1
|
Collombat J, Quadroni M, Douet V, Pipitone R, Longoni F, Kessler F. Arabidopsis conditional photosynthesis mutants abc1k1 and var2 accumulate partially processed thylakoid preproteins and are defective in chloroplast biogenesis. Commun Biol 2025; 8:111. [PMID: 39843554 PMCID: PMC11754785 DOI: 10.1038/s42003-025-07497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis. Some of these must be inserted in or transported across the thylakoid membrane into the thylakoid lumen. They are synthesized in the cytoplasm with cleavable targeting sequences and the lumenal ones have bi-partite targeting sequences (first for the chloroplast envelope, second for the thylakoid membrane). Cleavage of these peptides is required to establish photosynthesis and a critical step of chloroplast biogenesis. We employ a combination of Western blotting and mass spectrometry to analyze proteins in var2 and abc1k1. Under red light, var2 and abc1k1 accumulated incompletely cleaved processing intermediates of thylakoid proteins. These findings correlated with colorless cotyledons, and defects in both chloroplast morphology and photosynthesis. Together the results provide evidence for the requirement of active photosynthesis for processing of photosystem-associated thylakoid proteins and concomitantly progression of chloroplast biogenesis.
Collapse
Affiliation(s)
- Joy Collombat
- Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility (PAF), Université de Lausanne, 1015, Lausanne, Switzerland
| | - Véronique Douet
- Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Thermo Fisher, 39 rue d'Armagnac, 33800, Bordeaux, France
| | - Fiamma Longoni
- Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Felix Kessler
- Institute of biology, Plant Physiology Laboratory, Université de Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
2
|
Yang W, Gao S, Bao M, Li X, Liu Z, Wang G. HSP70A promotes the photosynthetic activity of marine diatom Phaeodactylum tricornutum under high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2085-2093. [PMID: 38525917 DOI: 10.1111/tpj.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
With global climate change, the high-temperature environment has severely impacted the community structure and phenotype of marine diatoms. Phaeodactylum tricornutum, a model species of marine diatom, is sensitive to high temperature, which grow slowly under high temperature. However, the regulatory mechanism of P. tricornutum in response to high-temperature is still unclear. In this study, we found that the expression level of the HSP70A in the wild type (WT) increased 28 times when exposed to high temperature (26°C) for 1 h, indicating that HSP70A plays a role in high temperature in P. tricornutum. Furthermore, overexpression and interference of HSP70A have great impact on the exponential growth phase of P. tricornutum under 26°C. Moreover, the results of Co-immunoprecipitation (Co-IP) suggested that HSP70A potentially involved in the correct folding of the photosynthetic system-related proteins (D1/D2), preventing aggregation. The photosynthetic activity results demonstrated that overexpression of HSP70A improves non-photochemical quenching (NPQ) activity under high-temperature stress. These results reveal that HSP70A regulates the photosynthetic activity of P. tricornutum under high temperatures. This study not only helps us to understand the photosynthetic activity of marine diatoms to high temperature but also provides a molecular mechanism for HSP70A in P. tricornutum under high-temperature stress.
Collapse
Affiliation(s)
- Wenting Yang
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mengjiao Bao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xin Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
4
|
Ichikawa S, Ishikawa K, Miyakawa H, Kodama Y. Live-cell imaging of the chloroplast outer envelope membrane using fluorescent dyes. PLANT DIRECT 2022; 6:e462. [PMID: 36398034 PMCID: PMC9666008 DOI: 10.1002/pld3.462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Chloroplasts are organelles composed of sub-organellar compartments-stroma, thylakoids, and starch granules-and are surrounded by outer and inner envelope membranes (OEM and IEM, respectively). The chloroplast OEM and IEM play key roles not only as a barrier separating the chloroplast components from the cytosol but also in the interchange of numerous metabolites and proteins between the chloroplast interior and the cytosol. Fluorescent protein markers for the chloroplast OEM have been widely used to visualize the outermost border of chloroplasts. However, the use of marker proteins requires an established cellular genetic transformation method, which limits the plant species in which marker proteins can be used. Moreover, the high accumulation of OEM marker proteins often elicits abnormal morphological phenotypes of the OEM. Because the OEM can currently only be visualized using exogenous marker proteins, the behaviors of the chloroplast and/or its OEM remain unknown in wild-type cells of various plant species. Here, we visualized the OEM using live-cell staining with the fluorescent dyes rhodamine B and Nile red in several plant species, including crops. We propose rhodamine B and Nile red as new tools for visualizing the chloroplast OEM in living plant cells that do not require genetic transformation. Significance Statement We established a live-cell imaging method to visualize the chloroplast outer envelope membrane by staining living cells with fluorescent dyes. This method does not require genetic transformation and allows the observation of the chloroplast outer envelope membrane in various plant species.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| | - Kazuya Ishikawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| | - Yutaka Kodama
- Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
- Graduate School of Regional Development and CreativityUtsunomiya UniversityTochigiJapan
| |
Collapse
|
5
|
Wang Q, Yue J, Zhang C, Yan J. Split-Ubiquitin Two-Hybrid Screen for Proteins Interacting with slToc159-1 and slToc159-2, Two Chloroplast Preprotein Import Receptors in Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2022; 11:2923. [PMID: 36365376 PMCID: PMC9654457 DOI: 10.3390/plants11212923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The post-translational import of nuclear-encoded chloroplast preproteins is critical for chloroplast biogenesis, and the Toc159 family of proteins is the receptor for this process. Our previous work identified and analyzed the Toc GTPase in tomato; however, the tomato-specific transport substrate for Toc159 is still unknown, which limits the study of the function of the TOC receptor in tomato. In this study, we expand the number of preprotein substrates of slToc159 receptor family members using slToc159-1 and slToc159-2 as bait via a split-ubiquitin yeast two-hybrid membrane system. Forty-one specific substrates were identified in tomato for the first time. Using slToc159-1GM and slToc159-2GM as bait, we compared the affinity of the two bait proteins, with and without the A domain, to the precursor protein, which suggested that the A domain endowed the proproteins with subclass specificity. The presence of the A domain enhanced the interaction intensity of slToc159-1 with the photosynthetic preprotein but decreased the interaction intensity of slToc159-2 with the photosynthetic preprotein. Similarly, the presence of the A domain also altered the affinity of slToc159 to non-photosynthetic preproteins. Bimolecular fluorescence complementation (BiFC) analysis showed that A domain had the ability to recognize the preprotein, and the interaction occurred in the chloroplast. Further, the localization of the A domain in Arabidopsis protoplasts showed that the A domain did not contain chloroplast membrane targeting signals. Our data demonstrate the importance of a highly non-conserved A domain, which endows the slToc159 receptor with specificity for different protein types. However, the domain containing the information on targeting the chloroplast needs further study.
Collapse
Affiliation(s)
- Qi Wang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Vegetable Research Academy, Guizhou University, Guiyang 550025, China
| | - Jiang Yue
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Vegetable Research Academy, Guizhou University, Guiyang 550025, China
| | - Chaozhong Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Vegetable Research Academy, Guizhou University, Guiyang 550025, China
| | - Jianmin Yan
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Vegetable Research Academy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Li Y, Jian Y, Mao Y, Meng F, Shao Z, Wang T, Zheng J, Wang Q, Liu L. "Omics" insights into plastid behavior toward improved carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1001756. [PMID: 36275568 PMCID: PMC9583013 DOI: 10.3389/fpls.2022.1001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yue Jian
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yuanyu Mao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Pipitone R, Eicke S, Pfister B, Glauser G, Falconet D, Uwizeye C, Pralon T, Zeeman SC, Kessler F, Demarsy E. A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis. eLife 2021; 10:e62709. [PMID: 33629953 PMCID: PMC7906606 DOI: 10.7554/elife.62709] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling 'Structure Establishment Phase' followed by a 'Chloroplast Proliferation Phase' during cell expansion. Moreover, these data detail thylakoid membrane expansion during de-etiolation at the seedling level and the relative contribution and differential regulation of proteins and lipids at each developmental stage. Altogether, we establish a roadmap for chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.
Collapse
Affiliation(s)
- Rosa Pipitone
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtelSwitzerland
| | - Denis Falconet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCVGrenobleFrance
| | - Clarisse Uwizeye
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCVGrenobleFrance
| | - Thibaut Pralon
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Emilie Demarsy
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
- Department of Botany and Plant Biology, University of GenevaGenevaSwitzerland
| |
Collapse
|
8
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
10
|
|
11
|
Ling Q, Jarvis P. Functions of plastid protein import and the ubiquitin-proteasome system in plastid development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:939-48. [PMID: 25762164 DOI: 10.1016/j.bbabio.2015.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 02/05/2023]
Abstract
Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from their well-known functions in photosynthesis, they have roles in processes as diverse as signal sensing, fruit ripening, and seed development. As most plastid proteins are produced in the cytosol, plastids have developed dedicated translocon machineries for protein import, comprising the TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes. Multiple lines of evidence reveal that protein import via the TOC complex is actively regulated, based on the specific interplay between distinct receptor isoforms and diverse client proteins. In this review, we summarize recent advances in our understanding of protein import regulation, particularly in relation to control by the ubiquitin-proteasome system (UPS), and how such regulation changes plastid development. The diversity of plastid import receptors (and of corresponding preprotein substrates) has a determining role in plastid differentiation and interconversion. The controllable turnover of TOC components by the UPS influences the developmental fate of plastids, which is fundamentally linked to plant development. Understanding the mechanisms by which plastid protein import is controlled is critical to the development of breakthrough approaches to increase the yield, quality and stress tolerance of important crop plants, which are highly dependent on plastid development. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Qihua Ling
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
12
|
Demarsy E, Lakshmanan AM, Kessler F. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. FRONTIERS IN PLANT SCIENCE 2014; 5:483. [PMID: 25278954 PMCID: PMC4166117 DOI: 10.3389/fpls.2014.00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/01/2014] [Indexed: 05/25/2023]
Abstract
Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.
Collapse
Affiliation(s)
| | | | - Felix Kessler
- *Correspondence: Felix Kessler, Laboratory of Plant Physiology, Université de Neuchâtel, UniMail, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland e-mail:
| |
Collapse
|
13
|
Dutta S, Teresinski HJ, Smith MD. A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 2014; 9:e95026. [PMID: 24736607 PMCID: PMC3988174 DOI: 10.1371/journal.pone.0095026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Howard J Teresinski
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Arabidopsis thaliana Tic110, involved in chloroplast protein translocation, contains at least fourteen highly divergent heat-like repeated motifs. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0310-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ling Q, Jarvis P. Dynamic regulation of endosymbiotic organelles by ubiquitination. Trends Cell Biol 2013; 23:399-408. [DOI: 10.1016/j.tcb.2013.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 02/04/2023]
|
16
|
Kasmati AR, Töpel M, Khan NZ, Patel R, Ling Q, Karim S, Aronsson H, Jarvis P. Evolutionary, molecular and genetic analyses of Tic22 homologues in Arabidopsis thaliana chloroplasts. PLoS One 2013; 8:e63863. [PMID: 23675512 PMCID: PMC3652856 DOI: 10.1371/journal.pone.0063863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
The Tic22 protein was previously identified in pea as a putative component of the chloroplast protein import apparatus. It is a peripheral protein of the inner envelope membrane, residing in the intermembrane space. In Arabidopsis, there are two Tic22 homologues, termed atTic22-III and atTic22-IV, both of which are predicted to localize in chloroplasts. These two proteins defined clades that are conserved in all land plants, which appear to have evolved at a similar rates since their separation >400 million years ago, suggesting functional conservation. The atTIC22-IV gene was expressed several-fold more highly than atTIC22-III, but the genes exhibited similar expression profiles and were expressed throughout development. Knockout mutants lacking atTic22-IV were visibly normal, whereas those lacking atTic22-III exhibited moderate chlorosis. Double mutants lacking both isoforms were more strongly chlorotic, particularly during early development, but were viable and fertile. Double-mutant chloroplasts were small and under-developed relative to those in wild type, and displayed inefficient import of precursor proteins. The data indicate that the two Tic22 isoforms act redundantly in chloroplast protein import, and that their function is non-essential but nonetheless required for normal chloroplast biogenesis, particularly during early plant development.
Collapse
Affiliation(s)
- Ali Reza Kasmati
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Mats Töpel
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Nadir Zaman Khan
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Ramesh Patel
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Qihua Ling
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Sazzad Karim
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Henrik Aronsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Paul Jarvis
- University of Leicester, Department of Biology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:157-79. [PMID: 23548781 PMCID: PMC3641200 DOI: 10.1104/pp.113.215699] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 05/18/2023]
Abstract
The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed.
Collapse
|
18
|
Ma X, Cline K. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. THE PLANT CELL 2013; 25:999-1015. [PMID: 23512851 PMCID: PMC3634702 DOI: 10.1105/tpc.112.107409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 05/17/2023]
Abstract
Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.
Collapse
Affiliation(s)
- Xianyue Ma
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
19
|
Ling Q, Huang W, Baldwin A, Jarvis P. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 2012; 338:655-9. [PMID: 23118188 DOI: 10.1126/science.1225053] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of chloroplasts and other plastids depends on the import of thousands of nucleus-encoded proteins from the cytosol. Import is initiated by TOC (translocon at the outer envelope of chloroplasts) complexes in the plastid outer membrane that incorporate multiple, client-specific receptors. Modulation of import is thought to control the plastid's proteome, developmental fate, and functions. Using forward genetics, we identified Arabidopsis SP1, which encodes a RING-type ubiquitin E3 ligase of the chloroplast outer membrane. The SP1 protein associated with TOC complexes and mediated ubiquitination of TOC components, promoting their degradation. Mutant sp1 plants performed developmental transitions that involve plastid proteome changes inefficiently, indicating a requirement for reorganization of the TOC machinery. Thus, the ubiquitin-proteasome system acts on plastids to control their development.
Collapse
Affiliation(s)
- Qihua Ling
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | |
Collapse
|
20
|
Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:332-40. [PMID: 22521451 DOI: 10.1016/j.bbamcr.2012.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
21
|
Huang W, Ling Q, Bédard J, Lilley K, Jarvis P. In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane. PLANT PHYSIOLOGY 2011; 157:147-59. [PMID: 21757633 PMCID: PMC3165866 DOI: 10.1104/pp.111.181891] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 05/12/2023]
Abstract
Two different, essential Omp85 (Outer membrane protein, 85 kD)-related proteins exist in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts: Toc75 (Translocon at the outer envelope membrane of chloroplasts, 75 kD), encoded by atTOC75-III; and OEP80 (Outer Envelope Protein, 80 kD), encoded by AtOEP80/atTOC75-V. The atToc75-III protein is closely related to the originally identified pea (Pisum sativum) Toc75 protein, and it forms a preprotein translocation channel during chloroplast import; the AtOEP80 protein is considerably more divergent from pea Toc75, and its role is unknown. As knockout mutations for atTOC75-III and AtOEP80 are embryo lethal, we employed a dexamethasone-inducible RNA interference strategy (using the pOpOff2 vector) to conduct in vivo studies on the roles of these two proteins in older, postembryonic plants. We conducted comparative studies on plants silenced for atToc75-III (atToc75-III↓) or AtOEP80 (AtOEP80↓), as well as additional studies on a stable, atToc75-III missense allele (toc75-III-3/modifier of altered response to gravity1), and our results indicated that both proteins are important for chloroplast biogenesis at postembryonic stages of development. Moreover, both are important for photosynthetic and nonphotosynthetic development, albeit to different degrees: atToc75-III↓ phenotypes were considerably more severe than those of AtOEP80↓. Qualitative similarity between the atToc75-III↓ and AtOEP80↓ phenotypes may be linked to deficiencies in atToc75-III and other TOC proteins in AtOEP80↓ plants. Detailed analysis of atToc75-III↓ plants, by electron microscopy, immunoblotting, quantitative proteomics, and protein import assays, indicated that these plants are defective in relation to the biogenesis of both photosynthetic and nonphotosynthetic plastids and preproteins, confirming the earlier hypothesis that atToc75-III functions promiscuously in different substrate-specific import pathways.
Collapse
Affiliation(s)
| | | | | | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (W.H., Q.L., J.B., P.J.); Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom (K.L.)
| |
Collapse
|
22
|
Trösch R, Jarvis P. The stromal processing peptidase of chloroplasts is essential in Arabidopsis, with knockout mutations causing embryo arrest after the 16-cell stage. PLoS One 2011; 6:e23039. [PMID: 21857988 PMCID: PMC3156710 DOI: 10.1371/journal.pone.0023039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
Stromal processing peptidase (SPP) is a metalloendopeptidase located in the stroma of chloroplasts, and it is responsible for the cleavage of transit peptides from preproteins upon their import into the organelle. Two independent mutant Arabidopsis lines with T-DNA insertions in the SPP gene were analysed (spp-1 and spp-2). For both lines, no homozygous mutant plants could be detected, and the segregating progeny of spp heterozygotes contained heterozygous and wild-type plants in a ratio of 2∶1. The siliques of heterozygous spp-1 and spp-2 plants contained many aborted seeds, at a frequency of ∼25%, suggesting embryo lethality. By contrast, transmission of the spp mutations through the male and female gametes was found to be normal, and so gametophytic effects could be ruled out. To further elucidate the timing of the developmental arrest, mutant and wild-type seeds were cleared and analysed by Nomarski microscopy. A significant proportion (∼25%) of the seeds in mutant siliques exhibited delayed embryogenesis compared to those in wild type. Moreover, the mutant embryos never progressed normally beyond the 16-cell stage, with cell divisions not completing properly thereafter. Heterozygous spp mutant plants were phenotypically indistinguishable from the wild type, indicating that the spp knockout mutations are completely recessive and suggesting that one copy of the SPP gene is able to produce sufficient SPP protein for normal development under standard growth conditions.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, University of Leicester, Leicester, United Kingdom
| | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Kasmati AR, Töpel M, Patel R, Murtaza G, Jarvis P. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:877-89. [PMID: 21395885 DOI: 10.1111/j.1365-313x.2011.04551.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Tic20 protein was identified in pea (Pisum sativum) as a component of the chloroplast protein import apparatus. In Arabidopsis, there are four Tic20 homologues, termed atTic20-I, atTic20-IV, atTic20-II and atTic20-V, all with predicted topological similarity to the pea protein (psTic20). Analysis of Tic20 sequences from many species indicated that they are phylogenetically unrelated to mitochondrial Tim17-22-23 proteins, and that they form two evolutionarily conserved subgroups [characterized by psTic20/atTic20-I/IV (Group 1) and atTic20-II/V (Group 2)]. Like psTic20, all four Arabidopsis proteins have a predicted transit peptide consistent with targeting to the inner envelope. Envelope localization of each one was confirmed by analysis of YFP fusions. RT-PCR and microarray data revealed that the four genes are expressed throughout development. To assess the functional significance of the genes, T-DNA mutants were identified. Homozygous tic20-I plants had an albino phenotype that correlated with abnormal chloroplast development and reduced levels of chloroplast proteins. However, knockouts for the other three genes were indistinguishable from the wild type. To test for redundancy, double and triple mutants were studied; apart from those involving tic20-I, none was distinguishable from the wild type. The tic20-I tic20-II and tic20-I tic20-V double mutants were albino, like the corresponding tic20-I parent. In contrast, tic20-I tic20-IV double homozygotes could not be identified, due to gametophytic and embryonic lethality. Redundancy between atTic20-I and atTic20-IV was confirmed by complementation analysis. Thus, atTic20-I and atTic20-IV are the major functional Tic20 isoforms in Arabidopsis, with partially overlapping roles. While the Group 2 proteins have been conserved over approximately 1.2 billion (1.2 × 10(9) ) years, they are not essential for normal development.
Collapse
Affiliation(s)
- Ali Reza Kasmati
- Department of Biology, University of Leicester, University Road, Leicester LE17RH, UK
| | | | | | | | | |
Collapse
|
24
|
Retrograde signaling pathway from plastid to nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:167-204. [PMID: 21875565 DOI: 10.1016/b978-0-12-386037-8.00002-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plastids are a diverse group of organelles found in plants and some parasites. Because genes encoding plastid proteins are divided between the nuclear and plastid genomes, coordinated expression of genes in two separate genomes is indispensable for plastid function. To coordinate nuclear gene expression with the functional or metabolic state of plastids, plant cells have acquired a retrograde signaling pathway from plastid to nucleus, also known as the plastid signaling pathway. To date, several metabolic processes within plastids have been shown to affect the expression of nuclear genes. Recent progress in this field has also revealed that the plastid signaling pathway interacts and shares common components with other intracellular signaling pathways. This review summarizes our current knowledge on retrograde signaling from plastid to nucleus in plant cells and its role in plant growth and development.
Collapse
|
25
|
Samol I, Rossig C, Buhr F, Springer A, Pollmann S, Lahroussi A, von Wettstein D, Reinbothe C, Reinbothe S. The Outer Chloroplast Envelope Protein OEP16-1 for Plastid Import of NADPH:Protochlorophyllide Oxidoreductase A in Arabidopsis thaliana. ACTA ACUST UNITED AC 2010; 52:96-111. [DOI: 10.1093/pcp/pcq177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Aronsson H, Combe J, Patel R, Agne B, Martin M, Kessler F, Jarvis P. Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:297-311. [PMID: 20444229 DOI: 10.1111/j.1365-313x.2010.04242.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The atToc33 protein is one of several pre-protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis-related pre-proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild-type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159-deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | - Jonathan Combe
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ramesh Patel
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Birgit Agne
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | - Meryll Martin
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | - Felix Kessler
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | - Paul Jarvis
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
27
|
Liu D, Gong Q, Ma Y, Li P, Li J, Yang S, Yuan L, Yu Y, Pan D, Xu F, Wang NN. cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1655-69. [PMID: 20194926 DOI: 10.1093/jxb/erq033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The endosymbiont-derived Sec-dependent protein sorting pathway is essential for protein import into the thylakoid lumen and is important for the proper functioning of the chloroplast. Two loss-of-function mutants of cpSecA, the ATPase subunit of the chloroplast Sec translocation machinery, were analysed in Arabidopsis. The homozygous mutants were albino and seedling lethal under autotrophic conditions and remained dwarf and infertile with an exogenous carbon supply. They were subject to oxidative stress and accumulated superoxide under normal lighting conditions. Electron microscopy revealed that the chloroplast of the mutants had underdeveloped thylakoid structures. Histochemical GUS assay of the AtcpSecA::GUS transgenic plants confirmed that AtcpSecA was expressed in green organs in a light-inducible way. Real-time RT-PCR and microarray analysis revealed repressed transcription of nucleus- and chloroplast- encoded subunits of photosynthetic complexes, and induced transcription of chloroplast protein translocation machinery and mitochondrion-encoded respiratory complexes in the mutants. It is inferred that AtcpSecA plays an essential role in chloroplast biogenesis, the absence of which triggered a retrograde signal, eventually leading to a reprogramming of chloroplast and mitochondrial gene expression.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chloroplast Proteins
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Oligonucleotide Array Sequence Analysis
- Oxidative Stress/genetics
- Oxidative Stress/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Plants, Genetically Modified/ultrastructure
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Thylakoids/enzymology
- Thylakoids/ultrastructure
Collapse
Affiliation(s)
- Dong Liu
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Olinares PDB, Ponnala L, van Wijk KJ. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol Cell Proteomics 2010; 9:1594-615. [PMID: 20423899 DOI: 10.1074/mcp.m000038-mcp201] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To characterize MDa-sized macromolecular chloroplast stroma protein assemblies and to extend coverage of the chloroplast stroma proteome, we fractionated soluble chloroplast stroma in the non-denatured state by size exclusion chromatography with a size separation range up to approximately 5 MDa. To maximize protein complex stability and resolution of megadalton complexes, ionic strength and composition were optimized. Subsequent high accuracy tandem mass spectrometry analysis (LTQ-Orbitrap) identified 1081 proteins across the complete native mass range. Protein complexes and assembly states above 0.8 MDa were resolved using hierarchical clustering, and protein heat maps were generated from normalized protein spectral counts for each of the size exclusion chromatography fractions; this complemented previous analysis of stromal complexes up to 0.8 MDa (Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., and van Wijk, K. J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114-133). This combined experimental and bioinformatics analyses resolved chloroplast ribosomes in different assembly and functional states (e.g. 30, 50, and 70 S), which enabled the identification of plastid homologues of prokaryotic ribosome assembly factors as well as proteins involved in co-translational modifications, targeting, and folding. The roles of these ribosome-associating proteins will be discussed. Known RNA splice factors (e.g. CAF1/WTF1/RNC1) as well as uncharacterized proteins with RNA-binding domains (pentatricopeptide repeat, RNA recognition motif, and chloroplast ribosome maturation), RNases, and DEAD box helicases were found in various sized complexes. Chloroplast DNA (>3 MDa) was found in association with the complete heteromeric plastid-encoded DNA polymerase complex, and a dozen other DNA-binding proteins, e.g. DNA gyrase, topoisomerase, and various DNA repair enzymes. The heteromeric >or=5-MDa pyruvate dehydrogenase complex and the 0.8-1-MDa acetyl-CoA carboxylase complex associated with uncharacterized biotin carboxyl carrier domain proteins constitute the entry point to fatty acid metabolism in leaves; we suggest that their large size relates to the need for metabolic channeling. Protein annotations and identification data are available through the Plant Proteomics Database, and mass spectrometry data are available through Proteomics Identifications database.
Collapse
|
29
|
Daher Z, Recorbet G, Valot B, Robert F, Balliau T, Potin S, Schoefs B, Dumas-Gaudot E. Proteomic analysis of Medicago truncatula root plastids. Proteomics 2010; 10:2123-37. [DOI: 10.1002/pmic.200900345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling. Biosci Biotechnol Biochem 2010; 74:471-6. [PMID: 20208345 DOI: 10.1271/bbb.90842] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plastids are a diverse group of organelles found in plants and some parasites. Chloroplasts are the archetypical plastids and are present in photosynthetic plant cells. Because most plastid proteins are encoded by the nuclear genome, plastid biogenesis relies on importing these proteins into the plastid. On the other hand, changes in functional or metabolic states of plastids have been known to affect the expression of nuclear genes encoding plastid proteins, and are collectively called "plastid signals." This regulation is also important for maintaining plastid function. This review focuses on the roles of these anterograde and retrograde pathways in plastid biogenesis and environmental adaptation.
Collapse
|
31
|
Shi LX, Theg SM. A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. THE PLANT CELL 2010; 22:205-20. [PMID: 20061551 PMCID: PMC2828695 DOI: 10.1105/tpc.109.071464] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heat shock protein 70s (Hsp70s) are encoded by a multigene family and are located in different cellular compartments. They have broad-ranging functions, including involvement in protein trafficking, prevention of protein aggregation, and assistance in protein folding. Hsp70s work together with their cochaperones, J domain proteins and nucleotide exchange factors (e.g., GrpEs), in a functional cycle of substrate binding and release accompanied by ATP hydrolysis. We have taken advantage of the gene targeting capability of the moss Physcomitrella patens to investigate the functions of chloroplast Hsp70s. We identified four Hsp70 genes and two GrpE cochaperone homolog genes (CGE) in moss that encode chloroplast proteins. Disruption of one of the Hsp70 genes, that for Hsp70-2, caused lethality, and protein import into heat-shocked chloroplasts isolated from temperature-sensitive hsp70-2 mutants was appreciably impaired. Whereas the double cge null mutant was not viable, we recovered a cge1 null/cge2 knock down mutant in which Hsp70-2 was upregulated. Chloroplasts isolated from this mutant demonstrated a defect in protein import. In addition, two different precursors staged as early import intermediates could be immunoprecipitated with an Hsp70-2-specific antibody. This immunoprecipitate also contained Hsp93 and Tic40, indicating that it represents a precursor still in the Toc/Tic translocon. Together, these data indicate that a stromal Hsp70 system plays a crucial role in protein import into chloroplasts.
Collapse
|
32
|
Qiao Y, Li HF, Wong SM, Fan ZF. Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1523-34. [PMID: 19888818 DOI: 10.1094/mpmi-22-12-1523] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato virus X coat protein (PVXCP) is, through communication with host proteins, involved in processes such as virus movement and symptom development. Here, we report that PVXCP also interacts with the precursor of plastocyanin, a protein involved in photosynthesis, both in vitro and in vivo. Yeast two-hybrid analysis indicated that PVXCP interacted with only the plastocyanin transit peptide. In subsequent bimolecular fluorescence complementation assays, both proteins were collocated within chloroplasts. Western blot analyses of chloroplast fractions showed that PVXCP could be detected in the envelope, stroma, and lumen fractions. Transmission electron microscopy demonstrated that grana were dilated in PVX-infected Nicotiana benthamiana. Furthermore, virus-induced gene silencing of plastocyanin by prior infection of N. benthamiana using a Tobacco rattle virus vector reduced the severity of symptoms that developed following subsequent PVX infection as well as the accumulation of PVXCP in isolated chloroplasts. However, PVXCP could not be detected in pea chloroplasts in an in vitro re-uptake assay using the plastocyanin precursor protein. Taken together, these data suggest that PVXCP interacts with the plastocyanin precursor protein and that silencing the expression of this protein leads to reduced PVXCP accumulation in chloroplasts and ameliorates symptom severity in host plants.
Collapse
Affiliation(s)
- Y Qiao
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
33
|
McKinnon DJ, Brzezowski P, Wilson KE, Gray GR. Mitochondrial and chloroplastic targeting signals of NADP+-dependent isocitrate dehydrogenase. Biochem Cell Biol 2009; 87:963-74. [PMID: 19935882 DOI: 10.1139/o09-066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Many mitochondrial and chloroplast proteins are encoded in the nucleus and subsequently imported into the organelles via active protein transport systems. While usually highly specific, some proteins are dual-targeted to both organelles. In tobacco (Nicotiana tabacum L.), the cDNA encoding the mitochondrial isoform of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) contains two translational ATG start sites, suggesting the possibility of tandem targeting signals. In this work, the putative mitochondrial and chloroplastic targeting signals from NADP+-ICDH were fused to a yellow fluorescent protein (YFP) reporter to generate a series of constructs and introduced into tobacco leaves by Agrobacterium-mediated transient transformation. The subsequent sub-cellular locations of the ICDH:YFP fusion proteins were then examined using confocal microscopy. Constructs predicted to be targeted to the chloroplast all localized to the chloroplast. However, this was not the case for all of the constructs that were predicted to be mitochondrial targeted. Although some constructs localized to mitochondria as expected, others appeared to be chloroplast localized. This was attributed to an additional 50 amino acid residues of the mature NADP+-ICDH protein that were present in those constructs, generated from either 'Xanthi' or 'Petit Havana' cultivars of tobacco. The results of this study raise interesting questions regarding the targeting and processing of organellar isoforms of NADP+-ICDH.
Collapse
Affiliation(s)
- David J McKinnon
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | | | | |
Collapse
|
34
|
Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R, Inaba T. Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. PLANT PHYSIOLOGY 2009; 151:1339-53. [PMID: 19726569 PMCID: PMC2773054 DOI: 10.1104/pp.109.145987] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/30/2009] [Indexed: 05/18/2023]
Abstract
Expression of nuclear-encoded plastid proteins and import of those proteins into plastids are indispensable for plastid biogenesis. One possible cellular mechanism that coordinates these two essential processes is retrograde signaling from plastids to the nucleus. However, the molecular details of how this signaling occurs remain elusive. Using the plastid protein import2 mutant of Arabidopsis (Arabidopsis thaliana), which lacks the atToc159 protein import receptor, we demonstrate that the expression of photosynthesis-related nuclear genes is tightly coordinated with their import into plastids. Down-regulation of photosynthesis-related nuclear genes is also observed in mutants lacking other components of the plastid protein import apparatus. Genetic studies indicate that the coordination of plastid protein import and nuclear gene expression is independent of proposed plastid signaling pathways such as the accumulation of Mg-protoporphyrin IX and the activity of ABA INSENSITIVE4 (ABI4). Instead, it may involve GUN1 and the transcription factor AtGLK. The expression level of AtGLK1 is tightly correlated with the expression of photosynthesis-related nuclear genes in mutants defective in plastid protein import. Furthermore, the activity of GUN1 appears to down-regulate the expression of AtGLK1 when plastids are dysfunctional. Based on these data, we suggest that defects in plastid protein import generate a signal that represses photosynthesis-related nuclear genes through repression of AtGLK1 expression but not through activation of ABI4.
Collapse
Affiliation(s)
| | | | | | | | | | - Takehito Inaba
- The 21st Century Centers of Excellence Program, Cryobiofrontier Research Center, Iwate University, Morioka, Iwate 020–8550, Japan (T.K., K.N., T.I.); Iwate Biotechnology Research Center, Kitakami, Iwate 024–0003, Japan (H.M., R.T.); and Department of Environmental Biology, Faculty of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526–0829, Japan (F.-S.C.)
| |
Collapse
|
35
|
Stengel A, Benz JP, Buchanan BB, Soll J, Bölter B. Preprotein import into chloroplasts via the Toc and Tic complexes is regulated by redox signals in Pisum sativum. MOLECULAR PLANT 2009; 2:1181-97. [PMID: 19995724 DOI: 10.1093/mp/ssp043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active components of these complexes likely play a role in regulating transport.
Collapse
Affiliation(s)
- Anna Stengel
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
36
|
Bräutigam A, Weber APM. Proteomic analysis of the proplastid envelope membrane provides novel insights into small molecule and protein transport across proplastid membranes. MOLECULAR PLANT 2009; 2:1247-61. [PMID: 19995728 DOI: 10.1093/mp/ssp070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proplastids are undifferentiated plastids of meristematic tissues that synthesize amino acids for protein synthesis, fatty acids for membrane lipid production, and purines and pyrimidines for DNA and RNA synthesis. Unlike chloroplasts, proplastids depend on supply, with reducing power, energy, and precursor metabolites from the remainder of the cell. Comparing proplastid and chloroplast envelope proteomes and the corresponding transcriptomes of leaves and shoot apex revealed a clearly distinct composition of the proplastid envelope. It is geared towards import of metabolic precursors and export of product metabolites for the rapidly dividing cell. The analysis also suggested a new role for the triosephosphate translocator in meristematic tissues, identified the route of organic nitrogen import into proplastids, and detected an adenine nucleotide exporter. The protein import complex contains the import receptors Toc120 and Toc132 and lacks the redox sensing complex subunits of Tic32, Tic55, and Tic62, which mirrors the expression patterns of the corresponding genes in leaves and the shoot apex. We further show that the protein composition of the internal membrane system is similar to etioplasts, as it is dominated by the ATP synthase complex and thus remarkably differs from that of chloroplast thylakoids.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich Heine Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
37
|
Stanga J, Baldwin K, Masson PH. Joining forces: the interface of gravitropism and plastid protein import. PLANT SIGNALING & BEHAVIOR 2009; 4:933-41. [PMID: 19826232 PMCID: PMC2801356 DOI: 10.4161/psb.4.10.9470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In flowering plants, gravity perception appears to involve the sedimentation of starch-filled plastids, called amyloplasts, within specialized cells (the statocytes) of shoots (endodermal cells) and roots (columella cells). Unfortunately, how the physical information derived from amyloplast sedimentation is converted into a biochemical signal that promotes organ gravitropic curvature remains largely unknown. Recent results suggest an involvement of the Translocon of the Outer Envelope of (Chloro)plastids (TOC) in early phases of gravity signal transduction within the statocytes. This review summarizes our current knowledge of the molecular mechanisms that govern gravity signal transduction in flowering plants and summarizes models that attempt to explain the contribution of TOC proteins in this important behavioral plant growth response to its mechanical environment.
Collapse
Affiliation(s)
- John Stanga
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
38
|
Lee DW, Lee S, Oh YJ, Hwang I. Multiple sequence motifs in the rubisco small subunit transit peptide independently contribute to Toc159-dependent import of proteins into chloroplasts. PLANT PHYSIOLOGY 2009; 151:129-41. [PMID: 19571307 PMCID: PMC2735978 DOI: 10.1104/pp.109.140673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/25/2009] [Indexed: 05/18/2023]
Abstract
A large number of plastid proteins encoded by the nuclear genome are posttranslationally imported into plastids by at least two distinct mechanisms: the Toc159-dependent and Toc132/Toc120-dependent pathways. Light-induced photosynthetic proteins are imported through the Toc159-dependent pathway, whereas constitutive housekeeping plastid proteins are imported into plastids through the Toc132/Toc120 pathway. However, it remains unknown which features of the plastid protein transit peptide (TP) determine the import pathway. We have discovered sequence elements of the Rubisco small subunit TP (RbcS-tp) that play a role in determining import through the Toc159-dependent pathway in vivo. We generated multiple hybrid mutants using the RbcS-tp and the E1alpha-subunit of pyruvate dehydrogenase TP (E1alpha-tp) as representative peptides mediating import through the Toc159-dependent and Toc159-independent pathways, respectively. Import experiments using these hybrid mutants in wild-type and ppi2 mutant protoplasts revealed that multiple sequence motifs in the RbcS-tp independently contribute to Toc159-dependent protein import into chloroplasts. One of these motifs is the group of serine residues located in the N-terminal 12-amino acid segment and the other is the C-terminal T5 region of the RbcS-tp ranging from amino acid positions 41 to 49. Based on these findings, we propose that multiple sequence elements in the RbcS-tp contribute independently to Toc159-dependent import of proteins into chloroplasts.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
39
|
Ogawa T, Nishimura K, Aoki T, Takase H, Tomizawa KI, Ashida H, Yokota A. A phosphofructokinase B-type carbohydrate kinase family protein, NARA5, for massive expressions of plastid-encoded photosynthetic genes in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:114-28. [PMID: 19587101 PMCID: PMC2736000 DOI: 10.1104/pp.109.139683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To date, there have been no reports on screening for mutants defective in the massive accumulation of Rubisco in higher plants. Here, we describe a screening method based on the toxic accumulation of ammonia in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase, during photorespiration initiated by the oxygenase reaction of Rubisco in Arabidopsis (Arabidopsis thaliana). Five recessive mutants with decreased amounts of Rubisco were identified and designated as nara mutants, as they contained a mutation in genes necessary for the achievement of Rubisco accumulation. The nara5-1 mutant showed markedly lower levels of plastid-encoded photosynthetic proteins, including Rubisco. Map-based cloning revealed that NARA5 encoded a chloroplast phosphofructokinase B-type carbohydrate kinase family protein of unknown function. The NARA5 protein fused to green fluorescent protein localized in chloroplasts. We conducted expression analyses of photosynthetic genes during light-induced greening of etiolated seedlings of nara5-1 and the T-DNA insertion mutant, nara5-2. Our results strongly suggest that NARA5 is indispensable for hyperexpression of photosynthetic genes encoded in the plastid genome, particularly rbcL.
Collapse
Affiliation(s)
- Taro Ogawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Jouhet J, Gray JC. Interaction of actin and the chloroplast protein import apparatus. J Biol Chem 2009; 284:19132-41. [PMID: 19435889 PMCID: PMC2707226 DOI: 10.1074/jbc.m109.012831] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/08/2009] [Indexed: 11/06/2022] Open
Abstract
Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.
Collapse
Affiliation(s)
- Juliette Jouhet
- From the Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - John C. Gray
- From the Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
41
|
Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG. Protein targeting into secondary plastids. J Eukaryot Microbiol 2009; 56:9-15. [PMID: 19335770 DOI: 10.1111/j.1550-7408.2008.00370.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus-encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre-existing ones to new requirements in secondary plastids.
Collapse
Affiliation(s)
- Kathrin Bolte
- Laboratory for Cell Biology, Philipps-University of Marburg, Karl-von-Frisch Strasse 8, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Guanine nucleotide-binding (G) proteins, which cycle between a GDP- and a GTP-bound conformation, are conventionally regulated by GTPase-activating proteins (GAPs) and guanine nucleotide-exchange factors (GEFs), and function by interacting with effector proteins in the GTP-bound 'on' state. Here we present another class of G proteins that are regulated by homodimerization, which we would categorize as G proteins activated by nucleotide-dependent dimerization (GADs). This class includes proteins such as signal recognition particle (SRP), dynamin, septins and the newly discovered Roco protein Leu-rich repeat kinase 2 (LRRK2). We propose that the juxtaposition of the G domains of two monomers across the GTP-binding sites activates the biological function of these proteins and the GTPase reaction.
Collapse
|
43
|
Abstract
Most of the estimated 1000 or so chloroplast proteins are synthesized as cytosolic preproteins with N-terminal cleavable targeting sequences (transit peptide). Translocon complexes at the outer (Toc) and inner chloroplast envelope membrane (Tic) concertedly facilitate post-translational import of preproteins into the chloroplast. Three components, the Toc34 and Toc159 GTPases together with the Toc75 channel, form the core of the Toc complex. The two GTPases act as GTP-dependent receptors at the chloroplast surface and promote insertion of the preprotein across the Toc75 channel. Additional factors guide preproteins to the Toc complex or support their stable ATP-dependent binding to the chloroplast. This minireview describes the components of the Toc complex and their function during the initial steps of preprotein translocation across the chloroplast envelope.
Collapse
Affiliation(s)
- Birgit Agne
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Switzerland
| | | |
Collapse
|
44
|
Agne B, Infanger S, Wang F, Hofstetter V, Rahim G, Martin M, Lee DW, Hwang I, Schnell D, Kessler F. A toc159 import receptor mutant, defective in hydrolysis of GTP, supports preprotein import into chloroplasts. J Biol Chem 2009; 284:8670-9. [PMID: 19188370 DOI: 10.1074/jbc.m804235200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric Toc core complex of the chloroplast protein import apparatus contains two GTPases, Toc159 and Toc34, together with the protein-conducting channel Toc75. Toc159 and Toc34 are exposed at the chloroplast surface and function in preprotein recognition. Together, they have been shown to facilitate the import of photosynthetic proteins into chloroplasts in Arabidopsis. Consequently, the ppi2 mutant lacking atToc159 has a non-photosynthetic albino phenotype. Previous mutations in the conserved G1 and G3 GTPase motifs abolished the function of Toc159 in vivo by disrupting targeting of the receptor to chloroplasts. Here, we demonstrate that a mutant in a conserved G1 lysine (atToc159 K868R) defective in GTP binding and hydrolysis can target and assemble into Toc complexes. We show that atToc159 K868R can support protein import into isolated chloroplasts, albeit at lower preprotein binding and import efficiencies compared with the wild-type receptor. Considering the absence of measurable GTPase activity in the K868R mutant, we conclude that GTP hydrolysis at atToc159 is not strictly required for preprotein translocation. The data also indicate that preprotein import requires at least one additional GTPase other than Toc159.
Collapse
Affiliation(s)
- Birgit Agne
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gross J, Bhattacharya D. Revaluating the evolution of the Toc and Tic protein translocons. TRENDS IN PLANT SCIENCE 2009; 14:13-20. [PMID: 19042148 DOI: 10.1016/j.tplants.2008.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 05/08/2023]
Abstract
The origin of the plastid from a cyanobacterial endosymbiont necessitated the establishment of specialized molecular machines (translocons) to facilitate the import of nuclear-encoded proteins into the organelle. To improve our understanding of the evolution of the translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic, respectively), we critically reassess the prevalent notion that their subunits have a function exclusive to protein import. We propose that many translocon components are multifunctional, conserving ancestral pre-endosymbiotic properties that predate their recruitment into the primitive translocon (putatively composed of subunits Toc34, Toc75 and Tic110 and associated chaperones). Multifunctionality seems to be a hallmark of the Tic complex, in which protein import is integrated with a broad array of plastid processes.
Collapse
Affiliation(s)
- Jeferson Gross
- University of Iowa, Department of Biology and the Roy J. Carver Center for Comparative Genomics, 446 Biology Building, Iowa City, IA 52242, USA
| | | |
Collapse
|
46
|
Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:115-38. [PMID: 19014347 DOI: 10.1146/annurev.arplant.043008.092119] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotes, DNA is exchanged between endosymbiosis-derived compartments (mitochondria and chloroplasts) and the nucleus. Organelle-to-nucleus DNA transfer involves repair of double-stranded breaks by nonhomologous end-joining, and resulted during early organelle evolution in massive relocation of organelle genes to the nucleus. A large fraction of the products of the nuclear genes so acquired are retargeted to their ancestral compartment; many others now function in new subcellular locations. Almost all present-day nuclear transfers of mitochondrial or plastid DNA give rise to noncoding sequences, dubbed nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). Some of these sequences were recruited as exons, thus introducing new coding sequences into preexisting nuclear genes by a novel mechanism. In organisms derived from secondary or tertiary endosymbiosis, serial gene transfers involving nucleus-to-nucleus migration of DNA have also occurred. Intercompartmental DNA transfer therefore represents a significant driving force for gene and genome evolution, relocating and refashioning genes and contributing to genetic diversity.
Collapse
Affiliation(s)
- Tatjana Kleine
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
47
|
Aronsson H, Jarvis P. The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J. The Chloroplast Envelope Proteome and Lipidome. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Rahim G, Bischof S, Kessler F, Agne B. In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:257-67. [PMID: 19010773 DOI: 10.1093/jxb/ern283] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The GTPases atToc33 and atToc159 are pre-protein receptor components of the translocon complex at the outer chloroplast membrane in Arabidopsis. Despite their participation in the same complex in vivo, evidence for their interaction is still lacking. Here, a split-ubiquitin system is engineered for use in plants, and the in vivo interaction of the Toc GTPases in Arabidopsis and tobacco protoplasts is shown. Using the same method, the self-interaction of the peroxisomal membrane protein atPex11e is demonstrated. The finding suggests a more general suitability of the split-ubiquitin system as a plant in vivo interaction assay.
Collapse
Affiliation(s)
- Gwendoline Rahim
- Laboratoire de Physiologie Végétale, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
50
|
|