1
|
Hacker C, Sendra K, Keisham P, Filipescu T, Lucocq J, Salimi F, Ferguson S, Bhella D, MacNeill SA, Embley M, Lucocq J. Biogenesis, inheritance, and 3D ultrastructure of the microsporidian mitosome. Life Sci Alliance 2024; 7:e202201635. [PMID: 37903625 PMCID: PMC10618108 DOI: 10.26508/lsa.202201635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
During the reductive evolution of obligate intracellular parasites called microsporidia, a tiny remnant mitochondrion (mitosome) lost its typical cristae, organellar genome, and most canonical functions. Here, we combine electron tomography, stereology, immunofluorescence microscopy, and bioinformatics to characterise mechanisms of growth, division, and inheritance of this minimal mitochondrion in two microsporidia species (grown within a mammalian RK13 culture-cell host). Mitosomes of Encephalitozoon cuniculi (2-12/cell) and Trachipleistophora hominis (14-18/nucleus) displayed incremental/non-phasic growth and division and were closely associated with an organelle identified as equivalent to the fungal microtubule-organising centre (microsporidian spindle pole body; mSPB). The mitosome-mSPB association was resistant to treatment with microtubule-depolymerising drugs nocodazole and albendazole. Dynamin inhibitors (dynasore and Mdivi-1) arrested mitosome division but not growth, whereas bioinformatics revealed putative dynamins Drp-1 and Vps-1, of which, Vps-1 rescued mitochondrial constriction in dynamin-deficient yeast (Schizosaccharomyces pombe). Thus, microsporidian mitosomes undergo incremental growth and dynamin-mediated division and are maintained through ordered inheritance, likely mediated via binding to the microsporidian centrosome (mSPB).
Collapse
Affiliation(s)
| | - Kacper Sendra
- Biosciences Institute, The Medical School, Catherine Cookson Building, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - James Lucocq
- Department of Surgery, Dundee Medical School Ninewells Hospital, Dundee, UK
| | - Fatemeh Salimi
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Sophie Ferguson
- School of Medicine, University of St Andrews, St Andrews, UK
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Martin Embley
- Biosciences Institute, Centre for Bacterial Cell Biology, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | - John Lucocq
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Gu Y, Alam S, Oliferenko S. Peroxisomal compartmentalization of amino acid biosynthesis reactions imposes an upper limit on compartment size. Nat Commun 2023; 14:5544. [PMID: 37684233 PMCID: PMC10491753 DOI: 10.1038/s41467-023-41347-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Cellular metabolism relies on just a few redox cofactors. Selective compartmentalization may prevent competition between metabolic reactions requiring the same cofactor. Is such compartmentalization necessary for optimal cell function? Is there an optimal compartment size? Here we probe these fundamental questions using peroxisomal compartmentalization of the last steps of lysine and histidine biosynthesis in the fission yeast Schizosaccharomyces japonicus. We show that compartmentalization of these NAD+ dependent reactions together with a dedicated NADH/NAD+ recycling enzyme supports optimal growth when an increased demand for anabolic reactions taxes cellular redox balance. In turn, compartmentalization constrains the size of individual organelles, with larger peroxisomes accumulating all the required enzymes but unable to support both biosynthetic reactions at the same time. Our reengineering and physiological experiments indicate that compartmentalized biosynthetic reactions are sensitive to the size of the compartment, likely due to scaling-dependent changes within the system, such as enzyme packing density.
Collapse
Affiliation(s)
- Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK.
| | - Sara Alam
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
3
|
Kondoh H, Teruya T, Kameda M, Yanagida M. Decline of ergothioneine in frailty and cognition impairment. FEBS Lett 2022; 596:1270-1278. [PMID: 35090053 DOI: 10.1002/1873-3468.14299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Ergothioneine is a well-known anti-oxidant that is abundant in both human red blood cells and in fission yeast responding to nutritional stress. In frail elderly people, whose aging organs undergo functional decline, there is a correlation between ergothioneine levels and cognitive, but not skeletal muscle decline. In patients suffering from dementia, including Alzheimer's disease with hippocampal atrophy, deteriorating cognitive ability is correlated with declining ergothioneine levels. S-methyl-ergothioneine, trimethyl-histidine, and three other trimethyl-ammonium compounds also decrease sharply in dementia, whereas compounds such as indoxyl-sulfate and quinolinic acid increase, possibly exacerbating the disease. Using these opposing dementia markers, not only diagnosis, but also therapeutic interventions to mitigate cognitive decline may now become possible.
Collapse
Affiliation(s)
- Hiroshi Kondoh
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Masahiro Kameda
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| |
Collapse
|
4
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
5
|
Wang Y, Metz J, Costello JL, Passmore J, Schrader M, Schultz C, Islinger M. Intracellular redistribution of neuronal peroxisomes in response to ACBD5 expression. PLoS One 2018; 13:e0209507. [PMID: 30589881 PMCID: PMC6307868 DOI: 10.1371/journal.pone.0209507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes can be frequently found in proximity to other subcellular organelles such as the endoplasmic reticulum (ER), mitochondria or lysosomes. The tail-anchored protein ACBD5 was recently identified as part of a tethering complex at peroxisome-ER contact sites, interacting with the ER resident protein VAPB. Contact site disruption was found to significantly increase peroxisome motility, apparently interfering with intracellular positioning systems. Unlike other somatic cells, neurons have to distribute organelles across relatively long distances in order to maintain their extraordinary cellular polarity. Using confocal live imaging microscopy in cultured hippocampal neurons we observed that peroxisomes and mitochondria show a strikingly similar motility with approximately 10% performing microtubule-driven long range movements. In order to investigate if ER contacts influence overall peroxisome motility and cellular distribution patterns, hippocampal neurons were transfected with plasmids encoding ACBD5 to stimulate peroxisome-ER interactions. Overexpression of ACBD5 reduced peroxisomal long range movements in the neurites of the hippocampal cells by 70%, implying that ER attachment counteracts microtubule-driven peroxisome transport, while mitochondrial motility was unaffected. Moreover, the analyses of peroxisome distribution in fixed neurons unveiled a significant redistribution of peroxisomes towards the periphery of the perikaryon underneath the plasma membrane and into neurites, where peroxisomes are frequently found in close proximity to mitochondria. Surprisingly, further analysis of peroxisome and VAPB distribution upon ACBD5 expression did not reveal a substantial colocalization, implying this effect may be independent of VAPB. In line with these findings, expression of an ACBD5 variant unable to bind to VAPB still altered the localization of peroxisomes in the same way as the wild-type ACBD5. Thus, we conclude, that the VAPB-ACBD5 facilitated peroxisome-ER interaction is not responsible for the observed organelle redistribution in neurons. Rather, we suggest that additional ACBD5-binding proteins in neurons may tether peroxisomes to contact sites at or near the plasma membrane of neurons.
Collapse
Affiliation(s)
- Yunhong Wang
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jeremy Metz
- Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | | | - Christian Schultz
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
6
|
Schutt KL, Moseley JB. Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 2017; 28:1804-1814. [PMID: 28515144 PMCID: PMC5491188 DOI: 10.1091/mbc.e17-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Transient activation of the cellular energy sensor AMPK during osmotic stress requires its energy-sensing subunit. Cellular ATP levels decrease during osmotic stress, which triggers energy stress, which in turn requires dynamic activation of AMPK. The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions. Fission yeast AMPK catalytic subunit Ssp2 is phosphorylated at Thr-189 by the upstream kinase Ssp1 in low-glucose conditions, similar to other systems. Here we find that hyperosmotic stress induces strong phosphorylation of Ssp2-T189 by Ssp1. Ssp2-pT189 during osmotic stress is transient and leads to transient regulation of AMPK targets, unlike sustained activation by low glucose. Cells lacking this activation mechanism fail to proliferate after hyperosmotic stress. Activation during osmotic stress requires energy sensing by AMPK heterotrimer, and osmotic stress leads to decreased intracellular ATP levels. We observed mitochondrial fission during osmotic stress, but blocking fission did not affect AMPK activation. Stress-activated kinases Sty1 and Pmk1 did not promote AMPK activation but contributed to subsequent inactivation. Our results show that osmotic stress induces transient energy stress, and AMPK activation allows cells to manage this energy stress for proliferation in new osmotic states.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B Moseley
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
7
|
Meyers A, Chourey K, Weiskittel TM, Pfiffner S, Dunlap JR, Hettich RL, Dalhaimer P. The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe. J Microbiol 2017; 55:112-122. [PMID: 28120187 DOI: 10.1007/s12275-017-6205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022]
Abstract
Lipid droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer with bound proteins. Much of the information on lipid droplet function comes from proteomic and lipodomic studies that identify the components of droplets isolated from organisms throughout the phylogenetic tree. Here, we add to that important inventory by reporting lipid droplet factors from the fission yeast, Schizosaccharomyces pombe. Unique to this study was the fact that cells were cultured in three different environments: 1) late log growth phase in glucose-based media, 2) stationary phase in glucosebased media, and 3) late log growth phase in media containing oleic acid. We confirmed colocalization of major factors with lipid droplets using live-cell fluorescent microscopy. We also analyzed droplets from each of the three conditions for sterol ester (SE) and triacylglycerol (TAG) content, along with their respective fatty acid compositions. We identified a previously undiscovered lipid droplet protein, Vip1p, which affects droplet size distribution. The results provide further insight into the workings of these ubiquitous organelles.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA
| | - Karuna Chourey
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA
| | - Susan Pfiffner
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - John R Dunlap
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.,Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA. .,Institute of Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
9
|
Rodríguez-Arribas M, Yakhine-Diop SMS, Pedro JMBS, Gómez-Suaga P, Gómez-Sánchez R, Martínez-Chacón G, Fuentes JM, González-Polo RA, Niso-Santano M. Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Mol Neurobiol 2016; 54:6287-6303. [PMID: 27714635 DOI: 10.1007/s12035-016-0140-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Mitochondria-associated membranes (MAMs) are structures that regulate physiological functions between endoplasmic reticulum (ER) and mitochondria in order to maintain calcium signaling and mitochondrial biogenesis. Several proteins located in MAMs, including those encoded by PARK genes and some of neurodegeneration-related proteins (huntingtin, presenilin, etc.), ensure this regulation. In this regard, MAM alteration is associated with neurodegenerative diseases such as Parkinson's (PD), Alzheimer's (AD), and Huntington's diseases (HD) and contributes to the appearance of the pathogenesis features, i.e., autophagy dysregulation, mitochondrial dysfunction, oxidative stress, and lately, neuronal death. Moreover,, ER stress and/or damaged mitochondria can be the cause of these disruptions. Therefore, ER-mitochondria contact structure and function are crucial to multiple cellular processes. This review is focused on the molecular interaction between ER and mitochondria indispensable to MAM formation and on MAM alteration-induced etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- M Rodríguez-Arribas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - S M S Yakhine-Diop
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - J M Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.,INSERM U1138, 75006, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006, Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006, Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France
| | - P Gómez-Suaga
- Department Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute Kings College London, London, SE5 9RX, UK
| | - R Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - G Martínez-Chacón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - J M Fuentes
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - R A González-Polo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain. .,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain.
| | - M Niso-Santano
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain. .,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain.
| |
Collapse
|
10
|
Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis. Mol Endocrinol 2016; 30:763-82. [PMID: 27167610 DOI: 10.1210/me.2016-1008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fatty acid metabolism and steroid biosynthesis are 2 major pathways shared by peroxisomes and mitochondria. Both organelles are in close apposition to the endoplasmic reticulum, with which they communicate via interorganelle membrane contact sites to promote cellular signaling and the exchange of ions and lipids. To date, no convincing evidence of the direct contact between peroxisomes and mitochondria was reported in mammalian cells. Hormone-induced, tightly controlled steroid hormone biosynthesis requires interorganelle interactions. Using immunofluorescent staining and live-cell imaging, we found that dibutyryl-cAMP treatment of MA-10 mouse tumor Leydig cells rapidly induces peroxisomes to approach mitochondria and form peroxisome-mitochondrial contact sites/fusion, revealed by the subcellular distribution of the endogenous acyl-coenzyme A-binding domain (ACBD)2/ECI2 isoform A generated by alternative splicing, and further validated using a proximity ligation assay. This event occurs likely via a peroxisome-like structure, which is mediated by peroxisomal and mitochondrial matrix protein import complexes: peroxisomal import receptor peroxisomal biogenesis factor 5 (PEX5), and the mitochondrial import receptor subunit translocase of outer mitochondrial membrane 20 homolog (yeast) protein. Similar results were obtained using the mLTC-1 mouse tumor Leydig cells. Ectopic expression of the ACBD2/ECI2 isoform A in MA-10 cells led to increased basal and hormone-stimulated steroid formation, indicating that ACBD2/ECI2-mediated peroxisomes-mitochondria interactions favor in the exchange of metabolites and/or macromolecules between these 2 organelles in support of steroid biosynthesis. Considering the widespread occurrence of the ACBD2/ECI2 protein, we propose that this protein might serve as a tool to assist in understanding the contact between peroxisomes and mitochondria.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Xinlu Li
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Leeyah Issop
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Martine Culty
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre (J.F., X.L., L.I., M.C., V.P.) and Departments of Medicine (J.F., L.I., M.C., V.P.), Biochemistry (X.L., V.P.), and Pharmacology and Therapeutics (M.C., V.P.), McGill University, Montréal, Québec, Canada H4A 3J1
| |
Collapse
|
11
|
Schrader M, Godinho LF, Costello JL, Islinger M. The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 2015; 3:56. [PMID: 26442263 PMCID: PMC4585249 DOI: 10.3389/fcell.2015.00056] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022] Open
Abstract
Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy—a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Luis F Godinho
- Centre for Cell Biology and Department of Biology, University of Aveiro Aveiro, Portugal
| | - Joseph L Costello
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
12
|
Flis VV, Fankl A, Ramprecht C, Zellnig G, Leitner E, Hermetter A, Daum G. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae. PLoS One 2015; 10:e0135084. [PMID: 26241051 PMCID: PMC4524607 DOI: 10.1371/journal.pone.0135084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.
Collapse
Affiliation(s)
- Vid V. Flis
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Ariane Fankl
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Claudia Ramprecht
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, University of Graz, NAWI Graz, Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Technology, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
13
|
Liu X, Liu J, Lester JD, Pijut SS, Graf GA. ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue. Biochem Biophys Res Commun 2014; 456:129-34. [PMID: 25446110 DOI: 10.1016/j.bbrc.2014.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Both D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼ 200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States.
| | - Jingjing Liu
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States.
| | - Joshua D Lester
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States.
| | - Sonja S Pijut
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States.
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, Saha Cardiovascular Research Center, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
14
|
Encinar del Dedo J, Idrissi FZ, Arnáiz-Pita Y, James M, Dueñas-Santero E, Orellana-Muñoz S, del Rey F, Sirotkin V, Geli MI, Vázquez de Aldana CR. Eng2 is a component of a dynamic protein complex required for endocytic uptake in fission yeast. Traffic 2014; 15:1122-42. [PMID: 25040903 DOI: 10.1111/tra.12198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity. Analysis of the dynamics of endocytic proteins by fluorescence microscopy in the eng2Δ strain unveiled a previously undescribed phenotype, in which assembly of the Arp2/3 complex appeared uncoupled from the internalization of the endocytic coat and resulted in a fission defect. Strikingly also, we found that Eng2-GFP dynamics did not match the pattern of other endocytic proteins. Eng2-GFP localized to bright cytosolic spots that moved around the cellular poles and occasionally contacted assembling endocytic patches just before recruitment of Wsp1, the Schizosaccharomyces pombe WASP. Interestingly, Csh3-YFP, a WASP-interacting protein, interacted with Eng2 by co-immunoprecipitation and was recruited to Eng2 in bright cytosolic spots. Altogether, our work defines a novel endocytic functional module, which probably couples the endocytic coat to the actin module.
Collapse
Affiliation(s)
- Javier Encinar del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Williams M, Kim K. From membranes to organelles: emerging roles for dynamin-like proteins in diverse cellular processes. Eur J Cell Biol 2014; 93:267-77. [PMID: 24954468 DOI: 10.1016/j.ejcb.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.
Collapse
Affiliation(s)
- Michelle Williams
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States.
| |
Collapse
|
16
|
Klecker T, Böckler S, Westermann B. Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol 2014; 24:537-45. [PMID: 24786308 DOI: 10.1016/j.tcb.2014.04.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/07/2023]
Abstract
Mitochondria are highly dynamic organelles. During their life cycle they frequently fuse and divide, and damaged mitochondria are removed by autophagic degradation. These processes serve to maintain mitochondrial function and ensure optimal energy supply for the cell. It has recently become clear that this complex mitochondrial behavior is governed to a large extent by interactions with other organelles. In this review, we describe mitochondrial contacts with the endoplasmic reticulum (ER), plasma membrane, and peroxisomes. In particular, we highlight how mitochondrial fission, distribution, inheritance, and turnover are orchestrated by interorganellar contacts in yeast and metazoa. These interactions are pivotal for the integration of the dynamic mitochondrial network into the architecture of eukaryotic cells.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Stefan Böckler
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
17
|
Schrader M, Grille S, Fahimi HD, Islinger M. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell Biochem 2013; 69:1-22. [PMID: 23821140 DOI: 10.1007/978-94-007-6889-5_1] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Peroxisomes are remarkably plastic and dynamic organelles, which fulfil important functions in hydrogen peroxide and lipid metabolism rendering them essential for human health and development. Despite great advances in the identification and characterization of essential components and molecular mechanisms associated with the biogenesis and function of peroxisomes, our understanding of how peroxisomes are incorporated into metabolic pathways and cellular communication networks is just beginning to emerge. Here we address the interaction of peroxisomes with other subcellular compartments including the relationship with the endoplasmic reticulum, the peroxisome-mitochondria connection and the association with lipid droplets. We highlight metabolic cooperations and potential cross-talk and summarize recent findings on peroxisome-peroxisome interactions and the interaction of peroxisomes with microtubules in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
18
|
Sohn SB, Kim TY, Lee JH, Lee SY. Genome-scale metabolic model of the fission yeast Schizosaccharomyces pombe and the reconciliation of in silico/in vivo mutant growth. BMC SYSTEMS BIOLOGY 2012; 6:49. [PMID: 22631437 PMCID: PMC3390277 DOI: 10.1186/1752-0509-6-49] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 05/25/2012] [Indexed: 11/10/2022]
Abstract
Background Over the last decade, the genome-scale metabolic models have been playing increasingly important roles in elucidating metabolic characteristics of biological systems for a wide range of applications including, but not limited to, system-wide identification of drug targets and production of high value biochemical compounds. However, these genome-scale metabolic models must be able to first predict known in vivo phenotypes before it is applied towards these applications with high confidence. One benchmark for measuring the in silico capability in predicting in vivo phenotypes is the use of single-gene mutant libraries to measure the accuracy of knockout simulations in predicting mutant growth phenotypes. Results Here we employed a systematic and iterative process, designated as Reconciling In silico/in vivo mutaNt Growth (RING), to settle discrepancies between in silico prediction and in vivo observations to a newly reconstructed genome-scale metabolic model of the fission yeast, Schizosaccharomyces pombe, SpoMBEL1693. The predictive capabilities of the genome-scale metabolic model in predicting single-gene mutant growth phenotypes were measured against the single-gene mutant library of S. pombe. The use of RING resulted in improving the overall predictive capability of SpoMBEL1693 by 21.5%, from 61.2% to 82.7% (92.5% of the negative predictions matched the observed growth phenotype and 79.7% the positive predictions matched the observed growth phenotype). Conclusion This study presents validation and refinement of a newly reconstructed metabolic model of the yeast S. pombe, through improving the metabolic model’s predictive capabilities by reconciling the in silico predicted growth phenotypes of single-gene knockout mutants, with experimental in vivo growth data.
Collapse
Affiliation(s)
- Seung Bum Sohn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Bonekamp NA, Sampaio P, de Abreu FV, Lüers GH, Schrader M. Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins. Traffic 2012; 13:960-78. [PMID: 22435684 DOI: 10.1111/j.1600-0854.2012.01356.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
Peroxisomes and mitochondria show a much closer interrelationship than previously anticipated. They co-operate in the metabolism of fatty acids and reactive oxygen species, but also share components of their fission machinery. If peroxisomes - like mitochondria - also fuse in mammalian cells is a matter of debate and was not yet systematically investigated. To examine potential peroxisomal fusion and interactions in mammalian cells, we established an in vivo fusion assay based on hybridoma formation by cell fusion. Fluorescence microscopy in time course experiments revealed a merge of different peroxisomal markers in fused cells. However, live cell imaging revealed that peroxisomes were engaged in transient and long-term contacts, without exchanging matrix or membrane markers. Computational analysis showed that transient peroxisomal interactions are complex and can potentially contribute to the homogenization of the peroxisomal compartment. However, peroxisomal interactions do not increase after fatty acid or H(2) O(2) treatment. Additionally, we provide the first evidence that mitochondrial fusion proteins do not localize to peroxisomes. We conclude that mammalian peroxisomes do not fuse with each other in a mechanism similar to mitochondrial fusion. However, they show an extensive degree of interaction, the implication of which is discussed.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
20
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
21
|
Mano S, Nakamori C, Fukao Y, Araki M, Matsuda A, Kondo M, Nishimura M. A defect of peroxisomal membrane protein 38 causes enlargement of peroxisomes. PLANT & CELL PHYSIOLOGY 2011; 52:2157-72. [PMID: 22034551 DOI: 10.1093/pcp/pcr147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Peroxisome proliferation occurs through enlargement, elongation and division of pre-existing peroxisomes. In the Arabidopsis apem mutant, apem3, peroxisomes are dramatically enlarged and reduced in number, revealing a defect in peroxisome proliferation. The APEM3 gene was found to encode peroxisomal membrane protein 38 (PMP38). To examine the relative role of PMP38 during proliferation, a double mutant was constructed consisting of apem3 and the peroxisome division mutant, apem1, in which a defect in dynamin-related protein 3A (DRP3A) results in elongation of peroxisomes. In the double mutant, almost all peroxisomes were predominantly enlarged but not elongated. DRP3A is still able to localize at the peroxisomal membrane on enlarged peroxisomes in the apem3 mutants. PMP38 is revealed to be capable of interacting with itself, but not with DRP3A. These results indicate that PMP38 has a role at a different step that requires APEM1/DRP3A. PMP38 is expressed in various tissues throughout the plant, indicating that PMP38 may participate in multiple unidentified functions in these tissues. PMP38 belongs to a mitochondrial carrier family (MCF) protein. However, unlike Arabidopsis nucleotide carrier protein 1 (AtPNC1) and AtPNC2, two other peroxisome-resident MCF proteins that function as adenine nucleotide transporters, PMP38 has no ATP or ADP transport activity. In addition, unlike AtPNC1 and AtPNC2 knock-down plants, apem3 mutants do not exhibit any gross morphological abnormalities. These results demonstrate that APEM3/PMP38 plays a role distinct from that of AtPNC1 and AtPNC2. We discuss possible mechanism of enlargement of peroxisomes in the apem3 mutants.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Koch J, Brocard C. Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomol Concepts 2011; 2:353-364. [PMID: 21984887 DOI: 10.1515/bmc.2011.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Separation of metabolic pathways in organelles is critical for eukaryotic life. Accordingly, the number, morphology and function of organelles have to be maintained through processes linked with membrane remodeling events. Despite their acknowledged significance and intense study many questions remain about the molecular mechanisms by which organellar membranes proliferate. Here, using the example of peroxisome proliferation, we give an overview of how proteins elongate membranes. Subsequent membrane fission is achieved by dynamin-related proteins shared with mitochondria. We discuss basic criteria that membranes have to fulfill for these fission factors to complete the scission. Because peroxisome elongation is always associated with unequal distribution of matrix and membrane proteins, we propose peroxisomal division to be non-stochastic and asymmetric. We further show that these organelles need not be functional to carry on membrane elongation and present the most recent findings concerning members of the Pex11 protein family as membrane elongation factors. These factors, beside known proteins such as BAR-domain proteins, represent another family of proteins containing an amphipathic α-helix with membrane bending activity.
Collapse
Affiliation(s)
- Johannes Koch
- Department of Biochemistry and Cell Biology, University of Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
23
|
Pluskal T, Hayashi T, Saitoh S, Fujisawa A, Yanagida M. Specific biomarkers for stochastic division patterns and starvation-induced quiescence under limited glucose levels in fission yeast. FEBS J 2011; 278:1299-315. [PMID: 21306563 PMCID: PMC3123465 DOI: 10.1111/j.1742-4658.2011.08050.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucose as a source of energy is centrally important to our understanding of life. We investigated the cell division–quiescence behavior of the fission yeast Schizosaccharomyces pombe under a wide range of glucose concentrations (0–111 mm). The mode of S. pombe cell division under a microfluidic perfusion system was surprisingly normal under highly diluted glucose concentrations (5.6 mm, 1/20 of the standard medium, within human blood sugar levels). Division became stochastic, accompanied by a curious division-timing inheritance, in 2.2–4.4 mm glucose. A critical transition from division to quiescence occurred within a narrow range of concentrations (2.2–1.7 mm). Under starvation (1.1 mm) conditions, cells were mostly quiescent and only a small population of cells divided. Under fasting (0 mm) conditions, division was immediately arrested with a short chronological lifespan (16 h). When cells were first glucose starved prior to fasting, they possessed a substantially extended lifespan (∼14 days). We employed a quantitative metabolomic approach for S. pombe cell extracts, and identified specific metabolites (e.g. biotin, trehalose, ergothioneine, S-adenosyl methionine and CDP-choline), which increased or decreased at different glucose concentrations, whereas nucleotide triphosphates, such as ATP, maintained high concentrations even under starvation. Under starvation, the level of S-adenosyl methionine increased sharply, accompanied by an increase in methylated amino acids and nucleotides. Under fasting, cells rapidly lost antioxidant and energy compounds, such as glutathione and ATP, but, in fasting cells after starvation, these and other metabolites ensuring longevity remained abundant. Glucose-starved cells became resistant to 40 mm H2O2 as a result of the accumulation of antioxidant compounds.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Okinawa Institute of Science and Technology Promotion Corporation, Okinawa, Japan
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Delille HK, Agricola B, Guimaraes SC, Borta H, Lüers GH, Fransen M, Schrader M. Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 2010; 123:2750-62. [PMID: 20647371 DOI: 10.1242/jcs.062109] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes are ubiquitous subcellular organelles, which multiply by growth and division but can also form de novo via the endoplasmic reticulum. Growth and division of peroxisomes in mammalian cells involves elongation, membrane constriction and final fission. Dynamin-like protein (DLP1/Drp1) and its membrane adaptor Fis1 function in the later stages of peroxisome division, whereas the membrane peroxin Pex11pbeta appears to act early in the process. We have discovered that a Pex11pbeta-YFP(m) fusion protein can be used as a specific tool to further dissect peroxisomal growth and division. Pex11pbeta-YFP(m) inhibited peroxisomal segmentation and division, but resulted in the formation of pre-peroxisomal membrane structures composed of globular domains and tubular extensions. Peroxisomal matrix and membrane proteins were targeted to distinct regions of the peroxisomal structures. Pex11pbeta-mediated membrane formation was initiated at pre-existing peroxisomes, indicating that growth and division follows a multistep maturation pathway and that formation of mammalian peroxisomes is more complex than simple division of a pre-existing organelle. The implications of these findings on the mechanisms of peroxisome formation and membrane deformation are discussed.
Collapse
Affiliation(s)
- Hannah K Delille
- Centre for Cell Biology and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
26
|
Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol Biol Cell 2010; 21:2894-904. [PMID: 20587778 PMCID: PMC2921122 DOI: 10.1091/mbc.e10-02-0157] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report time courses of the accumulation and loss of 16 fluorescent fusion proteins at sites of clathrin-mediated endocytosis in fission yeast. Mathematical modeling shows that dendritic nucleation hypothesis can account for the kinetics of actin assembly in vivo and disassembly requires actin filament severing along with depolymerization. We used quantitative confocal microscopy to measure the numbers of 16 proteins tagged with fluorescent proteins during assembly and disassembly of endocytic actin patches in fission yeast. The peak numbers of each molecule that accumulate in patches varied <30–50% between individual patches. The pathway begins with accumulation of 30–40 clathrin molecules, sufficient to build a hemisphere at the tip of a plasma membrane invagination. Thereafter precisely timed waves of proteins reach characteristic peak numbers: endocytic adaptor proteins (∼120 End4p and ∼230 Pan1p), activators of Arp2/3 complex (∼200 Wsp1p and ∼340 Myo1p) and ∼300 Arp2/3 complexes just ahead of a burst of actin assembly into short, capped and highly cross-linked filaments (∼7000 actins, ∼200 capping proteins, and ∼900 fimbrins). Coronin arrives last as all other components disperse upon patch internalization and movement over ∼10 s. Patch internalization occurs without recruitment of dynamins. Mathematical modeling, described in the accompanying paper (Berro et al., 2010, MBoC 21: 2803–2813), shows that the dendritic nucleation hypothesis can account for the time course of actin assembly into a branched network of several hundred filaments 100–200 nm long and that patch disassembly requires actin filament fragmentation in addition to depolymerization from the ends.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
27
|
Kovalchuk A, Driessen AJM. Phylogenetic analysis of fungal ABC transporters. BMC Genomics 2010; 11:177. [PMID: 20233411 PMCID: PMC2848647 DOI: 10.1186/1471-2164-11-177] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/16/2010] [Indexed: 12/22/2022] Open
Abstract
Background The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. Results We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Conclusions Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | |
Collapse
|
28
|
|
29
|
Jourdain I, Gachet Y, Hyams JS. The dynamin related protein Dnm1 fragments mitochondria in a microtubule-dependent manner during the fission yeast cell cycle. ACTA ACUST UNITED AC 2009; 66:509-23. [PMID: 19373772 DOI: 10.1002/cm.20351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mitochondria are dynamic organelles that undergo cycles of fission and fusion. In the fission yeast, Schizosaccharomyces pombe, mitochondria align with microtubules and mitochondrial integrity is dependent upon an intact microtubule cytoskeleton. Here we show that mitochondria re-organize during the cell cycle and that this process is both dynamin- and microtubule-dependent. Microtubule depolymerization results in mitochondrial fragmentation but only when the dynamin-related protein Dnm1 is present. Mitochondrial fusion is, on the other hand, microtubule-independent. dnm1Delta cells, besides showing extensively fused mitochondria, are specifically resistant to anti-microtubule drugs. Dnm1-YFP localizes to foci at sites of mitochondrial severing which occupy the interface between adjacent nucleoids, suggesting the existence of defined mitochondrial "territories," each of which contains a nucleoid. Such territories are lost in dnm1Delta in which nucleoids become aggregated. Mitochondrial ends exhibit motile behavior, extending towards and retracting from the cell poles, independently of the cytoskeleton. We conclude that: (a) mitochondria are organized by microtubules in fission yeast but are not moved by them; (b) Dnm1 mediates mitochondrial fission during interphasic growth and at cell division; (c) the interaction between microtubules and mitochondria, either directly or indirectly via Dnm1, not only modifies the disposition of mitochondria it also modifies the behavior of microtubules. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Isabelle Jourdain
- Institute of Molecular Biosciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
30
|
Andrade-Navarro MA, Sanchez-Pulido L, McBride HM. Mitochondrial vesicles: an ancient process providing new links to peroxisomes. Curr Opin Cell Biol 2009; 21:560-7. [DOI: 10.1016/j.ceb.2009.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 11/26/2022]
|
31
|
Röthlisberger S, Jourdain I, Johnson C, Takegawa K, Hyams JS. The dynamin-related protein Vps1 regulates vacuole fission, fusion and tubulation in the fission yeast, Schizosaccharomyces pombe. Fungal Genet Biol 2009; 46:927-35. [PMID: 19643199 DOI: 10.1016/j.fgb.2009.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/13/2009] [Accepted: 07/19/2009] [Indexed: 01/07/2023]
Abstract
Fission yeast cells lacking the dynamin-related protein (DRP) Vps1 had smaller vacuoles with reduced capacity for both fusion and fission in response to hypotonic and hypertonic conditions respectively. vps1Delta cells showed normal vacuolar protein sorting, actin organisation and endocytosis. Over-expression of vps1 transformed vacuoles from spherical to tubular. Tubule formation was enhanced in fission conditions and required the Rab protein Ypt7. Vacuole tubulation by Vps1 was more extensive in the absence of a second DRP, Dnm1. Both dnm1Delta and the double mutant vps1Delta dnm1Delta showed vacuole fission defects similar to that of vps1Delta. Over-expression of vps1 in dnm1Delta, or of dnm1 in vps1Delta failed to rescue this phenotype. Over-expression of dnm1 in wild-type cells, on the other hand, induced vacuole fission. Our results are consistent with a model of vacuole fission in which Vps1 creates a tubule of an appropriate diameter for subsequent scission by Dnm1.
Collapse
Affiliation(s)
- Sarah Röthlisberger
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Schumann U, Subramani S. Special delivery from mitochondria to peroxisomes. Trends Cell Biol 2008; 18:253-6. [PMID: 18468897 DOI: 10.1016/j.tcb.2008.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/24/2022]
Abstract
Inter-organellar communication and interactions are necessary and accepted consequences of the segregation of biochemical functions into subcellular organelles. Recently, Heidi McBride and her collaborators found a novel link between mitochondria and peroxisomes in their discovery of mitochondria-derived vesicles (MDVs), which appear to fuse with a fraction of pre-existing peroxisomes in mammalian cells. We discuss the potential role of this vesicle population in the context of pathways for the exchange of metabolites and/or macromolecules between these compartments.
Collapse
Affiliation(s)
- Uwe Schumann
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
34
|
Abstract
More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed.
Collapse
Affiliation(s)
- Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|