1
|
Spatola Rossi T, Kriechbaumer V. An Interplay between Mitochondrial and ER Targeting of a Bacterial Signal Peptide in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:617. [PMID: 36771701 PMCID: PMC9920398 DOI: 10.3390/plants12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Protein targeting is essential in eukaryotic cells to maintain cell function and organelle identity. Signal peptides are a major type of targeting sequences containing a tripartite structure, which is conserved across all domains in life. They are frequently included in recombinant protein design in plants to increase yields by directing them to the endoplasmic reticulum (ER) or apoplast. The processing of bacterial signal peptides by plant cells is not well understood but could aid in the design of efficient heterologous expression systems. Here we analysed the signal peptide of the enzyme PmoB from methanotrophic bacteria. In plant cells, the PmoB signal peptide targeted proteins to both mitochondria and the ER. This dual localisation was still observed in a mutated version of the signal peptide sequence with enhanced mitochondrial targeting efficiency. Mitochondrial targeting was shown to be dependent on a hydrophobic region involved in transport to the ER. We, therefore, suggest that the dual localisation could be due to an ER-SURF pathway recently characterised in yeast. This work thus sheds light on the processing of bacterial signal peptides by plant cells and proposes a novel pathway for mitochondrial targeting in plants.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
2
|
Vieira V, Pain C, Wojcik S, Spatola Rossi T, Denecke J, Osterrieder A, Hawes C, Kriechbaumer V. Living on the edge: the role of Atgolgin-84A at the plant ER-Golgi interface. J Microsc 2020; 280:158-173. [PMID: 32700322 DOI: 10.1111/jmi.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
The plant Golgi apparatus is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Golgi matrix components, such as golgins, have been identified and suggested to function as putative tethering factors to mediate the physical connections between Golgi bodies and the ER network. Golgins are proteins anchored to the Golgi membrane by the C-terminus either through transmembrane domains or interaction with small regulatory GTPases. The golgin N-terminus contains long coiled-coil domains, which consist of a number of α-helices wrapped around each other to form a structure similar to a rope being made from several strands, reaching into the cytoplasm. In animal cells, golgins are also implicated in specific recognition of cargo at the Golgi.Here, we investigate the plant golgin Atgolgin-84A for its subcellular localization and potential role as a tethering factor at the ER-Golgi interface. For this, fluorescent fusions of Atgolgin-84A and an Atgolgin-84A truncation lacking the coiled-coil domains (Atgolgin-84AΔ1-557) were transiently expressed in tobacco leaf epidermal cells and imaged using high-resolution confocal microscopy. We show that Atgolgin-84A localizes to a pre-cis-Golgi compartment that is also labelled by one of the COPII proteins as well as by the tether protein AtCASP. Upon overexpression of Atgolgin-84A or its deletion mutant, transport between the ER and Golgi bodies is impaired and cargo proteins are redirected to the vacuole. LAY DESCRIPTION: The Golgi apparatus is a specialised compartment found in mammalian and plant cells. It is the post office of the cell and packages proteins into small membrane boxes for transport to their destination in the cell. The plant Golgi apparatus consist of many separate Golgi bodies and is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Specialised proteins called golgins have been suggested to tether Golgi bodies and the ER. Here we investigate the plant golgin Atgolgin-84A for its exact within the Golgi body and its potential role as a tethering factor at the ER-Golgi interface. For this, we have fused Atgolgin-84A with a fluorescent protein from jellyfish and we are producing this combination in tobacco leaf cells. This allows us to see the protein using laser microscopy. We show that Atgolgin-84A localises to a compartment between the ER and Golgi that is also labelled by the tether protein AtCASP. When Atgolgin-84A is produced in high amounts in the cell, transport between the ER and Golgi bodies is inhibited and proteins are redirected to the vacuole.
Collapse
Affiliation(s)
- V Vieira
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, U.K
| | - C Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - S Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - T Spatola Rossi
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - J Denecke
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, U.K
| | - A Osterrieder
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Bioethics and Engagement, Mahidol Oxford Tropical Medicine Research Unit (MORU), Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - C Hawes
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| |
Collapse
|
3
|
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. PLANTS 2020; 9:plants9030389. [PMID: 32245198 PMCID: PMC7154882 DOI: 10.3390/plants9030389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.
Collapse
|
4
|
Mechela A, Schwenkert S, Soll J. A brief history of thylakoid biogenesis. Open Biol 2019; 9:180237. [PMID: 30958119 PMCID: PMC6367138 DOI: 10.1098/rsob.180237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The thylakoid membrane network inside chloroplasts harbours the protein complexes that are necessary for the light-dependent reactions of photosynthesis. Cellular processes for building and altering this membrane network are therefore essential for life on Earth. Nevertheless, detailed molecular processes concerning the origin and synthesis of the thylakoids remain elusive. Thylakoid biogenesis is strongly coupled to the processes of chloroplast differentiation. Chloroplasts develop from special progenitors called proplastids. As many of the needed building blocks such as lipids and pigments derive from the inner envelope, the question arises how these components are recruited to their target membrane. This review travels back in time to the beginnings of thylakoid membrane research to summarize findings, facts and fictions on thylakoid biogenesis and structure up to the present state, including new insights and future developments in this field.
Collapse
Affiliation(s)
- Annabel Mechela
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
5
|
Jones DS, Liu X, Willoughby AC, Smith BE, Palanivelu R, Kessler SA. Cellular distribution of secretory pathway markers in the haploid synergid cells of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:192-202. [PMID: 29385641 DOI: 10.1111/tpj.13848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
In flowering plants, cell-cell communication plays a key role in reproductive success, as both pollination and fertilization require pathways that regulate interactions between many different cell types. Some of the most critical of these interactions are those between the pollen tube (PT) and the embryo sac, which ensure the delivery of sperm cells required for double fertilization. Synergid cells function to attract the PT through secretion of small peptides and in PT reception via membrane-bound proteins associated with the endomembrane system and the cell surface. While many synergid-expressed components regulating PT attraction and reception have been identified, few tools exist to study the localization of membrane-bound proteins and the components of the endomembrane system in this cell type. In this study, we describe the localization and distribution of seven fluorescent markers that labelled components of the secretory pathway in synergid cells of Arabidopsis thaliana. These markers were used in co-localization experiments to investigate the subcellular distribution of the two PT reception components LORELEI, a GPI-anchored surface protein, and NORTIA, a MILDEW RESISTANCE LOCUS O protein, both found within the endomembrane system of the synergid cell. These secretory markers are useful tools for both reproductive and cell biologists, enabling the analysis of membrane-associated trafficking within a haploid cell actively involved in polar transport.
Collapse
Affiliation(s)
- Daniel S Jones
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73069, USA
| | - Xunliang Liu
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Andrew C Willoughby
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, 73069, USA
| | - Benjamin E Smith
- Vision Sciences, University of California, Berkeley, CA, 94720, USA
| | | | - Sharon A Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Aboulela M, Nakagawa T, Oshima A, Nishimura K, Tanaka Y. The Arabidopsis COPII components, AtSEC23A and AtSEC23D, are essential for pollen wall development and exine patterning. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1615-1633. [PMID: 29390074 PMCID: PMC5889017 DOI: 10.1093/jxb/ery015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 05/04/2023]
Abstract
The specialized multilayered pollen wall plays multiple roles to ensure normal microspore development. The major components of the pollen wall (e.g. sporopollenin and lipidic precursors) are provided from the tapetum. Material export from the endoplasmic reticulum (ER) is mediated by coat protein complex II (COPII) vesicles. The Arabidopsis thaliana genome encodes seven homologs of SEC23, a COPII component. However, the functional importance of this diversity remains elusive. Here, we analyzed knockout and knockdown lines for AtSEC23A and AtSEC23D, two of the A. thaliana SEC23 homologs, respectively. Single atsec23a and atsec23d mutant plants, despite normal fertility, showed an impaired exine pattern. Double atsec23ad mutant plants were semi-sterile and exhibited developmental defects in pollen and tapetal cells. Pollen grains of atsec23ad had defective exine and intine, and showed signs of cell degeneration. Moreover, the development of tapetal cells was altered, with structural abnormalities in organelles. AtSEC23A and AtSEC23D exhibited the characteristic localization pattern of COPII proteins and were highly expressed in the tapetum. Our work suggests that AtSEC23A and AtSEC23D may organize pollen wall development and exine patterning by regulating ER export of lipids and proteins necessary for pollen wall formation. Also, our results shed light on the functional heterogeneity of SEC23 homologs.
Collapse
Affiliation(s)
- Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Akinobu Oshima
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yuji Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
7
|
Tu H, Li X, Yang Q, Peng L, Pan SQ. Real-Time Trafficking of Agrobacterium Virulence Protein VirE2 Inside Host Cells. Curr Top Microbiol Immunol 2018; 418:261-286. [PMID: 30182197 DOI: 10.1007/82_2018_131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A. tumefaciens delivers T-DNA and virulence proteins, including VirE2, into host plant cells, where T-DNA is proposed to be protected by VirE2 molecules as a nucleoprotein complex (T-complex) and trafficked into the nucleus. VirE2 is a protein that can self-aggregate and contains targeting sequences so that it can efficiently move from outside of a cell to the nucleus. We adopted a split-GFP approach and generated a VirE2-GFP fusion which retains the self-aggregating property and the targeting sequences. The fusion protein is fully functional and can move inside cells in real time in a readily detectable format: fluorescent and unique filamentous aggregates. Upon delivery mediated by the bacterial type IV secretion system (T4SS), VirE2-GFP is internalized into the plant cells via clathrin adaptor complex AP2-mediated endocytosis. Subsequently, VirE2-GFP binds to membrane structures such as the endoplasmic reticulum (ER) and is trafficked within the cell. This enables us to observe the highly dynamic activities of the cell. If a compound, a gene, or a condition affects the cell, the cellular dynamics shown by the VirE2-GFP will be affected and thus readily observed by confocal microscopy. This represents an excellent model to study the delivery and trafficking of an exogenously produced and delivered protein inside a cell in a natural setting in real time. The model may be used to explore the theoretical and applied aspects of natural protein delivery and targeting.
Collapse
Affiliation(s)
- Haitao Tu
- School of Stomatology and Medicine, Foshan Institute of Molecular Bio-Engineering, Foshan University, 528000, Foshan, China
| | - Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Qinghua Yang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Ling Peng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
| |
Collapse
|
8
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
9
|
Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3339-3350. [PMID: 28605454 PMCID: PMC5853478 DOI: 10.1093/jxb/erx167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
The plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER) and synthesizes cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role for cis-Golgi plant golgins, which are long coiled-coil domain proteins anchored to Golgi membranes, in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.
Collapse
Affiliation(s)
- Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Imogen A Sparkes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Stan W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Andy Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| |
Collapse
|
10
|
Li X, Pan SQ. Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. SCIENCE ADVANCES 2017; 3:e1601528. [PMID: 28345032 PMCID: PMC5362186 DOI: 10.1126/sciadv.1601528] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/09/2017] [Indexed: 05/20/2023]
Abstract
Agrobacterium tumefaciens can cause crown gall tumors on a wide range of host plants. As a natural genetic engineer, the bacterium can transfer both single-stranded DNA (ssDNA) [transferred DNA (T-DNA)] molecules and bacterial virulence proteins into various recipient cells. Among Agrobacterium-delivered proteins, VirE2 is an ssDNA binding protein that is involved in various steps of the transformation process. However, it is not clear how plant cells receive the T-DNA or protein molecules. Using a split-green fluorescent protein approach, we monitored the VirE2 delivery process inside plant cells in real time. We observed that A. tumefaciens delivered VirE2 from the bacterial lateral sides that were in close contact with plant membranes. VirE2 initially accumulated on plant cytoplasmic membranes at the entry points. VirE2-containing membranes were internalized through clathrin-mediated endocytosis to form endomembrane compartments. VirE2 colocalized with the early endosome marker SYP61 but not with the late endosome marker ARA6, suggesting that VirE2 escaped from early endosomes for subsequent trafficking inside the cells. Dual endocytic motifs at the carboxyl-terminal tail of VirE2 were involved in VirE2 internalization and could interact with the μ subunit of the plant clathrin-associated adaptor AP2 complex (AP2M). Both the VirE2 cargo motifs and AP2M were important for the transformation process. Because AP2-mediated endocytosis is well conserved, our data suggest that the A. tumefaciens pathogen hijacks conserved endocytic pathways to facilitate the delivery of virulence factors. This might be important for Agrobacterium to achieve both a wide host range and a high transformation efficiency.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
11
|
Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). THE NEW PHYTOLOGIST 2016; 212:108-22. [PMID: 27241276 DOI: 10.1111/nph.14031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/24/2016] [Indexed: 05/18/2023]
Abstract
In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.
Collapse
Affiliation(s)
- Rikno Harmoko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Jae Yong Yoo
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ki Seong Ko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Nirmal Kumar Ramasamy
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Bo Young Hwang
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Eun Ji Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ho Soo Kim
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyung Jin Lee
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Doo-Byoung Oh
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, 181 Hyeoksin-ro, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| |
Collapse
|
12
|
Occhialini A, Gouzerh G, Di Sansebastiano GP, Neuhaus JM. Dimerization of the Vacuolar Receptors AtRMR1 and -2 from Arabidopsis thaliana Contributes to Their Localization in the trans-Golgi Network. Int J Mol Sci 2016; 17:E1661. [PMID: 27706038 PMCID: PMC5085694 DOI: 10.3390/ijms17101661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
In Arabidopsis thaliana, different types of vacuolar receptors were discovered. The AtVSR (Vacuolar Sorting Receptor) receptors are well known to be involved in the traffic to lytic vacuole (LV), while few evidences demonstrate the involvement of the receptors from AtRMR family (Receptor Membrane RING-H2) in the traffic to the protein storage vacuole (PSV). In this study we focused on the localization of two members of AtRMR family, AtRMR1 and -2, and on the possible interaction between these two receptors in the plant secretory pathway. Our experiments with agroinfiltrated Nicotiana benthamiana leaves demonstrated that AtRMR1 was localized in the endoplasmic reticulum (ER), while AtRMR2 was targeted to the trans-Golgi network (TGN) due to the presence of a cytosolic 23-amino acid sequence linker. The fusion of this linker to an equivalent position in AtRMR1 targeted this receptor to the TGN, instead of the ER. By using a Bimolecular Fluorescent Complementation (BiFC) technique and experiments of co-localization, we demonstrated that AtRMR2 can make homodimers, and can also interact with AtRMR1 forming heterodimers that locate to the TGN. Such interaction studies strongly suggest that the transmembrane domain and the few amino acids surrounding it, including the sequence linker, are essential for dimerization. These results suggest a new model of AtRMR trafficking and dimerization in the plant secretory pathway.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ Herts, UK.
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| | - Guillaume Gouzerh
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| | - Gian-Pietro Di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Campus Ecotekne, 73100 Lecce, Italy.
| | - Jean-Marc Neuhaus
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| |
Collapse
|
13
|
Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, Chen X. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genet 2016; 12:e1006311. [PMID: 27618555 PMCID: PMC5019419 DOI: 10.1371/journal.pgen.1006311] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. Plants have evolved sophistical immunity system in fighting against pathogenic micro-organisms including bacteria, fungi and oomycetes. Upon perception of pathogens, the immune system activates rapid cell death, characterized as a form of hypersensitive response typically in and around the infection sites to restrict pathogen invasion and prevent disease development. Recent studies have suggested that MVBs-mediated vesicular trafficking might play key roles in plant immunity and cell death. However, the molecular regulation is poorly known. By using the lesion resembling disease (lrd) mutant, lrd6-6, which exhibits autoimmunity and spontaneous cell death, we characterized LRD6-6 as a MVBs-localized AAA ATPase. We found that the ATPase LRD6-6 was required for MVBs-mediated vesicular trafficking and inhibited the biosynthesis of antimicrobial compounds for immune response in rice. Both the ATPase activity and homo-dimerization of LRD6-6 were essential for its inhibition on immunity and cell death. The catalytically inactive ATPase, LRD6-6E315Q, played dominant-negative effect on inhibition of immunity in plants. In addition, the LRD6-6 protein co-localized with the MVBs-spread marker protein RabF1/ARA6 and also interacted with ESCRT-III components OsSNF7 and OsVPS2. In summary, our study has shown that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Sihui Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Ruihong Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Zhixiong Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Can Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Bingtian Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
14
|
Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of Plant Prevacuolar Multivesicular Bodies. MOLECULAR PLANT 2016; 9:774-86. [PMID: 26836198 DOI: 10.1016/j.molp.2016.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 05/20/2023]
Abstract
Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was identified as an MVB more than 10 years ago, great progress has been made toward the understanding of PVC/MVB function and biogenesis in plants. In this review, we first summarize previous research into the identification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
15
|
Künzl F, Früholz S, Fäßler F, Li B, Pimpl P. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. NATURE PLANTS 2016; 2:16017. [PMID: 27249560 DOI: 10.1038/nplants.2016.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
The sorting of soluble proteins for degradation in the vacuole is of vital importance in plant cells, and relies on the activity of vacuolar sorting receptors (VSRs). In the plant endomembrane system, VSRs bind vacuole-targeted proteins and facilitate their transport to the vacuole. Where exactly these interactions take place has remained controversial, however. Here, we examine the potential for VSR-ligand interactions in all compartments of the vacuolar transport system in tobacco mesophyll protoplasts. To do this, we developed compartment-specific VSR sensors that assemble as a result of a nanobody-epitope interaction, and monitored the degree of ligand binding by analysing Förster resonance energy transfer using fluorescence lifetime imaging microscopy (FRET-FLIM). We show that VSRs bind ligands in the endoplasmic reticulum (ER) and in the Golgi, but not in the trans-Golgi network/early endosome (TGN/EE) or multivesicular late endosomes, suggesting that the post-TGN/EE trafficking of ligands towards the vacuole is VSR independent. We verify this by showing that non-VSR-ligands are also delivered to the vacuole from the TGN/EE after endocytic uptake. We conclude that VSRs are required for the transport of ligands from the ER and the Golgi to the TGN/EE, and suggest that the onward transport to the vacuole occurs by default.
Collapse
Affiliation(s)
- Fabian Künzl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Simone Früholz
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Florian Fäßler
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Beibei Li
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Peter Pimpl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
16
|
Foissner I, Sommer A, Hoeftberger M, Hoepflinger MC, Absolonova M. Is Wortmannin-Induced Reorganization of the trans-Golgi Network the Key to Explain Charasome Formation? FRONTIERS IN PLANT SCIENCE 2016; 7:756. [PMID: 27375631 PMCID: PMC4891338 DOI: 10.3389/fpls.2016.00756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Wortmannin, a fungal metabolite and an inhibitor of phosphatidylinositol-3 (PI3) and phosphatidylinositol-4 (PI4) kinases, is widely used for the investigation and dissection of vacuolar trafficking routes and for the identification of proteins located at multivesicular bodies (MVBs). In this study, we applied wortmannin on internodal cells of the characean green alga Chara australis. Wortmannin was used at concentrations of 25 and 50 μM which, unlike in other cells, arrested neither constitutive, nor wounding-induced endocytosis via coated vesicles. Wortmannin caused the formation of "mixed compartments" consisting of MVBs and membranous tubules which were probably derived from the trans-Golgi network (TGN) and within these compartments MVBs fused into larger organelles. Most interestingly, wortmannin also caused pronounced changes in the morphology of the TGNs. After transient hypertrophy, the TGNs lost their coat and formed compact, three-dimensional meshworks of anastomosing tubules containing a central core. These meshworks had a size of up to 4 μm and a striking resemblance to charasomes, which are convoluted plasma membrane domains, and which serve to increase the area available for transporters. Our findings indicate that similar mechanisms are responsible for the formation of charasomes and the wortmannin-induced reorganization of the TGN. We hypothesize that both organelles grow because of a disturbance of clathrin-dependent membrane retrieval due to inhibition of PI3 and/or PI4 kinases. This leads to local inhibition of clathrin-mediated endocytosis during charasome formation in untreated cells and to inhibition of vesicle release from the TGN in wortmannin-treated cells, respectively. The morphological resemblance between charasomes and wortmannin-modified TGN compartments suggests that homologous proteins are involved in membrane curvature and organelle architecture.
Collapse
|
17
|
Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E. pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. THE PLANT CELL 2015; 27:1200-17. [PMID: 25829439 PMCID: PMC4558692 DOI: 10.1105/tpc.114.135699] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 05/18/2023]
Abstract
Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Monika Wimmer
- Institute of Crop Science and Resource Conservation, Division of Plant Nutrition, University of Bonn, D-53115 Bonn, Germany
| | - Alexandra Chanoca
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Laboratory, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
18
|
Gendre D, Jonsson K, Boutté Y, Bhalerao RP. Journey to the cell surface--the central role of the trans-Golgi network in plants. PROTOPLASMA 2015; 252:385-98. [PMID: 25187082 DOI: 10.1007/s00709-014-0693-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/21/2014] [Indexed: 05/11/2023]
Abstract
The secretion of proteins, lipids, and carbohydrates to the cell surface is essential for plant development and adaptation. Secreted substances synthesized at the endoplasmic reticulum pass through the Golgi apparatus and trans-Golgi network (TGN) en route to the plasma membrane via the conventional secretion pathway. The TGN is morphologically and functionally distinct from the Golgi apparatus. The TGN is located at the crossroads of many trafficking pathways and regulates a range of crucial processes including secretion to the cell surface, transport to the vacuole, and the reception of endocytic cargo. This review outlines the TGN's central role in cargo secretion, showing that its behavior is more complex and controlled than the bulk-flow hypothesis suggests. Its formation, structure, and maintenance are discussed along with the formation and release of secretory vesicles.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden,
| | | | | | | |
Collapse
|
19
|
Roy R, Bassham DC. Gravitropism and Lateral Root Emergence are Dependent on the Trans-Golgi Network Protein TNO1. FRONTIERS IN PLANT SCIENCE 2015; 6:969. [PMID: 26617617 PMCID: PMC4642138 DOI: 10.3389/fpls.2015.00969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 05/07/2023]
Abstract
The trans-Golgi network (TGN) is a dynamic organelle that functions as a relay station for receiving endocytosed cargo, directing secretory cargo, and trafficking to the vacuole. TGN-localized SYP41-interacting protein (TNO1) is a large, TGN-localized, coiled-coil protein that associates with the membrane fusion protein SYP41, a target SNARE, and is required for efficient protein trafficking to the vacuole. Here, we show that a tno1 mutant has auxin transport-related defects. Mutant roots have delayed lateral root emergence, decreased gravitropic bending of plant organs and increased sensitivity to the auxin analog 2,4-dichlorophenoxyacetic acid and the natural auxin 3-indoleacetic acid. Auxin asymmetry at the tips of elongating stage II lateral roots was reduced in the tno1 mutant, suggesting a role for TNO1 in cellular auxin transport during lateral root emergence. During gravistimulation, tno1 roots exhibited delayed auxin transport from the columella to the basal epidermal cells. Endocytosis to the TGN was unaffected in the mutant, indicating that bulk endocytic defects are not responsible for the observed phenotypes. Together these studies demonstrate a role for TNO1 in mediating auxin responses during root development and gravistimulation, potentially through trafficking of auxin transport proteins.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Interdepartmental Genetics Program, Iowa State University, AmesIA, USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Interdepartmental Genetics Program, Iowa State University, AmesIA, USA
- Plant Sciences Institute, Iowa State University, AmesIA, USA
- *Correspondence: Diane C. Bassham,
| |
Collapse
|
20
|
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 2014; 111:8293-8. [PMID: 24843126 DOI: 10.1073/pnas.1402262111] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
Collapse
|
21
|
Autophagy-related direct membrane import from ER/cytoplasm into the vacuole or apoplast: a hidden gateway also for secondary metabolites and phytohormones? Int J Mol Sci 2014; 15:7462-74. [PMID: 24786101 PMCID: PMC4057683 DOI: 10.3390/ijms15057462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER) to vacuole (and also, apoplast) transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA) acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast), exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA) and salicylic acid (SA)) degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters) will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.
Collapse
|
22
|
Kim SJ, Brandizzi F. The plant secretory pathway: an essential factory for building the plant cell wall. PLANT & CELL PHYSIOLOGY 2014; 55:687-93. [PMID: 24401957 DOI: 10.1093/pcp/pct197] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For building and maintaining the complex structure of the surrounding wall throughout their life, plant cells rely on the endomembrane system, which functions as the main provider and transporter of cell wall constituents. Efforts to understand the mechanisms of synthesis and transport of cell wall materials have been generating valuable information for diverse practical applications. Nonetheless, the identity of the endomembrane components necessary for the transport of cell wall enzymes and polysaccharides is not well known. Evidence indicates that plant cells can accomplish secretion of cell wall constituents through multiple pathways during development or under stress conditions and, that compared with other eukaryotes, they rely on a highly diversified toolkit of proteins for membrane traffic. This suggests that production of the cell wall in plants consists of intricate and highly regulated pathways. In this review, we summarize important discoveries that have allowed the activities of the plant secretory pathway to be linked to the production and deposition of cell wall-synthesizing enzymes and polysaccharides.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
23
|
Robinson DG, Pimpl P. Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. PROTOPLASMA 2014; 251:247-64. [PMID: 24019013 DOI: 10.1007/s00709-013-0542-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 05/20/2023]
Abstract
In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the "classical model" for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR-ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour. Firstly, unlike mammalian cells where the sorting receptor for lysosomal hydrolases recognizes its ligand in the TGN, the available data suggests that in plants VSRs interact with vacuolar cargo ligands already in the endoplasmic reticulum. Secondly, the evidence supporting the packaging of VSR-ligand complexes into CCV at the TGN is not conclusive. Thirdly, the prevacuolar compartment appears to have a pH unsuitable for VSR-ligand dissociation and lacks the retromer core and the sorting nexins needed for VSR recycling. We present an alternative model for protein sorting in the TGN that draws attention to the much overlooked role of Ca(2+) in VSR-ligand interactions and which may possibly also be a factor in the sequestration of secretory proteins.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
24
|
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Nishiyama T, Sakayama H, Hammerl P, Tenhaken R, Ueda T, Foissner I. Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5553-68. [PMID: 24127512 PMCID: PMC3871812 DOI: 10.1093/jxb/ert322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RAB5 GTPases are important regulators of endosomal membrane traffic in yeast, plants, and animals. A specific subgroup of this family, the ARA6 group, has been described in land plants including bryophytes, lycophytes, and flowering plants. Here, we report on the isolation of an ARA6 homologue in a green alga. CaARA6 (CaRABF1) from Chara australis, a member of the Characeae that is a close relative of land plants, encodes a polypeptide of 237 aa with a calculated molecular mass of 25.4 kDa, which is highly similar to ARA6 members from Arabidopsis thaliana and other land plants and has GTPase activity. When expressed in Nicotiana benthamiana leaf epidermal cells, fluorescently tagged CaARA6 labelled organelles with diameters between 0.2 and 1.2 µm, which co-localized with fluorescently tagged AtARA6 known to be present on multivesicular endosomes. Mutations in the membrane-anchoring and GTP-binding sites altered the localization of CaARA6 comparable to that of A. thaliana ARA6 (RABF1). In characean internodal cells, confocal immunofluorescence and immunogold electron microscopy with antibodies against AtARA6 and CaARA6 revealed ARA6 epitopes not only at multivesicular endosomes but also at the plasma membrane, including convoluted domains (charasomes), and at the trans-Golgi network. Our findings demonstrate that ARA6-like proteins have a more ancient origin than previously thought. They indicate further that ARA6-like proteins could have different functions in spite of the high similarity between characean algae and flowering plants.
Collapse
Affiliation(s)
- Marion C. Hoepflinger
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anja Geretschlaeger
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Aniela Sommer
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Margit Hoeftberger
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Peter Hammerl
- Central Animal Facility, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Raimund Tenhaken
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ilse Foissner
- Plant Physiology/Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
25
|
Keller R, Schneider D. Homologs of the yeast Tvp38 vesicle-associated protein are conserved in chloroplasts and cyanobacteria. FRONTIERS IN PLANT SCIENCE 2013; 4:467. [PMID: 24312110 PMCID: PMC3836016 DOI: 10.3389/fpls.2013.00467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/29/2013] [Indexed: 05/21/2023]
Abstract
Vesicle transfer processes in eukaryotes depend on specific proteins, which mediate the selective packing of cargo molecules for subsequent release out of the cells after vesicle fusion to the plasma membrane. The protein Tvp38 is conserved in yeasts and higher eukaryotes and potentially involved in vesicle transfer processes at the Golgi membrane. Members of the so-called "SNARE-associated proteins of the Tvp38-family" have also been identified in prokaryotes and those belong to the DedA protein family. Tvp38/DedA proteins are also conserved in cyanobacteria and chloroplasts. While only a single member of this family appears to be present in chloroplasts, cyanobacterial genomes typically encode multiple homologous proteins. Mainly based on our understanding of the DedA-homologous proteins of Escherichia coli, it appears likely that the function of these proteins in chloroplast and cyanobacteria involves stabilizing and organizing the structure of internal membrane systems.
Collapse
Affiliation(s)
- Rebecca Keller
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-UniversityMainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-UniversityMainz, Germany
| |
Collapse
|
26
|
Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. THE PLANT CELL 2013; 25:3022-38. [PMID: 23995081 PMCID: PMC3784596 DOI: 10.1105/tpc.113.113704] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To characterize the mechanism through which myosin XI-K attaches to its principal endomembrane cargo, a yeast two-hybrid library of Arabidopsis thaliana cDNAs was screened using the myosin cargo binding domain as bait. This screen identified two previously uncharacterized transmembrane proteins (hereinafter myosin binding proteins or MyoB1/2) that share a myosin binding, conserved domain of unknown function 593 (DUF593). Additional screens revealed that MyoB1/2 also bind myosin XI-1, whereas myosin XI-I interacts with the distantly related MyoB7. The in vivo interactions of MyoB1/2 with myosin XI-K were confirmed by immunoprecipitation and colocalization analyses. In epidermal cells, the yellow fluorescent protein-tagged MyoB1/2 localize to vesicles that traffic in a myosin XI-dependent manner. Similar to myosin XI-K, MyoB1/2 accumulate in the tip-growing domain of elongating root hairs. Gene knockout analysis demonstrated that functional cooperation between myosin XI-K and MyoB proteins is required for proper plant development. Unexpectedly, the MyoB1-containing vesicles did not correspond to brefeldin A-sensitive Golgi and post-Golgi or prevacuolar compartments and did not colocalize with known exocytic or endosomal compartments. Phylogenomic analysis suggests that DUF593 emerged in primitive land plants and founded a multigene family that is conserved in all flowering plants. Collectively, these findings indicate that MyoB are membrane-anchored myosin receptors that define a distinct, plant-specific transport vesicle compartment.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Eva A. Morgun
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Elizabeth G. Kurth
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Address correspondence to
| |
Collapse
|
27
|
Xiang L, Van den Ende W. Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. PLANT & CELL PHYSIOLOGY 2013; 54:1263-1277. [PMID: 23737500 DOI: 10.1093/pcp/pct075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vacuolar invertases (VIs) are highly expressed in young tissues and organs. They may have a substantial regulatory influence on whole-plant metabolism as well as on photosynthetic efficiency. Therefore, they are emerging as potentially interesting biotechnological targets to increase plant biomass production, especially under stress. On the one hand, VIs are well known as soluble and extractable proteins. On the other hand, they contain complex N-terminal propeptide (NTPP) regions with a basic region (BR) and a transmembrane domain (TMD). Here we analyzed in depth the Arabidopsis thaliana VI2 (AtVI2) NTPP by mutagenesis. It was found that correct sorting to the lytic vacuole (LV) depends on the presence of intact dileucine (SSDALLPIS), BR (RRRR) and TMD motifs. AtVI2 remains inserted into membranes on its way to the LV, and the classical sorting pathway (endoplasmic reticulum→Golgi→LV) is followed. However, our data suggest that VIs might follow an alternative, adaptor protein 3 (AP3)-dependent route as well. Membrane-anchored transport and a direct recognition of the dileucine motif in the NTPP of VIs might have evolved as a simple and more efficient sorting mechanism as compared with the vacuolar sorting receptor 1/binding protein of 80 kDa (VSR1/BP80)-dependent sorting mechanism followed by those proteins that travel to the vacuole as soluble proteins.
Collapse
Affiliation(s)
- Li Xiang
- Biology Department, Laboratory for Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2434, B-3001 Heverlee, Belgium
| | | |
Collapse
|
28
|
Jia T, Gao C, Cui Y, Wang J, Ding Y, Cai Y, Ueda T, Nakano A, Jiang L. ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2817-29. [PMID: 23682115 PMCID: PMC3697957 DOI: 10.1093/jxb/ert125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana ARA7 (AtRabF2b), a member of the plant Rab5 small GTPases functioning in the vacuolar transport pathway, localizes to pre-vacuolar compartments (PVCs), known as multivesicular bodies (MVBs) in plant cells. Overexpression of the constitutively active GTP-bound mutant of ARA7, ARA7(Q69L), induces the formation of large ring-like structures (1-2 µm in diameter). To better understand the biology of these ARA7(Q69L)-induced ring-like structures, transgenic Arabidopsis cell lines expressing ARA7(Q69L) tagged with green fluorescent protein (GFP) under the control of a heat shock-inducible promoter were generated. In these transgenic cells, robust ring-like structures were formed after 4 h of heat shock induction. Transient co-expression, confocal imaging, and immunogold electron microscopy (immunogold-EM) experiments demonstrated that these GFP-ARA7(Q69L)-labelled ring-like structures were distinct from the Golgi apparatus and trans-Golgi network, but were labelled with an antibody against an MVB marker protein. In addition, live cell imaging and detailed EM analysis showed that the GFP-ARA7(Q69L)-induced spherical structures originated from the homotypic fusion of MVBs. In summary, it was demonstrated that GFP-ARA7(Q69L) expression is an efficient tool for studying PVC/MVB-mediated protein trafficking and vacuolar degradation in plant cells.
Collapse
Affiliation(s)
- Tianran Jia
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
De Benedictis M, Bleve G, Faraco M, Stigliano E, Grieco F, Piro G, Dalessandro G, Di Sansebastiano GP. AtSYP51/52 functions diverge in the post-Golgi traffic and differently affect vacuolar sorting. MOLECULAR PLANT 2013; 6:916-30. [PMID: 23087325 DOI: 10.1093/mp/sss117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant sensitive factor attachment protein receptors (SNAREs) encoded by genes of the same sub-family are generally considered as redundant in promoting vesicle-associated membrane fusion events. Nonetheless, the application of innovative experimental approaches highlighted that members of the same gene sub-family often have different functional specificities. In this work, two closely related Qc-SNAREs--the AtSYP51 and the AtSYP52--are compared in their ability to influence different secretory pathways. Their role in the vesicle sorting to the central vacuole has been revised and they were found to have a novel inhibitory function. When transiently overexpressed, the SYP51 and the SYP52 distributed between the TGN and the tonoplast. Our data demonstrate that these SYPs (syntaxin of plants) act as t-SNARE when present on the membrane of TGN/PVC, whereas they behave as inhibitory or interfering SNAREs (i-SNAREs) when they accumulate on the tonoplast. Moreover, the performed functional analysis indicated that the AtSYP51 and the AtSYP52 roles differ in the traffic to the vacuole. The findings are a novel contribution to the functional characterization of plant SNAREs that reveals additional non-fusogenic roles.
Collapse
Affiliation(s)
- Maria De Benedictis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mishev K, Dejonghe W, Russinova E. Small Molecules for Dissecting Endomembrane Trafficking: A Cross-Systems View. ACTA ACUST UNITED AC 2013; 20:475-86. [DOI: 10.1016/j.chembiol.2013.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/31/2023]
|
31
|
Rodríguez M, Pérez L, Gavilondo JV, Garrido G, Bequet-Romero M, Hernández I, Huerta V, Cabrera G, Pérez M, Ramos O, Leyva R, León M, Ramos PL, Triguero A, Hernández A, Sánchez B, Ayala M, Soto J, González E, Mendoza O, Tiel K, Pujol M. Comparative in vitro and experimental in vivo studies of the anti-epidermal growth factor receptor antibody nimotuzumab and its aglycosylated form produced in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:53-65. [PMID: 23046448 DOI: 10.1111/pbi.12006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/28/2012] [Accepted: 09/07/2012] [Indexed: 06/01/2023]
Abstract
A broad variety of foreign genes can be expressed in transgenic plants, which offer the opportunity for large-scale production of pharmaceutical proteins, such as therapeutic antibodies. Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) recombinant IgG1 antibody approved in different countries for the treatment of head and neck squamous cell carcinoma, paediatric and adult glioma, and nasopharyngeal and oesophageal cancers. Because the antitumour mechanism of nimotuzumab is mainly attributed to its ability to interrupt the signal transduction cascade triggered by EGF/EGFR interaction, we have hypothesized that an aglycosylated form of this antibody, produced by mutating the N(297) position in the IgG(1) Fc region gene, would have similar biochemical and biological properties as the mammalian-cell-produced glycosylated counterpart. In this paper, we report the production and characterization of an aglycosylated form of nimotuzumab in transgenic tobacco plants. The comparison of the plantibody and nimotuzumab in terms of recognition of human EGFR, effect on tyrosine phosphorylation and proliferation in cells in response to EGF, competition with radiolabelled EGF for EGFR, affinity measurements of Fab fragments, pharmacokinetic and biodistribution behaviours in rats and antitumour effects in nude mice bearing human A431 tumours showed that both antibody forms have very similar in vitro and in vivo properties. Our results support the idea that the production of aglycosylated forms of some therapeutic antibodies in transgenic plants is a feasible approach when facing scaling strategies for anticancer immunoglobulins.
Collapse
Affiliation(s)
- Meilyn Rodríguez
- Center for Genetic Engineering and Biotechnology (CIGB), Playa, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Leaf epidermal cells make ideal specimens for the investigation of the plant secretory pathway in that it is relatively easy to tag with fluorescent proteins and visualize in vivo the various organelles of the pathway. A number of techniques can be employed to identify and study proteins within the endomembrane organelles and to study their dynamics and interactions. Here, we discuss the most commonly used approaches to express proteins within arabidopsis and tobacco leaves, the use of mutant screens to identify trafficking proteins, and the use of two in vivo techniques, Fluorescence recovery after photobleaching and Förster resonance energy transfer, to study protein dynamics in plant cells.
Collapse
Affiliation(s)
- Giovanni Stefano
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|
33
|
Castilho A, Steinkellner H. Glyco-engineering in plants to produce human-like N-glycan structures. Biotechnol J 2012; 7:1088-98. [PMID: 22890723 DOI: 10.1002/biot.201200032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/20/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023]
Abstract
It is now possible to produce complex human proteins, largely correctly folded and N-glycosylated, in plants. Much effort has been invested in engineering expression technologies to develop products with superior characteristics. The results have begun to show success in controlling important posttranslational modifications such as N-glycosylation. With the emerging data increasingly indicating the significance of proper N-glycosylation for the efficacy of a drug, glyco-engineering has become an important issue not only for academia but also for the biopharmaceutical industry. Plants have demonstrated a high degree of tolerance to changes in the N-glycosylation pathway, allowing recombinant proteins to be modified into human-like structures in a specific and controlled manner. Frequently the results are a largely homogeneously glycosylated product, currently unrivalled by that of any other expression platforms. This review provides a comprehensive analysis of recent advances in plant N-glyco-engineering in the context of the expression of therapeutically relevant proteins, highlighting both the challenges and successes in the application of such powerful technologies.
Collapse
Affiliation(s)
- Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
34
|
Komarova NY, Meier S, Meier A, Grotemeyer MS, Rentsch D. Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic 2012; 13:1090-105. [PMID: 22537078 DOI: 10.1111/j.1600-0854.2012.01370.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
Abstract
Di- and tripeptide transporters of the PTR/NRT1 (peptide transporter/nitrate transporter1)-family are localized either at the tonoplast (TP) or plasma membrane (PM). As limited information is available on structural determinants required for targeting of plant membrane proteins, we performed gene shuffling and domain swapping experiments of Arabidopsis PTRs. A 7 amino acid fragment of the hydrophilic N-terminal region of PTR2, PTR4 and PTR6 was required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the TP. Alanine scanning mutagenesis identified L(11) and I(12) of PTR2 to be essential for TP targeting, while only one acidic amino acid at position 5, 6 or 7 was required, revealing a dileucine (LL or LI) motif with at least one upstream acidic residue. Similar dileucine motifs could be identified in other plant TP transporters, indicating a broader role of this targeting motif in plants. Targeting to the PM required the loop between transmembrane domain 6 and 7 of PTR1 or PTR5. Deletion of either PM or TP targeting signals resulted in retention in internal membranes, indicating that PTR trafficking to these destination membranes requires distinct signals and is in both cases not by default.
Collapse
Affiliation(s)
- Nataliya Y Komarova
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Escalante-Pérez M, Jaborsky M, Lautner S, Fromm J, Müller T, Dittrich M, Kunert M, Boland W, Hedrich R, Ache P. Poplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores. PLANT PHYSIOLOGY 2012; 159:1176-91. [PMID: 22573802 PMCID: PMC3387703 DOI: 10.1104/pp.112.196014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/08/2012] [Indexed: 05/20/2023]
Abstract
Many plant species grow extrafloral nectaries and produce nectar to attract carnivore arthropods as defenders against herbivores. Two nectary types that evolved with Populus trichocarpa (Ptr) and Populus tremula × Populus tremuloides (Ptt) were studied from their ecology down to the genes and molecules. Both nectary types strongly differ in morphology, nectar composition and mode of secretion, and defense strategy. In Ptt, nectaries represent constitutive organs with continuous merocrine nectar flow, nectary appearance, nectar production, and flow. In contrast, Ptr nectaries were found to be holocrine and inducible. Neither mechanical wounding nor the application of jasmonic acid, but infestation by sucking insects, induced Ptr nectar secretion. Thus, nectaries of Ptr and Ptt seem to answer the same threat by the use of different mechanisms.
Collapse
Affiliation(s)
| | | | - Silke Lautner
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | - Jörg Fromm
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | - Tobias Müller
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | - Marcus Dittrich
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | - Maritta Kunert
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | - Wilhelm Boland
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | - Rainer Hedrich
- University Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, D–97082 Wuerzburg, Germany (M.E.-P., M.J., R.H., P.A.)
- University Hamburg, Zentrum Holzwirtschaft, D–21031 Hamburg, Germany (S.L., J.F.)
- University Würzburg, Bioinformatics Department, Am Hubland/Biozentrum, D–97074 Wuerzburg, Germany (T.M., M.D.)
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (M.K., W.B.); and
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (R.H.)
| | | |
Collapse
|
36
|
Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L. Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 2012; 13:1023-40. [PMID: 22486829 DOI: 10.1111/j.1600-0854.2012.01360.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 12/31/2022]
Abstract
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Larisch N, Schulze C, Galione A, Dietrich P. An N-Terminal Dileucine Motif Directs Two-Pore Channels to the Tonoplast of Plant Cells. Traffic 2012; 13:1012-22. [DOI: 10.1111/j.1600-0854.2012.01366.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Nina Larisch
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Christina Schulze
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Antony Galione
- Department of Pharmacology; Oxford University; Oxford; OX1 3QT; UK
| | - Petra Dietrich
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| |
Collapse
|
38
|
Bottanelli F, Gershlick DC, Denecke J. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic 2012; 13:338-54. [PMID: 22004564 DOI: 10.1111/j.1600-0854.2011.01303.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 11/28/2022]
Abstract
GTPases of the Rab5 and Rab7 families were shown to control vacuolar sorting but their specific subcellular localization is controversial in plants. Here, we show that both the canonical as well as the plant-specific Rab5 reside at the newly discovered 'late prevacuolar compartment' (LPVC) while Rab7 partitions to the vacuolar membrane when expressed at low levels. Higher expression levels of wild-type Rab5 GTPases but not Rab7 lead to dose-dependent inhibition of biosynthetic vacuolar transport. In the case of Ara6, this included aberrant co-localization with markers for earlier post-Golgi compartments including the trans-Golgi network. However, nucleotide-free mutants of all three GTPases (Rha1, Ara6 and Rab7) cause stronger dose-dependent inhibition of vacuolar sorting. In addition, nucleotide-free Rha1 led to a later maturation defect and co-localization of markers for the prevacuolar compartment (PVC) and the LPVC. The corresponding Rab7 mutant strongly inhibited vacuolar delivery without merging of PVC and LPVC markers. Evidence for functional differentiation of the Rab5 family members is underlined by the fact that mutant Rha1 expression can be suppressed by increasing wild-type Rha1 levels while mutant Ara6 specifically titrates the nucleotide exchange factor Vps9. A model describing the sequential action of Rab5 and Rab7 GTPases is presented in the light of the current observations.
Collapse
Affiliation(s)
- Francesca Bottanelli
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
39
|
Tomková L, Kučera L, Vaculová K, Milotová J. Characterization and mapping of a putative laccase-like multicopper oxidase gene in the barley (Hordeum vulgare L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:77-85. [PMID: 22195580 DOI: 10.1016/j.plantsci.2011.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Laccases constitute a multi-gene family of multi-copper glycoproteins. The barley laccase-like multicopper oxidase (LMCO) gene structure, the DNA sequence polymorphism and putative protein have not yet been described. As part of the study of LMCO in cereals, we have characterized the genomic structure of the putative LMCO gene HvLac1 from the barley variety 'Morex' and mapped HvLac1 on chromosome 4H. The genomic sequence of the HvLac1 gene is 2646 bp long and covers 100% of the coding region. It contains four exons and three introns. In this study, we have described the HvLac1 gene nucleotide polymorphisms (In/Del) in 134 barley varieties. Initial characterization of the barley and rice LMCO and the phylogeny analysis indicate that a monocot LMCO family is composed of five members. There are two high pI isoforms of putative HvLac1 protein derived from two in frame translation start codons with 602aa or 592aa residues. Isoforms differ in their predicted subcellular localization and both isoforms are characterized on C-terminus by the presence of the KDEL-like motif, which contributes to the accumulation of soluble proteins in the endoplasmic reticulum. Our results suggest that this unique feature of HvLac1 could be important for their role in physiological processes.
Collapse
Affiliation(s)
- Lenka Tomková
- Crop Research Institute, Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic.
| | | | | | | |
Collapse
|
40
|
Bottanelli F, Foresti O, Hanton S, Denecke J. Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. THE PLANT CELL 2011; 23:3007-25. [PMID: 21856792 PMCID: PMC3180807 DOI: 10.1105/tpc.111.085480] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 05/15/2023]
Abstract
We tested if different classes of vacuolar cargo reach the vacuole via distinct mechanisms by interference at multiple steps along the transport route. We show that nucleotide-free mutants of low molecular weight GTPases, including Rab11, the Rab5 members Rha1 and Ara6, and the tonoplast-resident Rab7, caused induced secretion of both lytic and storage vacuolar cargo. In situ analysis in leaf epidermis cells indicates a sequential action of Rab11, Rab5, and Rab7 GTPases. Compared with Rab5 members, mutant Rab11 mediates an early transport defect interfering with the arrival of cargo at prevacuoles, while mutant Rab7 inhibits the final delivery to the vacuole and increases cargo levels in prevacuoles. In contrast with soluble cargo, membrane cargo may follow different routes. Tonoplast targeting of an α-TIP chimera was impaired by nucleotide-free Rha1, Ara6, and Rab7 similar to soluble cargo. By contrast, the tail-anchored tonoplast SNARE Vam3 shares only the Rab7-mediated vacuolar deposition step. The most marked difference was observed for the calcineurin binding protein CBL6, which was insensitive to all Rab mutants tested. Unlike soluble cargo, α-TIP and Vam3, CBL6 transport to the vacuole was COPII independent. The results indicate that soluble vacuolar proteins follow a single route to vacuoles, while membrane spanning proteins may use at least three different transport mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jürgen Denecke
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
41
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA. Electron Tomography of RabA4b- and PI-4Kβ1-Labeled Trans Golgi Network Compartments in Arabidopsis. Traffic 2011; 12:313-29. [DOI: 10.1111/j.1600-0854.2010.01146.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:295-308. [PMID: 21223393 DOI: 10.1111/j.1365-313x.2010.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Foresti O, Gershlick DC, Bottanelli F, Hummel E, Hawes C, Denecke J. A recycling-defective vacuolar sorting receptor reveals an intermediate compartment situated between prevacuoles and vacuoles in tobacco. THE PLANT CELL 2010; 22:3992-4008. [PMID: 21177482 PMCID: PMC3027165 DOI: 10.1105/tpc.110.078436] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/04/2010] [Accepted: 11/11/2010] [Indexed: 05/18/2023]
Abstract
Plant vacuolar sorting receptors (VSRs) display cytosolic Tyr motifs (YMPL) for clathrin-mediated anterograde transport to the prevacuolar compartment. Here, we show that the same motif is also required for VSR recycling. A Y612A point mutation in Arabidopsis thaliana VSR2 leads to a quantitative shift in VSR2 steady state levels from the prevacuolar compartment to the trans-Golgi network when expressed in Nicotiana tabacum. By contrast, the L615A mutant VSR2 leaks strongly to vacuoles and accumulates in a previously undiscovered compartment. The latter is shown to be distinct from the Golgi stacks, the trans-Golgi network, and the prevacuolar compartment but is characterized by high concentrations of soluble vacuolar cargo and the rab5 GTPase Rha1(RabF2a). The results suggest that the prevacuolar compartment matures by gradual receptor depletion, leading to the formation of a late prevacuolar compartment situated between the prevacuolar compartment and the vacuole.
Collapse
Affiliation(s)
- Ombretta Foresti
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David C. Gershlick
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francesca Bottanelli
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eric Hummel
- School of Life Sciences, Oxford Brookes, Oxford OX3 0BP, United Kingdom
| | - Chris Hawes
- School of Life Sciences, Oxford Brookes, Oxford OX3 0BP, United Kingdom
| | - Jürgen Denecke
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
45
|
Crowell EF, Gonneau M, Stierhof YD, Höfte H, Vernhettes S. Regulated trafficking of cellulose synthases. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:700-5. [PMID: 20822948 DOI: 10.1016/j.pbi.2010.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 05/20/2023]
Abstract
New findings reveal that proteins involved in cellulose biosynthesis undergo regulated trafficking between intracellular compartments and the plasma membrane. The coordinated secretion and internalization of these proteins involve both the actin and cortical microtubule cytoskeletons. This regulated trafficking allows the dynamic remodeling of cellulose synthase complex (CSC) secretion during cell expansion and differentiation. Several new actors of the cellulose synthesis machinery have been recently identified.
Collapse
Affiliation(s)
- E F Crowell
- Membrane Traffic and Cell Division Research Group, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
46
|
Marti L, Stefano G, Tamura K, Hawes C, Renna L, Held MA, Brandizzi F. A missense mutation in the vacuolar protein GOLD36 causes organizational defects in the ER and aberrant protein trafficking in the plant secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:901-913. [PMID: 20626647 DOI: 10.1111/j.1365-313x.2010.04296.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST-GFP, to other organelles. GOLD36 showed partial distribution of ST-GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein-like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk-flow marker to the cell surface was also compromised. Using a combination of classical mapping and next-generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus (At1g54030). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock-out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post-ER compartments and suggest that its export from the ER is a requirement to ensure steady-state maintenance of the organelle's organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.
Collapse
Affiliation(s)
- Lucia Marti
- Michigan State University-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
48
|
Rose JKC, Lee SJ. Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. PLANT PHYSIOLOGY 2010; 153:433-6. [PMID: 20237018 PMCID: PMC2879815 DOI: 10.1104/pp.110.154872] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/10/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
49
|
Abstract
It has long been assumed that the individual cisternal stacks that comprise the plant Golgi apparatus multiply by some kind of fission process. However, more recently, it has been demonstrated that the Golgi apparatus can be experimentally disassembled and the reformation process from the ER (endoplasmic reticulum) monitored sequentially using confocal fluorescence and electron microscopy. Some other evidence suggests that Golgi stacks may arise de novo in cells. In the present paper, we review some of the more recent findings on plant Golgi stack biogenesis and propose a new model for their growth de novo from ER exit sites.
Collapse
Affiliation(s)
- Chris Hawes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | | | | | | |
Collapse
|
50
|
Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P. Sorting of plant vacuolar proteins is initiated in the ER. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:601-14. [PMID: 20149141 DOI: 10.1111/j.1365-313x.2010.04171.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.
Collapse
Affiliation(s)
- Silke Niemes
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|