1
|
Gray CW, Coster ACF. Deciphering Akt activation: Insights from a mean-field model. Math Biosci 2025; 384:109434. [PMID: 40222591 DOI: 10.1016/j.mbs.2025.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Being at the right place at the right time is vital for any signalling system component. Akt/PKB is a well-known low-threshold switch in the mammalian insulin signalling pathway. The activation of Akt is essential for the uptake of glucose, however, data concerning this vital system is very sparse, particularly with regards to cellular location and activation state. Here we present a parsimonious mathematical model that captures the current experimental understanding of Akt dynamics. The system operates on two distinct timescales (signalling and physical transport), with the transportation of Akt constituting the rate-limiting step in most circumstances. The model outputs are consistent with observations of the steady state behaviour of the system and display the transient overshoot behaviour which is a necessary characteristic of the activation of Akt.
Collapse
Affiliation(s)
- Catheryn W Gray
- School of Mathematics and Statistics, The University of New South Wales, Sydney, 2052, New South Wales, Australia.
| | - Adelle C F Coster
- School of Mathematics and Statistics, The University of New South Wales, Sydney, 2052, New South Wales, Australia.
| |
Collapse
|
2
|
Fujiki T, Shiratsuchi H, Mikami Y, Toriumi T, Yonehara Y, Tsuda H. Decalcification of calcified tissues induced by inorganic polyphosphate in chondrogenic ATDC5 cells in the presence of insulin. J Oral Sci 2025; 67:65-70. [PMID: 40058814 DOI: 10.2334/josnusd.24-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
PURPOSE Inorganic polyphosphate (PolyP), a polymer of orthophosphate, strongly promotes mineralized tissue formation. This study explored the conditions necessary for PolyP to induce calcified deposits in cartilage and assessed the role of insulin in modulating PolyP-induced tissue calcification. METHODS Murine chondrogenic ATDC5 cells were cultured under growth, mineralization, or PolyP-induced calcification conditions, with or without insulin. Calcified nodules were stained with Alizarin Red S, and conditioned media were analyzed for pH and lactate concentration using a pH meter and a lactate assay kit-WST. RESULTS PolyP treatment of ATDC5 cells led to calcified deposits by day 5, both with and without insulin. However, in the presence of insulin, these deposits were nearly fully decalcified by day 14. Conditioned media with insulin had a lower pH and a higher lactate concentration compared to those without insulin, with lactate levels sufficient to demineralize the PolyP-induced calcified deposits. CONCLUSION These data suggest that treatment of ATDC5 chondrogenic cells with PolyP accelerates the formation of mineralized tissue. However, PolyP-induced calcified nodules undergo demineralization owing to lactate production by cells in the presence of insulin.
Collapse
Affiliation(s)
- Tatsuaki Fujiki
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Hiroshi Shiratsuchi
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University
| | - Taku Toriumi
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
3
|
Zhang Z, Xu X, Chen F, Liu Q, Li Z, Zheng X, Zhao Y. Multi-Omics Sequencing Dissects the Atlas of Seminal Plasma Exosomes from Semen Containing Low or High Rates of Sperm with Cytoplasmic Droplets. Int J Mol Sci 2025; 26:1096. [PMID: 39940864 PMCID: PMC11817786 DOI: 10.3390/ijms26031096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Sperm cytoplasmic droplets (CDs) are remnants of cytoplasm that can cause a number of problems if it not shed from the sperm after ejaculation. Exosomes can rapidly bind to sperm, but it is not clear whether exosomes can affect the migration and shedding of CDs. We first extracted and characterized seminal plasma exosomes from boar semen containing sperm with low or high rates of CDs. Then, the transcriptomic and proteomic detection of these exosomes were performed to analyze the differences between the two groups of seminal plasma exosomes. The results revealed that 486 differentially expressed genes (DEGs), 40 differentially expressed proteins (DEPs), and 503 differentially expressed lncRNAs (DElncRNAs) were identified between the low CD rate group and high CD rate group. Integrative multi-omics analysis showed that exosome components may affect migration and shedding of cytoplasmic droplets by influencing cytoskeletal regulation and insulin signaling, including regulation of the actin cytoskeleton, ECM-receptor interaction, axon guidance, insulin secretion, and the insulin signaling pathway. Overall, our study systematically revealed the DEGs, DEPs, and DElncRNAs in seminal plasma exosomes between low CD rate semen and high CD rate semen, which will help broaden our understanding of the complex molecular mechanisms involved in the shedding of CDs.
Collapse
Affiliation(s)
- Zilu Zhang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Xiaoxian Xu
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Fumei Chen
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Qingyou Liu
- College of Animal Science and Technology, Foshan University, Foshan 528231, China; (Q.L.); (Z.L.)
| | - Zhili Li
- College of Animal Science and Technology, Foshan University, Foshan 528231, China; (Q.L.); (Z.L.)
| | - Xibang Zheng
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Yunxiang Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| |
Collapse
|
4
|
Li Y, Guo W, Li H, Wang Y, Liu X, Kong W. The Change of Skeletal Muscle Caused by Inflammation in Obesity as the Key Path to Fibrosis: Thoughts on Mechanisms and Intervention Strategies. Biomolecules 2024; 15:20. [PMID: 39858415 PMCID: PMC11764331 DOI: 10.3390/biom15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity leads to a chronic inflammatory state throughout the body, with increased infiltration of immune cells and inflammatory factors in skeletal muscle tissue, and, at the same time, the level of intracellular mitochondrial oxidative stress rises. Meanwhile, obesity is closely related to the development of skeletal muscle fibrosis and can affect the metabolic function of skeletal muscle, triggering metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D). However, whether there is a mutual regulatory effect between the two pathological states of inflammation and fibrosis in obese skeletal muscle and the specific molecular mechanisms have not been fully clarified. This review focuses on the pathological changes of skeletal muscle inflammation and fibrosis induced by obesity, covering the metabolic changes it causes, such as lipid deposition, mitochondrial dysfunction, and dysregulation of inflammatory factors, aiming to reveal the intricate connections between the two. In terms of intervention strategies, aerobic exercise, dietary modification, and pharmacotherapy can improve skeletal muscle inflammation and fibrosis. This article provides insight into the important roles of inflammation and fibrosis in the treatment of obesity and the management of skeletal muscle diseases, aiming to provide new ideas for the diagnosis and treatment of metabolic diseases such as obesity and IR.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wenwen Guo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Han Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Yuhao Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Xinwei Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| |
Collapse
|
5
|
Wang JR, Jurado-Aguilar J, Barroso E, Rodríguez-Calvo R, Camins A, Wahli W, Palomer X, Vázquez-Carrera M. PPARβ/δ upregulates the insulin receptor β subunit in skeletal muscle by reducing lysosomal activity and EphB4 levels. Cell Commun Signal 2024; 22:595. [PMID: 39696437 DOI: 10.1186/s12964-024-01972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The increased degradation of the insulin receptor β subunit (InsRβ) in lysosomes contributes to the development of insulin resistance and type 2 diabetes mellitus. Endoplasmic reticulum (ER) stress contributes to insulin resistance through several mechanisms, including the reduction of InsRβ levels. Here, we examined how peroxisome proliferator-activated receptor (PPAR)β/δ regulates InsRβ levels in mouse skeletal muscle and C2C12 myotubes exposed to the ER stressor tunicamycin. METHODS Wild-type (WT) and Ppard-/- mice, WT mice treated with vehicle or the PPARβ/δ agonist GW501516, and C2C12 myotubes treated with the ER stressor tunicamycin or different activators or inhibitors were used. RESULTS Ppard-/- mice displayed reduced InsRβ protein levels in their skeletal muscle compared to wild-type (WT) mice, while the PPARβ/δ agonist GW501516 increased its levels in WT mice. Co-incubation of tunicamycin-exposed C2C12 myotubes with GW501516 partially reversed the decrease in InsRβ protein levels, attenuating both ER stress and the increase in lysosomal activity. In addition, the protein levels of the tyrosine kinase ephrin receptor B4 (EphB4), which binds to the InsRβ and facilitates its endocytosis and degradation in lysosomes, were increased in the skeletal muscle of Ppard-/- mice, with GW501516 reducing its levels in the skeletal muscle of WT mice. CONCLUSIONS Overall, these findings reveal that PPARβ/δ activation increases InsRβ levels by alleviating ER stress and lysosomal degradation.
Collapse
Affiliation(s)
- Jue-Rui Wang
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Ricardo Rodríguez-Calvo
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Pere Virgili Health Research Institute (IISPV), Reus, 43201, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
- INRAE ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, F-31027, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
- Unitat de Farmacologia, Facultat de Farmàcia i Ciències de l'Alimentació, Av. Joan XXIII 27-31, Barcelona, E-08028, Spain.
| |
Collapse
|
6
|
Sarker DK, Ray P, Dutta AK, Rouf R, Uddin SJ. Antidiabetic potential of fenugreek ( Trigonella foenum-graecum): A magic herb for diabetes mellitus. Food Sci Nutr 2024; 12:7108-7136. [PMID: 39479631 PMCID: PMC11521722 DOI: 10.1002/fsn3.4440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/17/2024] [Indexed: 11/02/2024] Open
Abstract
Fenugreek (Trigonella foenum-graecum) is a widely grown dietary herb in Asia, and its seeds are traditionally used for several diseases, including diabetes. The seeds and leaves possess a variety of compounds that play an important role in regulating their hypoglycemic effect. However, so far, no extensive systematic review exists on its antidiabetic effect, highlighting the molecular mechanisms and isolated compounds. The purpose of this review is to summarize the preclinical and clinical antidiabetic properties of fenugreek and its isolated compounds by focusing on underlying mechanisms. PubMed, Google Scholar, Science Direct, and Scopus databases were searched to retrieve articles until June, 2024. Preclinical studies demonstrated that the antidiabetic effect of fenugreek was mostly associated with enhanced glucose transporter type-4 (GLUT4) translocation and hexokinase activity, decreased glucose-6-phosphatase and fructose-1,6-bisphosphatase activities, inhibited α-amylase and maltase activities, protected β cells, and increased insulin release. Furthermore, few studies have reported its role as a glucagon-like peptide-1 (GLP-1) modulator, 5'-AMP-activated kinase (AMPK) activator, and dipeptidyl peptidase-IV (DPP-IV) inhibitor. Further clinical trials showed that fenugreek seeds improved blood glucose levels, insulin resistance, insulin sensitivity, and lipid profiles. This study highlights significant evidence of the antidiabetic effect of fenugreek and its isolated compounds; therefore, it could be a potential therapy for diabetes.
Collapse
Affiliation(s)
- Dipto Kumer Sarker
- Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
| | - Pallobi Ray
- Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
| | | | - Razina Rouf
- Department of Pharmacy, Faculty of Life ScienceBangabandhu Sheikh Mujibur Rahman Science & Technology UniversityGopalganjBangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
| |
Collapse
|
7
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Gray CW, Coster ACF. Periodic insulin stimulation of Akt: Dynamic steady states and robustness. Math Biosci 2024; 367:109113. [PMID: 38056823 DOI: 10.1016/j.mbs.2023.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
The periodic secretion of insulin is a salient feature of the blood glucose control system in vivo. Insulin levels in the blood exhibit oscillations on multiple time scales - rapid, ultradian, and circadian - and the improved metabolic regulation resulting from pulsatile insulin release has been well established. Although numerous mathematical models investigating the causal mechanisms of insulin oscillations have appeared in the literature, to date there has been comparatively little attention given to the influence of periodic insulin stimulation on downstream components of the insulin signalling pathway. In this paper, we explore the effect of high frequency periodic insulin stimulation on Akt (also known as PKB), a crucial crosstalk node in the insulin signalling pathway that coordinates metabolic and mitogenic processes in the cell. We analyse a mathematical model of Akt translocation to the plasma membrane under both single step insulin perturbations and periodic insulin stimulation with an emphasis on - but not limited to - the physiological range of parameter values. It was shown that the system rapidly attains a robust dynamic steady state entrained to the periodic insulin stimulation. Moreover, the translocation of Akt to the plasma membrane in the model permits a sufficient level of phosphorylation to trigger downstream metabolic regulators. However, the modelling also indicated that further investigation of this activation process is required to determine whether the response of Akt is a key determinant of the enhanced metabolic control observed under periodic insulin stimulation.
Collapse
Affiliation(s)
- Catheryn W Gray
- School of Mathematics and Statistics, The University of New South Wales, Sydney, 2052, New South Wales, Australia.
| | - Adelle C F Coster
- School of Mathematics and Statistics, The University of New South Wales, Sydney, 2052, New South Wales, Australia.
| |
Collapse
|
9
|
Di Pietro P, Izzo C, Abate AC, Iesu P, Rusciano MR, Venturini E, Visco V, Sommella E, Ciccarelli M, Carrizzo A, Vecchione C. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023; 13:168. [PMID: 36671552 PMCID: PMC9855992 DOI: 10.3390/biom13010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Paola Iesu
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | | | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
10
|
Chiang JH, Hua XY, Yu AHM, Peh EWY, See E, Jeyakumar Henry C. A Review on Buckwheat and Its Hypoglycemic Bioactive Components in Food Systems. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jie Hong Chiang
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Yi Hua
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ashley Hui Min Yu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Elaine Wan Yi Peh
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - E’Ein See
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat Commun 2022; 13:4291. [PMID: 35879296 PMCID: PMC9314339 DOI: 10.1038/s41467-022-32000-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Whether amino acids act on cellular insulin signaling remains unclear, given that increased circulating amino acid levels are associated with the onset of type 2 diabetes (T2D). Here, we report that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or phenylalanine-producing aspartame or overexpressing human phenylalanyl-tRNA synthetase (hFARS) develop insulin resistance and T2D symptoms. Mechanistically, FARS phenylalanylate lysine 1057/1079 of IRβ (F-K1057/1079), inactivating IRβ and preventing insulin from promoting glucose uptake by cells. SIRT1 reverse F-K1057/1079 and counteract the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels in white blood cells from T2D patients are positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitizes insulin signaling and relieves T2D symptoms in hFARS-transgenic and db/db mice. These findings shed light on the activation of insulin signaling and T2D progression through inhibition of phenylalanylation. Whether amino acids act on cellular insulin signaling remains unclear. Here, the authors find that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake and positively correlated with T2D onset.
Collapse
|
12
|
Lago SG, Tomasik J, van Rees GF, Rustogi N, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B, Bahn S. Peripheral lymphocyte signaling pathway deficiencies predict treatment response in first-onset drug-naïve schizophrenia. Brain Behav Immun 2022; 103:37-49. [PMID: 35381347 DOI: 10.1016/j.bbi.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
Despite being a major cause of disability worldwide, the pathophysiology of schizophrenia and molecular basis of treatment response heterogeneity continue to be unresolved. Recent evidence suggests that multiple aspects of pathophysiology, including genetic risk factors, converge on key cell signaling pathways and that exploration of peripheral blood cells might represent a practical window into cell signaling alterations in the disease state. We employed multiplexed phospho-specific flow cytometry to examine cell signaling epitope expression in peripheral blood mononuclear cell (PBMC) subtypes in drug-naïve schizophrenia patients (n = 49) relative to controls (n = 61) and relate these changes to serum immune response proteins, schizophrenia polygenic risk scores and clinical effects of treatment, including drug response and side effects, over the longitudinal course of antipsychotic treatment. This revealed both previously characterized (Akt1) and novel cell signaling epitopes (IRF-7 (pS477/pS479), CrkL (pY207), Stat3 (pS727), Stat3 (pY705) and Stat5 (pY694)) across PBMC subtypes which were associated with schizophrenia at disease onset, and correlated with type I interferon-related serum molecules CD40 and CXCL11. Alterations in Akt1 and IRF-7 (pS477/pS479) were additionally associated with polygenic risk of schizophrenia. Finally, changes in Akt1, IRF-7 (pS477/pS479) and Stat3 (pS727) predicted development of metabolic and cardiovascular side effects following antipsychotic treatment, while IRF-7 (pS477/pS479) and Stat3 (pS727) predicted early improvements in general psychopathology scores measured using the Brief Psychiatric Rating Scale (BPRS). These findings suggest that peripheral blood cells can provide an accessible surrogate model for intracellular signaling alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic and cardiovascular side effects following antipsychotic therapy.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Geertje F van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain; Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio, IBiS, Sevilla, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sevilla, Spain
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
13
|
Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, Tang Q. The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct 2022; 13:6777-6791. [PMID: 35667104 DOI: 10.1039/d2fo00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Jiali Jiang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Biao Kong
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
14
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
15
|
Martins VF, LaBarge SA, Stanley A, Svensson K, Hung CW, Keinan O, Ciaraldi TP, Banoian D, Park JE, Ha C, Hetrick B, Meyer GA, Philp A, David LL, Henry RR, Aslan JE, Saltiel AR, McCurdy CE, Schenk S. p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI Insight 2021; 7:141344. [PMID: 34813504 PMCID: PMC8765050 DOI: 10.1172/jci.insight.141344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
While current thinking posits that insulin signaling to GLUT4 exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle causes a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e. 1 h) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulates this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects are due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurs downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Samuel A LaBarge
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Alexandra Stanley
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Kristoffer Svensson
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Omer Keinan
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Theodore P Ciaraldi
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Dion Banoian
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Ji E Park
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Christina Ha
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, United States of America
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States of America
| | - Robert R Henry
- Division of Endocrinology & Metabolism, VA San Diego Healthcare System, San Diego, United States of America
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, United States of America
| | - Alan R Saltiel
- University of California, San Diego, La Jolla, United States of America
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| |
Collapse
|
16
|
AMPK activation by SC4 inhibits noradrenaline-induced lipolysis and insulin-stimulated lipogenesis in white adipose tissue. Biochem J 2021; 478:3869-3889. [PMID: 34668531 DOI: 10.1042/bcj20210411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
The effects of small-molecule AMP-activated protein kinase (AMPK) activators in rat epididymal adipocytes were compared. SC4 was the most effective and submaximal doses of SC4 and 5-amino-4-imidazolecarboxamide (AICA) riboside were combined to study the effects of AMPK activation in white adipose tissue (WAT). Incubation of rat adipocytes with SC4 + AICA riboside inhibited noradrenaline-induced lipolysis and decreased hormone-sensitive lipase (HSL) Ser563 phosphorylation, without affecting HSL Ser565 phosphorylation. Preincubation of fat pads from wild-type (WT) mice with SC4 + AICA riboside inhibited insulin-stimulated lipogenesis from glucose or acetate and these effects were lost in AMPKα1 knockout (KO) mice, indicating AMPKα1 dependency. Moreover, in fat pads from acetyl-CoA carboxylase (ACC)1/2 S79A/S212A double knockin versus WT mice, the effect of SC4 + AICA riboside to inhibit insulin-stimulated lipogenesis from acetate was lost, pinpointing ACC as the main AMPK target. Treatment with SC4 + AICA riboside decreased insulin-stimulated glucose uptake, an effect that was still observed in fat pads from AMPKα1 KO versus WT mice, suggesting the effect was partly AMPKα1-independent. SC4 + AICA riboside treatment had no effect on the insulin-induced increase in palmitate esterification nor on sn-glycerol-3-phosphate-O-acyltransferase activity. Therefore in WAT, AMPK activation inhibits noradrenaline-induced lipolysis and suppresses insulin-stimulated lipogenesis primarily by inactivating ACC and by inhibiting glucose uptake.
Collapse
|
17
|
Total Sesquiterpene Glycosides from Loquat Leaves Ameliorate HFD-Induced Insulin Resistance by Modulating IRS-1/GLUT4, TRPV1, and SIRT6/Nrf2 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4706410. [PMID: 34745416 PMCID: PMC8566052 DOI: 10.1155/2021/4706410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Loquat (Eriobotrya japonica Lindl.), a subtropical fruit tree native to Asia, is not only known to be nutritive but also beneficial for the treatment of diabetes in the south of China. To expand its development, this study was undertaken concerning the potential therapeutic role of total sesquiterpene glycosides (TSGs) from loquat leaves in insulin resistance (IR), the major causative factor of type 2 diabetes mellitus (T2DM). Male C57BL/6 mice were fed on high-fat diet (HFD) to induce IR and then were given TSG by oral administration at 25 and 100 mg/kg/day, respectively. TSG notably improved metabolic parameters including body weight, serum glucose, and insulin levels and prevented hepatic injury. Moreover, inflammatory response and oxidative stress were found to be remarkably alleviated in IR mice with TSG supplement. Further research in liver of IR mice demonstrated that TSG repaired the signalings of insulin receptor substrate-1 (IRS-1)/glucose transporter member 4 (GLUT4) and AMP-activated protein kinase (AMPK), which improved glucose and lipid metabolism and prevented lipid accumulation in liver. It was also observed that TSG suppressed the expression of transient receptor potential vanilloid 1 (TRPV1), whereas the signaling pathway of sirtuin-6 (SIRT6)/nuclear factor erythroid 2-related factor 2 (Nrf2) was significantly promoted. Based on the results, the current study demonstrated that TSG from loquat leaves potentially ameliorated IR in vivo by enhancing IRS-1/GLUT4 signaling and AMPK activation and modulating TRPV1 and SIRT6/Nrf2 signaling pathways.
Collapse
|
18
|
Gonzalez-Franquesa A, Peijs L, Cervone DT, Koçana C, Zierath JR, Deshmukh AS. Insulin and 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Differentially Regulate the Skeletal Muscle Cell Secretome. Proteomes 2021; 9:37. [PMID: 34449730 PMCID: PMC8396280 DOI: 10.3390/proteomes9030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a major contributor to whole-body glucose homeostasis and is an important endocrine organ. To date, few studies have undertaken the large-scale identification of skeletal muscle-derived secreted proteins (myokines), particularly in response to stimuli that activate pathways governing energy metabolism in health and disease. Whereas the AMP-activated protein kinase (AMPK) and insulin-signaling pathways have received notable attention for their ability to independently regulate skeletal muscle substrate metabolism, little work has examined their ability to re-pattern the secretome. The present study coupled the use of high-resolution MS-based proteomics and bioinformatics analysis of conditioned media derived from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR-an AMPK activator)- and insulin-treated differentiated C2C12 myotubes. We quantified 858 secreted proteins, including cytokines and growth factors such as fibroblast growth factor-21 (Fgf21). We identified 377 and 118 proteins that were significantly altered by insulin and AICAR treatment, respectively. Notably, the family of insulin growth factor binding-proteins (Igfbp) was differentially regulated by each treatment. Insulin- but not AICAR-induced conditioned media increased the mitochondrial respiratory capacity of myotubes, potentially via secreted factors. These findings may serve as an important resource to elucidate secondary metabolic effects of insulin and AICAR stimulation in skeletal muscle.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Daniel T. Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Ceren Koçana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Juleen R. Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
19
|
Zhou L, Han X, Li W, Wang N, Yao L, Zhao Y, Zhang L. N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2. Reprod Sci 2021; 29:1305-1315. [PMID: 34254281 DOI: 10.1007/s43032-021-00664-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is often accompanied by overweight/obesity and insulin resistance. The dysfunctions of ovarian granulosa cells (GCs) are closely linked with the pathogenesis of PCOS. Fat mass and obesity-associated gene (FTO), an N6-methyladenosine (m6A) demethylase, has been reported to be implicated in the risks and insulin resistance of PCOS. However, the roles of FTO in the development of GCs along with its m6A-related regulatory mechanisms are poorly defined. Cell proliferative ability was detected by MTT assay. Cell apoptotic rate was measured via flow cytometry. Insulin resistance was assessed by GLUT4 transport potential. The mRNA and protein levels of FTO and flotillin 2 (FLOT2) were determined by RT-qPCR and western blot assays, respectively. FLOT2 was screened out to be a potential FTO target through differential expression analysis for the GSE95728 dataset and target prediction analysis by POSTAR2 and STARBASE databases. The interaction between FTO and FLOT2 was analyzed by RNA immunoprecipitation (RIP) assay. The effect of FTO upregulation on FLOT2 m6A level was measured by methylated RIP (meRIP) assay. FLOT2 mRNA stability was examined by actinomycin D assay. FTO overexpression facilitated cell proliferation, hindered cell apoptosis, and induced insulin resistance in GCs. FTO promoted FLOT2 expression by reducing m6A level on FLOT2 mRNA and increasing FLOT2 mRNA stability. FLOT2 loss weakened the effects of FTO overexpression on cell proliferation/apoptosis and insulin resistance in GCs. FTO induced the dysfunctions of GCs by upregulating FLOT2, suggesting that FTO/FLOT2 might play a role in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiao Han
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Wei Li
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Ning Wang
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Lan Yao
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Yunhe Zhao
- Department of Gynaecology and Obstetrics, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Liqun Zhang
- Department of Gynecology, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
20
|
Chandra NC. A comprehensive account of insulin and LDL receptor activity over the years: A highlight on their signaling and functional role. J Biochem Mol Toxicol 2021; 35:e22840. [PMID: 34227185 DOI: 10.1002/jbt.22840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Insulin receptor (IR) was discovered in 1970. Shortcomings in IR transcribed signals were found pro-diabetic, which could also inter-relate obesity and atherosclerosis in a time-dependent manner. Low-density lipoprotein receptor (LDLR) was discovered in 1974. Later studies showed that insulin could modulate LDLR expression and activity. Repression of LDLR transcription in the absence or inactivity of insulin showed a direct cause of atherosclerosis. Leptin receptor (OB-R) was found in 1995 and its resistance became responsible for developing obesity. The three interlinked pathologies namely, diabetes, atherosclerosis, and obesity were later on marked as metabolic syndrome-X (MSX). In 2012, the IR-LDLR inter-association was identified. In 2019, the proficiency of signal transmission from this IR-LDLR receptor complex was reported. LDLR was found to mimic IR-generated signaling path when it remains bound to IR in IR-DLR interlocked state. This was the first time LDLR was found sending messages besides its LDL-clearing activity from blood vessels.
Collapse
Affiliation(s)
- Nimai C Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
21
|
Joseph JS, Anand K, Malindisa ST, Oladipo AO, Fagbohun OF. Exercise, CaMKII, and type 2 diabetes. EXCLI JOURNAL 2021; 20:386-399. [PMID: 33746668 PMCID: PMC7975583 DOI: 10.17179/excli2020-3317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Individuals who exercise regularly are protected from type 2 diabetes and other metabolic syndromes, in part by enhanced gene transcription and induction of many signaling pathways crucial in correcting impaired metabolic pathways associated with a sedentary lifestyle. Exercise activates Calmodulin-dependent protein kinase (CaMK)II, resulting in increased mitochondrial oxidative capacity and glucose transport. CaMKII regulates many health beneficial cellular functions in individuals who exercise compared with those who do not exercise. The role of exercise in the regulation of carbohydrate, lipid metabolism, and insulin signaling pathways are explained at the onset. Followed by the role of exercise in the regulation of glucose transporter (GLUT)4 expression and mitochondrial biogenesis are explained. Next, the main functions of Calmodulin-dependent protein kinase and the mechanism to activate it are illustrated, finally, an overview of the role of CaMKII in regulating GLUT4 expression, mitochondrial biogenesis, and histone modification are discussed.
Collapse
Affiliation(s)
- Jitcy S. Joseph
- Department of Toxicology and Biochemistry, National Institute for Occupational Health, A division of National Health Laboratory Service, Johannesburg, South Africa
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sibusiso T. Malindisa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Florida Park, Johannesburg, South Africa
| | - Adewale O. Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg, 1710, South Africa
| | - Oladapo F. Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Bedair RN, Magour GM, Ooda SA, Amar EM, Awad AM. Insulin receptor substrate-1 G972R single nucleotide polymorphism in Egyptian patients with chronic hepatitis C virus infection and type 2 diabetes mellitus. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-020-00069-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Insulin receptor substrate-1 (IRS1) plays a critical role in insulin signaling. IRS-1 gene polymorphism with glycine to arginine substitution (GGG ↔ AGG substitutions) in codon 972 (G972R) (rs1801278) is a common polymorphism of the IRS-1 gene, which may have a pathogenic role in the development of type 2 diabetes mellitus (type 2 DM) due to insulin resistance and impaired insulin secretion. In hepatitis C virus infection (HCV), the IRS proteins might be counter-regulated by degradation, differential expression, or modification by phosphorylation in cells expressing HCV core protein, which inhibits the interactions of IRS-1 with both the insulin receptor and the downstream effectors of IRS-1. The present retrospective case–control study aimed to evaluate IRS-1 G972R (rs 1801278) SNP in Egyptian patients with HCV and type 2 DM, two hundred and two subjects including 100 males and 102 females The present work is a retrospective case–control study aimed to detect IRS-1 G972R (rs 1801278) SNP in Egyptian patients with chronic HCV infection and DM. The subjects were divided into the control group (group I) which included 50 apparently healthy volunteers of comparable age, gender, and socioeconomic status to patients; group II included 50 type 2 diabetic patients without chronic hepatitis C infection; group III included 52 chronic HCV-infected patients without type 2 diabetes mellitus; and group IV included 50 chronic hepatitis C-infected patients with type 2 diabetes mellitus. IRS-1 G972R (rs 1801278) genotyping was done by using polymerase chain reaction (PCR-RFLP) technique with restriction enzymes BstNI.
Results
HOMA-IR and QUICKI index was significantly higher in the patient groups (groups II, III, and IV) than controls (P < 0.001, P = 0.019, and P < 0.001 respectively). There was a significant increase in minor allele (A) in groups II, III, and IV than controls (P = 0.007, P = 0.017, and P = 0.007 respectively). There was increased frequency of mutant allele (A) than wild allele (G) of IRS-1 G972R polymorphism in type 2 diabetic patients with BMI < 25 kg/m2. The DM patients without HCV infection (group II), HCV patients without DM (group III), and HCV patients with DM (group IV) showed a significant decrease in GG genotypes and a significant increase in AA genotypes than the controls (P = 0.017, P = 0.019, and P = 0.009 respectively). Body mass index and waist to hip ratio were significantly higher in DM patients without chronic hepatitis C infection (group II) and in HCV patients with type 2 diabetes (group IV) than controls, in hepatitis C patients with type 2 diabetes (group IV) than controls, and in group IV than group III (P < 0.001).
Conclusion
IRS-1 G972R (rs 1801278) polymorphism might be a contributing risk factor for the development of type 2 DM. The mutant allele (A) of IRS-1 suggests the role of this SNP as risk factors for type 2 diabetes mellitus even in subjects with normal body weight. The increase of body mass index may be an independent risk factor for the development of type 2 diabetes mellitus.
Collapse
|
23
|
Gray CW, Coster AC. Models of Membrane-Mediated Processes: Cascades and Cycles in Insulin Action. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. Olive Leaf Polyphenols (OLPs) Stimulate GLUT4 Expression and Translocation in the Skeletal Muscle of Diabetic Rats. Int J Mol Sci 2020; 21:ijms21238981. [PMID: 33256066 PMCID: PMC7729747 DOI: 10.3390/ijms21238981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscles are high-insulin tissues responsible for disposing of glucose via the highly regulated process of facilitated glucose transporter 4 (GLUT4). Impaired insulin action in diabetes, as well as disorders of GLUT4 vesicle trafficking in the muscle, are involved in defects in insulin-stimulated GLUT4 translocation. Since the Rab GTPases are the main regulators of vesicular membrane transport in exo- and endo-cytosis, in the present work, we studied the effect of olive leaf polyphenols (OLPs) on Rab8A, Rab13, and Rab14 proteins of the rat soleus muscle in a model of streptozotocin (SZT)-induced diabetes (DM) in a dose-dependent manner. Glucose, cholesterol, and triglyceride levels were determined in the blood, morphological changes of the muscle tissue were captured by hematoxylin and eosin histological staining, and expression of GLUT4, Rab8A, Rab13, and Rab14 proteins were analyzed in the rat soleus muscle by the immunofluorescence staining and immunoblotting. OLPs significantly reduced blood glucose level in all treated groups. Furthermore, significantly reduced blood triglycerides were found in the groups with the lowest and highest OLPs treatment. The dynamics of activation of Rab8A, Rab13, and Rab14 was OLPs dose-dependent and more effective at higher OLP doses. Thus, these results indicate a beneficial role of phenolic compounds from the olive leaf in the regulation of glucose homeostasis in the skeletal muscle.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-584-557
| | - Damir Muhvić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
| | - Tanja Grubić-Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marina Nikolić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Tamara Šoić-Vranić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Snježana Bajek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| |
Collapse
|
25
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
26
|
Gray CW, Coster ACF. From insulin to Akt: Time delays and dominant processes. J Theor Biol 2020; 507:110454. [PMID: 32822700 DOI: 10.1016/j.jtbi.2020.110454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 11/27/2022]
Abstract
Akt/PKB regulates numerous processes in the mammalian cell, including cell survival and proliferation, and glucose uptake in response to insulin. Abnormalities in Akt signalling are linked to the development of Type 2 diabetes, cardio-vascular disease, and cancer. In the absence of insulin, Akt is predominantly found in the inactive state in the cytosol. Following insulin stimulation, Akt translocates to the plasma membrane, docks, and is phosphorylated to take on the active conformation. In turn, the activated Akt travels to and phosphorylates its many downstream substrates. Although crucial to the activation process, the translocation of Akt from the cytosol to the plasma membrane is currently not well understood. Here we detail the parameter optimisation of a mathematical model of Akt translocation to experimental data. We have quantified the time delay between the application of insulin and the downstream Akt translocation response, indicating the constraints on the timing of the intermediate processes. A delay of approximately 0.4 min prior to the Akt response was determined for the application of 1 nM insulin to cells in the basal state, whereas it was found that a further transition from physiological insulin to higher stimuli did not incur a delay. Furthermore, our investigation indicates that the dominant processes regulating the appearance of Akt at the plasma membrane differ with the insulin level. For physiological insulin, the rate limiting step was the release of Akt to the plasma membrane in response to the insulin signal. In contrast, at high insulin levels, regulation of the recycling of Akt from the plasma membrane to the cytosol was also required.
Collapse
Affiliation(s)
- Catheryn W Gray
- School of Mathematics and Statistics, UNSW Sydney Australia.
| | | |
Collapse
|
27
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
28
|
Hassan S, Abdelrahman Moustafa A, Kabil SL, Mahmoud NM. Alagebrium Mitigates Metabolic Insults in High Carbohydrate and High Fat Diet Fed Wistar Rats. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2019.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Metabolic syndrome (MS) is characterized by sustained hyperglycemia that triggers advanced glycation end products (AGEs) generation. Alagebrium (ALA) is an advanced glycation end products (AGEs) cross-links breaker.Methods: 32 Wistar rats were divided into normal control (NC) group (8 rats) and MS groups (24 rats) received a high carbohydrate high fat diet (HCFD) for 10 weeks. Rats with established MS were equally divided into 3 subgroups remained on HCFD for further 6 weeks: MS control (MSC), ALA treated received 10 mg/kg/day ALA orally and metformin treated (MF) (a reference drug) received 50 mg/kg/day MF orally. The studied parameters were systolic blood pressure (SBP), body and liver weights (BW, LW), LW/BW% ratio, fasting blood glucose (FBG), serum insulin, lipid profile, liver enzymes, serum AGEs, hepatic Interleukin-17 (IL-17), adipokines, pAkt/Akt ratio, and liver histopathology.Results: HCFD elevated SBP, BW, LW and LW/BW% ratio, FBG, serum insulin, and AGEs. It also deteriorated lipid profile and liver enzymes, induced inflammation, insulin resistance and histopathological derangements. ALA ameliorated the elevated SBP, FBG, lipid profile, liver enzymes, mitigated insulin resistance, hepatic IL-17, serum AGEs, modulated adipokines levels and improved liver histopathology. However, MF had better effects than ALA in all studied parameters except AGEs.Conclusion: ALA is protective against dietary-induced MS via ameliorating the inflammatory process and serum AGEs that implicated in MS pathogenesis, which makes it a promising new tool in MS treatment.
Collapse
Affiliation(s)
- Seba Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Soad Lotfy Kabil
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nevertyty M Mahmoud
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
30
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
31
|
Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules 2019; 24:molecules24234394. [PMID: 31805752 PMCID: PMC6930477 DOI: 10.3390/molecules24234394] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Propolis is a natural product resulting from the mixing of bee secretions with botanical exudates. Since propolis is rich in flavonoids and cinnamic acid derivatives, the application of propolis extracts has been tried in therapies against cancer, inflammation, and metabolic diseases. As metabolic diseases develop relatively slowly in patients, the therapeutic effects of propolis in humans should be evaluated over long periods of time. Moreover, several factors such as medical history, genetic inheritance, and living environment should be taken into consideration in human studies. Animal models, especially mice and rats, have some advantages, as genetic and microbiological variables can be controlled. On the other hand, cellular models allow the investigation of detailed molecular events evoked by propolis and derivative compounds. Taking advantage of animal and cellular models, accumulating evidence suggests that propolis extracts have therapeutic effects on obesity by controlling adipogenesis, adipokine secretion, food intake, and energy expenditure. Studies in animal and cellular models have also indicated that propolis modulates oxidative stress, the accumulation of advanced glycation end products (AGEs), and adipose tissue inflammation, all of which contribute to insulin resistance or defects in insulin secretion. Consequently, propolis treatment may mitigate diabetic complications such as nephropathy, retinopathy, foot ulcers, and non-alcoholic fatty liver disease. This review describes the beneficial effects of propolis on metabolic disorders.
Collapse
|
32
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
33
|
Gulbranson DR, Crisman L, Lee M, Ouyang Y, Menasche BL, Demmitt BA, Wan C, Nomura T, Ye Y, Yu H, Shen J. AAGAB Controls AP2 Adaptor Assembly in Clathrin-Mediated Endocytosis. Dev Cell 2019; 50:436-446.e5. [PMID: 31353312 DOI: 10.1016/j.devcel.2019.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022]
Abstract
Multimeric adaptors are broadly involved in vesicle-mediated membrane trafficking. AP2 adaptor, in particular, plays a central role in clathrin-mediated endocytosis (CME) by recruiting cargo and clathrin to endocytic sites. It is generally thought that trafficking adaptors such as AP2 adaptor assemble spontaneously. In this work, however, we discovered that AP2 adaptor assembly is an ordered process controlled by alpha and gamma adaptin binding protein (AAGAB), an uncharacterized factor identified in our genome-wide genetic screen of CME. AAGAB guides the sequential association of AP2 subunits and stabilizes assembly intermediates. Without the assistance of AAGAB, AP2 subunits fail to form the adaptor complex, leading to their degradation. The function of AAGAB is abrogated by a mutation that causes punctate palmoplantar keratoderma type 1 (PPKP1), a human skin disease. Since other multimeric trafficking adaptors operate in an analogous manner to AP2 adaptor, their assembly likely involves a similar regulatory mechanism.
Collapse
Affiliation(s)
- Daniel R Gulbranson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - MyeongSeon Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Yan Ouyang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Bridget L Menasche
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Brittany A Demmitt
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
34
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
35
|
Nerve growth factor receptor TrkA signaling in streptozotocin-induced type 1 diabetes rat brain. Biochem Biophys Res Commun 2019; 514:1285-1289. [PMID: 31113619 DOI: 10.1016/j.bbrc.2019.04.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023]
Abstract
Previous work from our lab demonstrated a new role of TrkA in the insulin signaling pathway. The kinase activity of TrkA is essential for its interaction with the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) and activation of Akt and Erk5 in PC12 cells. Here we show in brain from streptozotocin (STZ)-induced type 1 diabetic rats that the expression of the inactive proNGF is elevated, whereas the expression of mature NGF is reduced. In addition, tyrosine phosphorylation of TrkA is decreased in STZ-induced diabetes compared to control. Results of the co-immunoprecipitation experiments indicate that the interaction of TrkA with the IR and IRS-1 is also reduced in the brain of diabetic rats. Moreover, tyrosine phosphorylation of the IR and IRS-1, and Akt activation is decreased in STZ diabetes compared to control. Our results suggest that the NGF-TrkA receptor is involved in insulin signaling and is impaired in the brain of STZ-induced diabetic rats.
Collapse
|
36
|
Zhang WN, Su RN, Gong LL, Yang WW, Chen J, Yang R, Wang Y, Pan WJ, Lu YM, Chen Y. Structural characterization and in vitro hypoglycemic activity of a glucan from Euryale ferox Salisb. seeds. Carbohydr Polym 2019; 209:363-371. [DOI: 10.1016/j.carbpol.2019.01.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
|
37
|
Effects of Centella asiatica on skeletal muscle structure and key enzymes of glucose and glycogen metabolism in type 2 diabetic rats. Biomed Pharmacother 2019; 112:108715. [DOI: 10.1016/j.biopha.2019.108715] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
|
38
|
Emdal KB, Pedersen AK, Bekker-Jensen DB, Lundby A, Claeys S, De Preter K, Speleman F, Francavilla C, Olsen JV. Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma. Sci Signal 2018; 11:11/557/eaap9752. [PMID: 30459283 DOI: 10.1126/scisignal.aap9752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncogenic anaplastic lymphoma kinase (ALK) is one of the few druggable targets in neuroblastoma, and therapy resistance to ALK-targeting tyrosine kinase inhibitors (TKIs) comprises an inevitable clinical challenge. Therefore, a better understanding of the oncogenic signaling network rewiring driven by ALK is necessary to improve and guide future therapies. Here, we performed quantitative mass spectrometry-based proteomics on neuroblastoma cells treated with one of three clinically relevant ALK TKIs (crizotinib, LDK378, or lorlatinib) or an experimentally used ALK TKI (TAE684) to unravel aberrant ALK signaling pathways. Our integrated proximal proteomics (IPP) strategy included multiple signaling layers, such as the ALK interactome, phosphotyrosine interactome, phosphoproteome, and proteome. We identified the signaling adaptor protein IRS2 (insulin receptor substrate 2) as a major ALK target and an ALK TKI-sensitive signaling node in neuroblastoma cells driven by oncogenic ALK. TKI treatment decreased the recruitment of IRS2 to ALK and reduced the tyrosine phosphorylation of IRS2. Furthermore, siRNA-mediated depletion of ALK or IRS2 decreased the phosphorylation of the survival-promoting kinase Akt and of a downstream target, the transcription factor FoxO3, and reduced the viability of three ALK-driven neuroblastoma cell lines. Collectively, our IPP analysis provides insight into the proximal architecture of oncogenic ALK signaling by revealing IRS2 as an adaptor protein that links ALK to neuroblastoma cell survival through the Akt-FoxO3 signaling axis.
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Alicia Lundby
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Shana Claeys
- Center for Medical Genetics Ghent, Cancer Research Institute Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics Ghent, Cancer Research Institute Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics Ghent, Cancer Research Institute Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | - Chiara Francavilla
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. .,Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
39
|
Crosstalk in transition: the translocation of Akt. J Math Biol 2018; 78:919-942. [PMID: 30306249 DOI: 10.1007/s00285-018-1297-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Akt/PKB is an important crosstalk node at the junction between a number of major signalling pathways in the mammalian cell. As a significant nutrient sensor, Akt plays a central role in many cellular processes, including cell growth, cell survival and glucose metabolism. The dysregulation of Akt signalling is implicated in the development of many diseases, from diabetes to cancer. The translocation of Akt from cytosol to plasma membrane is a crucial step in Akt activation. Akt is initially synthesized on the endoplasmic reticulum, but translocates to the plasma membrane (PM) in response to insulin stimulation, where it may be activated. The Akt is then recycled to the cytoplasm. The activated Akt may propagate signals to downstream substrates both at the PM and in the cytosol, hence understanding the translocation dynamics is an important step in dissecting the signalling system. At the present time, however, knowledge concerning the translocation of either activated and unactivated Akt is scant. Here we present a simple, deterministic, three-compartment ordinary differential equation model of Akt translocation in vitro. This model can reproduce the salient features of Akt translocation in a manner consistent with the experimental data. Furthermore, we demonstrate that this system is equivalent to a damped harmonic oscillator, and analyse the steady state and transient behaviour of the model over the entire parameter space.
Collapse
|
40
|
Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model. PLoS One 2018; 13:e0204043. [PMID: 30235271 PMCID: PMC6147462 DOI: 10.1371/journal.pone.0204043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Insulin resistance-as observed in aging, diabetes, obesity, and other pathophysiological situations, affects brain function, for insulin signaling is responsible for neuronal glucose transport and control of energy homeostasis and is involved in the regulation of neuronal growth and synaptic plasticity. This study investigates brain metabolism and function in a liver-specific Phosphatase and Tensin Homologue (Pten) knockout mouse model (Liver-PtenKO), a negative regulator of insulin signaling. The Liver-PtenKO mouse model showed an increased flux of glucose into the liver-thus resulting in an overall hypoglycemic and hypoinsulinemic state-and significantly lower hepatic production of the ketone body beta-hydroxybutyrate (as compared with age-matched control mice). The Liver-PtenKO mice exhibited increased brain glucose uptake, improved rate of glycolysis and flux of metabolites in the TCA cycle, and improved synaptic plasticity in the hippocampus. Brain slices from both control- and Liver-PtenKO mice responded to the addition of insulin (in terms of pAKT/AKT levels), thereby neglecting an insulin resistance scenario. This study underscores the significance of insulin signaling in brain bioenergetics and function and helps recognize deficits in diseases associated with insulin resistance.
Collapse
|
41
|
Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, Montealegre S, Lawand M, Evnouchidou I, Huber KJ, Chadt A, Zwick M, Vargas P, Dussiot M, Lennon-Dumenil AM, Brocker T, Al-Hasani H, van Endert P. Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation. Cell Rep 2018; 24:3568-3581. [DOI: 10.1016/j.celrep.2018.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/14/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
|
42
|
Duan X, Krycer JR, Cooke KC, Yang G, James DE, Fazakerley DJ. Membrane Topology of Trafficking Regulator of GLUT4 1 (TRARG1). Biochemistry 2018; 57:3606-3615. [PMID: 29787242 DOI: 10.1021/acs.biochem.8b00361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trafficking regulator of GLUT4 1 (TRARG1) was recently identified to localize to glucose transporter type 4 (GLUT4) storage vesicles (GSVs) and to positively regulate GLUT4 trafficking. Our knowledge of TRARG1 structure and membrane topology is limited to predictive models, hampering efforts to further our mechanistic understanding of how it carries out its functions. Here, we use a combination of bioinformatics prediction tools and biochemical assays to define the membrane topology of the 173-amino acid mouse TRARG1. These analyses revealed that, contrary to the consensus prediction, the N-terminus is cytosolic and that a short segment at the C-terminus resides in the luminal/extracellular space. Based on our biochemical analyses including membrane association and antibody accessibility assays, we conclude that TRARG1 has one transmembrane domain (TMD) (145-172) and a re-entrant loop between residues 101 and 127.
Collapse
Affiliation(s)
- Xiaowen Duan
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia.,Sydney Medical School , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| |
Collapse
|
43
|
Ichhaporia VP, Kim J, Kavdia K, Vogel P, Horner L, Frase S, Hendershot LM. SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. Dis Model Mech 2018; 11:dmm.033043. [PMID: 29666155 PMCID: PMC5992605 DOI: 10.1242/dmm.033043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
Mutations in SIL1, a cofactor for the endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disorder. Using a mouse model, we characterized molecular aspects of the progressive myopathy associated with MSS. Proteomic profiling of quadriceps at the onset of myopathy revealed that SIL1 deficiency affected multiple pathways critical to muscle physiology. We observed an increase in ER chaperones prior to the onset of muscle weakness, which was complemented by upregulation of multiple components of cellular protein degradation pathways. These responses were inadequate to maintain normal expression of secretory pathway proteins, including insulin and IGF-1 receptors. There was a paradoxical enhancement of downstream PI3K-AKT-mTOR signaling and glucose uptake in SIL1-disrupted skeletal muscles, all of which were insufficient to maintain skeletal muscle mass. Together, these data reveal a disruption in ER homeostasis upon SIL1 loss, which is countered by multiple compensatory responses that are ultimately unsuccessful, leading to trans-organellar proteostasis collapse and myopathy. Editor's choice: This study provides molecular insights into the progressive myopathy and cellular compensatory responses attempted upon loss of SIL1, a component of the endoplasmic-reticulum-resident Hsp70 protein-folding machinery.
Collapse
Affiliation(s)
- Viraj P Ichhaporia
- Dept of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Dept of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jieun Kim
- Small Animal Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kanisha Kavdia
- Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Dept of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda Horner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Dept of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA .,Dept of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
44
|
Macpherson RE, Pratap S, Tyrrell H, Khonsari M, Wilson S, Gibbons M, Whitwell D, Giele H, Critchley P, Cogswell L, Trent S, Athanasou N, Bradley KM, Hassan AB. Retrospective audit of 957 consecutive 18F-FDG PET-CT scans compared to CT and MRI in 493 patients with different histological subtypes of bone and soft tissue sarcoma. Clin Sarcoma Res 2018; 8:9. [PMID: 30116519 PMCID: PMC6086048 DOI: 10.1186/s13569-018-0095-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background The use of 18F-FDG PET–CT (PET–CT) is widespread in many cancer types compared to sarcoma. We report a large retrospective audit of PET–CT in bone and soft tissue sarcoma with varied grade in a single multi-disciplinary centre. We also sought to answer three questions. Firstly, the correlation between sarcoma sub-type and grade with 18FDG SUVmax, secondly, the practical uses of PET–CT in the clinical setting of staging (during initial diagnosis), restaging (new baseline prior to definitive intervention) and treatment response. Finally, we also attempted to evaluate the potential additional benefit of PET–CT over concurrent conventional CT and MRI. Methods A total of 957 consecutive PET–CT scans were performed in a single supra-regional centre in 493 sarcoma patients (excluding GIST) between 2007 and 2014. We compared, PET–CT SUVmax values in relation to histology and FNCCC grading. We compared PET–CT findings relative to concurrent conventional imaging (MRI and CT) in staging, restaging and treatment responses. Results High-grade (II/III) bone and soft tissue sarcoma correlated with high SUVmax, especially undifferentiated pleomorphic sarcoma, leiomyosarcoma, translocation induced sarcomas (Ewing, synovial, alveolar rhabdomyosarcoma), de-differentiated liposarcoma and osteosarcoma. Lower SUVmax values were observed in sarcomas of low histological grade (grade I), and in rare subtypes of intermediate grade soft tissue sarcoma (e.g. alveolar soft part sarcoma and solitary fibrous tumour). SUVmax variation was noted in malignant peripheral nerve sheath tumours, compared to the histologically benign plexiform neurofibroma, whereas PET–CT could clearly differentiate low from high-grade chondrosarcoma. We identified added utility of PET–CT in addition to MRI and CT in high-grade sarcoma of bone and soft tissues. An estimated 21% overall potential benefit was observed for PET–CT over CT/MRI, and in particular, in ‘upstaging’ of high-grade disease (from M0 to M1) where an additional 12% of cases were deemed M1 following PET–CT. Conclusions PET–CT in high-grade bone and soft tissue sarcoma can add significant benefit to routine CT/MRI staging. Further prospective and multi-centre evaluation of PET–CT is warranted to determine the actual predictive value and cost-effectiveness of PET–CT in directing clinical management of clinically complex and heterogeneous high-grade sarcomas.
Collapse
Affiliation(s)
- Ruth E Macpherson
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,2Department of Radiology, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Sarah Pratap
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,3Department of Oncology, Churchill Hospital, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Helen Tyrrell
- 3Department of Oncology, Churchill Hospital, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Mehrdad Khonsari
- 2Department of Radiology, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Shaun Wilson
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,5Department of Paediatric Oncology, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Max Gibbons
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,4Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Duncan Whitwell
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,4Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Henk Giele
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,4Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Paul Critchley
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,4Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Lucy Cogswell
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,4Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Sally Trent
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,3Department of Oncology, Churchill Hospital, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - Nick Athanasou
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,4Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,6NIHR Musculoskeletal Biomedical Research Unit (Sarcoma Theme), Sarcoma and TYA Unit of the NHS Oncology Department, and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | - Kevin M Bradley
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,2Department of Radiology, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK
| | - A Bassim Hassan
- 1Oxford Sarcoma Service (OxSarc), Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,3Department of Oncology, Churchill Hospital, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LE UK.,6NIHR Musculoskeletal Biomedical Research Unit (Sarcoma Theme), Sarcoma and TYA Unit of the NHS Oncology Department, and Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| |
Collapse
|
45
|
Kee AJ, Chagan J, Chan JY, Bryce NS, Lucas CA, Zeng J, Hook J, Treutlein H, Laybutt DR, Stehn JR, Gunning PW, Hardeman EC. On-target action of anti-tropomyosin drugs regulates glucose metabolism. Sci Rep 2018; 8:4604. [PMID: 29545590 PMCID: PMC5854615 DOI: 10.1038/s41598-018-22946-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 β-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jayshan Chagan
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christine A Lucas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jun Zeng
- MedChemSoft Solutions, Level 3 Brandon Park Drive, Wheelers Hill, 3150, VIC, Australia
| | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Herbert Treutlein
- Sanoosa Pty. Ltd., 35 Collins Street, Melbourne, 3000, VIC, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Justine R Stehn
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Novogen Pty Ltd, 502/20 George St, Hornsby, NSW, 2077, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
46
|
Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci 2017; 36:11851-11864. [PMID: 27881773 DOI: 10.1523/jneurosci.1700-16.2016] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. SIGNIFICANCE STATEMENT The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long-term inhibition of GluT4 impaired long-term memory, short-term memory was enhanced. These data further our understanding of the molecular mechanisms of memory and have particular significance for type 2 diabetes (in which GluT4 activity in the periphery is impaired) and Alzheimer's disease (which is linked to impaired brain insulin signaling and for which type 2 diabetes is a key risk factor). Both diseases cause marked impairment of hippocampal memory linked to hippocampal hypometabolism, suggesting the possibility that brain GluT4 dysregulation may be one cause of cognitive impairment in these disease states.
Collapse
|
47
|
Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ 2017; 7:624-634. [PMID: 28704134 PMCID: PMC5841889 DOI: 10.1086/689908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with metabolic derangements including insulin resistance, although their effects on the cardiopulmonary disease are unclear. We hypothesized that insulin resistance promotes pulmonary hypertension (PH) development and mutations in type 2 bone morphogenetic protein receptor (BMPR2) cause cellular insulin resistance. Using a BMPR2 transgenic murine model of PAH and two models of inducible diabetes mellitus, we explored the impact of hyperglycemia and/or hyperinsulinemia on development and severity of PH. We assessed insulin signaling and insulin-mediated glucose uptake in human endothelial cells with and without mutations in BMPR2. PH developed in control mice fed a Western diet and PH in BMPR2 mutant mice was increased by Western diet. Pulmonary artery pressure correlated strongly with fasting plasma insulin but not glucose. Reactive oxygen species were increased in lungs of insulin-resistant animals. BMPR2 mutation impaired insulin-mediated endothelial glucose uptake via reduced glucose transporter translocation despite intact insulin signaling. Experimental hyperinsulinemia is strongly associated with PH in both control and BMPR2-mutant mice, though to a greater degree in those with BMPR2 mutation. Human pulmonary endothelial cells with BMPR2 mutation have evidence of reduced glucose uptake due to impaired glucose transporter translocation. These experiments support a role for hyperinsulinemia in pulmonary vascular disease.
Collapse
Affiliation(s)
- Aaron W Trammell
- 1 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megha Talati
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas R Blackwell
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niki L Fortune
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin D Niswender
- 3 Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua P Fessel
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John H Newman
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James D West
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anna R Hemnes
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
48
|
Sulaimanov N, Klose M, Busch H, Boerries M. Understanding the mTOR signaling pathway via mathematical modeling. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:e1379. [PMID: 28186392 PMCID: PMC5573916 DOI: 10.1002/wsbm.1379] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/09/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulatory pathway that integrates a variety of environmental cues to control cellular growth and homeostasis by intricate molecular feedbacks. In spite of extensive knowledge about its components, the molecular understanding of how these function together in space and time remains poor and there is a need for Systems Biology approaches to perform systematic analyses. In this work, we review the recent progress how the combined efforts of mathematical models and quantitative experiments shed new light on our understanding of the mTOR signaling pathway. In particular, we discuss the modeling concepts applied in mTOR signaling, the role of multiple feedbacks and the crosstalk mechanisms of mTOR with other signaling pathways. We also discuss the contribution of principles from information and network theory that have been successfully applied in dissecting design principles of the mTOR signaling network. We finally propose to classify the mTOR models in terms of the time scale and network complexity, and outline the importance of the classification toward the development of highly comprehensive and predictive models. WIREs Syst Biol Med 2017, 9:e1379. doi: 10.1002/wsbm.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Nurgazy Sulaimanov
- Department of Electrical Engineering and Information TechnologyTechnische Universität DarmstadtDarmstadtGermany
- Department of BiologyTechnische Universitat DarmstadtDarmstadtGermany
| | - Martin Klose
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
49
|
Shamni O, Cohen G, Gruzman A, Zaid H, Klip A, Cerasi E, Sasson S. Regulation of GLUT4 activity in myotubes by 3-O-methyl-d-glucose. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28648676 DOI: 10.1016/j.bbamem.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rate of glucose influx to skeletal muscles is determined primarily by the number of functional units of glucose transporter-4 (GLUT4) in the myotube plasma membrane. The abundance of GLUT4 in the plasma membrane is tightly regulated by insulin or contractile activity, which employ distinct pathways to translocate GLUT4-rich vesicles from intracellular compartments. Various studies have indicated that GLUT4 intrinsic activity is also regulated by conformational changes and/or interactions with membrane components and intracellular proteins in the vicinity of the plasma membrane. Here we show that the non-metabolizable glucose analog 3-O-methyl-d-glucose (MeGlc) augmented the rate of hexose transport into myotubes by increasing GLUT4 intrinsic activity without altering the content of the transporter in the plasma membrane. This effect was not a consequence of ATP depletion or hyperosmolar stress and did not involve Akt/PKB or AMPK signal transduction pathways. MeGlc reduced the inhibitory potency (increased Ki) of indinavir, a selective inhibitor of GLUT4, in a dose-dependent manner. Kinetic analyses indicate that MeGlc induced changes in GLUT4 or GLUT4 complexes within the plasma membrane, which enhanced the hexose transport activity and reduced the potency of indinavir inhibition. Finally, we present a simple kinetic analysis for screening and discovering low molecular weight compounds that augment GLUT4 activity.
Collapse
Affiliation(s)
- Ofer Shamni
- Department of Nuclear Medicine, the Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel; Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel
| | - Guy Cohen
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Israel; Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel
| | - Arie Gruzman
- Division of Medicinal Chemistry, Dept. of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel
| | - Hilal Zaid
- Al-Qasemi Research Center, Al-Qasemi Academy, Baqa-El-Gharbia 3010000, Israel; Program in Cell Biology, Hospital for Sick Children, Toronto, OT M5G 1XB, Canada
| | - Amira Klip
- Program in Cell Biology, Hospital for Sick Children, Toronto, OT M5G 1XB, Canada
| | - Erol Cerasi
- Endocrinology and Metabolism Service, Department of Internal Medicine, The Hebrew University-Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel.
| |
Collapse
|
50
|
Kim S, Go GW, Imm JY. Promotion of Glucose Uptake in C2C12 Myotubes by Cereal Flavone Tricin and Its Underlying Molecular Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3819-3826. [PMID: 28474889 DOI: 10.1021/acs.jafc.7b00578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of tricin, a methylated flavone widely distributed in cereals, on glucose uptake and the underlying molecular mechanism was investigated using C2C12 myotubes. Tricin significantly increased glucose uptake in C2C12 myotubes, regardless of the absence (1.4-fold at 20 μM) or presence (1.6-fold at 20 μM) of insulin. The GLUT4 expression on the plasma membrane was increased 1.6-fold after tricin treatment (20 μM) in the absence of insulin. Tricin treatment significantly activated the insulin-dependent cell signaling pathway, including the activation of insulin receptor substrate-1 (IRS1), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and AKT substrate of 160 kDa (AS160). The oral administration of tricin (64 and 160 mg kg-1 of body weight day-1) also significantly lowered blood glucose levels in glucose-loaded C57BL/6 mice (p < 0.05). These results suggest that tricin has great potential to be used as a functional agent for glycemic control.
Collapse
Affiliation(s)
- Sohyun Kim
- Department of Foods and Nutrition, Kookmin University , 861-1, Jeongnung-dong, Seongbuk-gu, Seoul 136-702, Korea
| | - Gwang-Woong Go
- Department of Foods and Nutrition, Kookmin University , 861-1, Jeongnung-dong, Seongbuk-gu, Seoul 136-702, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University , 861-1, Jeongnung-dong, Seongbuk-gu, Seoul 136-702, Korea
| |
Collapse
|