1
|
Stridh M, Dahlstrand U, Naumovska M, Engelsberg K, Gesslein B, Sheikh R, Merdasa A, Malmsjö M. Functional and molecular 3D mapping of angiosarcoma tumor using non-invasive laser speckle, hyperspectral, and photoacoustic imaging. Orbit 2024; 43:453-463. [PMID: 38591750 DOI: 10.1080/01676830.2024.2331718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE The gold standard for skin cancer diagnosis is surgical excisional biopsy and histopathological examination. Several non-invasive diagnostic techniques exist, although they have not yet translated into clinical use. This is a proof-of-concept study to assess the possibility of imaging an angiosarcoma in the periocular area. METHODS We use laser speckle, hyperspectral, and photoacoustic imaging to monitor blood perfusion and oxygen saturation, as well as the molecular composition of the tissue. The information obtained from each imaging modality was combined in order to yield a more comprehensive picture of the function, as well as molecular composition of a rapidly growing cutaneous angiosarcoma in the periocular area. RESULTS We found an increase in perfusion coupled with a reduction in oxygen saturation in the angiosarcoma. We could also extract the molecular composition of the angiosarcoma at a depth, depicting both the oxygen saturation and highlighting the presence of connective tissue via collagen. CONCLUSIONS We demonstrate the different physiological parameters that can be obtained with the different techniques and how these can be combined to provide detailed 3D maps of the functional and molecular properties of tumors useful in preoperative assessment.
Collapse
Affiliation(s)
- Magne Stridh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Magdalena Naumovska
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Karl Engelsberg
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Liu H, Jiang H, Shan Q. Reflectance confocal microscopy versus dermoscopy for the diagnosis of cutaneous melanoma: a head-to-head comparative meta-analysis. Melanoma Res 2024; 34:355-365. [PMID: 38847651 DOI: 10.1097/cmr.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This meta-analysis aimed to evaluate the comparative diagnostic performance of reflectance confocal microscopy (RCM) and dermoscopy in detecting cutaneous melanoma patients. An extensive search was conducted in the PubMed and Embase databases to identify available publications up to December 2023. Studies were included if they evaluated the diagnostic performance of RCM and dermoscopy in patients with cutaneous melanoma. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Performance Studies (QUADAS-2) tool. A total of 14 articles involving 2013 patients were included in the meta-analysis. The overall sensitivity of RCM was 0.94 [95% confidence interval (CI), 0.87-0.98], while the overall sensitivity of dermoscopy was 0.84 (95% CI, 0.71-0.95). These results suggested that RCM has a similar level of sensitivity compared with dermoscopy ( P = 0.15). In contrast, the overall specificity of RCM was 0.76 (95% CI, 0.67-0.85), while the overall specificity of dermoscopy was 0.47 (95% CI, 0.31-0.63). The results indicated that RCM appears to have a higher specificity in comparison to dermoscopy ( P < 0.01). Our meta-analysis indicates that RCM demonstrates superior specificity and similar sensitivity to dermoscopy in detecting cutaneous melanoma patients. The high heterogeneity, however, may impact the evidence of the current study, further larger sample prospective research is required to confirm these findings.
Collapse
Affiliation(s)
- Huasheng Liu
- Departments of Burn Plastic and Cosmetic Surgery
| | - Hong Jiang
- Departments of Burn Plastic and Cosmetic Surgery
| | - Qianqian Shan
- Gynecology and Obstetric, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
3
|
Semerci ZM, Toru HS, Çobankent Aytekin E, Tercanlı H, Chiorean DM, Albayrak Y, Cotoi OS. The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach. Diagnostics (Basel) 2024; 14:1477. [PMID: 39061614 PMCID: PMC11276319 DOI: 10.3390/diagnostics14141477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer remains a significant global health concern, with increasing genetic and metabolic irregularities linked to its onset. Among various forms of cancer, skin cancer, including squamous cell carcinoma, basal cell carcinoma, and melanoma, is on the rise worldwide, often triggered by ultraviolet (UV) radiation. The propensity of skin cancer to metastasize highlights the importance of early detection for successful treatment. This narrative review explores the evolving role of artificial intelligence (AI) in diagnosing head and neck skin cancers from both radiological and pathological perspectives. In the past two decades, AI has made remarkable progress in skin cancer research, driven by advances in computational capabilities, digitalization of medical images, and radiomics data. AI has shown significant promise in image-based diagnosis across various medical domains. In dermatology, AI has played a pivotal role in refining diagnostic and treatment strategies, including genomic risk assessment. This technology offers substantial potential to aid primary clinicians in improving patient outcomes. Studies have demonstrated AI's effectiveness in identifying skin lesions, categorizing them, and assessing their malignancy, contributing to earlier interventions and better prognosis. The rising incidence and mortality rates of skin cancer, coupled with the high cost of treatment, emphasize the need for early diagnosis. Further research and integration of AI into clinical practice are warranted to maximize its benefits in skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zeliha Merve Semerci
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, 07070 Antalya, Turkey; (Z.M.S.); (H.T.)
| | - Havva Serap Toru
- Department of Pathology, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | | | - Hümeyra Tercanlı
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, 07070 Antalya, Turkey; (Z.M.S.); (H.T.)
| | - Diana Maria Chiorean
- Department of Pathology, County Clinical Hospital of Targu Mures, 540072 Targu Mures, Romania; (D.M.C.); (O.S.C.)
- Department of Pathophysiology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Yalçın Albayrak
- Department of Electric and Electronic Engineering, Faculty of Engineering, Akdeniz University, 07010 Antalya, Turkey;
| | - Ovidiu Simion Cotoi
- Department of Pathology, County Clinical Hospital of Targu Mures, 540072 Targu Mures, Romania; (D.M.C.); (O.S.C.)
- Department of Pathophysiology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
He H, Paetzold JC, Borner N, Riedel E, Gerl S, Schneider S, Fisher C, Ezhov I, Shit S, Li H, Ruckert D, Aguirre J, Biedermann T, Darsow U, Menze B, Ntziachristos V. Machine Learning Analysis of Human Skin by Optoacoustic Mesoscopy for Automated Extraction of Psoriasis and Aging Biomarkers. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2074-2085. [PMID: 38241120 DOI: 10.1109/tmi.2024.3356180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.
Collapse
|
5
|
Alwakid G, Gouda W, Humayun M, Sama NU. Melanoma Detection Using Deep Learning-Based Classifications. Healthcare (Basel) 2022; 10:healthcare10122481. [PMID: 36554004 PMCID: PMC9777935 DOI: 10.3390/healthcare10122481] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most prevalent cancers worldwide is skin cancer, and it is becoming more common as the population ages. As a general rule, the earlier skin cancer can be diagnosed, the better. As a result of the success of deep learning (DL) algorithms in other industries, there has been a substantial increase in automated diagnosis systems in healthcare. This work proposes DL as a method for extracting a lesion zone with precision. First, the image is enhanced using Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) to improve the image's quality. Then, segmentation is used to segment Regions of Interest (ROI) from the full image. We employed data augmentation to rectify the data disparity. The image is then analyzed with a convolutional neural network (CNN) and a modified version of Resnet-50 to classify skin lesions. This analysis utilized an unequal sample of seven kinds of skin cancer from the HAM10000 dataset. With an accuracy of 0.86, a precision of 0.84, a recall of 0.86, and an F-score of 0.86, the proposed CNN-based Model outperformed the earlier study's results by a significant margin. The study culminates with an improved automated method for diagnosing skin cancer that benefits medical professionals and patients.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence:
| | - Walaa Gouda
- Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Najm Us Sama
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| |
Collapse
|
6
|
Yoon S, Cheon SY, Park S, Lee D, Lee Y, Han S, Kim M, Koo H. Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomater Res 2022; 26:57. [PMID: 36273205 PMCID: PMC9587606 DOI: 10.1186/s40824-022-00303-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Optical imaging has been essential for scientific observations to date, however its biomedical applications has been restricted due to its poor penetration through tissues. In living tissue, signal attenuation and limited imaging depth caused by the wave distortion occur because of scattering and absorption of light by various molecules including hemoglobin, pigments, and water. To overcome this, methodologies have been proposed in the various fields, which can be mainly categorized into two stategies: developing new imaging probes and optical techniques. For example, imaging probes with long wavelength like NIR-II region are advantageous in tissue penetration. Bioluminescence and chemiluminescence can generate light without excitation, minimizing background signals. Afterglow imaging also has high a signal-to-background ratio because excitation light is off during imaging. Methodologies of adaptive optics (AO) and studies of complex media have been established and have produced various techniques such as direct wavefront sensing to rapidly measure and correct the wave distortion and indirect wavefront sensing involving modal and zonal methods to correct complex aberrations. Matrix-based approaches have been used to correct the high-order optical modes by numerical post-processing without any hardware feedback. These newly developed imaging probes and optical techniques enable successful optical imaging through deep tissue. In this review, we discuss recent advances for multi-scale optical imaging within deep tissue, which can provide reseachers multi-disciplinary understanding and broad perspectives in diverse fields including biophotonics for the purpose of translational medicine and convergence science.
Collapse
Affiliation(s)
- Seokchan Yoon
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seo Young Cheon
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sangjun Park
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeeun Lee
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seokyoung Han
- Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA
| | - Moonseok Kim
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Heebeom Koo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
7
|
Enhanced deep bottleneck transformer model for skin lesion classification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Granata V, Simonetti I, Fusco R, Setola SV, Izzo F, Scarpato L, Vanella V, Festino L, Simeone E, Ascierto PA, Petrillo A. Management of cutaneous melanoma: radiologists challenging and risk assessment. LA RADIOLOGIA MEDICA 2022; 127:899-911. [PMID: 35834109 DOI: 10.1007/s11547-022-01522-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Melanoma patient remains a challenging for the radiologist, due to the difficulty related to the management of a patient more often in an advanced stage of the disease. It is necessary to determine a stratification of risk, optimizing the means, with diagnostic tools that should be optimized in relation to the type of patient, and improving knowledge. Staging and risk assessment procedures are determined by disease presentation at diagnosis. Melanoma staging is a critical tool to assist clinical decision-making and prognostic assessment. It is used for clinical trial design, eligibility, stratification, and analysis. The current standard for regional lymph nodes staging is represented by the sentinel lymph node excision biopsy procedure. For staging of distant metastases, PET-CT has the highest sensitivity and diagnostic odds ratio. Similar trend is observed during melanoma surveillance. The advent of immunotherapy, which has improved patient outcome, however, has determined new issues for radiologists, partly due to atypical response patterns, partly due to adverse reactions that must be identified as soon as possible for the correct management of the patient. The main objectives of the new ir-criteria are to standardize the assessment between different trials. However, these ir-criteria do not take into account all cases of atypical response patterns, as hyperprogression or dissociated responses. None of these criteria has actually been uniformly adopted in routine. The immune-related adverse events (irAEs) can involve various organs from head to toe. It is crucial for radiologists to know the imaging appearances of this condition, to exclude recurrent or progressive disease and for pneumonitis, since it could be potentially life-threatening toxicity, resulting in pneumonitis-related deaths in early phase trials, to allow a proper patient management.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italia", Via Mariano Semmola, Naples, Italy.
| | - Igino Simonetti
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italia", Via Mariano Semmola, Naples, Italy
| | | | - Sergio Venanzio Setola
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italia", Via Mariano Semmola, Naples, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italia",, Via Mariano Semmola, Naples, Italy
| | - Luigi Scarpato
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Vito Vanella
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Lucia Festino
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Ester Simeone
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Paolo Antonio Ascierto
- Department of Skin Cancers, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italia", Via Mariano Semmola, Naples, Italy
| |
Collapse
|
9
|
Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo. Nat Commun 2022; 13:2803. [PMID: 35589757 PMCID: PMC9120110 DOI: 10.1038/s41467-022-30471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/03/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is associated with angiogenesis and vascular changes that may extend through the entire skin depth. Three-dimensional imaging of vascular characteristics in skin lesions could therefore allow diagnostic insights not available by conventional visual inspection. Raster-scan optoacoustic mesoscopy (RSOM) images microvasculature through the entire skin depth with resolutions of tens of micrometers; however, current RSOM implementations are too slow to overcome the strong breathing motions on the upper torso where melanoma lesions commonly occur. To enable high-resolution imaging of melanoma vasculature in humans, we accelerate RSOM scanning using an illumination scheme that is coaxial with a high-sensitivity ultrasound detector path, yielding 15 s single-breath-hold scans that minimize motion artifacts. We apply this Fast RSOM to image 10 melanomas and 10 benign nevi in vivo, showing marked differences between malignant and benign lesions, supporting the possibility to use biomarkers extracted from RSOM imaging of vasculature for lesion characterization to improve diagnostics. Raster-Scanning-Optoacoustic Mesoscopy can be used to image the vasculature in skin cancer lesions but is limited by a long exposure time. Here; the authors increase the speed of the imaging using co-axial illumination and a high-sensitivity ultrasound detector path.
Collapse
|
10
|
Stridh MT, Hult J, Merdasa A, Albinsson J, Pekar-Lukacs A, Gesslein B, Dahlstrand U, Engelsberg K, Berggren J, Cinthio M, Sheikh R, Malmsjö M. Photoacoustic imaging of periorbital skin cancer ex vivo: unique spectral signatures of malignant melanoma, basal, and squamous cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2022; 13:410-425. [PMID: 35154881 PMCID: PMC8803040 DOI: 10.1364/boe.443699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Radical excision of periorbital skin tumors is difficult without sacrificing excessive healthy tissue. Photoacoustic (PA) imaging is an emerging non-invasive biomedical imagi--ng modality that has potential for intraoperative micrographic control of surgical margins. This is the first study to assess the feasibility of PA imaging for the detection of periocular skin cancer. Eleven patients underwent surgical excision of periocular skin cancer, one of which was a malignant melanoma (MM), eight were basal cell carcinomas (BCCs), and two squamous cell carcinomas (SCCs). Six tumors were located in the eyelid, and five in periocular skin. The excised samples, as well as healthy eyelid samples, were scanned with PA imaging postoperatively, using 59 wavelengths in the range 680-970 nm, to generate 3D multispectral images. Spectral unmixing was performed using endmember spectra for oxygenated and deoxygenated Hb, melanin, and collagen, to iden--tify the chromophore composition of tumors and healthy eyelid tissue. After PA scanning, the tumor samples were examined histopathologically using standard hematoxylin and eosin staining. The PA spectra of healthy eyelid tissue were dominated by melanin in the skin, oxygenated and deoxygenated hemoglobin in the orbicularis oculi muscle, and collagen in the tarsal plate. Multiwavelength 3D scanning provided spectral information on the three tumor types. The spectrum from the MM was primarily reconstructed by the endmember melanin, while the SCCs showed contributions primarily from melanin, but also HbR and collagen. BCCs showed contributions from all four endmembers with a predominance of HbO2 and HbR. PA imaging may be used to distinguish different kinds of periocular skin tumors, paving the way for future intraoperative micrographic control.
Collapse
Affiliation(s)
- Magne Tordengren Stridh
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Jenny Hult
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Aboma Merdasa
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - John Albinsson
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | | | - Bodil Gesslein
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Karl Engelsberg
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Johanna Berggren
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering,
Faculty of Engineering, Lund University,
Sweden
| | - Rafi Sheikh
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| | - Malin Malmsjö
- Ophthalmology, Department of Clinical
Sciences Lund, Lund University, Skåne University
Hospital, Lund, Sweden
| |
Collapse
|
11
|
Hasan MK, Elahi MTE, Alam MA, Jawad MT, Martí R. DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Fiedorowicz M, Wieteska M, Rylewicz K, Kossowski B, Piątkowska-Janko E, Czarnecka AM, Toczylowska B, Bogorodzki P. Hyperpolarized 13C tracers: Technical advancements and perspectives for clinical applications. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Hult J, Merdasa A, Pekar-Lukacs A, Tordengren Stridh M, Khodaverdi A, Albinsson J, Gesslein B, Dahlstrand U, Engqvist L, Hamid Y, Larsson Albèr D, Persson B, Erlöv T, Sheikh R, Cinthio M, Malmsjö M. Comparison of photoacoustic imaging and histopathological examination in determining the dimensions of 52 human melanomas and nevi ex vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:4097-4114. [PMID: 34457401 PMCID: PMC8367235 DOI: 10.1364/boe.425524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 05/21/2023]
Abstract
Surgical excision followed by histopathological examination is the gold standard for the diagnosis and staging of melanoma. Reoperations and unnecessary removal of healthy tissue could be reduced if non-invasive imaging techniques were available for presurgical tumor delineation. However, no technique has gained widespread clinical use to date due to shallow imaging depth or the absence of functional imaging capability. Photoacoustic (PA) imaging is a novel technology that combines the strengths of optical and ultrasound imaging to reveal the molecular composition of tissue at high resolution. Encouraging results have been obtained from previous animal and human studies on melanoma, but there is still a lack of clinical data. This is the largest study of its kind to date, including 52 melanomas and nevi. 3D multiwavelength PA scanning was performed ex vivo, using 59 excitation wavelengths from 680 nm to 970 nm. Spectral unmixing over this broad wavelength range, accounting for the absorption of several tissue chromophores, provided excellent contrast between healthy tissue and tumor. Combining the results of spectral analysis with spatially resolved information provided a map of the tumor borders in greater detail than previously reported. The tumor dimensions determined with PA imaging were strongly correlated with those determined by histopathological examination for both melanomas and nevi.
Collapse
Affiliation(s)
- Jenny Hult
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | | | - Magne Tordengren Stridh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Azin Khodaverdi
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Linn Engqvist
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yousef Hamid
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Douglas Larsson Albèr
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Bertil Persson
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
| | - Tobias Erlöv
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Ding X, Wang S. Efficient Unet with depth-aware gated fusion for automatic skin lesion segmentation. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-202566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melanoma is a very serious disease. The segmentation of skin lesions is a critical step for diagnosing melanoma. However, skin lesions possess the characteristics of large size variations, irregular shapes, blurring borders, and complex background information, thus making the segmentation of skin lesions remain a challenging problem. Though deep learning models usually achieve good segmentation performance for skin lesion segmentation, they have a large number of parameters and FLOPs, which limits their application scenarios. These models also do not make good use of low-level feature maps, which are essential for predicting detailed information. The Proposed EUnet-DGF uses MBconv to implement its lightweight encoder and maintains a strong encoding ability. Moreover, the depth-aware gated fusion block designed by us can fuse feature maps of different depths and help predict pixels on small patterns. The experiments conducted on the ISIC 2017 dataset and PH2 dataset show the superiority of our model. In particular, EUnet-DGF only accounts for 19% and 6.8% of the original Unet in terms of the number of parameters and FLOPs. It possesses a great application potential in practical computer-aided diagnosis systems.
Collapse
Affiliation(s)
- Xiangwen Ding
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Shengsheng Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
15
|
Huang J, Wiacek A, Kempski KM, Palmer T, Izzi J, Beck S, Lediju Bell MA. Empirical assessment of laser safety for photoacoustic-guided liver surgeries. BIOMEDICAL OPTICS EXPRESS 2021; 12:1205-1216. [PMID: 33796347 PMCID: PMC7984790 DOI: 10.1364/boe.415054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging is a promising technique to provide guidance during multiple surgeries and procedures. One challenge with this technique is that major blood vessels in the liver are difficult to differentiate from surrounding tissue within current safety limits, which only exist for human skin and eyes. In this paper, we investigate the safety of raising this limit for liver tissue excited with a 750 nm laser wavelength and approximately 30 mJ laser energy (corresponding to approximately 150 mJ/cm2 fluence). Laparotomies were performed on six swine to empirically investigate potential laser-related liver damage. Laser energy was applied for temporal durations of 1 minute, 10 minutes, and 20 minutes. Lasered liver lobes were excised either immediately after laser application (3 swine) or six weeks after surgery (3 swine). Cell damage was assessed using liver damage blood biomarkers and histopathology analyses of 41 tissue samples total. The biomarkers were generally normal over a 6 week post-surgical in vivo study period. Histopathology revealed no cell death, although additional pathology was present (i.e., hemorrhage, inflammation, fibrosis) due to handling, sample resection, and fibrous adhesions as a result of the laparotomy. These results support a new protocol for studying laser-related liver damage, indicating the potential to raise the safety limit for liver photoacoustic imaging to approximately 150 mJ/cm2 with a laser wavelength of 750 nm and for imaging durations up to 10 minutes without causing cell death. This investigation and protocol may be applied to other tissues and extended to additional wavelengths and energies, which is overall promising for introducing new tissue-specific laser safety limits for photoacoustic-guided surgery.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
| | - Alycen Wiacek
- Department of Electrical and Computer
Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA
| | - Kelley M. Kempski
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
| | - Theron Palmer
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
| | - Jessica Izzi
- Department of Molecular and Comparative
Pathobiology, Johns Hopkins University,
Baltimore, MD 21218, USA
| | - Sarah Beck
- Department of Molecular and Comparative
Pathobiology, Johns Hopkins University,
Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
- Department of Electrical and Computer
Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA
- Department of Computer Science,
Johns Hopkins University, Baltimore, MD
21218, USA
| |
Collapse
|
16
|
Hessler M, Jalilian E, Xu Q, Reddy S, Horton L, Elkin K, Manwar R, Tsoukas M, Mehregan D, Avanaki K. Melanoma Biomarkers and Their Potential Application for In Vivo Diagnostic Imaging Modalities. Int J Mol Sci 2020; 21:9583. [PMID: 33339193 PMCID: PMC7765677 DOI: 10.3390/ijms21249583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and remains a diagnostic challenge in the dermatology clinic. Several non-invasive imaging techniques have been developed to identify melanoma. The signal source in each of these modalities is based on the alteration of physical characteristics of the tissue from healthy/benign to melanoma. However, as these characteristics are not always sufficiently specific, the current imaging techniques are not adequate for use in the clinical setting. A more robust way of melanoma diagnosis is to "stain" or selectively target the suspect tissue with a melanoma biomarker attached to a contrast enhancer of one imaging modality. Here, we categorize and review known melanoma diagnostic biomarkers with the goal of guiding skin imaging experts to design an appropriate diagnostic tool for differentiating between melanoma and benign lesions with a high specificity and sensitivity.
Collapse
Affiliation(s)
- Monica Hessler
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
| | - Shriya Reddy
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
| | - Luke Horton
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Kenneth Elkin
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Darius Mehregan
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
17
|
von Knorring T, Mogensen M. Photoacoustic tomography for assessment and quantification of cutaneous and metastatic malignant melanoma - A systematic review. Photodiagnosis Photodyn Ther 2020; 33:102095. [PMID: 33188938 DOI: 10.1016/j.pdpdt.2020.102095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photoacoustic tomography (PAT) is an emerging noninvasive imaging technique combining high sensitivity optical absorption contrast, such as melanin, with high-resolution ultrasound for deep tissue imaging. The ability of PAT to provide real-time images of skin structures at depth has been studied for diagnosis of primary and metastatic malignant melanoma (MM). OBJECTIVE To provide an overview of the rapidly expanding clinical use of PAT for determination of melanoma thickness and architecture, visualization of metastases in lymph nodes and detection of circulating melanoma cells. METHODS Medline, PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane Library were searched for papers using PAT to assess cutaneous malignant melanoma and melanoma metastases in humans or human specimens. RESULTS The research resulted in 14 articles which met the search criteria. CONCLUSIONS Results from current studies suggest that PAT is a promising tool for assessing both primary and metastatic malignant melanoma in the clinic. The potential of PAT to noninvasively visualize tumour boundaries, as well as assist in the evaluation of metastatic status, could facilitate more effective treatment, resulting in better clearance and reducing the need for additional biopsies. However, larger and methodologically sound studies are warranted.
Collapse
Affiliation(s)
- Terese von Knorring
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen, 2400, NV, Denmark.
| | - Mette Mogensen
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen, 2400, NV, Denmark
| |
Collapse
|
18
|
|
19
|
Hasan MK, Dahal L, Samarakoon PN, Tushar FI, Martí R. DSNet: Automatic dermoscopic skin lesion segmentation. Comput Biol Med 2020; 120:103738. [PMID: 32421644 DOI: 10.1016/j.compbiomed.2020.103738] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic segmentation of skin lesions is considered a crucial step in Computer-aided Diagnosis (CAD) systems for melanoma detection. Despite its significance, skin lesion segmentation remains an unsolved challenge due to their variability in color, texture, and shapes and indistinguishable boundaries. METHODS Through this study, we present a new and automatic semantic segmentation network for robust skin lesion segmentation named Dermoscopic Skin Network (DSNet). In order to reduce the number of parameters to make the network lightweight, we used a depth-wise separable convolution in lieu of standard convolution to project the learned discriminating features onto the pixel space at different stages of the encoder. Additionally, we implemented both a U-Net and a Fully Convolutional Network (FCN8s) to compare against the proposed DSNet. RESULTS We evaluate our proposed model on two publicly available datasets, namely ISIC-20171 and PH22. The obtained mean Intersection over Union (mIoU) is 77.5% and 87.0% respectively for ISIC-2017 and PH2 datasets which outperformed the ISIC-2017 challenge winner by 1.0% with respect to mIoU. Our proposed network also outperformed U-Net and FCN8s respectively by 3.6% and 6.8% with respect to mIoU on the ISIC-2017 dataset. CONCLUSION Our network for skin lesion segmentation outperforms the other methods discussed in the article and is able to provide better-segmented masks on two different test datasets which can lead to better performance in melanoma detection. Our trained model along with the source code and predicted masks are made publicly available3.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Computer Vision and Robotics Institute, University of Girona, Spain.
| | - Lavsen Dahal
- Computer Vision and Robotics Institute, University of Girona, Spain.
| | | | | | - Robert Martí
- Computer Vision and Robotics Institute, University of Girona, Spain.
| |
Collapse
|
20
|
Yarbakht M, Pradhan P, Köse-Vogel N, Bae H, Stengel S, Meyer T, Schmitt M, Stallmach A, Popp J, Bocklitz TW, Bruns T. Nonlinear Multimodal Imaging Characteristics of Early Septic Liver Injury in a Mouse Model of Peritonitis. Anal Chem 2019; 91:11116-11121. [DOI: 10.1021/acs.analchem.9b01746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Melina Yarbakht
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Pranita Pradhan
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | | | - Hyeonsoo Bae
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | | | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | | | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Thomas Wilhelm Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
21
|
Moreno A, Manrique-Silva E, Virós A, Requena C, Sanmartín O, Traves V, Nagore E. Histologic Features Associated With an Invasive Component in Lentigo Maligna Lesions. JAMA Dermatol 2019; 155:782-788. [PMID: 31066867 PMCID: PMC6506897 DOI: 10.1001/jamadermatol.2019.0467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/21/2019] [Indexed: 11/14/2022]
Abstract
Importance Lentigo maligna (LM) presents an invasive component in up to 20% of biopsied cases, but to date the histologic features useful in detecting this invasive component have not been described. Some histologic characteristics are hypothesized to contribute to the progression of LM invasion. Objective To identify the histologic characteristics associated with lentigo maligna melanoma (LMM) in patients with LM diagnosed by a partial diagnostic biopsy. Design, Setting, and Participants A retrospective cross-sectional study of patients treated between January 1, 2000, and December 31, 2017, was conducted in a referral oncology center in València, Spain. Data and specimens of patients (n = 96) with a diagnosis of primary cutaneous melanoma in the form of either LM or LMM who had undergone surgical treatment, a complete histologic examination of the whole tumor, and an initial diagnostic partial biopsy of LM were included in the study. Histologic assessment was blinded to the presence of an invasive component. Interventions All biopsy specimens were evaluated for the presence of certain histologic characteristics. Main Outcomes and Measures Comparisons between invasive samples and samples without an invasive component were performed. The differences in the distribution of variables between the groups were assessed using the χ2 and Fisher exact tests, and the degree of association of the relevant variables was quantified by logistic regression models. A classification and regression tree analysis was performed to rank the variables by importance. Results In total, 96 patients had sufficient histologic material that could be evaluated. The patients were predominantly male (56 [58.3%]) and had a mean (SD) age at diagnosis of 72 (12) years. Of these patients, 63 (65.6%) had an LM diagnosis and 33 (34.4%) had an LMM diagnosis (an invasive component). The histologic variables associated with the presence of an invasive component were melanocytes forming rows (odds ratio [OR], 11.5; 95% CI, 1.4-94.1; P = .02), subepidermal clefts (OR, 2.8; 95% CI, 1.0-7.9; P = .049), nests (OR, 3.0; 95% CI, 1.1-8.6; P = .04), and a lesser degree of solar elastosis (OR, 0.4; 95% CI, 0.1-1.1; P = .07). A classification and regression tree analysis of the relevant histologic features was able to accurately identify lentigo maligna with an invasive component (LMM) in more than 60% of patients. Conclusions and Relevance These findings may be useful in classifying early LM specimens at higher risk of invasion, which may eventually be relevant in identifying the most appropriate management for LM.
Collapse
Affiliation(s)
- Angela Moreno
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, València, Spain
| | - Esperanza Manrique-Silva
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, València, Spain
| | - Amaya Virós
- Skin Cancer and Ageing Laboratory, CRUK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - Onofre Sanmartín
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - Víctor Traves
- Department of Pathology, Instituto Valenciano de Oncología, València, Spain
| | - Eduardo Nagore
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, València, Spain
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| |
Collapse
|
22
|
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. PHOTOACOUSTICS 2019; 14:77-98. [PMID: 31293884 PMCID: PMC6595011 DOI: 10.1016/j.pacs.2019.05.001] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
Collapse
Affiliation(s)
- Idan Steinberg
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
| | - David M. Huland
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Ophir Vermesh
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Hadas E. Frostig
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Willemieke S. Tummers
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Materials Science & Engineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
23
|
Ognard J, Mesrar J, Benhoumich Y, Misery L, Burdin V, Ben Salem D. Edge detector-based automatic segmentation of the skin layers and application to moisturization in high-resolution 3 Tesla magnetic resonance imaging. Skin Res Technol 2019; 25:339-346. [PMID: 30657209 DOI: 10.1111/srt.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Previous studies have demonstrated the feasibility to explore moisturization with quantification imaging based on T2 mapping. The aim of this study was to describe and validate the first robust automated method to segment the first layers of the skin. MATERIALS AND METHODS Data were picked from a previous study that included 35 healthy subjects who underwent a 3T MRI (multi spin echo calculation T2-weighted sequence) with a microscopic coil on the left heel before and one hour after moisturization. The automatic algorithm was composed of the T2 map generation, a Canny filter, a selection of boundaries, and a local regression to delimitate stratum corneum, epidermis, and dermis. An automated affine registration was applied between the exams before and after moisturization. RESULTS The failure rate of the algorithm was below 5%. Mean computation time was 139.12s. There was a significant and strong correlation between the automatic measurements and the manual ones for the T2 values (ρ: 0.905, P < 0.001) and for the thickness measurements (ρ: 0.8663; P < 0.001). For registration, mean of the Dice index was 0.64 [0.47; 0.80] and of the Hausdorff distance was 0.29 mm 95% CI: [0.28; 0.30]. CONCLUSION The proposed automatic method to study the first skin layers in 3T MRI using micro-coils was robust and described T2 values and thickness measurements with a strong correlation to manual measurements. The use of an automated affine registration could also permit the generation of a mapping for a visual assessment of moisturization.
Collapse
Affiliation(s)
- Julien Ognard
- Department of Radiology, University Hospital of Brest, Brest Cedex, France.,Laboratory of medical information processing - LaTIM INSERM UMR 1101, Brest Cedex, France
| | - Jawad Mesrar
- Department of Radiology, University Hospital of Brest, Brest Cedex, France.,Laboratory of medical information processing - LaTIM INSERM UMR 1101, Brest Cedex, France
| | - Younes Benhoumich
- Laboratory of medical information processing - LaTIM INSERM UMR 1101, Brest Cedex, France
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest, Brest, France.,Laboratory of Epithelium Neurons Interactions - LIEN EA4685, Brest Cedex, France
| | - Valerie Burdin
- Laboratory of medical information processing - LaTIM INSERM UMR 1101, Brest Cedex, France.,Mines-Telecom Institute - IMT Atlantique, Plouzané, France
| | - Douraied Ben Salem
- Department of Radiology, University Hospital of Brest, Brest Cedex, France
| |
Collapse
|
24
|
Optical coherence tomography imaging of melanoma skin cancer. Lasers Med Sci 2018; 34:411-420. [DOI: 10.1007/s10103-018-2696-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/22/2018] [Indexed: 11/25/2022]
|
25
|
Møllersen K, Zortea M, Schopf TR, Kirchesch H, Godtliebsen F. Comparison of computer systems and ranking criteria for automatic melanoma detection in dermoscopic images. PLoS One 2017; 12:e0190112. [PMID: 29267358 PMCID: PMC5739481 DOI: 10.1371/journal.pone.0190112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer, and early detection is crucial for patient survival. Computer systems can assist in melanoma detection, but are not widespread in clinical practice. In 2016, an open challenge in classification of dermoscopic images of skin lesions was announced. A training set of 900 images with corresponding class labels and semi-automatic/manual segmentation masks was released for the challenge. An independent test set of 379 images, of which 75 were of melanomas, was used to rank the participants. This article demonstrates the impact of ranking criteria, segmentation method and classifier, and highlights the clinical perspective. We compare five different measures for diagnostic accuracy by analysing the resulting ranking of the computer systems in the challenge. Choice of performance measure had great impact on the ranking. Systems that were ranked among the top three for one measure, dropped to the bottom half when changing performance measure. Nevus Doctor, a computer system previously developed by the authors, was used to participate in the challenge, and investigate the impact of segmentation and classifier. The diagnostic accuracy when using an automatic versus the semi-automatic/manual segmentation is investigated. The unexpected small impact of segmentation method suggests that improvements of the automatic segmentation method w.r.t. resemblance to semi-automatic/manual segmentation will not improve diagnostic accuracy substantially. A small set of similar classification algorithms are used to investigate the impact of classifier on the diagnostic accuracy. The variability in diagnostic accuracy for different classifier algorithms was larger than the variability for segmentation methods, and suggests a focus for future investigations. From a clinical perspective, the misclassification of a melanoma as benign has far greater cost than the misclassification of a benign lesion. For computer systems to have clinical impact, their performance should be ranked by a high-sensitivity measure.
Collapse
Affiliation(s)
- Kajsa Møllersen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Maciel Zortea
- Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Thomas R. Schopf
- Norwegian Centre for E-health Research, University Hospital of North Norway, Tromsø, Norway
| | | | - Fred Godtliebsen
- Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Neittaanmäki N, Salmivuori M, Pölönen I, Jeskanen L, Ranki A, Saksela O, Snellman E, Grönroos M. Hyperspectral imaging in detecting dermal invasion in lentigo maligna melanoma. Br J Dermatol 2017; 177:1742-1744. [DOI: 10.1111/bjd.15267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. Neittaanmäki
- Department of Clinical Pathology; Sahlgrenska University Hospital; Institute of Biomedicine at the Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - M. Salmivuori
- Department of Dermatology and Allergology; Päijät-Häme Social and Health Care Group; Lahti Finland
| | - I. Pölönen
- Department of Mathematical Information Technology; University of Jyväskylä; Jyväskylä Finland
| | - L. Jeskanen
- Departments of Dermatology and Allergology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. Ranki
- Departments of Dermatology and Allergology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - O. Saksela
- Departments of Dermatology and Allergology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - E. Snellman
- Department of Dermatology; University of Tampere and Tampere University Hospital; Tampere Finland
| | - M. Grönroos
- Department of Dermatology and Allergology; Päijät-Häme Social and Health Care Group; Lahti Finland
| |
Collapse
|
27
|
Noninvasive Determination of Melanoma Depth using a Handheld Photoacoustic Probe. J Invest Dermatol 2017; 137:1370-1372. [PMID: 28163070 DOI: 10.1016/j.jid.2017.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
28
|
Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2482-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Oliveira RB, Filho ME, Ma Z, Papa JP, Pereira AS, Tavares JMRS. Computational methods for the image segmentation of pigmented skin lesions: A review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 131:127-141. [PMID: 27265054 DOI: 10.1016/j.cmpb.2016.03.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/03/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Because skin cancer affects millions of people worldwide, computational methods for the segmentation of pigmented skin lesions in images have been developed in order to assist dermatologists in their diagnosis. This paper aims to present a review of the current methods, and outline a comparative analysis with regards to several of the fundamental steps of image processing, such as image acquisition, pre-processing and segmentation. METHODS Techniques that have been proposed to achieve these tasks were identified and reviewed. As to the image segmentation task, the techniques were classified according to their principle. RESULTS The techniques employed in each step are explained, and their strengths and weaknesses are identified. In addition, several of the reviewed techniques are applied to macroscopic and dermoscopy images in order to exemplify their results. CONCLUSIONS The image segmentation of skin lesions has been addressed successfully in many studies; however, there is a demand for new methodologies in order to improve the efficiency.
Collapse
Affiliation(s)
- Roberta B Oliveira
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mercedes E Filho
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Zhen Ma
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João P Papa
- Departamento de Computação, Faculdade de Ciências, Universidade Estadual Paulista, av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP, Brazil
| | - Aledir S Pereira
- Departamento de Ciências de Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
30
|
Heuke S, Chernavskaia O, Bocklitz T, Legesse FB, Meyer T, Akimov D, Dirsch O, Ernst G, von Eggeling F, Petersen I, Guntinas-Lichius O, Schmitt M, Popp J. Multimodal nonlinear microscopy of head and neck carcinoma - toward surgery assisting frozen section analysis. Head Neck 2016; 38:1545-52. [PMID: 27098552 DOI: 10.1002/hed.24477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/06/2016] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of early cancer stages is deeply connected to a good prognosis, a moderate reduction of the quality of life, and comparably low treatment costs. METHODS Head and neck squamous cell carcinomas were investigated using the multimodal combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) microscopy. RESULTS An increased median TPEF to CARS contrast was found comparing cancerous and healthy squamous epithelium with a p value of 1.8·10(-10) . A following comprehensive image analysis was able to predict the diagnosis of imaged tissue sections with an overall accuracy of 90% for a 4-class model. CONCLUSION Nonlinear multimodal imaging is verified objectively as a valuable diagnostic tool that complements conventional staining protocols and can serve as filter in future clinical routine reducing the pathologist's workload. © 2016 Wiley Periodicals, Inc. Head Neck 38: First-1552, 2016.
Collapse
Affiliation(s)
- Sandro Heuke
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Olga Chernavskaia
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Fisseha Bekele Legesse
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Tobias Meyer
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Denis Akimov
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Günther Ernst
- Leibniz Institute of Photonic Technology, Jena, Germany.,Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Ferdinand von Eggeling
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany.,Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | | | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany. .,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
31
|
Leachman SA, Cassidy PB, Chen SC, Curiel C, Geller A, Gareau D, Pellacani G, Grichnik JM, Malvehy J, North J, Jacques SL, Petrie T, Puig S, Swetter SM, Tofte S, Weinstock MA. Methods of Melanoma Detection. Cancer Treat Res 2016; 167:51-105. [PMID: 26601859 DOI: 10.1007/978-3-319-22539-5_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Detection and removal of melanoma, before it has metastasized, dramatically improves prognosis and survival. The purpose of this chapter is to (1) summarize current methods of melanoma detection and (2) review state-of-the-art detection methods and technologies that have the potential to reduce melanoma mortality. Current strategies for the detection of melanoma range from population-based educational campaigns and screening to the use of algorithm-driven imaging technologies and performance of assays that identify markers of transformation. This chapter will begin by describing state-of-the-art methods for educating and increasing awareness of at-risk individuals and for performing comprehensive screening examinations. Standard and advanced photographic methods designed to improve reliability and reproducibility of the clinical examination will also be reviewed. Devices that magnify and/or enhance malignant features of individual melanocytic lesions (and algorithms that are available to interpret the results obtained from these devices) will be compared and contrasted. In vivo confocal microscopy and other cellular-level in vivo technologies will be compared to traditional tissue biopsy, and the role of a noninvasive "optical biopsy" in the clinical setting will be discussed. Finally, cellular and molecular methods that have been applied to the diagnosis of melanoma, such as comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), will be discussed.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health and Science University, 3303 SW Bond Avenue, CH16D, Portland, OR, 97239, USA.
| | - Pamela B Cassidy
- Department of Dermatology and Knight Cancer Institute, Oregon Health and Science University, 3125 SW Sam Jackson Park Road, L468R, Portland, OR, 97239, USA.
| | - Suephy C Chen
- Department of Dermatology, Emory University School of Medicine, 1525 Clifton Road NE, 1st Floor, Atlanta, GA, 30322, USA.
| | - Clara Curiel
- Department of Dermatology and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ, 85721, USA.
| | - Alan Geller
- Department of Dermatology, Harvard School of Public Health and Massachusetts General Hospital, Landmark Center, 401 Park Drive, 3rd Floor East, Boston, MA, 02215, USA.
| | - Daniel Gareau
- Laboratory of Investigative Dermatology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, Italy.
| | - James M Grichnik
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Room 912, BRB (R-125), 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - Jeffrey North
- University of California, San Francisco, 1701 Divisadero Street, Suite 280, San Francisco, CA, 94115, USA.
| | - Steven L Jacques
- Department of Biomedical Engineering and Dermatology, Oregon Health and Science University, 3303 SW Bond Avenue, CH13B, Portland, OR, 97239, USA.
| | - Tracy Petrie
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Avenue, CH13B, Portland, OR, 97239, USA.
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - Susan M Swetter
- Department of Dermatology/Cutaneous Oncology, Stanford University, 900 Blake Wilbur Drive, W3045, Stanford, CA, 94305, USA.
| | - Susan Tofte
- Department of Dermatology, Oregon Health and Science University, 3303 SW Bond Avenue, CH16D, Portland, OR, 97239, USA.
| | - Martin A Weinstock
- Departments of Dermatology and Epidemiology, Brown University, V A Medical Center 111D, 830 Chalkstone Avenue, Providence, RI, 02908, USA.
| |
Collapse
|
32
|
Kong R, Cui Y, Fisher GJ, Wang X, Chen Y, Schneider LM, Majmudar G. A comparative study of the effects of retinol and retinoic acid on histological, molecular, and clinical properties of human skin. J Cosmet Dermatol 2015; 15:49-57. [PMID: 26578346 DOI: 10.1111/jocd.12193] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND All-trans retinol, a precursor of retinoic acid, is an effective anti-aging treatment widely used in skin care products. In comparison, topical retinoic acid is believed to provide even greater anti-aging effects; however, there is limited research directly comparing the effects of retinol and retinoic acid on skin. OBJECTIVES In this study, we compare the effects of retinol and retinoic acid on skin structure and expression of skin function-related genes and proteins. We also examine the effect of retinol treatment on skin appearance. METHODS Skin histology was examined by H&E staining and in vivo confocal microscopy. Expression levels of skin genes and proteins were analyzed using RT-PCR and immunohistochemistry. The efficacy of a retinol formulation in improving skin appearance was assessed using digital image-based wrinkle analysis. RESULTS Four weeks of retinoic acid and retinol treatments both increased epidermal thickness, and upregulated genes for collagen type 1 (COL1A1), and collagen type 3 (COL3A1) with corresponding increases in procollagen I and procollagen III protein expression. Facial image analysis showed a significant reduction in facial wrinkles following 12 weeks of retinol application. CONCLUSIONS The results of this study demonstrate that topical application of retinol significantly affects both cellular and molecular properties of the epidermis and dermis, as shown by skin biopsy and noninvasive imaging analyses. Although the magnitude tends to be smaller, retinol induces similar changes in skin histology, and gene and protein expression as compared to retinoic acid application. These results were confirmed by the significant facial anti-aging effect observed in the retinol efficacy clinical study.
Collapse
Affiliation(s)
- Rong Kong
- Research and Development, Amway Corporation, Ada, MI, USA
| | - Yilei Cui
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Gary J Fisher
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaojuan Wang
- Skin Testing Laboratory, Amway China Research and Development Centre, Shanghai, China
| | - Yinbei Chen
- Skin Testing Laboratory, Amway China Research and Development Centre, Shanghai, China
| | | | - Gopa Majmudar
- Research and Development, Amway Corporation, Ada, MI, USA
| |
Collapse
|
33
|
Zhou Y, Li G, Zhu L, Li C, Cornelius LA, Wang LV. Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. JOURNAL OF BIOPHOTONICS 2015; 8:961-967. [PMID: 25676898 PMCID: PMC4530093 DOI: 10.1002/jbio.201400143] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 05/04/2023]
Abstract
We applied a linear-array-based photoacoustic probe to detect melanin-containing melanoma tumor depth and volume in nude mice in vivo. This system can image melanomas at five frames per second (fps), which is much faster than our previous handheld single transducer system (0.1 fps). We first theoretically show that, in addition to the higher frame rate, almost the entire boundary of the melanoma can be detected by the linear-array-based probe, while only the horizontal boundary could be detected by the previous system. Then we demonstrate the ability of this linear-array-based system in measuring both the depth and volume of melanoma through phantom, ex vivo, and in vivo experiments. The volume detection ability also enables us to accurately calculate the rate of growth of the tumor, which is an important parameter in quantifying the tumor activity. Our results show that this system can be used for clinical melanoma diagnosis and treatment in humans at the bedside. Linear-array-based PA images of melanoma acquired in vivo on day 3 (a) and day 6 (b).
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Guo Li
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Liren Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Chiye Li
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, 660 S. Euclid, Campus Box 8123, St. Louis, Missouri 63110
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
- Correspondence:
| |
Collapse
|
34
|
Filho M, Ma Z, Tavares JMRS. A Review of the Quantification and Classification of Pigmented Skin Lesions: From Dedicated to Hand-Held Devices. J Med Syst 2015; 39:177. [PMID: 26411929 DOI: 10.1007/s10916-015-0354-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022]
Abstract
In recent years, the incidence of skin cancer cases has risen, worldwide, mainly due to the prolonged exposure to harmful ultraviolet radiation. Concurrently, the computer-assisted medical diagnosis of skin cancer has undergone major advances, through an improvement in the instrument and detection technology, and the development of algorithms to process the information. Moreover, because there has been an increased need to store medical data, for monitoring, comparative and assisted-learning purposes, algorithms for data processing and storage have also become more efficient in handling the increase of data. In addition, the potential use of common mobile devices to register high-resolution images of skin lesions has also fueled the need to create real-time processing algorithms that may provide a likelihood for the development of malignancy. This last possibility allows even non-specialists to monitor and follow-up suspected skin cancer cases. In this review, we present the major steps in the pre-processing, processing and post-processing of skin lesion images, with a particular emphasis on the quantification and classification of pigmented skin lesions. We further review and outline the future challenges for the creation of minimum-feature, automated and real-time algorithms for the detection of skin cancer from images acquired via common mobile devices.
Collapse
Affiliation(s)
- Mercedes Filho
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Zhen Ma
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
35
|
Gallegos-Hernández JF, Ortiz-Maldonado AL, Minauro-Muñoz GG, Arias-Ceballos H, Hernández-Sanjuan M. [Dermoscopy in cutaneous melanoma]. CIR CIR 2015; 83:107-11. [PMID: 26048570 DOI: 10.1016/j.circir.2015.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND The mortality of cutaneous melanoma has not declined over the past 50 years. The only interventions that can reduce mortality are primary prevention and early diagnosis, and the dermoscopic evaluation is essential to achieve this. Dermoscopy identifies characteristics of melanoma that would go unnoticed to the naked eye. The aim of this paper is to report the most frequent dermoscopic findings in patients diagnosed with in situ and invasive melanoma. MATERIAL AND METHODS An observational and retrospective study of contact dermoscopy was performed using LED DermliteTM and camera DermliteTM dermoscope. The findings evaluated were: asymmetry in two axes, association of colours, lack of pigment, irregular points, atypical network, pseudopods, blue veil, ulceration, and peri-lesional pink ring. These dermoscopic findings were compared with the histological diagnosis. RESULTS The study included 65 patients with cutaneous melanoma; 10 in situ, and 55 invasive. The mean Breslow in invasive melanoma was 3 mm. Most patients (35) had localization in extremities. In all patients, the most frequent dermoscopic finding was asymmetry in two axes, followed by association of two or more colours; in melanoma in situ, asymmetry was the most frequent, followed by atypical-irregular points. In invasive melanoma asymmetry in two axes, the association of two or more colours, and pseudopods, were the most frequent findings. CONCLUSION Asymmetry in two axes is the most common dermoscopic finding in in situ and invasive melanoma. The presence of two or more colours in a pigmented lesion should be suspected in an invasive melanoma.
Collapse
Affiliation(s)
- José Francisco Gallegos-Hernández
- Departamento de Tumores de Cabeza, Cuello y Piel, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D. F., México.
| | - Alma Lilia Ortiz-Maldonado
- Departamento de Tumores de Cabeza, Cuello y Piel, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D. F., México
| | - Gerardo Gabriel Minauro-Muñoz
- Departamento de Tumores de Cabeza, Cuello y Piel, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D. F., México
| | - Héctor Arias-Ceballos
- Departamento de Tumores de Cabeza, Cuello y Piel, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D. F., México
| | - Martín Hernández-Sanjuan
- Departamento de Tumores de Cabeza, Cuello y Piel, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, D. F., México
| |
Collapse
|
36
|
Perspectivas de futuro en láseres, nuevas tecnologías y nanotecnología en dermatología. ACTAS DERMO-SIFILIOGRAFICAS 2015; 106:168-79. [DOI: 10.1016/j.ad.2014.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 02/06/2023] Open
|
37
|
Future Prospects in Dermatologic Applications of Lasers, Nanotechnology, and Other New Technologies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.adengl.2015.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Vogler N, Heuke S, Bocklitz TW, Schmitt M, Popp J. Multimodal Imaging Spectroscopy of Tissue. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:359-87. [PMID: 26070717 DOI: 10.1146/annurev-anchem-071114-040352] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Advanced optical imaging technologies have experienced increased visibility in medical research, as they allow for a label-free and nondestructive investigation of tissue in either an excised state or living organisms. In addition to a multitude of ex vivo studies proving the applicability of these optical imaging approaches, a transfer of various modalities toward in vivo diagnosis is currently in progress as well. Furthermore, combining optical imaging techniques, referred to as multimodal imaging, allows for an improved diagnostic reliability due to the complementary nature of retrieved information. In this review, we provide a summary of ongoing multifold efforts in multimodal tissue imaging and focus in particular on in vivo applications for medical diagnosis. We also discuss the advantages and potential limitations of the imaging methods and outline opportunities for future developments.
Collapse
Affiliation(s)
- Nadine Vogler
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, 07743 Jena, Germany;
| | | | | | | | | |
Collapse
|
39
|
Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. Handheld photoacoustic microscopy to detect melanoma depth in vivo. OPTICS LETTERS 2014; 39:4731-4. [PMID: 25121860 PMCID: PMC4160823 DOI: 10.1364/ol.39.004731] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed handheld photoacoustic microscopy (PAM) to detect melanoma and determine tumor depth in nude mice in vivo. Compared to our previous PAM system for melanoma imaging, a new light delivery mechanism is introduced to improve light penetration. We show that melanomas with 4.1 and 3.7 mm thicknesses can be successfully detected in phantom and in in vivo experiments, respectively. With its deep melanoma imaging ability and handheld design, this system can be tested for clinical melanoma diagnosis, prognosis, and surgical planning for patients at the bedside.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Wenxin Xing
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, 660 S. Euclid, Campus Box 8123, St. Louis, Missouri 63110
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| |
Collapse
|
40
|
Zackrisson S, van de Ven SMWY, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res 2014; 74:979-1004. [PMID: 24514041 DOI: 10.1158/0008-5472.can-13-2387] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoacoustic imaging (PAI) has the potential for real-time molecular imaging at high resolution and deep inside the tissue, using nonionizing radiation and not necessarily depending on exogenous imaging agents, making this technique very promising for a range of clinical applications. The fact that PAI systems can be made portable and compatible with existing imaging technologies favors clinical translation even more. The breadth of clinical applications in which photoacoustics could play a valuable role include: noninvasive imaging of the breast, sentinel lymph nodes, skin, thyroid, eye, prostate (transrectal), and ovaries (transvaginal); minimally invasive endoscopic imaging of gastrointestinal tract, bladder, and circulating tumor cells (in vivo flow cytometry); and intraoperative imaging for assessment of tumor margins and (lymph node) metastases. In this review, we describe the basics of PAI and its recent advances in biomedical research, followed by a discussion of strategies for clinical translation of the technique.
Collapse
Affiliation(s)
- S Zackrisson
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Diagnostic Radiology, Department of Clinical Sciences in Malmö, Lund University, Sweden
| | - S M W Y van de Ven
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - S S Gambhir
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Danialan R, Gopinath A, Phelps A, Murphy M, Grant-Kels JM. Accurate identification of melanoma tumor margins: a review of the literature. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
García Arroyo JL, García Zapirain B. Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comput Biol Med 2014; 44:144-57. [DOI: 10.1016/j.compbiomed.2013.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/29/2022]
|
43
|
Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging. Healthcare (Basel) 2013; 1:64-83. [PMID: 27429131 PMCID: PMC4934506 DOI: 10.3390/healthcare1010064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) belongs to the most frequent human neoplasms. Its exposed location facilitates a fast ambulant treatment. However, in the clinical practice far more lesions are removed than necessary, due to the lack of an efficient pre-operational examination procedure: Standard imaging methods often do not provide a sufficient spatial resolution. The demand for an efficient in vivo imaging technique might be met in the near future by non-linear microscopy. As a first step towards this goal, the appearance of NMSC in various microspectroscopic modalities has to be defined and approaches have to be derived to distinguish healthy skin from NMSC using non-linear optical microscopy. Therefore, in this contribution the appearance of ex vivo NMSC in a combination of coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG) and two photon excited fluorescence (TPEF) imaging—referred as multimodal imaging—is described. Analogous to H&E staining, an overview of the distinct appearances and features of basal cell and squamous cell carcinoma in the complementary modalities is derived, and is expected to boost in vivo studies of this promising technological approach.
Collapse
|
44
|
Heuke S, Vogler N, Meyer T, Akimov D, Kluschke F, Röwert-Huber HJ, Lademann J, Dietzek B, Popp J. Multimodal mapping of human skin. Br J Dermatol 2013; 169:794-803. [DOI: 10.1111/bjd.12427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2013] [Indexed: 01/20/2023]
Affiliation(s)
- S. Heuke
- Institute of Photonic Technology Jena; Albert-Einstein-Straße 9 07745 Jena Germany
| | - N. Vogler
- Institute of Photonic Technology Jena; Albert-Einstein-Straße 9 07745 Jena Germany
| | - T. Meyer
- Institute of Photonic Technology Jena; Albert-Einstein-Straße 9 07745 Jena Germany
| | - D. Akimov
- Institute of Photonic Technology Jena; Albert-Einstein-Straße 9 07745 Jena Germany
| | - F. Kluschke
- Department of Dermatology, Venerology and Allergology; Charité - Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Germany
| | - H.-J. Röwert-Huber
- Department of Dermatology, Venerology and Allergology; Charité - Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Germany
| | - J. Lademann
- Department of Dermatology, Venerology and Allergology; Charité - Universitätsmedizin Berlin; Charitéplatz 1 10117 Berlin Germany
| | - B. Dietzek
- Institute of Photonic Technology Jena; Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich-Schiller-University Jena; Helmholtzweg 4 07743 Jena Germany
| | - J. Popp
- Institute of Photonic Technology Jena; Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich-Schiller-University Jena; Helmholtzweg 4 07743 Jena Germany
| |
Collapse
|
45
|
|
46
|
Computerized analysis of pigmented skin lesions: A review. Artif Intell Med 2012; 56:69-90. [DOI: 10.1016/j.artmed.2012.08.002] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/02/2012] [Accepted: 08/19/2012] [Indexed: 11/20/2022]
|
47
|
Abstract
'The big C', a common euphemism for cancer, has loomed large on the collective psyche of the mankind for centuries, not least because of the relative dearth of effective treatment against this disease but its ability to relentlessly evade them and come back to haunt us. However, the struggle against cancer took a decisive turn in 1971 when a relentless campaigning by health activists eventually led to signing of the National Cancer Act in the United States, an unprecedented event in the history of diseases. As we commemorate the 40th anniversary of the signing of that historic legislation, an assessment of the progress against cancer would naturally help us understand how we have fared so far in this struggle and guide us in our efforts to re-strategize and re-deploy our limited resources to their best use against this immortal enemy.
Collapse
Affiliation(s)
- A K Tiwari
- Department of Internal Medicine, NorthShore University HealthSystem, Evanston, IL, USA.
| | | |
Collapse
|
48
|
Jaimes N, Scope A, Welzel J, Wang KX, Lee DA, Siegel DM, Marghoob AA. White Globules in Melanocytic Neoplasms: In Vivo and Ex Vivo Characteristics. Dermatol Surg 2012; 38:128-32. [DOI: 10.1111/j.1524-4725.2011.02198.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Dalimier E, Salomon D. Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging. Dermatology 2012; 224:84-92. [DOI: 10.1159/000337423] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
|
50
|
Aubry S, Leclerc O, Tremblay L, Rizcallah E, Croteau F, Orfali C, Lepage M. 7-tesla MR imaging of non-melanoma skin cancer samples: correlation with histopathology. Skin Res Technol 2011; 18:413-20. [PMID: 22118136 DOI: 10.1111/j.1600-0846.2011.00587.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE The aims of this study were to compare in vitro magnetic resonance imaging (MRI) characteristics of keratinocytic skin cancer assessed by a 7-tesla (T) MRI with histopathology, and to describe MRI features of skin tumors. METHODS This prospective study included 30 skin tumors treated by surgery. MR images of skin samples were acquired on a 7-T MR scanner using a fast spin-echo T(2)-weighted and an isotropic 3D gradient-echo T(1)-weighted sequence. Length, width, Breslow index and margins of the lesions were measured. The presence or absence of the following was noted: healthy margins, ulceration of the dermis, in situ lesions, superficial and deep dermis involvement, subcutaneous involvement, superficial and intratumoral keratin. MR results were compared to histopathology. RESULTS Interclass correlation coefficient (ICC) was very good for the evaluation of the width (ICC = 0.86) and Breslow index (ICC = 0.87). The ICC was good for the evaluation of the margins (ICC = 0.70) but for length, ICC was lower (ICC = 0.67). Mean bias between MRI and histopathology was inferior to 1 mm for width, Breslow index and margin. CONCLUSION In vitro 7-T MRI of keratinocytic skin cancer allows delineation of lesions with good correlation with histopathology. After in vivo confirmation it could have a diagnostic role regarding the delineation of surgical margins but its actual limitations prevent its practical adoption at this time.
Collapse
Affiliation(s)
- Sébastien Aubry
- Department of Radiology, University Hospital of Besançon, Besançon, France.
| | | | | | | | | | | | | |
Collapse
|