1
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Dias BKM, Mohanty A, Garcia CRS. Melatonin as a Circadian Marker for Plasmodium Rhythms. Int J Mol Sci 2024; 25:7815. [PMID: 39063057 PMCID: PMC11277106 DOI: 10.3390/ijms25147815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite's asexual cycle. Studies indicate a species-specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Célia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (B.K.M.D.); (A.M.)
| |
Collapse
|
3
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
5
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
6
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
7
|
Krombauer GC, Guedes KDS, Banfi FF, Nunes RR, Fonseca ALD, Siqueira EPD, Bellei JCB, Scopel KKG, Varotti FDP, Sanchez BAM. In vitro and in silico assessment of new beta amino ketones with antiplasmodial activity. Rev Soc Bras Med Trop 2022; 55:e0590. [PMID: 36169491 PMCID: PMC9549944 DOI: 10.1590/0037-8682-0590-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Based on the current need for new drugs against malaria, our study evaluated eight beta amino ketones in silico and in vitro for potential antimalarial activity. METHODS Using the Brazilian Malaria Molecular Targets (BraMMT) and OCTOPUS® software programs, the pattern of interactions of beta-amino ketones was described against different proteins of P. falciparum and screened to evaluate their physicochemical properties. The in vitro antiplasmodial activities of the compounds were evaluated using a SYBR Green-based assay. In parallel, in vitro cytotoxic data were obtained using the MTT assay. RESULTS Among the eight compounds, compound 1 was the most active and selective against P. falciparum (IC50 = 0.98 µM; SI > 60). Six targets were identified in BraMMT that interact with compounds exhibiting a stronger binding energy than the crystallographic ligand: P. falciparum triophosphate phosphoglycolate complex (1LYX), P. falciparum reductase (2OK8), PfPK7 (2PML), P. falciparum glutaredoxin (4N0Z), PfATP6, and PfHT. CONCLUSIONS The physicochemical properties of compound 1 were compatible with the set of criteria established by the Lipinski rule and demonstrated its potential as a drug prototype for antiplasmodial activity.
Collapse
Affiliation(s)
- Gabriela Camila Krombauer
- Universidade Federal de Mato Grosso, Núcleo de Pesquisa e Apoio Didático em Saúde, Laboratório de Imunopatologia e Doenças Tropicais, Sinop, MT, Brasil
| | - Karla de Sena Guedes
- Universidade Federal de Mato Grosso, Núcleo de Pesquisa e Apoio Didático em Saúde, Laboratório de Imunopatologia e Doenças Tropicais, Sinop, MT, Brasil
| | - Felipe Fingir Banfi
- Universidade Federal de Mato Grosso, Núcleo de Pesquisa e Apoio Didático em Saúde, Laboratório de Imunopatologia e Doenças Tropicais, Sinop, MT, Brasil
| | - Renata Rachide Nunes
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Núcleo de Pesquisa em Química Biológica (NQBio), Divinópolis, MG, Brasil
| | - Amanda Luisa da Fonseca
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Núcleo de Pesquisa em Química Biológica (NQBio), Divinópolis, MG, Brasil
| | | | - Jéssica Côrrea Bezerra Bellei
- Universidade Federal de Juiz de Fora, Centro de Pesquisas em Parasitologia, Departamento de Parasitologia, Microbiologia e Imunologia, Juiz de Fora, MG, Brasil
| | - Kézia Katiani Gorza Scopel
- Universidade Federal de Juiz de Fora, Centro de Pesquisas em Parasitologia, Departamento de Parasitologia, Microbiologia e Imunologia, Juiz de Fora, MG, Brasil
| | - Fernando de Pilla Varotti
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Núcleo de Pesquisa em Química Biológica (NQBio), Divinópolis, MG, Brasil
| | - Bruno Antônio Marinho Sanchez
- Universidade Federal de Mato Grosso, Núcleo de Pesquisa e Apoio Didático em Saúde, Laboratório de Imunopatologia e Doenças Tropicais, Sinop, MT, Brasil
| |
Collapse
|
8
|
Mallaupoma LRC, Dias BKDM, Singh MK, Honorio RI, Nakabashi M, Kisukuri CDM, Paixão MW, Garcia CRS. Decoding the Role of Melatonin Structure on Plasmodium falciparum Human Malaria Parasites Synchronization Using 2-Sulfenylindoles Derivatives. Biomolecules 2022; 12:biom12050638. [PMID: 35625565 PMCID: PMC9138683 DOI: 10.3390/biom12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Melatonin acts to synchronize the parasite’s intraerythrocytic cycle by triggering the phospholipase C-inositol 1,4,5-trisphosphate (PLC-IP3) signaling cascade. Compounds with an indole scaffold impair in vitro proliferation of blood-stage malaria parasites, indicating that this class of compounds is potentially emerging antiplasmodial drugs. Therefore, we aimed to study the role of the alkyl and aryl thiol moieties of 14 synthetic indole compounds against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum. Four compounds (3, 26, 18, 21) inhibited the growth of P. falciparum (3D7) by 50% at concentrations below 20 µM. A set of 2-sulfenylindoles also showed activity against Dd2 parasites. Our data suggest that Dd2 parasites are more susceptible to compounds 20 and 28 than 3D7 parasites. These data show that 2-sulfenylindoles are promising antimalarials against chloroquine-resistant parasite strains. We also evaluated the effects of the 14 compounds on the parasitemia of the 3D7 strain and their ability to interfere with the effect of 100 nM melatonin on the parasitemia of the 3D7 strain. Our results showed that compounds 3, 7, 8, 10, 14, 16, 17, and 20 slightly increased the effect of melatonin by increasing parasitemia by 8–20% compared with that of melatonin-only-treated 3D7 parasites. Moreover, we found that melatonin modulates the expression of kinase-related signaling components giving additional evidence to investigate inhibitors that can block melatonin signaling.
Collapse
Affiliation(s)
- Lenna Rosanie Cordero Mallaupoma
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil;
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Bárbara Karina de Menezes Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Maneesh Kumar Singh
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Rute Isabel Honorio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Myna Nakabashi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Camila de Menezes Kisukuri
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Márcio Weber Paixão
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Celia R. S. Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Correspondence:
| |
Collapse
|
9
|
Gupta Y, Goicoechea S, Pearce CM, Mathur R, Romero JG, Kwofie SK, Weyenberg MC, Daravath B, Sharma N, Poonam, Akala HM, Kanzok SM, Durvasula R, Rathi B, Kempaiah P. The emerging paradigm of calcium homeostasis as a new therapeutic target for protozoan parasites. Med Res Rev 2022; 42:56-82. [PMID: 33851452 DOI: 10.1002/med.21804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/10/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Steven Goicoechea
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine M Pearce
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Raman Mathur
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Jesus G Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Matthew C Weyenberg
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Bharathi Daravath
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Neha Sharma
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Poonam
- Department of Chemistry, Miranda House University Enclave, University of Delhi, Delhi, India
| | | | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | | |
Collapse
|
10
|
Borges-Pereira L, Dias BKM, Singh MK, Garcia CRS. Malaria parasites and circadian rhythm: New insights into an old puzzle. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100017. [PMID: 34841309 PMCID: PMC8610328 DOI: 10.1016/j.crmicr.2020.100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/04/2022] Open
Abstract
Discuss molecular components for the coordination of circadian rhythm of malaria parasites inside the vertebrate host. Synthetic indole compounds show antimalarial activity in vitro against P.falciparum 3D7. Plasmodium falciparum synchronizes in cell culture upon melatonin treatment.
Collapse
Affiliation(s)
- Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Bárbara K M Dias
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil.,Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Maneesh Kumar Singh
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Celia R S Garcia
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Pereira PHS, Garcia CRS. Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum-Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit. Int J Mol Sci 2021; 22:12381. [PMID: 34830263 PMCID: PMC8620569 DOI: 10.3390/ijms222212381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells' external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K+ shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials.
Collapse
Affiliation(s)
| | - Celia R. S. Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo—USP, São Paulo 05508-900, Brazil;
| |
Collapse
|
12
|
Dos Santos BM, Pereira PH, Garcia CR. Molecular basis of synchronous replication of malaria parasites in the blood stage. Curr Opin Microbiol 2021; 63:210-215. [PMID: 34428626 DOI: 10.1016/j.mib.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The search for host factors that leads to malaria parasite synchronization has been the focus of several laboratories. The host hormone melatonin synchronizes Plasmodium falciparum in culture by increasing the number of mature parasite stages through a PLC-IP3 activation. Melatonin signaling is linked to crosstalk between Ca2+-cAMP that results in PKA activation. Two other kinases, PfPK7 and PfeIK1, and the nuclear protein PfMORC that lacks melatonin sensitivity in the inducible knock-down parasites are also identified as part of the hormone-signal transduction pathways. Melatonin also modulates P. falciparum mitochondrial fission genes FIS1, DYN1, and DYN2 in a stage-specific manner. How these multiple molecular mechanisms are orchestrated to lead to parasite synchronization is a fascinating and opened biological question.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pedro Hs Pereira
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Célia Rs Garcia
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
13
|
Pereira PHS, Borges-Pereira L, Garcia CRS. Evidences of G Coupled-Protein Receptor (GPCR) Signaling in the human Malaria Parasite Plasmodium falciparum for Sensing its Microenvironment and the Role of Purinergic Signaling in Malaria Parasites. Curr Top Med Chem 2021; 21:171-180. [PMID: 32851963 DOI: 10.2174/1568026620666200826122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors. Among the purinergic receptors, the P2Y family is of great importance because it comprises of G proteincoupled receptors (GPCRs). GPCRs are widespread among different organisms. These receptors work in the cells' ability to sense the external environment, which involves: to sense a dangerous situation or detect a pheromone through smell; the taste of food that should not be eaten; response to hormones that alter metabolism according to the body's need; or even transform light into an electrical stimulus to generate vision. Advances in understanding the mechanism of action of GPCRs shed light on increasingly promising treatments for diseases that have hitherto remained incurable, or the possibility of abolishing side effects from therapies widely used today.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tayla Williamson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
15
|
A nuclear protein, PfMORC confers melatonin dependent synchrony of the human malaria parasite P. falciparum in the asexual stage. Sci Rep 2021; 11:2057. [PMID: 33479315 PMCID: PMC7820235 DOI: 10.1038/s41598-021-81235-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The host hormone melatonin is known to modulate the asexual cell-cycle of the human malaria parasite Plasmodium falciparum and the kinase PfPK7 is fundamental in the downstream signaling pathways. The nuclear protein PfMORC displays a histidine kinase domain and is involved in parasite cell cycle control. By using a real-time assay, we show a 24 h (h) rhythmic expression of PfMORC at the parasite asexual cycle and the expression is dramatically changed when parasites were treated with 100 nM melatonin for 17 h. Moreover, PfMORC expression was severely affected in PfPK7 knockout (PfPK7−) parasites following melatonin treatment. Parasites expressing 3D7morc-GFP shows nuclear localization of the protein during the asexual stage of parasite development. Although the PfMORC knockdown had no significant impact on the parasite proliferation in vitro it significantly changed the ratio of the different asexual intraerythrocytic stages of the parasites upon the addition of melatonin. Our data reveal that in addition to the upstream melatonin signaling pathways such as IP3 generation, calcium, and cAMP rise, a nuclear protein, PfMORC is essential for the hormone response in parasite synchronization.
Collapse
|
16
|
Pereira PHS, Garcia CRS. Melatonin action in Plasmodium infection: Searching for molecules that modulate the asexual cycle as a strategy to impair the parasite cycle. J Pineal Res 2021; 70:e12700. [PMID: 33025644 PMCID: PMC7757246 DOI: 10.1111/jpi.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Half of the world's population lives in countries at risk of malaria infection, which results in approximately 450,000 deaths annually. Malaria parasites infect erythrocytes in a coordinated manner, with cycle durations in multiples of 24 hours, which reflects a behavior consistent with the host's circadian cycle. Interference in cycle coordination can help the immune system to naturally fight infection. Consequently, there is a search for new drugs that interfere with the cycle duration for combined treatment with conventional antimalarials. Melatonin appears to be a key host hormone responsible for regulating circadian behavior in the parasite cycle. In addition to host factors, there are still unknown factors intrinsic to the parasite that control the cycle duration. In this review, we present a series of reports of indole compounds and melatonin derivatives with antimalarial activity that were tested on several species of Plasmodium to evaluate the cytotoxicity to parasites and human cells, in addition to the ability to interfere with the development of the erythrocytic cycle. Most of the reported compounds had an IC50 value in the low micromolar range, without any toxicity to human cells. Triptosil, an indole derivative of melatonin, was able to inhibit the effect of melatonin in vitro without causing changes to the parasitemia. The wide variety of tested compounds indicates that it is possible to develop a compound capable of safely eliminating parasites from the host and interfering with the life cycle, which is promising for the development of new combined therapies against malaria.
Collapse
Affiliation(s)
- Pedro H. S. Pereira
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
17
|
Dias BK, Nakabashi M, Alves MRR, Portella DP, dos Santos BM, Costa da Silva Almeida F, Ribeiro RY, Schuck DC, Jordão AK, Garcia CR. The Plasmodium falciparum eIK1 kinase (PfeIK1) is central for melatonin synchronization in the human malaria parasite. Melatotosil blocks melatonin action on parasite cell cycle. J Pineal Res 2020; 69:e12685. [PMID: 32702775 PMCID: PMC7539967 DOI: 10.1111/jpi.12685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Melatonin and its indoles derivatives are central in the synchronization of malaria parasites. In this research, we discovered that melatonin is unable to increase the parasitemia in the human malaria Plasmodium falciparum that lacks the kinase PfeIK1. The PfeIK1 knockout strain is a valuable tool in the screening of indol-related compound that blocks the melatonin effect in wild-type (WT) parasite development. The assays were performed by using flow cytometry with simultaneous labeling for mitochondria viability with MitoTracker Deep Red and nucleus staining with SYBR Green. We found that Melatotosil leads to an increase in parasitemia in P. falciparum and blocks melatonin effect in the WT parasite. Using microscopy imaging system, we found that Melatotosil at 500 nM is able to induce cytosolic calcium rise in transgenic PfGCaMP3 parasites. On the contrary, the compound Triptiofen blocks P. falciparum cell cycle with IC50 9.76 µM ± 0.6, inhibits melatonin action, and does not lead to a cytosolic calcium rise in PfGCaMP3 parasites. We also found that the synthetic indol-related compounds arrested parasite cycle for PfeIK1 knockout and (WT) P. falciparum (3D7) in 72 hours culture assays with the IC50 values slighting lower for the WT strain. We concluded that the kinase PfeIK1 is central for melatonin downstream signaling pathways involved in parasite cell cycle progression. More importantly, the indol-related compounds block its cycle as an upstream essential mechanism for parasite survival. Our data clearly show that this class of compounds emerge as an alternative for the problem of resistance with the classical antimalarials.
Collapse
Affiliation(s)
- Bárbara K.M. Dias
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| | - Myna Nakabashi
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| | | | | | | | | | - Ramira Yuri Ribeiro
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
| | - Desiree C. Schuck
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
| | - Alessandro Kappel Jordão
- Departamento de FarmáciaFaculdade de FarmáciaUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Unidade Universitária de FarmáciaCentro Universitário Estadual da Zona OesteRio de JaneiroRJBrazil
| | - Celia R.S. Garcia
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| |
Collapse
|
18
|
Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum. Biomolecules 2020; 10:biom10091243. [PMID: 32867164 PMCID: PMC7563138 DOI: 10.3390/biom10091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology.
Collapse
|
19
|
Scarpelli PH, Tessarin‐Almeida G, Viçoso KL, Lima WR, Borges‐Pereira L, Meissner KA, Wrenger C, Rafaello A, Rizzuto R, Pozzan T, Garcia CRS. Melatonin activates FIS1, DYN1, and DYN2 Plasmodium falciparum related-genes for mitochondria fission: Mitoemerald-GFP as a tool to visualize mitochondria structure. J Pineal Res 2019; 66:e12484. [PMID: 29480948 PMCID: PMC6585791 DOI: 10.1111/jpi.12484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.
Collapse
Affiliation(s)
- Pedro H. Scarpelli
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | | | - Kênia Lopes Viçoso
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Wania Rezende Lima
- Instituto de Ciências Exatas e Naturais‐MedicinaUniversidade Federal de Mato Grosso‐Campus RondonópolisMato GrossoBrazil
| | - Lucas Borges‐Pereira
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Kamila Anna Meissner
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Carsten Wrenger
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Anna Rafaello
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | | | - Tullio Pozzan
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | - Celia R. S. Garcia
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
- Departamento de Fisiologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
20
|
Duroux R, Rami M, Landagaray E, Ettaoussi M, Caignard DH, Delagrange P, Melnyk P, Yous S. Synthesis and biological evaluation of new naphtho- and quinolinocyclopentane derivatives as potent melatoninergic (MT 1 /MT 2 ) and serotoninergic (5-HT 2C ) dual ligands. Eur J Med Chem 2017; 141:552-566. [DOI: 10.1016/j.ejmech.2017.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/02/2023]
|
21
|
The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2017; 97:948-957. [PMID: 29136773 DOI: 10.1016/j.biopha.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a circadian hormone produced in vertebrates by the pineal gland and other organs. Melatonin is believed to influence immune cells leading to modulation of the proliferative response of stimulated lymphocytes as well as cytokine production. Due to the antioxidant and immunomodulatory effects of melatonin, it is suggested that this molecule could be a therapeutic alternative agent to fight bacterial, viral, and parasitic infections by a variety of mechanisms. Herein, we review the effects of melatonin on the cell biology of protozoan parasites and host's immune response. In toxoplasmosis, African trypanosomiasis and Chagas' disease, melatonin enhances host's immune response against the parasite via regulating the secretion of inflammatory mediators. In amoebiasis, melatonin reduces the amoebic lesions as well as increasing the leukophagocytosis and the number of dead amoebae. In giardiasis, serum melatonin levels are elevated in these patients; this suggests a positive correlation between the level of melatonin and phagocytic activity in the G. duodenalis infected patients, possibly related to melatonin's immunomodulatory effect. In leishmaniasis, melatonin arrests parasite replication accompanied by releasing mitochondrial Ca2+ into the cytosol, increasing the level of mitochondrial nitrites as well as reducing superoxide dismutase (SOD) activity. In malaria, melatonin synchronizes the Plasmodium cell cycle via modulating cAMP-PKA and IP3-Ca2+ pathways. Thus, simultaneous administration of melatonin agonists or giving pharmacological doses of melatonin may be considered a novel approach for treatment of malarial infection.
Collapse
|
22
|
Devender N, Gunjan S, Tripathi R, Tripathi RP. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. Eur J Med Chem 2017; 131:171-184. [PMID: 28319782 DOI: 10.1016/j.ejmech.2017.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Due to the recent reports of growing parasite resistance to artemisinins and other antimalarial drugs, development of new antimalarial chemotypes is an urgent priority. Here in, we report a novel series of adamantyl/cycloheptyl indoleamide derivatives bearing sulfonamide and triazole pharmacophores adopting different chemical modifications and evaluated them for antiplasmodial activity in vitro. Among all the indoleamides, compounds 22, 24, 26 and 30 with sulfonamide pharmacophore showed promising activity with IC50 of 1.87, 1.93, 2.00, 2.17 μM against CQ sensitive Pf3D7 strain and 1.69, 2.12, 1.60, 2.19 μM against CQ resistant PfK1 strain, respectively.
Collapse
Affiliation(s)
- N Devender
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Gunjan
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Renu Tripathi
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
23
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Sanchez-Barcelo EJ, Mediavilla MD, Vriend J, Reiter RJ. Constitutive photomorphogenesis protein 1 (COP1) and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin. J Pineal Res 2016; 61:41-51. [PMID: 27121162 DOI: 10.1111/jpi.12340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
The ubiquitin proteasome system has been proposed as a possible mechanism involved in the multiple actions of melatonin. COP1 (constitutive photomorphogenesis protein 1), a RING finger-type ubiquitin E3 ligase formerly identified in Arabidopsis, is a central switch for the transition from plant growth underground in darkness (etiolation) to growth under light exposure (photomorphogenesis). In darkness, COP1 binds to photomorphogenic transcription factors driving its degradation via the 26S proteasome; blue light, detected by cryptochromes, and red and far-red light detected by phytochromes, negatively regulate COP1. Homologues of plant COP1 containing all the structural features present in Arabidopsis as well as E3 ubiquitin ligase activity have been identified in mice and humans. Substrates for mammalian (m) COP1 include p53, AP-1 and c-Jun, p27(Kip1) , ETV1, MVP, 14-3-3σ, C/EBPα, MTA1, PEA3, ACC, TORC2 and FOXO1. This mCOP1 target suggests functions related to tumorigenesis, gluconeogenesis, and lipid metabolism. The role of mCOP1 in tumorigenesis (either as a tumor promoter or tumor suppressor), as well as in glucose metabolism (inhibition of gluconeogenesis) and lipid metabolism (inhibition of fatty acid synthesis), has been previously demonstrated. COP1, along with numerous other ubiquitin ligases, is regulated by the COP9 signalosome; this protein complex is associated with the oxidative stress sensor Keap1 and the deubiquitinase USP15. The objective of this review was to provide new information on the possible role of COP1 and COP9 as melatonin targets. The hypothesis is based on common functional aspects of melatonin and COP1 and COP9, including their dependence on light, regulation of the metabolism, and their control of tumor growth.
Collapse
Affiliation(s)
| | - Maria D Mediavilla
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
25
|
Koyama FC, Azevedo MF, Budu A, Chakrabarti D, Garcia CRS. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum. Int J Mol Sci 2014; 15:22320-30. [PMID: 25479077 PMCID: PMC4284710 DOI: 10.3390/ijms151222320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/11/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022] Open
Abstract
There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.
Collapse
Affiliation(s)
- Fernanda C Koyama
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São, São Paulo 05508-900, Brazil.
| | - Mauro F Azevedo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Alexandre Budu
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA.
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| |
Collapse
|
26
|
Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur J Med Chem 2014; 78:375-82. [DOI: 10.1016/j.ejmech.2014.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 11/21/2022]
|
27
|
Koyama FC, Carvalho TLG, Alves E, da Silva HB, de Azevedo MF, Hemerly AS, Garcia CRS. The Structurally Related Auxin and Melatonin Tryptophan-Derivatives and their Roles in Arabidopsis thaliana
and in the Human Malaria Parasite Plasmodium falciparum. J Eukaryot Microbiol 2013; 60:646-51. [DOI: 10.1111/jeu.12080] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda C. Koyama
- Departamento de Parasitologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; 05508-000 São Paulo Brazil
- Departamento de Fisiologia; Instituto de Biociências; Universidade de São Paulo; 05508-090 São Paulo Brazil
| | - Thais L. G. Carvalho
- Laboratório de Biologia Molecular de Plantas; Instituto de Bioquímica Médica; Universidade Federal do Rio de Janeiro; 21941-590 Rio de Janeiro Brazil
| | - Eduardo Alves
- Departamento de Parasitologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; 05508-000 São Paulo Brazil
- Departamento de Fisiologia; Instituto de Biociências; Universidade de São Paulo; 05508-090 São Paulo Brazil
| | - Henrique B. da Silva
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; 05508-900 São Paulo Brazil
| | - Mauro F. de Azevedo
- Centre for Immunology; Macfarlane Burnet Institute of Medical Research and Public Health; Melbourne Victoria 3004 Australia
| | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas; Instituto de Bioquímica Médica; Universidade Federal do Rio de Janeiro; 21941-590 Rio de Janeiro Brazil
| | - Célia R. S. Garcia
- Departamento de Fisiologia; Instituto de Biociências; Universidade de São Paulo; 05508-090 São Paulo Brazil
| |
Collapse
|
28
|
Lima WR, Holder AA, Garcia CRS. Melatonin signaling and its modulation of PfNF-YB transcription factor expression in Plasmodium falciparum. Int J Mol Sci 2013; 14:13704-18. [PMID: 23839089 PMCID: PMC3742212 DOI: 10.3390/ijms140713704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022] Open
Abstract
Malaria is one of the most severe tropical infectious diseases. More than 220 million people around the world have a clinical malaria infection and about one million die because of Plasmodium annually. This parasitic pathogen replicates efficiently in its human host making it difficult to eradicate. It is transmitted by mosquito vectors and so far mosquito control programs have not effectively eliminated this transmission. Because of malaria's enormous health and economic impact and the need to develop new control and eventual elimination strategies, a big research effort has been made to better understand the biology of this parasite and its interactions with its vertebrate host. Determination of the genome sequence and organization, the elucidation of the role of key proteins, and cell signaling studies have helped to develop an understanding of the molecular mechanisms that provide the parasite's versatility. The parasite can sense its environment and adapt to benefit its survival, indeed this is essential for it to complete its life cycle. For many years we have studied how the Plasmodium parasite is able to sense melatonin. In this review we discuss the melatonin signaling pathway and its role in the control of Plasmodium replication and development.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508900, Brazil; E-Mail:
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; E-Mail:
| | - Célia R. S. Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508900, Brazil; E-Mail:
| |
Collapse
|
29
|
Lima WR, Moraes M, Alves E, Azevedo MF, Passos DO, Garcia CRS. The PfNF-YB transcription factor is a downstream target of melatonin and cAMP signalling in the human malaria parasite Plasmodium falciparum. J Pineal Res 2013; 54:145-53. [PMID: 22804732 DOI: 10.1111/j.1600-079x.2012.01021.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for the majority of deaths worldwide. The mechanism of cell cycle control within intra-erythrocytic stages has been examined as a potential means of a promising way to identifying how to stop parasite development in red blood cells. Our group determined that melatonin increases parasitemia in P. falciparum and P. chabaudi through a complex signalling cascade. In vertebrates, melatonin controls the expression of transcription factors, leading us to postulate rather that the indoleamine would affect PfNF-YB expression in human malaria parasites. We show here that PfNF-YB transcription factor is highly expressed and colocalized in the nucleus in mature parasites during intra-erythrocytic stages, thus suggesting an important role in cell division. Moreover, we demonstrate for the first time that melatonin and cAMP modulate the PfNF-YB transcription factor expression in P. falciparum at erythrocytic stages. In addition, PfNF-YB is found to be more ubiquitinated in the presence of melatonin. Finally, the proteasome inhibitor bortezomib is able to modulate PfNF-YB expression as well. Taken together, our dada reinforce the role played by melatonin in the cell cycle control of P. falciparum and point this indolamine as a target to develop new antimalarial drugs.
Collapse
Affiliation(s)
- Wânia R Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.
Collapse
|
31
|
Generation of second messengers in Plasmodium. Microbes Infect 2012; 14:787-95. [PMID: 22584103 DOI: 10.1016/j.micinf.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/05/2023]
Abstract
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway.
Collapse
|