large antral follicles (LAFs). Furthermore, melatonin with concentrations of 10 μM and 100 μM during IVG enhanced expression of pluripotency gene-related (OCT4, NANOG, SOX2) and balance cell viability via apoptosis-related gene (BCL2/BAX). In conclusion, melatonin combined with dbcAMP during IVG and pre-IVM of oocytes derived from EAFs demonstrated superior efficacy in enhancing oocyte growth, maturation, and development of porcine pre-implantation embryos.
Collapse
Affiliation(s)
- Lam Do Truc Phuong
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Lam Chi Thien
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Cao Dang Su Pham
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Nguyen Uyen Minh
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Nguyen Thai Huy Bao
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Le Nguyen Thien Truc
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Truong Thi Ngoc Huyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Do Tu Minh
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam
| | - Nhat-Thinh Nguyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam; University of Health Sciences-VNU, Ho Chi Minh City, 70000, Viet Nam
| | - Nguyen Van Thuan
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam.
| | - Hong-Thuy Bui
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, 70000, Viet Nam; Vietnam National University, Ho Chi Minh City, 70000, Viet Nam.
| |
Collapse
|
4
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2025; 70:223-242. [PMID: 38692429 PMCID: PMC11976432 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Biradar P, Singh P, Singh N, Honparkhe M, Sethi RS. Developmental competence of ovum pick up derived Sahiwal cow oocytes in maturation media supplemented with cysteamine and melatonin. Tissue Cell 2025; 95:102819. [PMID: 40086108 DOI: 10.1016/j.tice.2025.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Antioxidants, cysteamine and melatonin, have an important role on mitochondrial membrane potential (ΔΨM), in vitro nuclear maturation and developmental competence of oocytes. A comprehensive study was planned to investigate the effect of cysteamine 50 µM and melatonin 10-9 mol L-1 as antioxidants on ΔΨM, in vitro nuclear maturation and developmental competence of ovum pick up (OPU) derived Sahiwal Cow oocytes. Culturable grade OPU derived Sahiwal oocytes were divided in to three in vitro maturation groups cultured in TCM-199 supplemented with cysteamine 50 µM, melatonin 10-9 mol L-1 and TCM-199 alone, for assessing nuclear maturation by Lamin/ DAPI and developmental competence of oocytes. ΔΨM was assessed by JC-1 staining in pre-maturation group and post-maturation cysteamine, melatonin and control groups. Red to green ratio of fluorescence intensity on JC-1 staining was higher (p < 0.05) in melatonin (1.19 ± 0.04) and cysteamine (1.09 ± 0.04) supplementation groups as compared to control (0.81 ± 0.10) and pre-maturation (0.71 ± 0.03) groups. ΔΨM improved post-maturation in all the treatment and control groups as compared to pre-maturation group (0.71 ± 0.03). Melatonin supplementation improved (p < 0.05) M-II stage oocytes (6.5 ± 0.65, 68.13 per cent) as compared to cysteamine supplemented (5.25 ± 0.25, 55.63 per cent) and control (4.75 ± 0.25, 50.63 per cent) groups. COC expansion rate was higher in antioxidant supplemented group. Fertilization rate, cleavage rate and blastocyst rate were higher (p < 0.05) in melatonin supplemented group (92.31, 59.17 and 20.56 per cent) as compared to cysteamine supplemented (82.96, 41.48 and 11.39 per cent) and control (75.28, 27.59 and 5.19 per cent) groups, respectively. In conclusion, cysteamine and melatonin supplementation as antioxidants in the in vitro maturation media improved (p < 0.05) ΔΨM. Significant improvement in MII stage oocytes, cleavage and blastocyst rate in OPU derived Sahiwal cow oocytes by supplementation of melatonin to the IVM medium as compared to cysteamine supplemented and control groups. Melatonin improved both cytoplasmic (ΔΨM is improved) and nuclear maturation (no. of MII oocytes) by acting both as intracellular and extracellular antioxidant against ROS, thereby improving developmental competence of OPU derived Sahiwal Cow oocytes. Cysteamine supplementation improved cytoplasmic maturation by increasing GSH content thereby improving ΔΨM but not the nuclear maturation.
Collapse
Affiliation(s)
- Preeti Biradar
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Prahlad Singh
- Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India.
| | - Narinder Singh
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Ram Saran Sethi
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| |
Collapse
|
6
|
Sadeghpour S, Ghasemnejad-Berenji M, Maleki F, Behroozi-Lak T, Bahadori R, Ghasemnejad-Berenji H. The effects of melatonin on follicular oxidative stress and art outcomes in women with diminished ovarian reserve: a randomized controlled trial. J Ovarian Res 2025; 18:5. [PMID: 39780224 PMCID: PMC11707845 DOI: 10.1186/s13048-024-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND To investigate the impact of Melatonin on follicular oxidative stress and assisted reproductive technology (ART) outcomes in women with diminished ovarian reserve (DOR). METHOD We put 68 women with DOR who were going through ART into a randomized controlled trial. Starting on the fifth day of their menstrual cycle, we gave them either 3 mg of Melatonin or a placebo every day before stimulating their ovaries. We obtained follicular fluid during oocyte retrieval, assessed it for oxidative stress indicators, and documented ART outcomes. RESULTS Melatonin administration markedly enhanced the quantity of oocytes retrieved, fertilization rates, and embryo quality. In addition, Melatonin changed markers of oxidative stress, specifically the levels of reduced glutathione (rGSH) and total antioxidant capacity (TAC). The Melatonin group exhibited significantly elevated biochemical pregnancy rates. CONCLUSION Melatonin may improve the quality of oocytes and help with reproductive technology in women with low ovarian reserves, possibly by lowering oxidative stress in the follicles.
Collapse
Affiliation(s)
- Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Maleki
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Behroozi-Lak
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Robabeh Bahadori
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Islam MN, Ebara F, Konno T, Tatemoto H, Yamanaka K. Melatonin improves the in vitro growth of bovine oocytes collected from early antral follicles by maintaining oocyte-cumulus cell communication. Reprod Med Biol 2025; 24:e12629. [PMID: 39877759 PMCID: PMC11774242 DOI: 10.1002/rmb2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes. Methods Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.5°C in 5% CO2 humidified air. Melatonin (10-7, 10-9, or 10-11 M) was added to the culture medium. Results Oocyte diameter increased on day 5 from its initial value in all groups. The antrum formation rate was significantly higher in the 10-9 M melatonin-treated group than in the control. The melatonin-treated group showed reduced oxidative stress and increased gap junction communication compared with the control. ER stress-related genes in OGCs were significantly downregulated in the 10-9 M melatonin-treated group compared with those in the control. No significant changes were found in subsequent maturation among groups; however, 10-9 M melatonin treatment during IVG and IVM increased the maturation rate compared with that in the control. Conclusions Melatonin reduces oxidative stress, which attenuates ER stress in OGCs during IVG of bovine oocytes and may improve IVG efficiency in assisted reproductive technology.
Collapse
Affiliation(s)
- Md Nuronnabi Islam
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Fumio Ebara
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Toshihiro Konno
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Ken‐ichi Yamanaka
- Faculty of AgricultureSaga UniversitySagaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
8
|
Sun JT, Liu JH, Zhao L, Chen HY, Wang RF, Li YJ, Weng XG, Liu ZH, Shen Q, Zhang BX, Jin JX. Melatonin decreases excessive polyspermy for single oocyte in pigs through the MT2 receptor. Sci Rep 2024; 14:23153. [PMID: 39367161 PMCID: PMC11452519 DOI: 10.1038/s41598-024-74969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Melatonin supplementation during in vitro maturation (IVM) improves porcine oocyte maturation and embryonic development by exerting antioxidative effects. Nevertheless, the mechanism by which melatonin prevents polyspermy after in vitro fertilization (IVF) remains unclear. Here, we examined the effects of melatonin on cytoplasmic maturation and the incidence of polyspermic penetration in porcine oocytes. No statistically significant difference was observed in the rate of first polar body formation between the groups (Control, Melatonin, Melatonin + Luzindole, and Melatonin + 4-P-PDOT). Interestingly, melatonin supplementation significantly improved the cytoplasmic maturation of porcine oocytes by enhancing the normal distribution of organelles (Golgi apparatus, endoplasmic reticulum and mitochondria) and upregulating organelle-related gene expressions (P < 0.05). However, these promotional effects were counteracted by melatonin antagonists, suggesting that melatonin enhances cytoplasmic maturation through its receptors in porcine oocytes. Melatonin supplementation also significantly improved the rate of diploid and blastocyst formation after IVF by promoting the normal distribution of cortical granules (P < 0.05). In conclusion, melatonin supplementation during in vitro maturation of porcine oocyte improves fertilization efficiency and embryonic developmental competence by enhancing cytoplasmic maturation.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jia-Hui Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hang-Yu Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ren-Fei Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yong-Jia Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Gang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qian Shen
- Hainan Xuhuai Technology Co., Ltd, Haikou, 571127, China
| | - Bao-Xiu Zhang
- Reproductive Medicine Center, Ciming Boao International Hospital, Qionghai, 571434, China.
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China.
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Nadri P, Zahmatkesh A, Bakhtari A. The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals. Biol Reprod 2024; 111:529-542. [PMID: 38753882 DOI: 10.1093/biolre/ioae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azizollah Bakhtari
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
10
|
Jitjumnong J, Tang PC. Improving the meiotic competence of small antral follicle-derived porcine oocytes by using dibutyryl-cAMP and melatonin. Anim Biosci 2024; 37:1007-1020. [PMID: 38419539 PMCID: PMC11065959 DOI: 10.5713/ab.23.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE We increased the nuclear maturation rate of antral follicle derived oocytes by using a pre-in vitro maturation (IVM) culture system and improved the developmental potential of these porcine pathenotes by supplementing with melatonin. Furthermore, we investigated the expression patterns of genes involved in cumulus expansion (HAS2, PTGS2, TNFAIP6, and PTX3) derived from small and medium antral follicles before and after oocyte maturation. METHODS Only the cumulus oocyte-complexes (COCs) derived from small antral follicles were induced with [Pre-SF(+)hCG] or without [Pre-SF(-)hCG] the addition of human chorionic gonadotropin (hCG) during the last 7 h of the pre-IVM period before undergoing the regular culture system. The mature oocytes were investigated on embryonic development after parthenogenetic activation (PA). Melatonin (10-7 M) was supplemented during in vitro culture (IVC) to improve the developmental potential of these porcine pathenotes. RESULTS A pre-IVM culture system with hCG added during the last 7 h of the pre-IVM period [Pre-SF(+)hCG] effectively supported small antral follicle-derived oocytes and increased their nuclear maturation rate. The oocytes derived from medium antral follicles exhibited the highest nuclear maturation rate in a regular culture system. Compared with oocytes cultured in a regular culture system, those cultured in the pre-IVM culture system exhibited considerable overexpression of HAS2, PTGS2, and TNFAIP6. Porcine embryos treated with melatonin during IVC exhibited markedly improved quality and developmental competence after PA. Notably, melatonin supplementation during the IVM period can reduce and increase the levels of intracellular reactive oxygen species (ROS) and glutathione (GSH), respectively. CONCLUSION Our findings indicate that the Pre-SF(+)hCG culture system increases the nuclear maturation rate of small antral follicle-derived oocytes and the expression of genes involved in cumulus expansion. Melatonin supplementation during IVC may improve the quality and increase the blastocyst formation rate of porcine embryos. In addition, it can reduce and increase the levels of ROS and GSH, respectively, in mature oocytes, thus affecting subsequent embryos.
Collapse
Affiliation(s)
- Jakree Jitjumnong
- Department of Animal Science, National Chung Hsing University, 40227 Taichung,
Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, 40227 Taichung,
Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 40227 Taichung,
Taiwan
| |
Collapse
|
11
|
Kandil OM, Rahman SMAE, Ali RS, Ismail EA, Ibrahim NM. Effect of melatonin on developmental competence, mitochondrial distribution, and intensity of fresh and vitrified/thawed in vitro matured buffalo oocytes. Reprod Biol Endocrinol 2024; 22:39. [PMID: 38580962 PMCID: PMC10996257 DOI: 10.1186/s12958-024-01209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In livestock breeding, oocyte cryopreservation is crucial for preserving and transferring superior genetic traits. This study was conducted to examine the additional effect of melatonin to maturation and vitrification media on the in vitro developmental capacity, mitochondrial distribution, and intensity of buffalo oocytes. The study involved obtaining ovaries from a slaughterhouse and conducting two phases. In the first phase, high-quality oocytes were incubated in a maturation medium with or without 10-9M melatonin for 22 h (at 38.5°C in 5% CO2). Matured oocytes were fertilized in vitro and cultured in SOF media for seven days. In the second phase, vitrified in vitro matured oocytes were stored in vitrified media (basic media (BM) containing a combination of cryoprotectants (20% Ethyl Glycol and 20% Dimethyl sulfoxide), with or without melatonin, and then stored in liquid nitrogen. Normal vitrified/thawed oocytes were fertilized in vitro and cultured as described. Finally, the matured oocytes from the fresh and vitrified/thawed groups, both with and without melatonin, were stained using DAPI and Mitotracker red to detect their viability (nuclear maturation), mitochondrial intensity, and distribution using a confocal microscope. The study found that adding 10-9M melatonin to the maturation media significantly increased maturation (85.47%), fertilization rate (84.21%)cleavage (89.58%), and transferable embryo (48.83%) rates compared to the group without melatonin (69.85%,79.88%, 75.55%, and 37.25% respectively). Besides that, the addition of melatonin to the vitrification media improved the recovery rate of normal oocytes (83.75%), as well as the cleavage (61.80%) and transferable embryo (27.00%) rates when compared to the vitrified TCM group (67.46%, 51.40%, and 17.00%, respectively). The diffuse mitochondrial distribution was higher in fresh with melatonin (TCM + Mel) (80%) and vitrified with melatonin (VS2 + Mel groups) (76.70%), Furthermore, within the same group, while the mitochondrial intensity was higher in the TCM + Mel group (1698.60) than other group. In conclusion, Melatonin supplementation improves the developmental competence and mitochondrial distribution in buffalo oocytes in both cases(in vitro maturation and vitrification).
Collapse
Affiliation(s)
- Omaima Mohamed Kandil
- Department of Animal Reproduction & Artificial Insemination, Veterinary Research Institute, National Research Centre, Cairo, Egypt.
- Accredited (ISO 17025) Embryo and Genetic Resources Conservation Bank in National Research Centre (NRC), Cairo, Egypt.
| | | | - Rania S Ali
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Esraa Aly Ismail
- Department of Animal Reproduction & Artificial Insemination, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Nehad M Ibrahim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
12
|
Abd El-Hamid IS. Improving chilled and frozen buck sperm characteristics by adding melatonin and L-carnitine to the preservation medium. Reprod Domest Anim 2024; 59:e14504. [PMID: 37942917 DOI: 10.1111/rda.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
This study evaluated the effects of melatonin (MLT) and L-carnitine supplementation on sperm quality and antioxidant capacity during chilled and cryopreservation. Twenty-four ejaculates were collected from six Damascus bucks, 4 ejaculates each, from mid-September to mid-October 2022. The pooled semen from each collecting session was divided into 5 equal aliquots after being diluted (1:10) with Tris-citric acid egg yolk extender. The first aliquot served as a control (treatment-free). MLT was added to the second and third aliquots at low and high doses (LD: 4 and HD: 8 μL/mL) (v/v), respectively, while L-carnitine (LC) was added to the fourth and fifth aliquots at the same aforementioned doses. The aliquots were stored at 4°C for 48 h to assess sperm physical and morphological characteristics, alongside lipids peroxidase (LP) production and glutathione peroxidase (GPX) activity. The optimum doses of MLT and LC that showed potential for maintaining sperm characteristics throughout the chilled storage period were further investigated for protecting the spermatozoa after exposure to cryopreservation stress compared to the control. The results showed higher sperm motility (%) in the MLT-HD group, higher (p ≤ .05) sperm viability (%) in the MLT-LD, and both aliquots of LC at T24 hours of chilled preservation. Normal sperm (%) was higher (p ≤ .05) in both LC-LD and MLT-LD groups than other groups, while sperm acrosome integrity (%) was higher (p ≤ .05) in the LC-LD group. Morphological abnormalities (%) were improved (p ≤ .05) in all treated aliquots compared with control. The mean value of GPX activity was higher (p ≤ .05) in both MLT groups, while the concentration of LP increased (p ≤ .05) in the LC-HD or control groups. Furthermore, supplementing buck sperm medium with 4 μL/mL of MLT or LC improved (p < .05) the sperm characteristics and decreased (p < .05) DNA fragmentation index after thawing.
Collapse
Affiliation(s)
- Ibrahim S Abd El-Hamid
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Cairo, Egypt
| |
Collapse
|
13
|
Perea MF, Fernández EA, Garzón JP, Rosales CA, Hernández-Fonseca H, Perdomo DA, Perea FP. The moon cycle influences reproductive and productive traits in guinea pigs ( Cavia porcellus) from a tropical Andean area. Chronobiol Int 2024; 41:127-136. [PMID: 38093623 DOI: 10.1080/07420528.2023.2294044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
There is currently innumerable evidence showing that the lunar cycle affects various reproductive aspects in farm animals. However, there is very little information on the effect of the lunar cycle on productive traits in these species. A retrospective study was conducted (2015-2018) to evaluate the influence of the lunar cycle on some reproductive and productive traits in a guinea pig (Cavia porcellus) production system in the southern Andean region of Ecuador. A total of 7352 productive and reproductive records of guinea pig females housed in 3 m2 cages with a breeding male were analyzed. The following variables were considered: offspring sex ratio, litter size per cage, number of weaned guinea pigs, mortality, individual and litter weaning weight of guinea pigs, and calving frequency. The lunar cycle was split into eight periods of ~3.7-d length each. Data were analyzed by logistic regression and general linear model, and means were compared by the least mean squares method of the SAS. The offspring sex ratio was not correlated to the lunar cycle. The lunar cycle at mating and calving influenced the litter size per cage, number of weaned, and mortality of guinea pigs. The individual and litter-weaning weights were influenced by the lunar cycle at calving. The frequency of calving was greater around the new and full moon than in the remaining periods of the lunar cycle. In conclusion, the lunar cycle influenced several productive and reproductive traits in guinea pigs, such as litter size, mortality, number of pups weaned, and individual and litter weaning weights. This valuable information may have practical applications in management of guinea pig production systems.
Collapse
Affiliation(s)
- Miguel F Perea
- Facultad de Ciencia y Tecnología, Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Cuenca, Ecuador
| | - Estefanía A Fernández
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan P Garzón
- Estación Experimental del Austro, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Azuay, Ecuador
| | - Cornelio A Rosales
- Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador
| | - Hugo Hernández-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, St. George's, West Indies
| | - Daniel A Perdomo
- Departamento de Ciencias Agrarias, Universidad de Los Andes, Trujillo, Venezuela
| | - Fernando P Perea
- Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador
- Departamento de Ciencias Agrarias, Universidad de Los Andes, Trujillo, Venezuela
| |
Collapse
|
14
|
Chen Y, Yang J, Zhang L. The Impact of Follicular Fluid Oxidative Stress Levels on the Outcomes of Assisted Reproductive Therapy. Antioxidants (Basel) 2023; 12:2117. [PMID: 38136236 PMCID: PMC10740420 DOI: 10.3390/antiox12122117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Oocyte quality is a pivotal determinant of assisted reproductive outcomes. The quality of oocytes is intricately linked to their developmental microenvironment, particularly the levels of oxidative stress within the follicular fluid. Oxidative stress levels in follicular fluid may have a substantial influence on oocyte health, thereby impacting the outcomes of ART procedures. This review meticulously explores the intricate relationship between oxidative stress in follicular fluid and ART outcomes. Furthermore, it delves into strategies aimed at ameliorating the oxidative stress status of follicular fluid, with the overarching goal of enhancing the overall efficacy of ART. This research endeavors to establish a robust foundation and provide valuable guidance for clinical treatment approaches, particularly in the context of infertile women, including those of advanced maternal age.
Collapse
Affiliation(s)
| | | | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China; (Y.C.); (J.Y.)
| |
Collapse
|
15
|
Zheng M, Liu M, Zhang C. Melatonin Ameliorates Ovarian Hyperstimulation Syndrome (OHSS) through SESN2 Regulated Antiapoptosis. Obstet Gynecol Int 2023; 2023:1121227. [PMID: 37937274 PMCID: PMC10626722 DOI: 10.1155/2023/1121227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Background Ovarian hyperstimulation syndrome (OHSS) is one of the most severe complications after ovarian stimulation during assisted reproductive technology (ART). However, its pathogenesis still remains unclear. Melatonin is an important antioxidant factor in female reproduction and Sestrin-2 (SESN2) is reported to be involved in cellular response to different stress conditions. Whether or not melatonin and SESN2 are involved in OHSS is still a question to us clinicians. Methods and Results We collected the granulosa cells of OHSS patients and focused on the role of SESN2 in OHSS. We also studied the role and mechanism of melatonin plays in OHSS patients. We found that the expression of SESN2 was increased in the granulosa cells of OHSS patients (n = 24) than those in controls (n = 15). Incubation with angiotensin II (1 μM, 2 μM) in HUVECs and H2O2 (0.1 mM, 0.2 mM) in KGNs increased the generation of ROS concurrent with the increased expression of SESN2, while melatonin treatment partly restored SESN2 levels. The mechanism study demonstrated that SESN2 was deeply involved in the regulation of AMPK and mTOR, whereas melatonin partially restored angiotensin II or H2O2 induced the activation of AMPK phosphorylation and the inhibition of mTOR, 4EBP1 and S6K1 phosphorylation, all of which could trigger cell apoptosis. Conclusions These findings indicated that melatonin attenuated ROS-induced apoptosis through SESN2-AMPK-mTOR in OHSS. Thus, melatonin is likely to be a potential and important therapeutic agent for treating and preventing OHSS.
Collapse
Affiliation(s)
- Min Zheng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Mei Liu
- Department of Obstetrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| |
Collapse
|
16
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
17
|
Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation. Theriogenology 2022; 194:133-143. [DOI: 10.1016/j.theriogenology.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
18
|
Paulino LRFM, Barroso PAA, Silva BR, Barroso LG, Barbalho EC, Bezerra FTG, Souza ALP, Monte APO, Silva AWB, Matos MHT, Silva JRV. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles. Domest Anim Endocrinol 2022; 81:106750. [PMID: 35870423 DOI: 10.1016/j.domaniend.2022.106750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the (1) expression of melatonin receptors types 1A/B (MTNR1A/B) in bovine ovaries and (2) the in vitro effects of melatonin on secondary follicle development, antrum formation, viability, and expression of messenger ribonucleic acid (mRNA) for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase-1 (GPX1) and peroxiredoxin 6 (PRDX6). The expression of MTNR1A/B in bovine ovarian follicles was demonstrated by immunohistochemistry. To choose the most effective concentration of melatonin on follicular growth and viability, isolated secondary follicles were cultured individually at 38.5°C, with 5% CO2 in air, for 18 d in TCM-199+ alone or supplemented with 10-11, 10-9, 10-7 or 10-5 M melatonin. Then, melatonin receptor antagonist, luzindole, was tested to further evaluate the mechanisms of actions of melatonin, that is, the follicles were cultured in control medium alone or supplemented with 10-7 M melatonin, 10 µM luzindole and both 10-7 M melatonin and 10 µM luzindole. Follicular growth, morphology and antrum formation were evaluated at days 6, 12 and 18. At the end of culture, viability of secondary follicles was analyzed by calcein-AM and ethidium homodimer-1, and the relative levels of mRNA for SOD, CAT, GPX1 and PRDX6 were evaluated by real time polymerase chain reaction. Immunohistochemistry results showed expression of MTNR1A/B in oocyte and granulosa cells of primordial, primary, secondary and antral follicles. Secondary follicles cultured in medium supplemented with melatonin at different concentrations had well preserved follicles after 18 d of culture. Furthermore, follicles cultured in presence of 10-7 M melatonin presented significantly higher diameters than those cultured in other treatments. The presence of melatonin receptor antagonist, luzindole, blocked the effects of melatonin on follicular growth and viability. In addition, follicles cultured in medium containing only melatonin had significantly higher rates of antrum formation. Follicles cultured in medium containing only melatonin had higher relative levels of mRNA for CAT, SOD and PRDX-6 than those cultured with both melatonin and luzindole. Follicles cultured with luzindole only or both melatonin and luzindole had lower relative levels of mRNA for PRDX6 and GPX1 than those cultured control medium. In conclusion, melatonin promotes growth of bovine secondary follicles through its membrane-coupled receptors, while luzindole blocks the effects of melatonin on follicle growth and reduces the expression of antioxidant enzymes in cultured follicles.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - L G Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A P O Monte
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - M H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil.
| |
Collapse
|
19
|
Sun JT, Yuan JD, Zhang Q, Luo X, Qi XY, Liu JH, Jiang XQ, Lee S, Taweechaipaisankul A, Liu ZH, Jin JX. Ramelteon Reduces Oxidative Stress by Maintenance of Lipid Homeostasis in Porcine Oocytes. Antioxidants (Basel) 2022; 11:antiox11091640. [PMID: 36139716 PMCID: PMC9495855 DOI: 10.3390/antiox11091640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the underlying mechanism of ramelteon on the competence of oocyte and subsequent embryo development in pigs during in vitro maturation (IVM). Our results showed that the cumulus expansion index was significantly lower in the control group compared to the ramelteon groups (p < 0.05). Moreover, supplementation of 10−11 and 10−9 M ramelteon significantly increased the cumulus expansion and development-related genes expression, and reduced apoptosis in cumulus cells (p < 0.05). In oocytes, the nuclear maturation rate was significantly improved in 10−11, 10−9, and 10−7 M ramelteon groups compared to the control (p < 0.05). Additionally, the level of intracellular GSH was significantly increased and ROS was significantly decreased in ramelteon-supplemented groups, and the gene expression of oocyte development and apoptosis were significantly up- and down-regulated by 10−11 and 10−9 M ramelteon (p < 0.05), respectively. The immunofluorescence results showed that the protein levels of GDF9, BMP15, SOD1, CDK1, and PGC1α were significantly increased by 10−11 M ramelteon compared to the control (p < 0.05). Although there was no significant difference in cleavage rate, the blastocyst formation rate, total cell numbers, and hatching/-ed rate were significantly improved in 10−11 M ramelteon group compared to the control (p < 0.05). Furthermore, embryo development, hatching, and mitochondrial biogenesis-related genes were dramatically up-regulated by 10−11 M ramelteon (p < 0.05). In addition, the activities of lipogenesis and lipolysis in oocytes were dramatically increased by 10−11 M ramelteon compared to the control (p < 0.05). In conclusion, supplementation of 10−11 M ramelteon during IVM improved the oocyte maturation and subsequent embryo development by reducing oxidative stress and maintenance of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Luo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Hui Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Anukul Taweechaipaisankul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| |
Collapse
|
20
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
21
|
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants (Basel) 2022; 11:antiox11061177. [PMID: 35740074 PMCID: PMC9220299 DOI: 10.3390/antiox11061177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.
Collapse
|
22
|
Effects of EGF and melatonin on gene expression of cumulus cells and further in vitro embryo development in bovines. ZYGOTE 2022; 30:600-610. [DOI: 10.1017/s0967199421000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Despite previous research demonstrating the benefits of including growth factors and antioxidants to maturation medium to support embryo production, to date the effect of epidermal growth factor (EGF) and melatonin (Mel) on oocyte competency has not been studied. This study supplemented in vitro maturation (IVM) medium with EGF (10 ng/ml) and Mel (50 ng/ml) alone, or in combination, and evaluated cumulus cell (CC) gene expression and the development and quality of parthenogenetic blastocysts. No differences in CC gene expression levels indicative of developmental potential were found among the treatment groups. Antioxidant gene CuZnSOD was significantly (P < 0.05) decreased in CCs from the Mel group. Moreover, blastocyst rates on day 7 were significantly increased in EGF or Mel (P < 0.05), but not EGF+Mel. Significant decrease (P < 0.05) in GPX1, CuZnSOD, SLC2A1 and HSPA1A (P = 0.07) mRNA levels was observed in blastocysts from the Mel group. OCT4 gene expression was significantly increased (P < 0.05) in EGF+Mel and confirmed using immunofluorescence. Our results indicate that, despite the lack of changes of competence-related genes in CCs, IVM medium supplemented with Mel improved the culture environment sufficiently, resulting in improved blastocysts. Moreover, EGF and Mel combined during maturation increased OCT4 gene and protein expression in blastocysts, indicating its potential for stem cells.
Collapse
|
23
|
Jin JX, Sun JT, Jiang CQ, Cui HD, Bian Y, Lee S, Zhang L, Lee BC, Liu ZH. Melatonin Regulates Lipid Metabolism in Porcine Cumulus-Oocyte Complexes via the Melatonin Receptor 2. Antioxidants (Basel) 2022; 11:687. [PMID: 35453372 PMCID: PMC9027243 DOI: 10.3390/antiox11040687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that the inclusion of melatonin (MTn) in in vitro maturation protocols improves the developmental competence of oocytes by scavenging reactive oxygen species (ROS). However, the molecular mechanisms integrating melatonin receptor (MT)-mediated lipid metabolism and redox signaling during in vitro cumulus-oocyte complex (COC) development still remain unclear. Here, we aimed to elucidate the potential role of MTn receptors in lipid metabolic adjustments during in vitro porcine COC development. We observed that MTn-mediated Gsα-cAMP/PKA signaling facilitated lipolysis primarily through the MT2 receptor and subsequently increased fatty acid (FA) release by hydrolyzing intracellular triglycerides (TGs) in cumulus cells. Furthermore, CD36 was a critical FA transporter that transported available FAs from cumulus cells to oocytes and promoted de novo TG synthesis in the latter. In addition, MTn regulated lipogenesis and intracellular lipolysis to maintain lipid homeostasis and limit ROS production, thereby supporting oocyte cytoplasmic maturation and the subsequent embryo development. Taken together, these findings provide insight into the possible mechanism integrating MT2-mediated lipid homeostasis and redox signaling, which limits ROS production during in vitro COC development. Therefore, understanding the dynamics of the interactions between lipid homeostasis and redox signaling driven by MT2 is necessary in order to predict drug targets and the effects of therapeutics used to improve female reproductive health.
Collapse
Affiliation(s)
- Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
| | - Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Chao-Qian Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Hong-Di Cui
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Ya Bian
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Lianjin Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| |
Collapse
|
24
|
Pyeon DB, Lee SE, Yoon JW, Park HJ, Oh SH, Lee DG, Kim EY, Park SP. Comparison of the improving embryo development effects of Sasa quelpaertensis Nakai extract, p-coumaric acid, and myricetin on porcine oocytes according to their antioxidant capacities. Theriogenology 2022; 185:97-108. [DOI: 10.1016/j.theriogenology.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
25
|
Effect of melatonin on the clinical outcome of patients with repeated cycles after failed cycles of in vitro fertilization and intracytoplasmic sperm injection. ZYGOTE 2022; 30:471-479. [DOI: 10.1017/s0967199421000770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Summary
To explore whether embryo culture with melatonin (MT) can improve the embryonic development and clinical outcome of patients with repeated cycles after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure, immature oocytes from controlled ovarian superovulation cycles were collected for in vitro maturation (IVM) and ICSI. The obtained embryos were cultured in 0, 10–11, 10–9, 10–7 and 10–5 M MT medium respectively, and 10–9 M was screened out as the optimal concentration. Subsequently, 140 patients who underwent failed IVF/ICSI cycles received 140 cycles of embryo culture in vitro with a medium containing 10–9 M MT, these 140 MT culture cycles were designated as the experimental group (10–9 M group), and the control group was the previous failed cycles of patients (0 M group). The results showed that the fertilization, cleavage, high-quality embryo, blastocyst, and high-quality blastocyst rates of the 10–9 M group were significantly higher than those of the 0 M group (P < 0.01; P < 0.01; P < 0.0001; P < 0.0001; P < 0.0001). To date, in total, 50 vitrified-warmed cycle transfers have been performed in the 10–9 M group and the implantation rate, biochemical pregnancy rate and clinical pregnancy rate were significantly higher than those in the 0 M group (all P < 0.0001). Two healthy infants were delivered successfully and the other 18 women who achieved clinical pregnancy also had good examination indexes. Therefore the application of 10–9 M MT to embryo cultures in vitro improved embryonic development in patients with repeated cycles after failed IVF/ICSI cycles and had good clinical outcomes.
Trial registration: ChiCTR2100045552.
Collapse
|
26
|
Tang Y, Zhang Y, Liu L, Yang Y, Wang Y, Xu B. Glycine and Melatonin Improve Preimplantation Development of Porcine Oocytes Vitrified at the Germinal Vesicle Stage. Front Cell Dev Biol 2022; 10:856486. [PMID: 35281108 PMCID: PMC8907381 DOI: 10.3389/fcell.2022.856486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Lipid-rich porcine oocytes are extremely sensitive to cryopreservation compared to other low-lipid oocytes. Vitrification has outperformed slowing freezing in oocyte cryopreservation and is expected to improve further by minimizing cellular osmotic and/or oxidative stresses. In this study, we compared the effects of loading porcine cumulus-oocyte complexes with glycine (an organic osmolyte) or glycine plus melatonin (an endogenous antioxidant) during vitrification, thawing and subsequent maturation to mitigate osmotic injuries or osmotic and oxidative damages on the developmental potential of porcine oocytes. Our data demonstrated that glycine treatment significantly increased the vitrification efficiency of porcine oocytes to levels comparable to those observed with glycine plus melatonin treatment. It was manifested as the thawed oocyte viability, oocyte nuclear maturation, contents of reactive oxygen species, translocation of cortical granules and apoptotic occurrence in mature oocytes, levels of ATP and transcripts of glycolytic genes in cumulus cells (markers of oocyte quality), oocyte fertilization and blastocyst development. However, the latter was more likely than the former to increase ATP contents and normal mitochondrial distribution in mature oocytes. Taken together, our results suggest that mitigating osmotic and oxidative stresses induced by vitrification and thawing can further enhance the developmental competency of vitrified porcine oocytes at the germinal vesicle stage.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lixiang Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yifeng Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yan Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchu, China
- State Key Laboratory for Molecular Biology of Economic Animals, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Baozeng Xu, ,
| |
Collapse
|
27
|
Alterations of Cortisol and Melatonin Production by the Theca Interna Cells of Porcine Cystic Ovarian Follicles. Animals (Basel) 2022; 12:ani12030357. [PMID: 35158681 PMCID: PMC8833480 DOI: 10.3390/ani12030357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary The mechanism of follicular cyst formation is largely unknown but changes in follicular composition are known to be involved. In particular, there is abnormal hormone secretion in cystic follicles. Here, we found there was disruption of hormone secretion in the fluid of cystic follicles in sows. The glucocorticoid receptor was highly expressed, and the melatonin receptor was weakly expressed in cystic follicles compared with control follicles. Thus, secretion of steroid hormones in cystic follicles is disrupted and disturbances in signaling via cortisol and melatonin are involved in the development of follicular cysts in sows. Abstract (1) Background: Cortisol and melatonin (MT) act in regulating follicular development. We hypothesized that abnormal levels of cortisol, MT, and steroids in theca interna cells might be involved in the development of follicular cysts in sows. (2) Methods: To test this hypothesis, we measured the mRNA levels of enzymes involved in steroid hormone synthesis, the glucocorticoid receptor (GR), and melatonin receptors (MTRs) in theca interna cells of cystic and normal porcine follicles. (3) Results: The concentrations of estradiol, progesterone, and cortisol were greater in cystic follicles than in control ones (p = 0.034, p = 0.020, p = 0.000), but the concentration of MT was significantly lower (p = 0.045). The levels of GR, 11β-HSD1, and 11β-HSD2 were higher in cystic follicles than in control l follicles. MT types 1 and 2 were significantly lower in cystic follicles (p < 0.05). The mRNA expression levels of genes encoding the steroid hormone synthesis enzymes, steroidogenic acute regulatory protein (StAR), recombinant cytochrome P45011A1 (CYP11A1), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in theca interna cells of cystic follicles were significantly higher than in control follicles. Thus, there was disruption of hormone secretion in the fluid of cystic follicles in sows. (4) Conclusions: The levels of steroid hormones, cortisol and MT are disrupted in porcine cystic follicles.
Collapse
|
28
|
Nikmard F, Hosseini E, Bakhtiyari M, Ashrafi M, Amidi F, Aflatoonian R. The boosting effects of melatonin on the expression of related genes to oocyte maturation and antioxidant pathways: a polycystic ovary syndrome- mouse model. J Ovarian Res 2022; 15:11. [PMID: 35057828 PMCID: PMC8781027 DOI: 10.1186/s13048-022-00946-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Melatonin, as a free radical scavenger exhibiting genomic actions, regulates the antioxidant genes expression and apoptosis mechanisms. In polycystic ovary syndrome (PCOS) patients, an imbalance between free radicals and antioxidants in follicular fluid leads to oxidative stress, aberrant folliculogenesis, and intrinsic defects in PCOS oocytes. In this experimental mouse model study, oocytes of PCOS and the control groups were cultured in different melatonin concentrations (10− 5, 10− 6, and 10− 7 M) to investigate the expression of oocyte maturation-related genes (Gdf9/Bmp15), antioxidant-related genes (Gpx1/Sod1), apoptotic biomarkers (Bcl2/Bax) and total intracellular ROS levels.
Results
Gdf9 and Bmp15, Gpx1 and Sod1 were up-regulated in PCOS and control oocytes cultured in all melatonin concentrations compared to those cultured in IVM basal medium (P < 0.05). A significant decrease in the total ROS level was observed in all groups cultured in the supplemented cultures. Melatonin increased Bcl2 and decreased Bax gene expression in PCOS and control oocytes compared to non-treated oocytes.
Conclusions
Melatonin increased antioxidant gene expression and regulated the apoptosis pathway, effectively reducing the adverse effects of culture conditions on PCOS oocytes. Furthermore, it influenced the expression of oocyte maturation-related genes in PCOS, providing valuable support during the IVM process.
Collapse
|
29
|
Wang W, Lv J, Duan H, Ding Z, Zeng J, Lv C, Hu J, Zhang Y, Zhao X. Regulatory role of melatonin on epidermal growth factor receptor, Type I collagen α1 chain, and caveolin 1 in granulosa cells of sheep antral follicles. Anim Sci J 2022; 93:e13760. [PMID: 35932205 DOI: 10.1111/asj.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/17/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
We investigated the expression of epidermal growth factor receptor (EGFR), Type I collagen α1 chain (COL1A1), and caveolin 1 (CAV1) during follicular development and examined the regulatory role of melatonin (MLT) on EGFR, COL1A1, and CAV1 in sheep antral ovaries. The expression was detected in granulosa and theca cells by immunohistochemistry. Quantitative real-time polymerase chain reaction and Western blotting were used to examine the expression levels of EGFR, COL1A1, and CAV1 in small (≤2 mm), medium (2-5 mm), and large (≥5 mm) follicles. The mRNA and protein levels of EGFR, COL1A1, and CAV1 were found to be the highest in large follicles. Furthermore, cultured granulosa cells were treated with MLT (10-7 -10-11 M), luzindole (nonselective MT1 and MT2 receptor antagonist, 10-7 M), and 4-phenyl-2-propanamide tetraldehyde (4P-PDOT, MT2 selective antagonist, 10-7 M) to detect the regulatory role of MLT on EGFR, COL1A1, and CAV1. Results indicated COL1A1 and CAV1 were at least partially regulated by MLT through MT1 and MT2 pathways, whereas EGFR was not. This study provided a reference for further studies on MLT regulatory role on EGFR, COL1A1, and CAV1 during sheep follicular development and elucidated the physiological mechanism of MLT regulator production.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chen Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
30
|
Guo R, Zheng H, Li Q, Qiu X, Zhang J, Cheng Z. Melatonin alleviates insulin resistance through the PI3K/AKT signaling pathway in ovary granulosa cells of polycystic ovary syndrome. Reprod Biol 2021; 22:100594. [PMID: 34953312 DOI: 10.1016/j.repbio.2021.100594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder. Insulin resistance (IR) is a major cause of PCOS. Melatonin, a critical endogenous hormone, has beneficial effects on the female reproductive system. This study aims to investigate the molecular effect of melatonin on IR in human ovarian granulosa cells (GCs). Hormone levels of the subjects were determined through clinical examination. The expression levels of insulin receptor substrate (IRS)-1 and glucose transporter (GLUT4) in GCs from PCOS patients and a human granulosa cell line (SVOG) were examined using qRT-PCR and western blot. The IR cell model was established by inducing SVOG cells with palmitic acid (PA). IR was detected in GCs of PCOS patients and SVOG by measuring glucose content and glucose uptake. Cell viability and apoptosis levels were detected by CCK-8 assay and flow cytometry. PI3K/Akt pathway expression in SVOG was assessed by western blot. PCOS patients had higher levels of luteinizing hormone (LH), testosterone, and LH/follicle-stimulating hormone. PA decreased cell viability, promoted apoptosis, and reduced glucose uptake in SVOG cells. IRS-1 and GLUT4 mRNA and protein expression was downregulated, and glucose uptake capacity was reduced in PCOS GCs and SVOG cells. Melatonin significantly upregulated IRS-1 and GLUT4 expression, downregulated p-IRS-1 (Ser307), and improved glucose uptake in PCOS patients' GCs and SVOG cells. PA decreased PI3K and Akt phosphorylation, whereas melatonin increased p-PI3K and p-Akt levels. Melatonin can reduce IR in GCs and PA-induced SVOG cells via the PI3K/Akt signaling pathway, providing more evidence for treating polycystic ovary syndrome.
Collapse
Affiliation(s)
- Rui Guo
- Reproductive Medicine Center, Shandong Maternal and Child Health Care Center, NO. 238, East Jingshi Road, Jinan 250014, Shandong, China
| | - Hong Zheng
- Department of Reproductive Medicine, Dezhou People's Hospital, NO. 1166, Dongfanghong West Road, Dezhou 253014, Shandong, China
| | - Qiuying Li
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China
| | - Xun Qiu
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China
| | - Jian Zhang
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China
| | - Zhaofang Cheng
- Department of Radiology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China; Department of Obstetrics and Gynecology, Zhangqiu People's Hospital, NO. 1920, Huiquan Road, Jinan 250200, Shandong, China.
| |
Collapse
|
31
|
Guo Z, Chen W, Lv L, Liu D. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development. Anim Reprod 2021; 18:e20210031. [PMID: 34840610 PMCID: PMC8607851 DOI: 10.1590/1984-3143-ar2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R., China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R., China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| |
Collapse
|
32
|
Hao T, Xu X, Hao H, Du W, Pang Y, Zhao S, Zou H, Yang S, Zhu H, Yang Y, Zhao X. Melatonin improves the maturation and developmental ability of bovine oocytes by up-regulating GJA4 to enhance gap junction intercellular communication. Reprod Fertil Dev 2021; 33:760-771. [PMID: 34585659 DOI: 10.1071/rd21145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Melatonin (MT) increases oocyte maturation by reducing reactive oxygen species level and enhancing oocyte antioxidant capacity. However, the mechanisms via which MT works are still poorly understood. In the present study, the effects of MT on the maturation rate and development ability of bovine oocytes were investigated. Then, the transcriptome of oocytes treated by MT was sequenced. Finally, the expression of gap junction protein alpha 4 (GJA4) protein and cAMP level were detected in bovine oocytes, and isoprenaline (enhancer of gap junctional intercellular communication (GJIC)) and heptanol (inhibitor of GJIC) were used to investigate the effect of MT on GJIC activity in bovine oocytes. Our results showed that MT significantly improved the maturation, developmental ability and mRNA expression of GJA4 of bovine oocytes. Meanwhile, MT significantly increased GJA4 protein level and cAMP level in bovine oocytes. In contrast to heptanol, both isoproterenol and MT significantly increased GJIC activity, nuclear maturation and the development ability of bovine oocytes. However, MT significantly restored the nuclear maturation and developmental ability of oocytes treated by heptanol. In conclusion, our results showed that MT improves the maturation and developmental ability of bovine oocytes by enhancing GJIC activity via up-regulating GJA4 protein expression in IVM progress.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xi Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Sha Yang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100101, PR China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
33
|
Su G, Wu S, Wu M, Wang L, Yang L, Du M, Zhao X, Su X, Liu X, Bai C, Wei Z, Cheng L, Li G. Melatonin improves the quality of frozen bull semen and influences gene expression related to embryo genome activation. Theriogenology 2021; 176:54-62. [PMID: 34571398 DOI: 10.1016/j.theriogenology.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
The efficiency of animal artificial breeding in vitro is still low. Oxidative damage is an important obstacle for in vitro artificial breeding of animals. Melatonin can reduce the degree of oxidative damage to both gametes and embryos caused by the external environment. However, there is still some controversy concerning the effect of melatonin on frozen semen, especially in the processes of freezing semen, IVM, IVF and IVC. Here, the effects of melatonin on the whole processes of sperm cryopreservation, oocyte maturation, and embryonic development were studied. The results demonstrated that melatonin at 10-3 M concentration significantly improved progressive sperm viability, plasma membrane integrity, mitochondrial membrane integrity, and acrosome integrity; however, there were also individual differences between bulls, depending on the age of different individuals. The 10-3 M melatonin treatment reduced the reactive oxygen species (ROS) level by nearly 50% in sperm during IVF. Meanwhile, during IVM, the addition of 10-7 M melatonin significantly increased the maturation rate of oocytes and reduced the ROS levels by 58.8%. In addition, 10-7 M melatonin improved the total cell numbers of the IVF blastocysts. Notably, treatment of IVF embryos with melatonin significantly reduced the levels of ROS and influenced the expression levels of key regulatory genes associated with embryo genome activation. This study is of significance for understanding the function of melatonin in animal artificial breeding.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Meiling Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Lina Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Mengxin Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Xiaohu Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Lei Cheng
- Xilingol Vocational College, No.11 Mingantu Street, Xilinhot, 026000, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China; College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
| |
Collapse
|
34
|
Wu JF, Liu Y, Zi XD, Li H, Lu JY, Jing T. Molecular cloning, sequence, and expression patterns of DNA damage induced transcript 3 (DDIT3) gene in female yaks ( Bos grunniens). Anim Biotechnol 2021; 34:280-287. [PMID: 34353209 DOI: 10.1080/10495398.2021.1957686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endoplasmic reticulum stress (ERS) plays an important role in regulating the reproductive process of female mammals, mainly involved in follicular atresia and corpus luteum regression. DNA damage induced transcript 3 (DDIT3) is a marker gene of ERS. The objectives of the present study were to clone and analyze the sequence and tissue expression characteristics of DDIT3 gene in female yaks. By reverse transcriptase-polymerase chain reaction (RT-PCR) strategy, we obtained full-length 507-bp DDIT3-cDNA, encoding for 168-aa protein. Yak DDIT3 exhibited highest and least identity with that of bison and horse, respectively. Real-time PCR analyses revealed that the expression level of DDIT3 gene in ovary was higher than that in heart, liver, kidney, spleen, lung, uterus and oviduct (p < 0.05). DDIT3 expression level in ovary and uterus during pregnancy was higher than that in follicular phase, luteal phase and fetus stage. DDIT3 was highly expressed in metaphase II oocytes and granulosa cells than that in germinal vesicle and metaphase I oocytes (p < 0.05), respectively. This is the first molecular characterization and expression patterns of DDIT3 gene in female yaks. These results indicated that the DDIT3 gene possibly plays an important role in regulating ovary function and pregnancy maintenance in yaks.
Collapse
Affiliation(s)
- Jian-Fei Wu
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Yu Liu
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Xiang-Dong Zi
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Heng Li
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| | - Jian-Yuan Lu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, PR China
| | - Tian Jing
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, PR China
| |
Collapse
|
35
|
Guo YM, Sun TC, Wang HP, Chen X. Research progress of melatonin (MT) in improving ovarian function: a review of the current status. Aging (Albany NY) 2021; 13:17930-17947. [PMID: 34228638 PMCID: PMC8312436 DOI: 10.18632/aging.203231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Melatonin (MT) is an endogenous hormone mainly synthesized by pineal cells, which has strong endogenous effects of eliminating free radicals and resisting oxidative damages. Melatonin (MT) can not only regulate the body’s seasonal and circadian rhythms; but also delay ovarian senescence, regulate ovarian biological rhythm, promote follicles formation, and improve oocyte quality and fertilization rate. This review aimd to provide evidence concerning the synthesis and distribution, ovarian function, and role of MT in development of follicles and oocytes. Moreover, the role of MT as antioxidative, participating in biological rhythm regulation, was also reviewed. Furthermore, the effects of MT on various ovarian related diseases were analyzed, particularly for the ovarian aging and polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Yi Ming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Tie Cheng Sun
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, China
| | - Hui Ping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Xi Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
36
|
Fathi M, Salama A, El-Shahat KH, El-Sherbiny HR, Abdelnaby EA. Effect of melatonin supplementation during IVM of dromedary camel oocytes (Camelus dromedarius) on their maturation, fertilization, and developmental rates in vitro. Theriogenology 2021; 172:187-192. [PMID: 34218101 DOI: 10.1016/j.theriogenology.2021.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023]
Abstract
The positive impact of melatonin on in vitro embryo production (IVEP) has been reported in many domestic species; however, no studies have been carried out in camelids. We aimed to evaluate the effects of melatonin supplementation in maturation media on in vitro maturation, fertilization, and preimplantation embryo development of dromedary camel oocytes (experiment 1). We also evaluated the concentrations of total antioxidant capacity (TAC), and malondialdehyde (MDA) in the IVM spent medium in relation to melatonin supplementation. Cumulus oocyte complexes (COCs) were cultured in in vitro maturation media (IVM) supplemented with either 0.0, 25.0, 50.0 or 75.0 μM of melatonin for 30 h. Matured oocytes were then fertilized in vitro with epididymal camel spermatozoa. Following IVF, the resulting embryos were cultured in vitro for seven days. The percentage of maturation, fertilization, cleavage, and embryo developmental rates (morula and blastocyst) was recorded (experiment 1). TAC and MDA levels in the IVM spent maturation media were also evaluated at 30 h post-IVM (experiment 2). The results showed that supplementation of IVM media with 25 μM melatonin significantly improved oocyte nuclear maturation, fertilization (18 h post-insemination; pi), cleavage (day 3 pi), morula (day 5 pi) and blastocyst (day 7 pi) rates as compared with the controls and other melatonin-supplemented groups. Furthermore, the TAC in the IVM spent media was significantly increased (P < 0.05) in 25 μM melatonin supplemented groups than those supplemented with 0.0, 50.0, 75.0 μM melatonin. However, the concentration of MDA was significantly lower (P < 0.05) in IVM media supplemented with 25.0 μM of melatonin when compared with the control and other treatment groups. In conclusion, supplementation of IVM medium with 25 μM of melatonin could enhance the in vitro developmental capacity of dromedary camel oocytes.
Collapse
Affiliation(s)
- Mohamed Fathi
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ali Salama
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K H El-Shahat
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - H R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elshymaa A Abdelnaby
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
37
|
Arend LS, Knox RV. Fertility responses of melatonin-treated gilts before and during the follicular and early luteal phases when there are different temperatures and lighting conditions in the housing area. Anim Reprod Sci 2021; 230:106769. [PMID: 34090093 DOI: 10.1016/j.anireprosci.2021.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/20/2023]
Abstract
This study was conducted to determine whether exogenous melatonin affected gilt fertility when there were different housing temperature and lighting conditions. Prepubertal gilts (n = 72) were fed (MEL, 5 mg/day) or not fed (CON) melatonin while housed in rooms where temperatures (31.0 ± 1 °C) and daily lighting (240 lx) duration differed: 8 (8 H); 16 (16 H); or 24 (24 H) h in winter and summer replicates. Gilts were moved into rooms (day 1) and administered PG600 on day 6. Gilts detected in estrus were inseminated and slaughtered on day 33 of gestation to determine pregnancy and litter responses. There was no treatment x room effect on estrus (77.8 %), follicle sizes, or number of corpora lutea, but MEL-treated gilts had a longer (P = 0.02) estrous duration (2.0 d) than gilts of the CON (1.7 d) group. Pregnancy rate (92.6 %) and embryo number (13.5) were not affected by treatment or room conditions. There was a treatment x room effect, however, with embryo survival being less (P = 0.01) by ∼23 % in gilts of the CON-24H than CON-16H, MEL-8H, and MEL-24H groups. In the summer replicate, there were also fewer large follicles, a lesser estrous detection percentage, viable embryos, and embryo survival rate than during the winter (P < 0.05). Overall, MEL treatment had positive effects on estrous duration and embryo survival, especially in the summer when there were varying lighting regimens and room temperatures in which gilts were housed.
Collapse
Affiliation(s)
- Lidia Sbaraini Arend
- Department of Animal Science, University of Illinois, Urbana, IL, 61801, United States
| | - Robert Victor Knox
- Department of Animal Science, University of Illinois, Urbana, IL, 61801, United States.
| |
Collapse
|
38
|
Pyeon DB, Lee SE, Yoon JW, Park HJ, Park CO, Kim SH, Oh SH, Lee DG, Kim EY, Park SP. The antioxidant dieckol reduces damage of oxidative stress-exposed porcine oocytes and enhances subsequent parthenotes embryo development. Mol Reprod Dev 2021; 88:349-361. [PMID: 33843103 DOI: 10.1002/mrd.23466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/24/2020] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of the antioxidant dieckol, a component of Ecklonia cava, on maturation and developmental competence of porcine oocytes exposed to oxidative stress in vitro. Oocytes were matured in in vitro maturation (IVM) medium containing various concentrations of dieckol. The blastocyst formation rate was highest in the 0.5 μM dieckol-treated (0.5 DEK) group. The reactive oxygen species level was decreased, and the level of glutathione and expression of antioxidant genes (NFE2L, SOD1, and SOD2) at metaphase II were increased in the 0.5 DEK group. Abnormal spindle organization and chromosome misalignment were prevented in the 0.5 DEK group. Expression of maternal markers (CCNB1 and MOS) and activity of p44/42 mitogen-activated protein kinase were increased in the 0.5 DEK group. After parthenogenetic activation, the total number of cells per blastocyst was increased and the percentage of apoptotic cells was decreased in the 0.5 DEK group. Expression of development-related genes (CX45, CDX2, POU5F1, and NANOG), antiapoptotic genes (BCL2L1 and BIRC5), and a proapoptotic gene (CASP3) were altered in the 0.5 DEK group. These results indicate that the antioxidant dieckol improves IVM and subsequent development of porcine oocytes and can be used to improve the quality of oocytes under peroxidation experimental conditions.
Collapse
Affiliation(s)
- Da-Bin Pyeon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - So-Hee Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Seung-Hwan Oh
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Do-Geon Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
- Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Province, Korea
- Stem Cell Research Center, Jeju National University, Jeju-si, Jeju Province, Korea
- Mirae Cell Bio, Seoul, Korea
| |
Collapse
|
39
|
Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch Med Res 2021; 52:673-682. [PMID: 33926763 DOI: 10.1016/j.arcmed.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Ischemic stroke has remained a principal cause of mortality and neurological disabilities worldwide. Blood flow resumption, reperfusion, in the cerebral ischemia prompts a cascade in the brain characterized by various cellular mechanisms like mitochondrial dysfunction, oxidative stresses, endoplasmic reticulum (ER) stress, and excitotoxicity, finally resulting in programmed cell death. Any changes in the ER-mitochondria axis are probably responsible for both the onset and progression of central nervous system diseases. Melatonin, a neurohormone secreted by the pineal gland, has antioxidative, anti-inflammatory, and anti-apoptotic properties. Most studies have shown that it exerts neuroprotective effects against ischemic stroke. It was observed that melatonin therapy after the stroke not only leads to reduce mitochondrial dysfunction but also cause to alleviate ER stress and inflammation. This review discusses the impact of melatonin on mitochondrial, ER function, and on the crosstalk between two organelles as a therapeutic target for stroke. Given that the influences of melatonin on each organelle separately, its effects on mechanisms of crosstalk between ER and mitochondria are discussed.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
| | - Samin Alihosseini
- Student research center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sevda Golipourkhalili
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021; 476:3177-3190. [PMID: 33864572 DOI: 10.1007/s11010-021-04151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.
Collapse
Affiliation(s)
- Maryam Ezzati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO. Box: 51376563833, Tabriz, Iran.
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Zhu T, Guan S, Lv D, Zhao M, Yan L, Shi L, Ji P, Zhang L, Liu G. Melatonin Modulates Lipid Metabolism in Porcine Cumulus-Oocyte Complex via Its Receptors. Front Cell Dev Biol 2021; 9:648209. [PMID: 33869202 PMCID: PMC8047119 DOI: 10.3389/fcell.2021.648209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid is a crucial energy resource for mammalian oocyte. Melatonin could benefit the maturation of porcine oocyte in vitro, but the related mechanism is not elucidated yet. In the current study, methods to monitor lipid metabolism in single live oocytes were firstly established using probes (Lipi-Blue and Lipi-Green). It was observed that both lipid biogenesis and lipolysis occurred in maturing oocyte, but the general level of lipids dropped. Then maturing oocytes stained with probes were treated with melatonin or lipid metabolic-related inhibitors (triacsin C, rotenone, or etomoxir). The results showed that the lipid metabolism and maturation of porcine oocytes were all disrupted and that melatonin rescued the oocytes treated with triacsin C or rotenone, but not those treated with etomoxir. Further investigation demonstrated that cumulus cells are able to transfer lipids to oocytes via gap junctions. It was also observed that melatonin receptors exist in cumulus cells and are required for oocytes to maintain lipid metabolism. Meanwhile, the global gene expressing in cumulus cells was also modulated by melatonin, especially the genes related to antioxidants (SOD1, GPX1, GPX3, GPX4, PRDX2, and PRDX5), lipid metabolism (FABP3, FABP5, ACACB, TECR, etc.), and mitochondrial respiration (GPD1, ETFB, CYC1, and the genes of ATP synthase). Altogether the current research demonstrates that melatonin modulates lipid metabolism in maturing oocytes through its receptors in cumulus cells and benefits the developmental competence of oocytes.
Collapse
Affiliation(s)
- Tianqi Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengmeng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Laiqing Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Wang S, Liu W, Wen A, Yang B, Pang X. Luzindole and 4P-PDOT block the effect of melatonin on bovine granulosa cell apoptosis and cell cycle depending on its concentration. PeerJ 2021; 9:e10627. [PMID: 33732541 PMCID: PMC7950190 DOI: 10.7717/peerj.10627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 01/16/2023] Open
Abstract
Granulosa cells play an essential physiological role in mediating the follicle development and survival or apoptosis of granulosa cells dictate the follicle development or atresia. The aim of this study was to investigate the role of high dose (10-5 M) and low dose (10-9 M) melatonin in bovine granulosa cells, and assess whether MT1 and MT2 inhibiter affect granulosa cells response to melatonin. We found that the high dose (10-5 M) and low dose (10-9 M) both could act as an essential role in modulating granulosa cells apoptosis, cell cycle and antioxidant. The beneficial effect could be related to that melatonin promoted the expression of Bcl2, Bcl-xl, SOD1 and GPX4, and inhibited Bax, caspase-3 and p53 expression. Moreover P21 expression was decreased in granulosa cells treated with the high dose (10-5 M) melatonin and increased in that treated with the low dose (10-9 M) melatonin. To further reveal the role of MT1 and MT2 in mediating the effect of melatonin on granulosa cells apoptosis, cell cycle and antioxidant, we found that the luzindole and 4P-PDOT did not affect the effect of high dose (10-5 M) melatonin on regulating Bcl2, Bax, caspase-3, SOD1, GPX4 and p53 expression, while blocked its effect on modulating Bcl-xl and P21expression. However, luzindole and 4P-PDOT disturbed the effect of low dose (10-9 M) melatonin on regulating Bcl2, Bax, caspase-3, Bcl-xl, SOD1, GPX4, and p53 expression. In conclusion, these results reveal that the effect of low dose (10-9 M) melatonin on granulosa cells apoptosis are mediated by MT1 and MT2, and the high dose (10-5 M) melatonin affect the granulosa cells apoptosis by other pathway, besides MT1 and MT2. Moreover MT1 and MT2 may work in concert to modulate bovine granulosa cells function by regulating cellular progression and apoptosis.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
43
|
Abdelnaby EA, Abo El-Maaty AM. Melatonin and CIDR improved the follicular and luteal haemodynamics, uterine and ovarian arteries vascular perfusion, ovarian hormones and nitric oxide in cyclic cows. Reprod Domest Anim 2021; 56:498-510. [PMID: 33403762 DOI: 10.1111/rda.13888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/04/2023]
Abstract
This study hypothesizes that melatonin with exogenous progesterone (CIDR) can improve follicular, luteal, ovarian and uterine haemodynamic of heat-stressed cows. Holstein cows (N = 12) studied for two spontaneous oestrous cycles during winter then divided equally during summer into the CIDR group received CIDR for 7 days and the melatonin group (Mel) received three injections of melatonin (75 mg/head) at the CIDR insertion, removal and ovulation days. Blood samples were collected to assay oestradiol (E2), progesterone (P4) and nitric oxide (NO). On day 0 (Ovulation), Mel had more small follicles (p < .05), higher ipsilateral and contralateral ovarian arteries (Ov.A.) peak systolic velocity (PSV), higher ipsilateral uterine artery (Ut.A.) PSV (p = .031) and blood flow volume (BFV), also Mel elevated contralateral Ut.A. PSV and BFV (p < .0001) but lowered contra Ut.A. pulsatility index (PI, p < .0001), E2 (p < .01) and NO (p < .0001). Mel increased the corpus luteum diameter (CL, p < .001), coloured area (p < .007) and P4 (p < .0001) on day 5 and reduced them (p < .05; p < .01) on Day 14. On day 10, Mel obtained CL diameter (p < .03) and coloured area (p < .002) of spontaneous that was higher than CIDR and decreased P4 (p < .003). Mel increased CL diameter, area and coloured area and decreased them thereafter. Mel increased the ipsilateral ovarian and uterine arteries PSV and BFV before ovulation and until day 8. Mel increased P4 and decreased NO until days 6 and 14. In conclusion, the improvement in follicular, luteal, ovarian and uterine haemodynamic and the decrease of NO production proved our hypothesis Melatonin doses higher than 75 mg/head is recommended to improve the heat-stressed cow's fertility.
Collapse
Affiliation(s)
- Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amal M Abo El-Maaty
- Veterinary Division, Animal Reproduction and AI Department, National Research Centre, Giza, Egypt
| |
Collapse
|
44
|
Zeng Y, Shinada K, Hano K, Sui L, Yang T, Li X, Himaki T. Effects of tris (2-carboxyethyl) phosphine hydrochloride treatment on porcine oocyte in vitro maturation and subsequent in vitro fertilized embryo developmental capacity. Theriogenology 2021; 162:32-41. [PMID: 33444914 DOI: 10.1016/j.theriogenology.2020.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022]
Abstract
Oocyte in vitro maturation (IVM) is a crucial process that determines subsequent in vitro embryo production. The present study investigated the effects of the antioxidant tris (2-carboxyethyl) phosphine hydrochloride (TCEP-HCL) on the in vitro maturation of porcine oocytes and in vitro developmental competence of fertilized embryos. Oocytes were matured in IVM medium based on four concentration groups of TCEP-HCL (0, 50, 100, and 200 μM) treatment. 100 μM TCEP-HCL treatment significantly increased the oocyte first polar body extrusion rate, monospermy rate and subsequent in vitro fertilized embryo developmental capacity (cleavage rate, blastocyst formation rate, and blastocyst total cell number) compared to those in the control group. Furthermore, 100 μM TCEP-HCL treatment significantly reduced the levels of reactive oxygen species, significantly increased glutathione levels and mitochondrial content compared to those in the control group. Moreover, 100 μM TCEP-HCL treatment significantly decreased the oocyte apoptosis, blastocyst apoptosis compared to that in the controls. In summary, these results indicate that 100 μM TCEP-HCL treatment improves the quality and developmental capacity of in vitro-fertilized embryos by decreasing oxidative stress in porcine oocytes.
Collapse
Affiliation(s)
- Yiren Zeng
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Kohei Shinada
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuki Hano
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Takehiro Himaki
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
45
|
Li X, Mu Y, Elshewy N, Ding D, Zou H, Chen B, Chen C, Wei Z, Cao Y, Zhou P, Zhang Z. Comparison of IVF and IVM outcomes in the same patient treated with a modified IVM protocol along with an oocytes-maturing system containing melatonin: A pilot study. Life Sci 2021; 264:118706. [PMID: 33152350 DOI: 10.1016/j.lfs.2020.118706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
AIM To compare embryonic developmental competence and clinical outcomes of oocytes matured in vivo (IVF oocytes) and those matured in vitro (IVM oocytes) from the same IVM/IVF cycles, and to analyze the clinical efficiency of a melatonin-supplemented in vitro maturation system combined with a modified IVM/IVF protocol. MAIN METHODS We randomly recruited 22 patients undergoing IVM/IVF treatment protocol in our medical centre. The fertilization, cleavage and blastocyst formation rates, as well as clinical pregnancy, implantation and live birth/ongoing pregnancy rates were analysed and compared between IVF and IVM oocytes. We evaluated mitochondrial function indicators by fluorescence staining and confocal microscopy, including mitochondrial membrane potential, reactive oxygen species and calcium (Ca2+) levels in 15 IVF and 15 IVM oocytes. KEY FINDINGS There were no significant differences in fertilization or blastocyst formation rates between the IVF and IVM groups, whereas the cleavage rate was significantly higher in the IVF versus IVM group (100% vs 93.4 ± 10.9%, p = 0.03). There were no significant differences in the clinical pregnancy, implantation or live birth/ongoing pregnancy rates between the two groups. The cumulative clinical pregnancy and ongoing pregnancy/live birth rate per pick-up oocyte in the IVM/IVF treatment cycles were 68.2% (15/22) and 54.5% (12/22), respectively. The reactive oxygen species and Ca2+ levels were significantly increased, and mitochondrial membrane potential was significantly decreased, in IVM compared with IVF oocytes. SIGNIFICANCE The modified IVM/IVF protocol can be effectively applied to the treatment of some indicated patients and achieve ideal clinical outcomes, even though the developmental potential of IVM oocytes may not be as high as IVF oocytes.
Collapse
Affiliation(s)
- Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yaoqin Mu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Nagwa Elshewy
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ding Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Change Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
46
|
Ceratonia siliqua (Carob) extract improved in vitro development of vitrified-warmed mouse germinal vesicle oocytes: assessment of possible mechanism. Cell Tissue Bank 2020; 22:137-144. [PMID: 33052521 DOI: 10.1007/s10561-020-09873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Oocyte banking is a vital step for safekeeping and spreading genetic resources of animals. It is also used for fertility preservation of human. Oocyte vitrification is closely related to the lower developmental competence which includes the cryo-injury arisen during vitrification. The aim of the present study was to evaluate the maturation, embryonic development and production of reactive oxygen species (ROS) of mice oocytes following the supplementation vitrification media with different concentrations of Ceratonia siliqua (carob) extracts. In this experimental study, germinal vesicle oocytes collected from 8 to 10 week-old female NMRI mice (30-40 gr) were randomly divided into six groups of vitrification media supplemented with 0 (control), 5, 10, 20, 30 and 50 µg/ml C. siliqua. After thawing, oocytes were put in an in vitro maturation medium (IVM) (α-MEM: Alpha Minimum Essential Medium). 3-4 and 24 h (hr) later, the oocyte nuclear maturity was checked. Standard in vitro fertilization was performed on the matured oocytes (MII), and embryonic development was followed. Extra- and intra-cellular ROS was measured in IVM medium after 24 h of oocyte incubation. The addition of 20 and 30 μg/ml C. siliqua extract to vitrification media improved normal morphology of warmed germinal vesicle (GV) oocytes, rate of germinal vesicle break down (GVBD), and metaphase 2 (MII) oocyte formation significantly (p < 0.05). Fertilization rate, (embryonic development to 2 cells stage, 4-8 cells stage, and > 8 cells stage increased in the 30 μg/ml C. siliqua group significantly (p < 0.05). Furthermore, supplementation of 30 μg/ml C. siliqua in vitrification media significantly decreased extra- and intra-cellular of ROS as well as embryonic fragmentation (p < 0.05). In conclusion, supplementation of GV oocyte vitrification media with carob extract improved maturation, fertilization, and embryonic development rate and decreased extra- and intra-cellular ROS levels.
Collapse
|
47
|
Tian H, Qi Q, Yan F, Wang C, Hou F, Ren W, Zhang L, Hou J. Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2 - leukemia inhibitory factor - Insulin-like growth factor 1 combination. Theriogenology 2020; 159:13-19. [PMID: 33113439 DOI: 10.1016/j.theriogenology.2020.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Poor development of oocytes from prepubertal animals is a major factor that hinders the application of the technology, juvenile in vitro embryo transfer (JIVET). The aim of this study was to explore the possibility of improving the developmental competence of prepubertal oocytes by supplementing the oocyte in vitro maturation (IVM) medium with antioxidants and cytokines. Effects of two antioxidants, melatonin and sericin, were first examined. The results showed that melatonin had no significant beneficial roles on the lamb oocyte development, while 0.5% sericin supplemented during IVM significantly increased the blastocyst rate of lamb oocytes (46.5% vs 19.2% in control, P < 0.05). Next, effects of two kinds of combined supplements, insulin-transferrin-selenium (ITS) and fibroblast growth factor 2(FGF2)-leukemia inhibitory factor (LIF)-insulin-like growth factor1 (IGF1)(FLI) were tested. The results indicated that addition of FLI, but not ITS, in the IVM medium, significantly improved the blastocyst development of lamb oocytes (43.9% in FLI group vs 21.6% in control, P < 0.05). Further comparison showed that the developmental competence of oocytes was not significantly different among supplementation with sericin or FLI alone or both, all of which generated similar outcomes of blastocyst yield to the supplementation with adult follicular fluid. Finally, 27 blastocysts produced from lamb oocytes matured in the presence of sericin and FLI were transferred into 18 recipients, of which 9 were pregnant. This study suggests that the developmental competence of prepubertal oocytes can be improved by supplementing IVM medium with relevant agents like sericin and cytokines.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Fengxiang Yan
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Fujun Hou
- Aohan Sheep Breeding Farm, Chifeng, Inner Mongolia, China; Aohan Livestock Breeding and Spreading Centre, Chifeng, Inner Mongolia, China
| | - Weimin Ren
- Aohan Sheep Breeding Farm, Chifeng, Inner Mongolia, China
| | - Li Zhang
- Aohan Sheep Breeding Farm, Chifeng, Inner Mongolia, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China.
| |
Collapse
|
48
|
Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts. Theriogenology 2020; 158:477-489. [PMID: 33080451 DOI: 10.1016/j.theriogenology.2020.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Heat stress is associated with increased production of reactive oxygen species (ROS) and disruption of bovine oocyte function. Here, we examined whether the antioxidant melatonin can alleviate the deleterious effects of heat stress on oocyte developmental competence. Cumulus-oocyte complexes were matured for 22 h at 38.5 °C (control) or for 22 h at 41.5 °C (heat shock) with or without 1.0 × 10-7 M melatonin. At the end of maturation, a subgroup of oocytes was examined for nuclear and cytoplasmic maturation, ROS level and mitochondrial membrane potential. A second subgroup of oocytes underwent fertilization (18 h), and putative zygotes were cultured in an incubator equipped with a time-lapse system for ∼190 h. Cleavage rate and the proportion of blastocysts, as well as embryo kinetics were recorded. Expanded blastocysts were collected and their transcript abundance was evaluated. Heat shock increased ROS and reduced the proportion of oocytes that resumed meiosis and reached the metaphase-II stage. Exposing oocytes to heat shock with melatonin alleviated these effects to some extent, expressed by a marginal reduction in ROS level and increased proportion of metaphase-II stage oocytes. Neither the distribution of oocyte cortical granules nor polarization of the mitochondrial membrane differed between control and heat-shocked oocytes cultured with or without melatonin. Heat shock reduced the proportion of embryos that cleaved and developed to blastocysts, characterized by alterations in kinetics of the developed embryos expressed by a delay in the first cleavage, second cleavage and blastocyst formation for heat-shock vs. control groups. Melatonin did not restore the competence or kinetics of embryos developed from heat-shocked oocytes. However, expanded blastocysts developed from heat-shocked oocytes treated with melatonin expressed a higher transcript abundance of genes associated with mitochondrial function, relative to the control and heat-shock group. In summary, melatonin improved the oxidative status of heat-shocked oocytes to some extent and had a beneficial effect on maternal mitochondrial transcripts in the developed blastocysts.
Collapse
|
49
|
Khadrawy O, Gebremedhn S, Salilew-Wondim D, Rings F, Neuhoff C, Hoelker M, Schellander K, Tesfaye D. Quercetin supports bovine preimplantation embryo development under oxidative stress condition via activation of the Nrf2 signalling pathway. Reprod Domest Anim 2020; 55:1275-1285. [PMID: 32323384 DOI: 10.1111/rda.13688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Nrf2 is a master regulator for antioxidant machinery against oxidative stress in bovine preimplantation embryos. The endogenous or exogenous modulation of Nrf2-KEAP1 system in bovine embryos may contribute to the understanding of the mechanisms behind the response of embryos to stress conditions. Therefore, here we aimed to investigate the protective effect of quercetin on bovine preimplantation embryos exposed to higher atmospheric oxygen concentration. For that, blastocysts, which were developed from zygotes cultured in media supplemented with or without quercetin under high oxygen level (20%), were subjected intracellular ROS level and mitochondrial analysis, and determining blastocyst formation rate and total cell number. Moreover, mRNA and protein expression level of Nrf2 and selected downstream antioxidant genes were investigated in the resulting blastocysts. Quercetin supplementation in vitro culture did not affect cleavage and blastocyst rate until day 7. However, quercetin supplementation resulted in higher blastocyst total cell number and reduction of intracellular ROS level accompanied by increasing mitochondrial activity compared with control group in both day 7 and day 8 blastocysts. Moreover, quercetin supplementation induced mRNA and protein of Nrf2 with subsequent increase in the expression of downstream antioxidants namely: NQO1, PRDX1, CAT and SOD1 antioxidants. In conclusion, quercetin protects preimplantation embryos against oxidative stress and improves embryo viability through modulation of the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Omar Khadrawy
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dessie Salilew-Wondim
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Franca Rings
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
50
|
Hao EY, Wang DH, Chang LY, Huang CX, Chen H, Yue QX, Zhou RY, Huang RL. Melatonin regulates chicken granulosa cell proliferation and apoptosis by activating the mTOR signaling pathway via its receptors. Poult Sci 2020; 99:6147-6162. [PMID: 33142533 PMCID: PMC7647829 DOI: 10.1016/j.psj.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Melatonin is a key regulator of follicle granular cell maturation and ovulation. The mammalian target of rapamycin (mTOR) pathway plays an important role in cell growth regulation. Therefore, our aim was to investigate whether the mTOR signaling pathway is involved in the regulation of melatonin-mediated proliferation and apoptotic mechanisms in granulosa cells. Chicken follicle granular cells were cultured with melatonin (0, 2, 20, or 200 μmol/L) for 48 h. The results showed that melatonin treatment enhanced proliferation and suppressed apoptosis in granular cells at 20 μmol/L and 200 μmol/L (P < 0.05) by upregulation of cyclin D1 (P < 0.01) and Bcl-2 (P < 0.01) and downregulation of P21, caspase-3, Beclin1, and LC3-II (P < 0.01). The effects resulted in the activation of the mTOR signaling pathway by increasing the expression of avTOR, PKC, 4E-BP1, S6K (P < 0.05), p-mTOR, and p-S6K. We added an mTOR activator and inhibitor to the cells and identified the optimal dose (10 μmol/L MHY1485 and 100 nmol/L rapamycin) for subsequent experiments. The combination of 20 μmol/L melatonin and 10 μmol/L MHY1485 significantly enhanced granulosa cell proliferation (P < 0.05), while 100 nmol/L rapamycin significantly inhibited proliferation and enhanced apoptosis (P < 0.05), but this action was reversed in the 20-μmol/L melatonin and 100-nmol/L rapamycin cotreatment groups (P < 0.05). This was confirmed by mRNA and protein expression that was associated with proliferation, apoptosis, and autophagy (P < 0.05). The combination of 20 μmol/L melatonin and 10 μmol/L MHY1485 also activated the mTOR pathway upstream genes PI3K, AKT1, and AKT2 and downstream genes PKC, 4E-BP1, and S6K (P < 0.05), as well as protein expression of p-mTOR and p-S6K. Rapamycin significantly inhibited the mTOR pathway-related genes mRNA levels (P < 0.05). In addition, activation of the mTOR pathway increased melatonin receptor mRNA levels (P < 0.05). In conclusion, these findings demonstrate that melatonin regulates chicken granulosa cell proliferation and apoptosis by activating the mTOR signaling pathway via its receptor.
Collapse
Affiliation(s)
- Er-Ying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Li-Yun Chang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Chen-Xuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| | - Qiao-Xian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Rong-Yan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Ren-Lu Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| |
Collapse
|