1
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Bagheri N, Chamani M, Gougerdchi V, Hamedpour-Darabi M, Shu W, Price GW, Dell B. Role of Neurotransmitters (Biomediators) in Plant Responses to Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3134. [PMID: 39599343 PMCID: PMC11597453 DOI: 10.3390/plants13223134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Plants possess a complex signaling system that enables them to sense and adapt to various environmental stressors, including abiotic factors like extreme temperatures, drought, salinity, and toxic heavy metals. While the roles of hormones and signaling molecules in plant stress responses are well established, the involvement of neurotransmitters-traditionally linked to animal nervous systems-in plant stress physiology is a relatively underexplored area. Recent findings indicate that neurotransmitters such as gamma-aminobutyric acid, glutamate, serotonin, and dopamine play crucial roles in several physiological processes within plants. They regulate ion channels, adjust stomatal movements, modulate the production of reactive oxygen species, and influence gene expression. Evidence suggests that these neurotransmitters enhance antioxidant defense mechanisms and regulate stress-responsive pathways vital for plant stress tolerance. Additionally, under stressful conditions, neurotransmitters have been shown to impact plant growth, development, and reproductive activities. This review aims to illuminate the emerging understanding of neurotransmitters as key biomediators in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | | | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - G. W. Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
2
|
Tse LH, Cheung ST, Lee S, Wong YH. Real-Time Determination of Intracellular cAMP Reveals Functional Coupling of G s Protein to the Melatonin MT 1 Receptor. Int J Mol Sci 2024; 25:2919. [PMID: 38474167 DOI: 10.3390/ijms25052919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Melatonin is a neuroendocrine hormone that regulates the circadian rhythm and many other physiological processes. Its functions are primarily exerted through two subtypes of human melatonin receptors, termed melatonin type-1 (MT1) and type-2 (MT2) receptors. Both MT1 and MT2 receptors are generally classified as Gi-coupled receptors owing to their well-recognized ability to inhibit cAMP accumulation in cells. However, it remains an enigma as to why melatonin stimulates cAMP production in a number of cell types that express the MT1 receptor. To address if MT1 can dually couple to Gs and Gi proteins, we employed a highly sensitive luminescent biosensor (GloSensorTM) to monitor the real-time changes in the intracellular cAMP level in intact live HEK293 cells that express MT1 and/or MT2. Our results demonstrate that the activation of MT1, but not MT2, leads to a robust enhancement on the forskolin-stimulated cAMP formation. In contrast, the activation of either MT1 or MT2 inhibited cAMP synthesis driven by the activation of the Gs-coupled β2-adrenergic receptor, which is consistent with a typical Gi-mediated response. The co-expression of MT1 with Gs enabled melatonin itself to stimulate cAMP production, indicating a productive coupling between MT1 and Gs. The possible existence of a MT1-Gs complex was supported through molecular modeling as the predicted complex exhibited structural and thermodynamic characteristics that are comparable to that of MT1-Gi. Taken together, our data reveal that MT1, but not MT2, can dually couple to Gs and Gi proteins, thereby enabling the bi-directional regulation of adenylyl cyclase to differentially modulate cAMP levels in cells that express different complements of MT1, MT2, and G proteins.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Suet Ting Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Seayoung Lee
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, 17 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| |
Collapse
|
3
|
Lee J, Hong H, Lee J, Hong Y, Hwang HW, Jin H, Shim H, Hong Y, Park W, Chung J, Lee D. Valorization of leftover green tea residues through conversion to bioactive peptides using probiotics-aided anaerobic digestion. Microb Biotechnol 2022; 16:418-431. [PMID: 36285915 PMCID: PMC9871527 DOI: 10.1111/1751-7915.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023] Open
Abstract
Bioactive peptides (BPs) are protein fragments that benefit human health. To assess whether leftover green tea residues (GTRs) can serve as a resource for new BPs, we performed in silico proteolysis of GTRs using the BIOPEP database, revealing a wide range of BPs embedded in GTRs. Comparative genomics and the percentage of conserved protein analyses enabled us to select a few probiotic strains for GTR hydrolysis. The selected probiotics digested GTRs anaerobically to yield GTR-derived peptide fractions. To examine whether green tea (GT) peptide fractions could be potential mediators of host-microbe interactions, we comprehensively screened agonistic and antagonistic activities of 168 human G protein-coupled receptors (GPCRs). NanoLC-MS/MS analysis and thin-layer chromatography allowed the identification of peptide sequences and the composition of glycan moieties in the GTRs. Remarkably, GT peptide fractions produced by Lactiplantibacillus plantarum APsulloc 331261, a strain isolated from GT, showed a potent-binding activity for P2RY6, a GPCR involved in intestinal homeostasis. Therefore, this study suggests the potential use of probiotics-aided GTR hydrolysates as postbiotic BPs, providing a biological process for recycling GTRs from agro-waste into renewable resources as health-promoting BPs.
Collapse
Affiliation(s)
- Ji‐Young Lee
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Hyein Hong
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Jae‐Eun Lee
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Yi‐Jee Hong
- Department of Bioindustrial EngineeringYonsei UniversitySeoulSouth Korea
| | - Hye Won Hwang
- Department of Bioindustrial EngineeringYonsei UniversitySeoulSouth Korea
| | - Hyeon‐Su Jin
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Hyunkyou Shim
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | | | | | | | - Dong‐Woo Lee
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea,Department of Bioindustrial EngineeringYonsei UniversitySeoulSouth Korea
| |
Collapse
|
4
|
Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022; 13:866625. [PMID: 35645810 PMCID: PMC9130700 DOI: 10.3389/fphar.2022.866625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites, including the gut, may also be its minor source. Melatonin regulates various functions, including circadian rhythm, reproduction, temperature regulation, immune system, cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable modulation of bone metabolism by melatonin. This narrative review gives a comprehensive account of the current understanding of melatonin at the cell/molecular to the systems levels. Melatonin predominantly acts through its cognate receptors, of which melatonin receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic differentiation of hematopoietic stem cells. Produced from osteoblastic cells, osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors osteogenic function and antagonizes the osteoclastogenic function with the participation of SIRT signaling, various miRNAs also mediate the effects of the hormone on bone cells. In rodent models of osteoporosis, melatonin has been unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate the bone mass conserving effect of melatonin in aging/postmenopausal osteoporosis. This review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis therapy through the critical assessment of the available literature.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoxi Shao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xingang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Megerian MF, Kim JS, Badreddine J, Hong SH, Ponsky LE, Shin JI, Ghayda RA. Melatonin and Prostate Cancer: Anti-tumor Roles and Therapeutic Application. Aging Dis 2022; 14:840-857. [PMID: 37191417 DOI: 10.14336/ad.2022.1010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Melatonin is an endogenous indoleamine that has been shown to inhibit tumor growth in laboratory models of prostate cancer. Prostate cancer risk has additionally been associated with exogenous factors that interfere with normal pineal secretory activity, including aging, poor sleep, and artificial light at night. Therefore, we aim to expand on the important epidemiological evidence, and to review how melatonin can impede prostate cancer. More specifically, we describe the currently known mechanisms of melatonin-mediated oncostasis in prostate cancer, including those that relate to the indolamine's ability to modulate metabolic activity, cell cycle progression and proliferation, androgen signaling, angiogenesis, metastasis, immunity and oxidative cell status, apoptosis, genomic stability, neuroendocrine differentiation, and the circadian rhythm. The outlined evidence underscores the need for clinical trials to determine the efficacy of supplemental, adjunct, and adjuvant melatonin therapy for the prevention and treatment of prostate cancer.
Collapse
|
6
|
Lépinay J, Taragnat C, Dubois JP, Chesneau D, Jockers R, Delagrange P, Bozon V. Negative regulation of melatonin secretion by melatonin receptors in ovine pinealocytes. PLoS One 2021; 16:e0255249. [PMID: 34324562 PMCID: PMC8320996 DOI: 10.1371/journal.pone.0255249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
Melatonin (MLT) is a biological modulator of circadian and seasonal rhythms and reproduction. The photoperiodic information is detected by retinal photoreceptors and transmitted through nerve transmissions to the pineal gland, where MLT is synthesized and secreted at night into the blood. MLT interacts with two G protein-coupled receptors, MT1 and MT2. The aim of our work was to provide evidence for the presence of MLT receptors in the ovine pineal gland and define their involvement on melatonin secretion. For the first time, we identified the expression of MLT receptors with the specific 2-[125I]-MLT agonistic radioligand in ovin pinealocytes. The values of Kd and Bmax are 2.24 ± 1.1 nM and 20 ± 6.8 fmol/mg. MLT receptors are functional and inhibit cAMP production and activate ERK1/2 through pertussis toxin-sensitive Gi/o proteins. The MLT receptor antagonist/ inverse agonist luzindole increased cAMP production (189 ± 30%) and MLT secretion (866 ± 13%). The effect of luzindole on MLT secretion was additive with the effect of well-described activators of this pathway such as the β-adrenergic agonist isoproterenol and the α-adrenergic agonist phenylephrine. Co-incubation of all three compounds increased MLT secretion by 1236 ± 199%. These results suggest that MLT receptors are involved in the negative regulation of the synthesis of its own ligand in pinealocytes. While adrenergic receptors promote MLT secretion, MLT receptors mitigate this effect to limit the quantity of MLT secreted by the pineal gland.
Collapse
Affiliation(s)
- Julie Lépinay
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Catherine Taragnat
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Jean-Philippe Dubois
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Didier Chesneau
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Véronique Bozon
- Physiologie de la Reproduction et des Comportements, Université de Tours, Nouzilly, France
| |
Collapse
|
7
|
Han Q, Du G, Liu L, Wang L, Li W, Zhang H, Sun Y, Zhu P, Hao R, Ma S. Molecular mechanisms of seasonal photoperiod effects of the pineal gland on the hippocampus in rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Shen D, Ju L, Zhou F, Yu M, Ma H, Zhang Y, Liu T, Xiao Y, Wang X, Qian K. The inhibitory effect of melatonin on human prostate cancer. Cell Commun Signal 2021; 19:34. [PMID: 33722247 PMCID: PMC7962396 DOI: 10.1186/s12964-021-00723-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed human cancers in males. Nearly 191,930 new cases and 33,330 new deaths of PCa are estimated in 2020. Androgen and androgen receptor pathways played essential roles in the pathogenesis of PCa. Androgen depletion therapy is the most used therapies for primary PCa patients. However, due to the high relapse and mortality of PCa, developing novel noninvasive therapies have become the focus of research. Melatonin is an indole-like neurohormone mainly produced in the human pineal gland with a prominent anti-oxidant property. The anti-tumor ability of melatonin has been substantially confirmed and several related articles have also reported the inhibitory effect of melatonin on PCa, while reviews of this inhibitory effect of melatonin on PCa in recent 10 years are absent. Therefore, we systematically discuss the relationship between melatonin disruption and the risk of PCa, the mechanism of how melatonin inhibited PCa, and the synergistic benefits of melatonin and other drugs to summarize current understandings about the function of melatonin in suppressing human prostate cancer. We also raise several unsolved issues that need to be resolved to translate currently non-clinical trials of melatonin for clinic use. We hope this literature review could provide a solid theoretical basis for the future utilization of melatonin in preventing, diagnosing and treating human prostate cancer. Video abstract
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haoli Ma
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Wuhan, China.,Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Center for Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center of Life Sciences, Beijing, China.,Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
Physiological and Molecular Responses to Acid Rain Stress in Plants and the Impact of Melatonin, Glutathione and Silicon in the Amendment of Plant Acid Rain Stress. Molecules 2021; 26:molecules26040862. [PMID: 33562098 PMCID: PMC7915782 DOI: 10.3390/molecules26040862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.
Collapse
|
10
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
11
|
Zhang J, Xie T, Zhong X, Jiang HL, Li R, Wang BY, Huang XT, Cen BH, Yuan YW. Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/β-catenin signaling pathway. Aging (Albany NY) 2020; 12:5423-5438. [PMID: 32203052 PMCID: PMC7138577 DOI: 10.18632/aging.102968] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/16/2020] [Indexed: 01/12/2023]
Abstract
Cisplatin (DDP)-based concurrent chemo-radiotherapy is a standard approach to treat locoregionally advanced nasopharyngeal carcinoma (NPC). However, many patients eventually develop recurrence and/or distant metastasis due to chemoresistance. In this study, we aimed to elucidate the effects of melatonin on DDP chemoresistance in NPC cell lines in vitro and vivo, and we explored potential chemoresistance mechanisms. We found that DDP chemoresistance in NPC cells is mediated through the Wnt/β-catenin signaling pathway. Melatonin not only reversed DDP chemoresistance, but also enhanced DDP antitumor activity by suppressing the nuclear translocation of β-catenin, and reducing expression of Wnt/β-catenin response genes in NPC cells. In vivo, combined treatment with DDP and melatonin reduced tumor burden to a greater extent than single drug-treatments in an orthotopic xenograft mouse model. Our findings provide novel evidence that melatonin inhibits the Wnt/β-catenin pathway in NPC, and suggest that melatonin could be applied in combination with DDP to treat NPC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xi Zhong
- Department of Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Hua-Li Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, P.R. China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Bai-Yao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiao-Ting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Bo-Hong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
12
|
Alkozi HA, Navarro G, Aguinaga D, Reyes-Resina I, Sanchez-Naves J, Pérez de Lara MJ, Franco R, Pintor J. Adreno-melatonin receptor complexes control ion homeostasis and intraocular pressure - their disruption contributes to hypertensive glaucoma. Br J Pharmacol 2020; 177:2090-2105. [PMID: 31901203 DOI: 10.1111/bph.14971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Often, glaucoma presents with elevated eye hydrostatic pressure, which is regulated by endogenous melatonin. Phenylephrine increases cytoplasmic [Ca2+ ], via α1 -adrenoceptor activation, that is detrimental in glaucoma. The aims of this study were (a) to elucidate the role of melatonin receptors in humour production and intraocular pressure (IOP) maintenance and (b) to identify glaucoma-relevant melatonin-adrenoceptor interactions. EXPERIMENTAL APPROACH Biophysical and proximity ligation assays were performed to identify interactions in heterologous expression systems, in cell lines and in human eyes. Gs /Gi /Gq signalling was investigated in these systems and in cells producing aqueous humour. IOP was determined in a mice model of glaucoma. Retinography and topically pharmacological treatment were performed in control and in glaucomatous mice. KEY RESULTS α1 -adreno- and melatonin receptors form functional complexes in which the C-terminal tail of the adrenoceptor plays a role. Remarkably, activation of α1 -adrenoceptors in these complexes did not lead to cytosolic Ca2+ increases, suggesting Gs instead of Gq coupling is involved. The number of these complexes significantly decreased in models of glaucoma and, importantly, in human samples from glaucoma patients. This has led to hypothesize that melatonin, a hypotensive agent, plus blockade of α1 -adrenoceptors could normalize pressure in glaucoma. Remarkably, co-instillation of melatonin and prazosin, an α1 -adrenoceptor antagonist, resulted in long-term decreases in IOP in a well-established animal model of glaucoma. CONCLUSIONS AND IMPLICATIONS The findings are instrumental to understand the physiological function of melatonin in the eye and its potential to address eye pathologies by targeting melatonin receptors and their complexes.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - David Aguinaga
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain.,Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Juan Sanchez-Naves
- Department of Ophthalmology, Balearic Islands Institute of Ophthalmology, Palma de Mallorca, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Alkozi HA, Navarro G, Franco R, Pintor J. Melatonin and the control of intraocular pressure. Prog Retin Eye Res 2019; 75:100798. [PMID: 31560946 DOI: 10.1016/j.preteyeres.2019.100798] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Melatonin is not only synthesized by the pineal gland but by several ocular structures. This natural indoleamine is of great importance for regulating several eye processes, among which pressure homeostasis is included. Glaucoma, the most prevalent eye disease, also known as the silent thief of vision, is a multifactorial pathology that is associated to age and, often, to intraocular hypertension (IOP). Indeed IOP is the only modifiable risk factor and as such medications are available to control it; however, novel medications are sought to minimize undesirable side effects. Melatonin and analogues decrease IOP in both normotensive and hypertensive eyes. Melatonin activates its cognate membrane receptors, MT1 and MT2, which are present in numerous ocular tissues, including the aqueous-humor-producing ciliary processes. Melatonin receptors belong to the superfamily of G-protein-coupled receptors and their activation would lead to different signalling pathways depending on the tissue. This review describes the molecular mechanisms underlying differential functionalities that are attributed to melatonin receptors. Accordingly, the current work highlights the important role of melatonin and its analogues in the healthy and in the glaucomatous eyes, with special attention to the control of intraocular pressure.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Juan XXIII, 27, 08027, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Barcelona, Spain.
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain; Real Academia Nacional de Farmacia, Calle Farmacia 11, 28004, Madrid, Spain.
| |
Collapse
|
14
|
Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 2019; 34:11-19. [PMID: 31283051 DOI: 10.1111/fcp.12498] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the sensor of oxidative stress, and the main aim of this signaling pathway is to maintain physiological condition by induction of redox balance. Also, this pathway exerts anti-inflammatory effects via antioxidant response element. Oxidative stress is a key factor in a variety of pathological conditions and high level of oxidative stress is associated with damages in lipids, proteins, genetic material, and cell membrane. Multiple drugs have been developed in order to diminish oxidative stress. However, synthetic drugs suffer from various drawbacks such as high cost and side effects. On the other hand, naturally occurring compounds are of interest due to their minimal side effects and valuable biological activities. Melatonin is a hormone of pineal gland which is found in different plants. This compound has a variety of favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and cardioprotection. At the present review, we demonstrate that Nrf2 signaling pathway explains some of the therapeutic and biological effects of melatonin.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad university, Shoushtar, 5563584, Iran
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of veterinary medicine, University of Tabriz, Tabriz, 1455742, Iran
| |
Collapse
|
15
|
Mel1c Mediated Monochromatic Light-Stimulated IGF-I Synthesis through the Intracellular G αq/PKC/ERK Signaling Pathway. Int J Mol Sci 2019; 20:ijms20071682. [PMID: 30987295 PMCID: PMC6480035 DOI: 10.3390/ijms20071682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that monochromatic light affects plasma melatonin (MEL) levels, which in turn regulates hepatic insulin-like growth factor I (IGF-I) secretion via the Mel1c receptor. However, the intracellular signaling pathway initiated by Mel1c remains unclear. In this study, newly hatched broilers, including intact, sham operation, and pinealectomy groups, were exposed to either white (WL), red (RL), green (GL), or blue (BL) light for 14 days. Experiments in vivo showed that GL significantly promoted plasma MEL formation, which was accompanied by an increase in the MEL receptor, Mel1c, as well as phosphorylated extracellular regulated protein kinases (p-ERK1/2), and IGF-I expression in the liver, compared to the other light-treated groups. In contrast, this GL stimulation was attenuated by pinealectomy. Exogenous MEL elevated the hepatocellular IGF-I level, which is consistent with increases in cyclic adenosine monophosphate (cAMP), Gαq, phosphorylated protein kinase C (p-PKC), and p-ERK1/2 expression. However, the Mel1c selective antagonist prazosin suppressed the MEL-induced expression of IGF-I, Gαq, p-PKC, and p-ERK1/2, while the cAMP concentration was barely affected. In addition, pretreatment with Ym254890 (a Gαq inhibitor), Go9863 (a PKC inhibitor), and PD98059 (an ERK1/2 inhibitor) markedly attenuated MEL-stimulated IGF-I expression and p-ERK1/2 activity. These results indicate that Mel1c mediates monochromatic GL-stimulated IGF-I synthesis through intracellular Gαq/PKC/ERK signaling.
Collapse
|
16
|
Sung GJ, Kim SH, Kwak S, Park SH, Song JH, Jung JH, Kim H, Choi KC. Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J Pineal Res 2019; 66:e12556. [PMID: 30648757 DOI: 10.1111/jpi.12556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most aggressive malignant glioma and most lethal form of human brain cancer (Clin J Oncol Nurs. 2016;20:S2). GBM is also one of the most expensive and difficult cancers to treat by the surgical resection, local radiotherapy, and temozolomide (TMZ) and still remains an incurable disease. Oncomine platform analysis and Gene Expression Profiling Interactive Analysis (GEPIA) show that the expression of transcription factor EB (TFEB) was significantly increased in GBMs and in GBM patients above stage IV. TFEB requires the oligomerization and localization to regulate transcription in the nucleus. Also, the expression and oligomerization of TFEB proteins contribute to the resistance of GBM cells to conventional chemotherapeutic agents such as TMZ. Thus, we investigated whether the combination of vorinostat and melatonin could overcome the effects of TFEB and induce apoptosis in GBM cells and glioma cancer stem cells (GSCs). The downregulation of TFEB and oligomerization by vorinostat and melatonin increased the expression of apoptosis-related genes and activated the apoptotic cell death process. Significantly, the inhibition of TFEB expression dramatically decreased GSC tumor-sphere formation and size. The inhibitory effect of co-treatment resulted in decreased proliferation of GSCs and induced the expression of cleaved PARP and p-γH2AX. Taken together, our results definitely demonstrate that TFEB expression contributes to enhanced resistance of GBMs to chemotherapy and that vorinostat- and melatonin-activated apoptosis signaling in GBM cells by inhibiting TFEB expression and oligomerization, suggesting that co-treatment of vorinostat and melatonin may be an effective therapeutic strategy for human brain cancers.
Collapse
Affiliation(s)
- Gi-Jun Sung
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, Gwangju, Korea
| | - Sungmin Kwak
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Ho Park
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hye Song
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hoon Jung
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunhee Kim
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences and Pharmacology, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|
18
|
Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D. Melatonin Mediates Enhancement of Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E1040. [PMID: 30818835 PMCID: PMC6429401 DOI: 10.3390/ijms20051040] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a multifunctional signaling molecule, ubiquitously distributed in different parts of plants and responsible for stimulating several physiological responses to adverse environmental conditions. In the current review, we showed that the biosynthesis of melatonin occurred in plants by themselves, and accumulation of melatonin fluctuated sharply by modulating its biosynthesis and metabolic pathways under stress conditions. Melatonin, with its precursors and derivatives, acted as a powerful growth regulator, bio-stimulator, and antioxidant, which delayed leaf senescence, lessened photosynthesis inhibition, and improved redox homeostasis and the antioxidant system through a direct scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS) under abiotic and biotic stress conditions. In addition, exogenous melatonin boosted the growth, photosynthetic, and antioxidant activities in plants, confirming their tolerances against drought, unfavorable temperatures, salinity, heavy metals, acid rain, and pathogens. However, future research, together with recent advancements, would support emerging new approaches to adopt strategies in overcoming the effect of hazardous environments on crops and may have potential implications in expanding crop cultivation against harsh conditions. Thus, farming communities and consumers will benefit from elucidating food safety concerns.
Collapse
Affiliation(s)
- Biswojit Debnath
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Min Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yueting Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaocao Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Sangeeta Mitra
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mubasher Hussain
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
19
|
Protective Effect of Melatonin against Oxidative Stress-Induced Apoptosis and Enhanced Autophagy in Human Retinal Pigment Epithelium Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9015765. [PMID: 30174783 PMCID: PMC6098907 DOI: 10.1155/2018/9015765] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) affects the retinal macula and results in loss of vision, and AMD is the primary cause of blindness and severe visual impairment among elderly people worldwide. AMD is characterized by the accumulation of drusen in the Bruch's membrane and dysfunction of retinal pigment epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD remains unclear, and no effective treatment exists. Accumulating evidence indicates that oxidative stress plays a critical role in RPE cell degeneration and AMD. Melatonin is an antioxidant that scavenges free radicals, and it has anti-inflammatory, antitumor, and antiangiogenic effects. This study investigated the antioxidative, antiapoptotic, and autophagic effects of melatonin on oxidative damage to RPE cells. We used hydrogen peroxide (H2O2) to stimulate reactive oxygen species production to cause cell apoptosis in ARPE-19 cell lines. Our findings revealed that treatment with melatonin significantly inhibited H2O2-induced RPE cell damage, decreased the apoptotic rate, increased the mitochondrial membrane potential, and increased the autophagy effect. Furthermore, melatonin reduced the Bax/Bcl-2 ratio and the expression levels of the apoptosis-associated proteins cytochrome c and caspase 7. Additionally, melatonin upregulated the expression of the autophagy-related proteins LC3-II and Beclin-1 and downregulated the expression of p62. Thus, melatonin's effects on autophagy and apoptosis can protect against H2O2-induced oxidative damage in human RPE cells. Melatonin may have multiple protective effects on human RPE cells against H2O2-induced oxidative damage.
Collapse
|
20
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
21
|
Alkozi HA, Sánchez Montero JM, Doadrio AL, Pintor J. Docking studies for melatonin receptors. Expert Opin Drug Discov 2017; 13:241-248. [PMID: 29271261 DOI: 10.1080/17460441.2018.1419184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Melatonin is a neurohormone that controls many relevant physiological processes beyond the control of circadian rhythms. Melatonin's actions are carried out by two main types of melatonin receptors; MT1 and MT2. These receptors are important, and not just because of the biological actions of its natural agonist; but also, because melatonin analogues can improve or antagonize their biological effect. Area covered: The following article describes the importance of melatonin as a biologically relevant molecule. It also defines the receptors for this substance, as well as the second messengers coupled to these receptors. Lastly, the article describes the amino acid residues involved in the docking process in both MT1 and MT2 melatonin receptors. Expert opinion: The biological actions of melatonin and their interpretations are becoming more relevant and therefore require the development of new pharmacological tools. Understanding the second messenger mechanisms involved in melatonin actions, as well as the characteristics of the docking of this molecule to MT1 and MT2 melatonin receptors, will permit the development of more selective agonists and antagonists which will help us to better understand this molecule as well to develop new therapeutic compounds.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- a Department of Biochemistry and Molecular Biology IV, Faculty of Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - José Maria Sánchez Montero
- b Department of Organic Chemistry and Pharmaceutical, Faculty of Pharmacy , Ciudad Universitaria , Madrid , Spain
| | - Antonio Luis Doadrio
- c Department of Inorganic Chemistry and Bioorganic, Faculty of Pharmacy , University Complutense of Madrid , Ciudad Universitaria, Madrid , Spain
| | - Jesus Pintor
- a Department of Biochemistry and Molecular Biology IV, Faculty of Optometry , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
22
|
Jang H, Na Y, Hong K, Lee S, Moon S, Cho M, Park M, Lee OH, Chang EM, Lee DR, Ko JJ, Lee WS, Choi Y. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27 Kip1 promoter in primordial follicles. J Pineal Res 2017; 63. [PMID: 28658519 DOI: 10.1111/jpi.12432] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients.
Collapse
Affiliation(s)
- Hoon Jang
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Gyeonggi, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Sangho Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Sohyeon Moon
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Minha Cho
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Eun Mi Chang
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
23
|
Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? Int J Mol Sci 2017; 18:ijms18091913. [PMID: 28878191 PMCID: PMC5618562 DOI: 10.3390/ijms18091913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
24
|
Guo Q, Wang Z, Dong Y, Cao J, Chen Y. Physiological crosstalk between the AC/PKA and PLC/PKC pathways modulates melatonin-mediated, monochromatic-light-induced proliferation of T-lymphocytes in chickens. Cell Tissue Res 2017; 369:555-565. [PMID: 28660299 DOI: 10.1007/s00441-017-2644-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
Previous study has demonstrated that melatonin plays a critical role in monochromatic-light-induced lymphocyte proliferation in response to T cell mitogen concanavalin A (ConA). However, its intracellular mechanism is still unclear. In this study, we investigate the intracellular signal pathways of melatonin receptor-mediated T-lymphocyte proliferation in the spleens of chicks exposed to different light wavelengths. Results showed that green light enhanced T-lymphocyte proliferation by 2.46-6.83% and increased splenic mRNA and protein expressions of melatonin receptor subtypes (Mel1a, Mel1b and Mel1c) by 16.05-40.43% compared with the white, red and blue light groups. However, pinealectomy resulted in a decrease in T-lymphocyte proliferation and melatonin receptor expression with no statistically significant differences between the different light groups. In vitro experiments showed that the Mel1b selective antagonist 4P-PDOT, the Mel1c selective antagonist prazosin and the mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor PD98059 suppressed both melatonin-induced lymphocyte proliferation in response to ConA and melatonin- and ConA-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) activity but that the Mel1a/Mel1b non-selective antagonist luzindole did not. In addition, pretreatment with forskolin (FSK, the adenylyl cyclase activator), H89 (the PKA inhibitor), U73122 (the PLC inhibitor) or Go6983 (the broad spectrum PKC inhibitor) markedly attenuated melatonin- and ConA-stimulated T-lymphocyte proliferation and ERK1/2 activity. These results demonstrate that melatonin mediates green-light-induced T-lymphocyte proliferation via the Mel1b and Mel1c receptors by triggering crosstalk between the cAMP/PKA and PLC/PKC signal pathways followed by ERK1/2 activation.
Collapse
Affiliation(s)
- Qingyun Guo
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Zixu Wang
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Liu VWS, Yau WL, Tam CW, Yao KM, Shiu SYW. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy. Int J Mol Sci 2017; 18:E1130. [PMID: 28561752 PMCID: PMC5485954 DOI: 10.3390/ijms18061130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin (IL)-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.
Collapse
Affiliation(s)
| | - Wing Lung Yau
- Division of Nursing and Health Studies, School of Science and Technology, Open University of Hong Kong, Hong Kong, China.
| | - Chun Wai Tam
- Division of Nursing and Health Studies, School of Science and Technology, Open University of Hong Kong, Hong Kong, China.
| | - Kwok-Ming Yao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
26
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
27
|
Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Liang R, Gao Z, Shao S, Wang L. Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines. RSC Adv 2017. [DOI: 10.1039/c7ra02113e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proposed model elucidating the role of MT in regulating the proliferation of hepatocellular carcinoma (HCC) cells treated with sorafenib.
Collapse
|
28
|
Jang H, Lee OH, Lee Y, Yoon H, Chang EM, Park M, Lee JW, Hong K, Kim JO, Kim NK, Ko JJ, Lee DR, Yoon TK, Lee WS, Choi Y. Melatonin prevents cisplatin-induced primordial follicle loss via suppression of PTEN/AKT/FOXO3a pathway activation in the mouse ovary. J Pineal Res 2016; 60:336-47. [PMID: 26882203 DOI: 10.1111/jpi.12316] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/09/2016] [Indexed: 12/25/2022]
Abstract
Premature ovarian failure (POF) is a major side effect of chemotherapy in young cancer patients. To develop pharmaceutical agents for preserving fertility, it is necessary to understand the mechanisms responsible for chemotherapy-induced follicle loss. Here, we show that treatment with cisplatin, a widely used anticancer drug, depleted the dormant follicle pool in mouse ovaries by excessive activation of the primordial follicles, without inducing follicular apoptosis. Moreover, we show that co-treatment with the antioxidant melatonin prevented cisplatin-induced disruption of the follicle reserve. We quantified the various stages of growing follicles, including primordial, primary, secondary, and antral, to demonstrate that cisplatin treatment alone significantly decreased, whereas melatonin co-treatment preserved, the number of primordial follicles in the ovary. Importantly, analysis of the PTEN/AKT/FOXO3a pathway demonstrated that melatonin significantly decreased the cisplatin-mediated inhibitory phosphorylation of PTEN, a key negative regulator of dormant follicle activation. Moreover, melatonin prevented the cisplatin-induced activating phosphorylation of AKT, GSK3β, and FOXO3a, all of which trigger follicle activation. Additionally, we show that melatonin inhibited the cisplatin-induced inhibitory phosphorylation and nuclear export of FOXO3a, which is required in the nucleus to maintain dormancy of the primordial follicles. These findings demonstrate that melatonin attenuates cisplatin-induced follicle loss by preventing the phosphorylation of PTEN/AKT/FOXO3a pathway members; thus, melatonin is a potential therapeutic agent for ovarian protection and fertility preservation during chemotherapy in female cancer patients.
Collapse
Affiliation(s)
- Hoon Jang
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Youngeun Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Hyemin Yoon
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Eun Mi Chang
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Miseon Park
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jeong-Woong Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon, Korea
| | - Kwonho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, Korea
| | - Jung Oh Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Nam Keun Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Tae Ki Yoon
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
29
|
Homola M, Pfeffer M, Robson SC, Fischer C, Zimmermann H, Korf HW. Melatonin receptor deficiency decreases and temporally shifts ecto-5'-nucleotidase mRNA levels in mouse prosencephalon. Cell Tissue Res 2016; 365:147-56. [PMID: 26917036 DOI: 10.1007/s00441-016-2378-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/12/2016] [Indexed: 11/29/2022]
Abstract
Ecto-5'-nucleotidase (eN) is the major extracellular adenosine-producing ecto-enzyme in mouse brain. Via the production of adenosine, eN participates in many physiological and pathological processes, such as wakefulness, inflammation, nociception and neuroprotection. The mechanisms regulating the expression of eN are therefore of considerable neurobiological and clinical interest. Having previously described a modulatory effect of melatonin in the regulation of eN mRNA levels, we decided to analyze the melatonin receptor subtype involved in the regulation of eN mRNA levels by comparing eN mRNA patterns in melatonin-proficient transgenic mice lacking either the melatonin receptor subtype 1 (MT1 KO) or both melatonin receptor subtypes (MT1 and MT2; MT1/2 KO) with the corresponding melatonin-proficient wild-type (WT) controls. By means of radioactive in situ hybridization, eN mRNA levels were found to be diminished in both MT1 and MT1/2 KO mice compared with WT controls suggesting stimulatory impacts of melatonin receptors on eN mRNA levels. Whereas eN mRNA levels increased during the day and peaked at night in WT and MT1 KO mice, eN mRNA levels at night were reduced and the peak was shifted toward day-time in double MT1/2 KO mice. These data suggest that the MT2 receptor subtype may play a role in the temporal regulation of eN mRNA availability. Notably, day-time locomotor activity was significantly higher in MT1/2 KO compared with WT mice. Our results suggest melatoninergic signaling as an interface between the purinergic system and the circadian system.
Collapse
Affiliation(s)
- Moran Homola
- Institute of Anatomy II, Dr. Senckenbergisches Chronomedizinisches Institut (SCI), Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Martina Pfeffer
- Institute of Anatomy II, Dr. Senckenbergisches Chronomedizinisches Institut (SCI), Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Claudia Fischer
- Institute of Anatomy II, Dr. Senckenbergisches Chronomedizinisches Institut (SCI), Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Strasse 13, 60438, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institute of Anatomy II, Dr. Senckenbergisches Chronomedizinisches Institut (SCI), Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
31
|
Kamato D, Thach L, Bernard R, Chan V, Zheng W, Kaur H, Brimble M, Osman N, Little PJ. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front Cardiovasc Med 2015; 2:14. [PMID: 26664886 PMCID: PMC4671355 DOI: 10.3389/fcvm.2015.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
G protein coupled receptors (GPCRs) are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of three subunits termed alpha, beta, and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13, and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via guanosine triphosphate (GTP), Gαq activates phospholipase Cβ, hydrolyzing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic reticulum. Although G proteins, in particular, the Gαq/11 are central elements in GPCR signaling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic, and thrombolytic effects. YM-254890 inhibits Gαq signaling pathways by preventing the exchange of guanosine diphosphate for GTP. UBO-QIC is a structurally similar compound to YM-254890, which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signaling downstream of Gαq/11. The role of G proteins could potentially represent a novel therapeutic target. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signaling.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Lyna Thach
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Rebekah Bernard
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Vincent Chan
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre , Guangzhou , China ; Faculty of Health Sciences, University of Macau , Macau , China
| | - Harveen Kaur
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Margaret Brimble
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Narin Osman
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Peter J Little
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| |
Collapse
|
32
|
Holzmann C, Kilch T, Kappel S, Armbrüster A, Jung V, Stöckle M, Bogeski I, Schwarz EC, Peinelt C. ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer. Oncotarget 2014; 4:2096-107. [PMID: 24240085 PMCID: PMC3875772 DOI: 10.18632/oncotarget.1483] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Labelled 5α-dihydrotestosterone (DHT) binding experiments have shown that expression levels of (yet unidentified) membrane androgen receptors (mAR) are elevated in prostate cancer and correlate with a negative prognosis. However, activation of these receptors which mediate a rapid androgen response can counteract several cancer hallmark functions such as unlimited proliferation, enhanced migration, adhesion and invasion and the inability to induce apoptosis. Here, we investigate the downstream signaling pathways of mAR and identify rapid DHT induced activation of store-operated Ca2+ entry (SOCE) in primary cultures of human prostate epithelial cells (hPEC) from non-tumorous tissue. Consequently, down-regulation of Orai1, the main molecular component of Ca2+ release-activated Ca2+ (CRAC) channels results in an almost complete loss of DHT induced SOCE. We demonstrate that this DHT induced Ca2+ influx via Orai1 is important for rapid androgen triggered prostate specific antigen (PSA) release. We furthermore identified alterations of the molecular components of CRAC channels in prostate cancer. Three lines of evidence indicate that prostate cancer cells down-regulate expression of the Orai1 homolog Orai3: First, Orai3 mRNA expression levels are significantly reduced in tumorous tissue when compared to non-tumorous tissue from prostate cancer patients. Second, mRNA expression levels of Orai3 are decreased in prostate cancer cell lines LNCaP and DU145 when compared to hPEC from healthy tissue. Third, the pharmacological profile of CRAC channels in prostate cancer cell lines and hPEC differ and siRNA based knock-down experiments indicate changed Orai3 levels are underlying the altered pharmacological profile. The cancer-specific composition and pharmacology of CRAC channels identifies CRAC channels as putative targets in prostate cancer therapy.
Collapse
|
33
|
Chen L, He X, Zhang Y, Chen X, Lai X, Shao J, Shi Y, Zhou N. Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 2014; 53:2827-39. [PMID: 24724723 DOI: 10.1021/bi500092e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal gland hormone melatonin exerts its regulatory roles in a variety of physiological and pathological responses through two G protein-coupled receptors, melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which have been recognized as promising targets in the treatment of a number of human diseases and disorders. The MT1 receptor was identified nearly 20 years ago; however, the molecular mechanisms by which MT1-mediated signaling affects physiology remain to be further elucidated. In this study, using HEK293 cells stably expressing the human MT1 receptor, melatonin induced a concentration-dependent activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). The melatonin-mediated phosphorylation of ERK1/2 at later time points (≥5 min) was strongly suppressed by pretreatment with pertussis toxin, but only a slight, if any, inhibition of ERK1/2 activation at early time points (≤2 min) was detected. Further experiments demonstrated that the Gβγ subunit, phosphoinositide 3-kinase, and calcium-insensitive protein kinase C were involved in the MT1-mediated activation of ERK1/2 at later time points (≥5 min). Moreover, results derived from cAMP assays combined with a MT1 mutant indicated that the human MT1 receptor could also couple to Gs protein, stimulating intracellular cAMP formation, and that the MT1-induced activation of ERK1/2 at early time points (≤2 min) was mediated by the Gs/cAMP/PKA cascade. Our findings may provide new insights into the pharmacological effects and physiological functions modulated by the MT1-mediated activation of ERK1/2.
Collapse
Affiliation(s)
- Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Maldonado M, Garcia-Moreno H, Calvo J. Melatonin protects mast cells against cytotoxicity mediated by chemical stimuli PMACI: Possible clinical use. J Neuroimmunol 2013; 262:62-5. [DOI: 10.1016/j.jneuroim.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023]
|
35
|
Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci 2013; 14:6981-7015. [PMID: 23535335 PMCID: PMC3645673 DOI: 10.3390/ijms14046981] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/15/2022] Open
Abstract
The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes.
Collapse
|
36
|
Shiu SYW, Leung WY, Tam CW, Liu VWS, Yao KM. Melatonin MT1 receptor-induced transcriptional up-regulation of p27(Kip1) in prostate cancer antiproliferation is mediated via inhibition of constitutively active nuclear factor kappa B (NF-κB): potential implications on prostate cancer chemoprevention and therapy. J Pineal Res 2013; 54:69-79. [PMID: 22856547 DOI: 10.1111/j.1600-079x.2012.01026.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our laboratory has recently demonstrated a melatonin MT1 receptor-mediated antiproliferative signaling mechanism in androgen receptor (AR)-positive prostate epithelial cells which involves up-regulation of p27(Kip1) through dual activation of Gα(s)/protein kinase A (PKA) and Gα(q)/protein kinase C (PKC) in parallel, and down-regulation of activated AR signaling via PKC stimulation. The aim of the present investigation was to identify the transcription factor that mediates melatonin's up-regulatory effect on p27(Kip1) in LNCaP and 22Rv1 prostate cancer cells. Deletion mapping and reporter assays of the p27(Kip1) promoter revealed that the putative melatonin-responsive transcription factor binds to a 116 base-pair region of the promoter sequence, which contains a potential nuclear factor kappa B (NF-κB) binding site. When the NF-κB binding site was abolished by site-directed mutagenesis, the stimulatory effect of melatonin on p27(Kip1) promoter activity was mitigated. Notably, melatonin inhibited the DNA binding of activated NF-κB via MT1 receptor-induced PKA and PKC stimulation. Furthermore, melatonin's up-regulatory effect on p27(Kip1) transcription and consequent cell antiproliferation were abrogated by NF-κB activator but mimicked by NF-κB inhibitor. The results indicate that inhibition of constitutively active NF-κB via melatonin MT1 receptor-induced dual activation of (Gα(s)) PKA and (Gα(q)) PKC can de-repress the p27(Kip1) promoter leading to transcriptional up-regulation of p27(Kip1). MT1 receptor-mediated inhibition of activated NF-κB signaling provides a novel mechanism supporting the use of melatonin in prostate cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Stephen Y W Shiu
- Department of Physiology, The University of Hong Kong, Hong Kong, China Department of Biochemistry, The University of Hong Kong, Hong Kong, China Nursing, School of Science and Technology, Open University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Bähr I, Mühlbauer E, Albrecht E, Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res 2012; 53:390-8. [PMID: 22672634 DOI: 10.1111/j.1600-079x.2012.01009.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melatonin has been shown to modulate glucose metabolism by influencing insulin secretion. Recent investigations have also indicated a regulatory function of melatonin on the pancreatic α-cells. The present in vitro and in vivo studies evaluated whether melatonin mediates its effects via melatonin receptors and which signaling cascade is involved. Incubation experiments using the glucagon-producing mouse pancreatic α-cell line αTC1 clone 9 (αTC1.9) as well as isolated pancreatic islets of rats and mice revealed that melatonin increases glucagon secretion. Preincubation of αTC1.9 cells with the melatonin receptor antagonists luzindole and 4P-PDOT abolished the glucagon-stimulatory effect of melatonin. In addition, glucagon secretion was lower in the pancreatic islets of melatonin receptor knockout mice than in the islets of the wild-type (WT) control animals. Investigations of melatonin receptor knockout mice revealed decreased plasma glucagon concentrations and elevated mRNA expression levels of the hepatic glucagon receptor when compared to WT mice. Furthermore, studies using pertussis toxin, as well as measurements of cAMP concentrations, ruled out the involvement of Gαi- and Gαs-coupled signaling cascades in mediating the glucagon increase induced by melatonin. In contrast, inhibition of phospholipase C in αTC1.9 cells prevented the melatonin-induced effect, indicating the physiological relevance of the Gαq-coupled pathway. Our data point to the involvement of the phosphatidylinositol 3-kinase signaling cascade in mediating melatonin effects in pancreatic α-cells. In conclusion, these findings provide evidence that the glucagon-stimulatory effect of melatonin in pancreatic α-cells is melatonin receptor mediated, thus supporting the concept of melatonin-modulated and diurnal glucagon release.
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Diabetes Mellitus, Type 2/enzymology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation
- Glucagon/blood
- Glucagon/metabolism
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/enzymology
- Glucagon-Secreting Cells/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Melanins/pharmacology
- Mice
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Phosphatidylinositol 3-Kinase/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Tetrahydronaphthalenes/pharmacology
- Tissue Culture Techniques
- Tryptamines/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | |
Collapse
|
38
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
39
|
Kim JH, Jeong SJ, Kim B, Yun SM, Choi DY, Kim SH. Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res 2012; 52:244-52. [PMID: 22050627 DOI: 10.1111/j.1600-079x.2011.00935.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To evaluate melatonin's ability to enhance ovarian cancer cells to cisplatin treatment for ovarian cancer, this study was performed. Melatonin by itself had no significant cytotoxicity against SK-OV-3 cells, while cisplatin suppressed the cell viability in a dose-dependent manner. Combined treatment with cisplatin and melatonin synergistically inhibited the viability of SK-OV-3 cells with the synergism between two drugs (1 > combination index). In contrast, melatonin revealed the protective effect against cisplatin-induced cytotoxicity in OSEN normal ovarian epithelial cells. Cotreatment with cisplatin and melatonin increased the sub-G1 DNA contents and TdT-mediated dUTP nick end-labeling (TUNEL)-positive cells compared with cisplatin control in SK-OV-3 cells, suggesting that melatonin augments cisplatin-induced apoptosis. Consistently, combined treatment of cisplatin and melatonin increased the cleavage of caspase-3 and poly-(ADP-ribose) polymerase (PARP). Importantly, melatonin synergistically inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) along with dephosphorylation of 90-kDa ribosomal S6 kinase (p90RSK) and heat shock protein 27 (HSP27) induced by cisplatin. Furthermore, melatonin remarkably blocked the expression and colocalization of p90RSK and HSP27 by combination treatment with cisplatin. Taken together, our findings demonstrate that melatonin enhances cisplatin-induced apoptosis via the inactivation of ERK/p90RSK/HSP27 cascade in SK-OV-3 cells as a potent synergist to cisplatin treatment.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:577-97. [PMID: 22016420 DOI: 10.1093/jxb/err256] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Renzi A, Glaser S, DeMorrow S, Mancinelli R, Meng F, Franchitto A, Venter J, White M, Francis H, Han Y, Alvaro D, Gaudio E, Carpino G, Ueno Y, Onori P, Alpini G. Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors. Am J Physiol Gastrointest Liver Physiol 2011; 301:G634-43. [PMID: 21757639 PMCID: PMC3191552 DOI: 10.1152/ajpgi.00206.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In bile duct-ligated (BDL) rats, large cholangiocytes proliferate by activation of cAMP-dependent signaling. Melatonin, which is secreted from pineal gland as well as extrapineal tissues, regulates cell mitosis by interacting with melatonin receptors (MT1 and MT2) modulating cAMP and clock genes. In the liver, melatonin suppresses oxidative damage and ameliorates fibrosis. No information exists regarding the role of melatonin in the regulation of biliary hyperplasia. We evaluated the mechanisms of action by which melatonin regulates the growth of cholangiocytes. In normal and BDL rats, we determined the hepatic distribution of MT1, MT2, and the clock genes, CLOCK, BMAL1, CRY1, and PER1. Normal and BDL (immediately after BDL) rats were treated in vivo with melatonin before evaluating 1) serum levels of melatonin, bilirubin, and transaminases; 2) intrahepatic bile duct mass (IBDM) in liver sections; and 3) the expression of MT1 and MT2, clock genes, and PKA phosphorylation. In vitro, large cholangiocytes were stimulated with melatonin in the absence/presence of luzindole (MT1/MT2 antagonist) and 4-phenyl-2-propionamidotetralin (MT2 antagonist) before evaluating cell proliferation, cAMP levels, and PKA phosphorylation. Cholangiocytes express MT1 and MT2, CLOCK, BMAL1, CRY1, and PER1 that were all upregulated following BDL. Administration of melatonin to BDL rats decreased IBDM, serum bilirubin and transaminases levels, the expression of all clock genes, cAMP levels, and PKA phosphorylation in cholangiocytes. In vitro, melatonin decreased the proliferation, cAMP levels, and PKA phosphorylation, decreases that were blocked by luzindole. Melatonin may be important in the management of biliary hyperplasia in human cholangiopathies.
Collapse
Affiliation(s)
| | - Shannon Glaser
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center,
| | - Sharon DeMorrow
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center,
| | - Romina Mancinelli
- Departments of 5Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, and
| | - Fanyin Meng
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center, ,4Division of Research and Education, Scott & White and Texas A&M Health Science Center College of Medicine, Temple, Texas;
| | - Antonio Franchitto
- Departments of 5Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, and
| | | | | | - Heather Francis
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center, ,4Division of Research and Education, Scott & White and Texas A&M Health Science Center College of Medicine, Temple, Texas;
| | | | - Domenico Alvaro
- 6Science and Medical-Surgical Biotechnology, Fondazione Eleonora Lorillard Spencer Cenci, Polo Pontino, University of Rome “Sapienza”, Rome;
| | - Eugenio Gaudio
- Departments of 5Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, and
| | - Guido Carpino
- 7Department of Health Science, University of Rome “Foro Italico”, Rome;
| | - Yoshiyuki Ueno
- 8Rohoku University Graduate School of Medicine Sendai, Japan;
| | - Paolo Onori
- 9Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Gianfranco Alpini
- 1Division of Research, Central Texas Veterans Health Care System, ,2Department of Medicine, ,3Scott & White Digestive Disease Research Center,
| |
Collapse
|
42
|
Tam CW, Shiu SYW. Functional interplay between melatonin receptor-mediated antiproliferative signaling and androgen receptor signaling in human prostate epithelial cells: potential implications for therapeutic strategies against prostate cancer. J Pineal Res 2011; 51:297-312. [PMID: 21605164 DOI: 10.1111/j.1600-079x.2011.00890.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, a novel melatonin MT(1) receptor-mediated antiproliferative signaling mechanism involving transcriptional up-regulation of p27(Kip1) due to paralleled stimulation of protein kinase A (PKA) and protein kinase C (PKC), as a result of respective dual activation of upstream Gα(s) and Gα(q) , has been reported in 22Rv1 and RWPE-1 human prostate epithelial cells. Here, we demonstrate that melatonin inhibits the proliferation of LNCaP and VCaP prostate cancer cells via activation of the same MT(1) receptor-mediated antiproliferative signaling pathway. Knockdown of the expression of wild-type androgen receptor (AR) and/or structural/functional AR variants in LNCaP, VCaP, 22Rv1, and RWPE-1 cells resulted in abrogation of melatonin receptor-mediated antiproliferation, indicating that the antiproliferative signaling pathway MT(1) /(Gα(s) ) PKA + (Gα(q) ) PKC/p27(Kip1) activated by melatonin in human prostate epithelial cells is AR dependent. Furthermore, melatonin was shown to decrease androgen/AR-mediated transactivation of the prostate-specific antigen promoter in the prostate epithelial cell lines. Together, our data indicate the presence of reciprocal functional interactions between MT(1) receptor and AR signaling in malignant and nontumorigenic prostate epithelial cells. Notably, the dual actions of the MT(1) receptor-mediated antiproliferative signaling, leading to down-regulation of activated AR signaling and up-regulation of p27(Kip1) , constitute the mechanistic basis for the potential use of melatonin in chemoprevention of prostate cancer, as well as in a novel therapeutic strategy, comprising a combination of melatonin repletion and androgen depletion, for the treatment of advanced or relapsed disease.
Collapse
Affiliation(s)
- Chun W Tam
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
43
|
Casado-Zapico S, Martín V, García-Santos G, Rodríguez-Blanco J, Sánchez-Sánchez AM, Luño E, Suárez C, García-Pedrero JM, Menendez ST, Antolín I, Rodriguez C. Regulation of the expression of death receptors and their ligands by melatonin in haematological cancer cell lines and in leukaemia cells from patients. J Pineal Res 2011; 50:345-55. [PMID: 21392090 DOI: 10.1111/j.1600-079x.2010.00850.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Incorporation of new therapeutic agents remains as a major challenge for treatment of patients with malignant haematological disorders. Melatonin is an indolamine without relevant side effects. It has been shown previously to exhibit synergism with several chemotherapeutic drugs in Ewing sarcoma cells by potentiating the extrinsic pathway of apoptosis. It also sensitizes human glioma cells against TRAIL by increasing DR5 expression. Here, we report the induction of cell death by melatonin in several human malignant haematological cell lines through the activation of the extrinsic pathway of apoptosis. Such activation was mediated by the increase in the expression of the death receptors Fas, DR4 and DR5 and their ligands Fas L and TRAIL, with a remarkable rise in the expression of Fas and Fas L. The cytotoxic effect and the increase in Fas and Fas L were dependent on Akt activation. Results were corroborated in blasts from bone marrow and peripheral blood of acute myeloid leukaemia patients, where melatonin induced cell death and increased both Fas and Fas L expressions. We conclude that melatonin may be considered as a potential antileukaemic agent and its therapeutic use, either alone or in combination with current chemotherapeutic drugs, should be taken into consideration for further research.
Collapse
Affiliation(s)
- Sara Casado-Zapico
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|