1
|
Huang W, Ural S, Zhu Y. Preterm labor tests: current status and future directions. Crit Rev Clin Lab Sci 2022; 59:278-296. [DOI: 10.1080/10408363.2022.2027864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Serdar Ural
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yusheng Zhu
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Ferryl Hemoglobin and Heme Induce A 1-Microglobulin in Hemorrhaged Atherosclerotic Lesions with Inhibitory Function against Hemoglobin and Lipid Oxidation. Int J Mol Sci 2021; 22:ijms22136668. [PMID: 34206377 PMCID: PMC8268598 DOI: 10.3390/ijms22136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Infiltration of red blood cells into atheromatous plaques and oxidation of hemoglobin (Hb) and lipoproteins are implicated in the pathogenesis of atherosclerosis. α1-microglobulin (A1M) is a radical-scavenging and heme-binding protein. In this work, we examined the origin and role of A1M in human atherosclerotic lesions. Using immunohistochemistry, we observed a significant A1M immunoreactivity in atheromas and hemorrhaged plaques of carotid arteries in smooth muscle cells (SMCs) and macrophages. The most prominent expression was detected in macrophages of organized hemorrhage. To reveal a possible inducer of A1M expression in ruptured lesions, we exposed aortic endothelial cells (ECs), SMCs and macrophages to heme, Oxy- and FerrylHb. Both heme and FerrylHb, but not OxyHb, upregulated A1M mRNA expression in all cell types. Importantly, only FerrylHb induced A1M protein secretion in aortic ECs, SMCs and macrophages. To assess the possible function of A1M in ruptured lesions, we analyzed Hb oxidation and heme-catalyzed lipid peroxidation in the presence of A1M. We showed that recombinant A1M markedly inhibited Hb oxidation and heme-driven oxidative modification of low-density lipoproteins as well plaque lipids derived from atheromas. These results demonstrate the presence of A1M in atherosclerotic plaques and suggest its induction by heme and FerrylHb in the resident cells.
Collapse
|
3
|
Bergwik J, Kristiansson A, Allhorn M, Gram M, Åkerström B. Structure, Functions, and Physiological Roles of the Lipocalin α 1-Microglobulin (A1M). Front Physiol 2021; 12:645650. [PMID: 33746781 PMCID: PMC7965949 DOI: 10.3389/fphys.2021.645650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
α1-microglobulin (A1M) is found in all vertebrates including humans. A1M was, together with retinol-binding protein and β-lactoglobulin, one of the three original lipocalins when the family first was proposed in 1985. A1M is described as an antioxidant and tissue cleaning protein with reductase, heme- and radical-binding activities. These biochemical properties are driven by a strongly electronegative surface-exposed thiol group, C34, on loop 1 of the open end of the lipocalin barrel. A1M has been shown to have protective effects in vitro and in vivo in cell-, organ-, and animal models of oxidative stress-related medical conditions. The gene coding for A1M is unique among lipocalins since it is flanked downstream by four exons coding for another non-lipocalin protein, bikunin, and is consequently named α1-microglobulin-bikunin precursor gene (AMBP). The precursor is cleaved in the Golgi, and A1M and bikunin are secreted from the cell separately. Recent publications have suggested novel physiological roles of A1M in regulation of endoplasmic reticulum activities and erythrocyte homeostasis. This review summarizes the present knowledge of the structure and functions of the lipocalin A1M and presents a current model of its biological role(s).
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Allhorn
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Kristiansson A, Bergwik J, Alattar AG, Flygare J, Gram M, Hansson SR, Olsson ML, Storry JR, Allhorn M, Åkerström B. Human radical scavenger α 1-microglobulin protects against hemolysis in vitro and α 1-microglobulin knockout mice exhibit a macrocytic anemia phenotype. Free Radic Biol Med 2021; 162:149-159. [PMID: 32092412 DOI: 10.1016/j.freeradbiomed.2020.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
During red blood cell (RBC) lysis hemoglobin and heme leak out of the cells and cause damage to the endothelium and nearby tissue. Protective mechanisms exist; however, these systems are not sufficient in diseases with increased extravascular hemolysis e.g. hemolytic anemia. α1-microglobulin (A1M) is a ubiquitous reductase and radical- and heme-binding protein with antioxidation properties. Although present in the circulation in micromolar concentrations, its function in blood is unclear. Here, we show that A1M provides RBC stability. A1M-/- mice display abnormal RBC morphology, reminiscent of macrocytic anemia conditions, i.e. fewer, larger and more heterogeneous cells. Recombinant human A1M (rA1M) reduced in vitro hemolysis of murine RBC against spontaneous, osmotic and heme-induced stress. Moreover, A1M is taken up by human RBCs both in vitro and in vivo. Similarly, rA1M also protected human RBCs against in vitro spontaneous, osmotic, heme- and radical-induced hemolysis as shown by significantly reduced leakage of hemoglobin and LDH. Addition of rA1M resulted in decreased hemolysis compared to addition of the heme-binding protein hemopexin and the radical-scavenging and reducing agents ascorbic acid and Trolox (vitamin E). Furthermore, rA1M significantly reduced spontaneous and heme-induced fetal RBC cell death. Addition of A1M to human whole blood resulted in a significant reduction of hemolysis, whereas removal of A1M from whole blood resulted in increased hemolysis. We conclude that A1M has a protective function in reducing hemolysis which is neither specific to the origin of hemolytic insult, nor species specific.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Jesper Bergwik
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Abdul Ghani Alattar
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden; Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Flygare
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Maria Allhorn
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Pregnant alpha-1-microglobulin (A1M) knockout mice exhibit features of kidney and placental damage, hemodynamic changes and intrauterine growth restriction. Sci Rep 2020; 10:20625. [PMID: 33244052 PMCID: PMC7691512 DOI: 10.1038/s41598-020-77561-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022] Open
Abstract
Alpha-1-microglobulin (A1M) is an antioxidant previously shown to be elevated in maternal blood during pregnancies complicated by preeclampsia and suggested to be important in the endogenous defense against oxidative stress. A knockout mouse model of A1M (A1Mko) was used in the present study to assess the importance of A1M during pregnancy in relation to the kidney, heart and placenta function. Systolic blood pressure (SBP) and heart rate (HR) were determined before and throughout gestation. The morphology of the organs was assessed by both light and electron microscopy. Gene expression profiles relating to vascular tone and oxidative stress were analyzed using RT-qPCR with validation of selected gene expression relating to vascular tone and oxidative stress response. Pregnant age-matched wild type mice were used as controls. In the A1Mko mice there was a significantly higher SBP before pregnancy that during pregnancy was significantly reduced compared to the control. In addition, the HR was higher both before and during pregnancy compared to the controls. Renal morphological abnormalities were more frequent in the A1Mko mice, and the gene expression profiles in the kidney and the heart showed downregulation of transcripts associated with vasodilation. Simultaneously, an upregulation of vasoconstrictors, blood pressure regulators, and genes for osmotic stress response, ion transport and reactive oxygen species (ROS) metabolism occurred. Fetal weight was lower in the A1Mko mice at E17.5. The vessels in the labyrinth zone of the placentas and the endoplasmic reticulum in the spongiotrophoblasts were collapsed. The gene profiles in the placenta showed downregulation of antioxidants, ROS metabolism and oxidative stress response genes. In conclusion, intact A1M expression is necessary for the maintenance of normal kidney, heart as well as placental structure and function for a normal pregnancy adaptation.
Collapse
|
6
|
Kristiansson A, Gram M, Flygare J, Hansson SR, Åkerström B, Storry JR. The Role of α 1-Microglobulin (A1M) in Erythropoiesis and Erythrocyte Homeostasis-Therapeutic Opportunities in Hemolytic Conditions. Int J Mol Sci 2020; 21:ijms21197234. [PMID: 33008134 PMCID: PMC7582998 DOI: 10.3390/ijms21197234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
α1-microglobulin (A1M) is a small protein present in vertebrates including humans. It has several physiologically relevant properties, including binding of heme and radicals as well as enzymatic reduction, that are used in the protection of cells and tissue. Research has revealed that A1M can ameliorate heme and ROS-induced injuries in cell cultures, organs, explants and animal models. Recently, it was shown that A1M could reduce hemolysis in vitro, observed with several different types of insults and sources of RBCs. In addition, in a recently published study, it was observed that mice lacking A1M (A1M-KO) developed a macrocytic anemia phenotype. Altogether, this suggests that A1M may have a role in RBC development, stability and turnover. This opens up the possibility of utilizing A1M for therapeutic purposes in pathological conditions involving erythropoietic and hemolytic abnormalities. Here, we provide an overview of A1M and its potential therapeutic effect in the context of the following erythropoietic and hemolytic conditions: Diamond-Blackfan anemia (DBA), 5q-minus myelodysplastic syndrome (5q-MDS), blood transfusions (including storage), intraventricular hemorrhage (IVH), preeclampsia (PE) and atherosclerosis.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden;
- Correspondence:
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 84 Lund, Sweden;
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden;
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Jill R. Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden;
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, 221 85 Lund, Sweden
| |
Collapse
|
7
|
α 1-Microglobulin (A1M) Protects Human Proximal Tubule Epithelial Cells from Heme-Induced Damage In Vitro. Int J Mol Sci 2020; 21:ijms21165825. [PMID: 32823731 PMCID: PMC7461577 DOI: 10.3390/ijms21165825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.
Collapse
|
8
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Gunnarsson R, Åkerström B, Hansson SR, Gram M. Recombinant alpha-1-microglobulin: a potential treatment for preeclampsia. Drug Discov Today 2017; 22:736-743. [DOI: 10.1016/j.drudis.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 01/31/2023]
|
10
|
Åkerström B, Gram M. A1M, an extravascular tissue cleaning and housekeeping protein. Free Radic Biol Med 2014; 74:274-82. [PMID: 25035076 DOI: 10.1016/j.freeradbiomed.2014.06.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 02/02/2023]
Abstract
Alpha-1-microglobulin (A1M) is a small protein found intra- and extracellularly in all tissues of vertebrates. The protein was discovered 40 years ago and its physiological role remained unknown for a long time. A series of recent publications have demonstrated that A1M is a vital part of tissue housekeeping. A strongly electronegative free thiol group forms the structural basis of heme-binding, reductase, and radical-trapping properties. A rapid flow of liver-produced A1M through blood and extravascular compartments ensures clearing of biological fluids from heme and free radicals and repair of oxidative lesions. After binding, both the radicals and the A1M are electroneutral and therefore do not present any further oxidative stress to tissues. The biological cleaning cycle is completed by glomerular filtration, renal degradation, and urinary excretion of A1M heavily modified by covalently linked radicals and heme groups. Based on its role as a tissue housekeeping cleaning factor, A1M constitutes a potential therapeutic drug candidate in treatment or prophylaxis of diseases or conditions that are associated with pathological oxidative stress elements.
Collapse
Affiliation(s)
- Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Magnus Gram
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Olsson MG, Allhorn M, Bülow L, Hansson SR, Ley D, Olsson ML, Schmidtchen A, Akerström B. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Antioxid Redox Signal 2012; 17:813-46. [PMID: 22324321 DOI: 10.1089/ars.2011.4282] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hemoglobin (Hb) is the major oxygen (O(2))-carrying system of the blood but has many potentially dangerous side effects due to oxidation and reduction reactions of the heme-bound iron and O(2). Extracellular Hb, resulting from hemolysis or exogenous infusion, is shown to be an important pathogenic factor in a growing number of diseases. This review briefly outlines the oxidative/reductive toxic reactions of Hb and its metabolites. It also describes physiological protection mechanisms that have evolved against extracellular Hb, with a focus on the most recently discovered: the heme- and radical-binding protein α(1)-microglobulin (A1M). This protein is found in all vertebrates, including man, and operates by rapidly clearing cytosols and extravascular fluids of heme groups and free radicals released from Hb. Five groups of pathological conditions with high concentrations of extracellular Hb are described: hemolytic anemias and transfusion reactions, the pregnancy complication pre-eclampsia, cerebral intraventricular hemorrhage of premature infants, chronic inflammatory leg ulcers, and infusion of Hb-based O(2) carriers as blood substitutes. Finally, possible treatments of these conditions are discussed, giving a special attention to the described protective effects of A1M.
Collapse
|
12
|
May K, Rosenlöf L, Olsson MG, Centlow M, Mörgelin M, Larsson I, Cederlund M, Rutardottir S, Siegmund W, Schneider H, Akerström B, Hansson SR. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin. Placenta 2011; 32:323-32. [PMID: 21356557 DOI: 10.1016/j.placenta.2011.01.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preeclamptic women have increased plasma levels of free fetal hemoglobin (HbF), increased gene expression of placental HbF and accumulation of free HbF in the placental vascular lumen. Free hemoglobin (Hb) is pro-inflammatory, and causes oxidative stress and tissue damage. METHODOLOGY To show the impact of free Hb in PE, we used the dual ex vivo placental perfusion model. Placentas were perfused with Hb and investigated for physical parameters, Hb leakage, gene expression and morphology. The protective effects of α(1)-microglobulin (A1M), a heme- and radical-scavenger and antioxidant, was investigated. RESULTS Hb-addition into the fetal circulation led to a significant increase of the perfusion pressure and the feto-maternal leakage of free Hb. Morphological damages similar to the PE placentas were observed. Gene array showed up-regulation of genes related to immune response, apoptosis, and oxidative stress. Simultaneous addition of A1M to the maternal circulation inhibited the Hb leakage, morphological damage and gene up-regulation. Furthermore, perfusion with Hb and A1M induced a significant up-regulation of extracellular matrix genes. SIGNIFICANCE The ex vivo Hb-perfusion of human placenta resulted in physiological and morphological changes and a gene expression profile similar to what is observed in PE placentas. These results underline the potentially important role of free Hb in PE etiology. The damaging effects were counteracted by A1M, suggesting a role of this protein as a new potential PE therapeutic agent.
Collapse
Affiliation(s)
- K May
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University Hospital, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Åkerström B, Björck L. Bacterial Surface Protein L Binds and Inactivates Neutrophil Proteins S100A8/A9. THE JOURNAL OF IMMUNOLOGY 2009; 183:4583-92. [DOI: 10.4049/jimmunol.0901487] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Akerström B, Maghzal GJ, Winterbourn CC, Kettle AJ. The Lipocalin α1-Microglobulin Has Radical Scavenging Activity. J Biol Chem 2007; 282:31493-503. [PMID: 17766242 DOI: 10.1074/jbc.m702624200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipocalin alpha(1)-microglobulin (alpha(1)m) is a 26-kDa glycoprotein present in plasma and in interstitial fluids of all tissues. The protein was recently shown to have reductase properties, reducing heme-proteins and other substrates, and was also reported to be involved in binding and scavenging of heme and tryptophan metabolites. To investigate its possible role as a reductant of organic radicals, we have studied the interaction of alpha(1)m with the synthetic radical, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS radical). The lipocalin readily reacted with the ABTS radical forming reduced ABTS. The apparent rate constant for this reaction was 6.3 +/- 2.5 x 10(3) M(-1) s(-1). A second reaction product with an intense purple color and an absorbance maximum at 550 nm was formed at a similar rate. This was shown by liquid chromatography/mass spectrometry to be derived from covalent attachment of a portion of ABTS radical to tyrosine residues on alpha(1)m. The relative yields of reduced ABTS and the purple ABTS derivative bound to alpha(1)m were approximately 2:1. Both reactions were dependent on the thiolate group of the cysteine residue in position 34 of the alpha(1)m polypeptide. Our results indicate that alpha(1)m is involved in a sequential reduction of ABTS radicals followed by trapping of these radicals by covalent attachment. In combination with the reported physiological properties of the protein, our results suggest that alpha(1)m may be a radical reductant and scavenger in vivo.
Collapse
Affiliation(s)
- Bo Akerström
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden.
| | | | | | | |
Collapse
|
15
|
Grewal JS, Tsai JY, Khan SR. Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 2006; 387:609-16. [PMID: 15533056 PMCID: PMC1134990 DOI: 10.1042/bj20041465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AMBP [A1M (alpha1-microglobulin)/bikunin precursor] gene encodes two plasma glycoproteins: A1M, an immunosuppressive lipocalin, and bikunin, a member of plasma serine proteinase inhibitor family with prototypical Kunitz-type domain. Although previously believed to be constitutively expressed exclusively in liver, the present study demonstrates the induction of this gene by oxalate in porcine proximal tubular LLC-PK1 cells and rat kidney. In liver, the precursor protein is cleaved in the Golgi network by a furin-like enzyme to release constituent proteins, which undergo glycosylation before their export from the cell. In the renal tubular cells, A1M and bikunin co-precipitate, indicating lack of cleavage of the precursor protein. As the expression of the AMBP gene is regulated by A1M-specific cis elements and transcription factors, A1M protein was studied as a representative of AMBP gene expression in renal cells. Oxalate treatment (500 microM) resulted in a time- and dose-dependent induction of A1M protein in LLC-PK1 cells. Of the four transcription factors, HNF-4 (hepatocyte nuclear factor-4) has been reported previously to be a major regulator of AMBP gene expression in liver. Electrophoretic mobility-shift assay, supershift assay, immunoreactivity assay and transfection-based studies showed the presence of an HNF-4 or an HNF-4-like protein in the kidney, which can affect the expression of the AMBP gene. In situ hybridization and immunocytochemical studies showed that the expression of this gene in kidney was mainly restricted to cells lining the renal tubular system.
Collapse
Affiliation(s)
- Jasjit S Grewal
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610-0275, USA.
| | | | | |
Collapse
|
16
|
Penders J, Delanghe JR. Alpha 1-microglobulin: clinical laboratory aspects and applications. Clin Chim Acta 2005; 346:107-18. [PMID: 15256311 DOI: 10.1016/j.cccn.2004.03.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/22/2004] [Accepted: 03/24/2004] [Indexed: 02/06/2023]
Abstract
BACKGROUND Urinary microproteins are becoming increasingly important in clinical diagnostics. They can contribute in the non-invasive early detection of renal abnormalities and the differentiation of various nephrological and urological pathologies. Alpha 1-microglobulin (A1M) is an immunomodulatory protein with a broad spectrum of possible clinical applications and seems a promising marker for evaluation of tubular function. METHOD We performed a systematic review of the peer-reviewed literature (until end of November 2003) on A1M with emphasis on clinical diagnostic utility and laboratory aspects. CONCLUSIONS A1M is a 27-kDa glycoprotein, present in various body fluids, with unknown exact biological function. The protein acts as a mediator of bacterial adhesion to polymer surfaces and is involved in inhibiting renal lithogenesis. Because A1M is not an acute phase protein, is stable in a broad range of physiological conditions and sensitive immunoassays have been developed, its measurement can be used for clinical purposes. Unfortunately, international standardisation is still lacking. Altered plasma/serum levels are usually due to impaired liver or kidney functions but are also observed in clinical conditions such as HIV and mood disorders. Urinary A1M provides a non-invasive, inexpensive diagnostic alternative for the diagnosis and monitoring of urinary tract disorders (early detection of tubular disorders such as heavy metal intoxications, diabetic nephropathy, urinary outflow disorders and pyelonephritis).
Collapse
Affiliation(s)
- Joris Penders
- Department of Clinical Chemistry, University Hospital Ghent-2P8, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
17
|
Allhorn M, Klapyta A, Akerström B. Redox properties of the lipocalin alpha1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron. Free Radic Biol Med 2005; 38:557-67. [PMID: 15683711 DOI: 10.1016/j.freeradbiomed.2004.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/26/2004] [Accepted: 12/01/2004] [Indexed: 10/26/2022]
Abstract
alpha1-Microglobulin (alpha1m) is a 26-kDa plasma and tissue glycoprotein. The protein has a heterogeneous yellow-brown chromophore consisting of small unidentified prosthetic groups localized to a free thiol group (C34) and three lysyl residues (K92, K118, and K130) around the entrance to a hydrophobic pocket. It was recently reported that alpha1m can bind heme and that a C-terminally processed form of alpha1m degrades heme. It is shown here that alpha1m has catalytic reductase and NADH-dehydrogenase-like activities. Cytochrome c, nitroblue tetrazolium (NBT), methemoglobin, and ferricyanide were reduced by alpha1m. Comparison of the reduction rates suggests that methemoglobin is a better substrate than cytochrome c, NBT, and ferricyanide. The reactions with cytochrome c and NBT were mediated by superoxide anions since they were inhibited by superoxide dismutase. The addition of the biological electron donors NADH, NADPH, or ascorbate enhanced the reduction rate of cytochrome c approximately 30-fold. Recombinant alpha1m, which has much less chromophore than plasma and urine alpha1m, was a stronger reductant than the latter alpha1m forms. Site-directed mutagenesis of C34, K92, K118, and K130 and thiol group chemistry showed that the C34 thiol group was involved in the redox reaction but relies upon cooperation with the lysyl residues. The redox properties of alpha1m may provide a physiological protection mechanism against extracellularly exposed heme groups and other oxidants.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, Lund University, BMC, B14, 221 84 Lund, Sweden
| | | | | |
Collapse
|
18
|
Tyagi S, Surjit M, Roy AK, Jameel S, Lal SK. The ORF3 protein of hepatitis E virus interacts with liver-specific alpha1-microglobulin and its precursor alpha1-microglobulin/bikunin precursor (AMBP) and expedites their export from the hepatocyte. J Biol Chem 2004; 279:29308-19. [PMID: 15037615 DOI: 10.1074/jbc.m402017200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatitis E virus (HEV), a plus-stranded RNA virus contains three open reading frames. Of these, ORF1 encodes the viral nonstructural polyprotein; ORF2 encodes the major capsid protein and ORF3 codes for a phosphoprotein of undefined function. Using the yeast two-hybrid system to screen a human cDNA liver library we have isolated, an N-terminal deleted protein, alpha(1) -microglobulin/bikunin precursor (AMBP) that specifically interacts with the ORF3 protein of HEV. Independently cloned, full-length AMBP was obtained and tested positive for interaction with ORF3 using a variety of in vivo and in vitro techniques. AMBP, a liver-specific precursor protein codes for two different unrelated proteins alpha(1)-microglobulin (alpha(1)m) and bikunin. alpha(1) m individually interacted with ORF3. The above findings were validated by COS-1 cell immunoprecipitation, His(6) pull-down experiments, and co-localization experiments followed by fluorescence resonance energy transfer analysis. Human liver cells showing co-localization of ORF3 with endogenously expressing alpha(1) m showed a distinct disappearance of the protein from the Golgi compartment, suggesting that ORF3 enhances the secretion of alpha(1)m out of the hepatocyte. Using drugs to block the secretory pathway, we showed that alpha m was not degraded in the presence of ORF3. Finally, (1)pulse labeling of alpha(1)m showed that its secretion was expedited out of the liver cell at faster rates in the presence of the ORF3 protein. Hence, ORF3 has a direct biological role in enhancing alpha(1)m export from the hepatocyte.
Collapse
Affiliation(s)
- Shweta Tyagi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, P O Box 10504, Aruna Asaf Ali Rd., New Delhi 110067, India
| | | | | | | | | |
Collapse
|
19
|
Allhorn M, Lundqvist K, Schmidtchen A, Akerström B. Heme-scavenging role of alpha1-microglobulin in chronic ulcers. J Invest Dermatol 2003; 121:640-6. [PMID: 12925227 DOI: 10.1046/j.1523-1747.2003.12409.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic venous ulcers are characterized by chronic inflammation. Heme and iron, originating from blood cell hemolysis as well as extravascular necrosis, have been implicated as important pathogenic factors due to their promotion of oxidative stress. It was recently reported that the plasma and tissue protein alpha1-microglobulin is involved in heme metabolism. The protein binds heme, and a carboxy-terminally processed form, truncated alpha1-microglobulin, also degrades heme. Here, we show the presence of micromolar levels of heme and free iron in chronic leg ulcer fluids. Micromolar amounts of alpha1-microglobulin was also present in the ulcer fluids and bound to added radiolabeled heme. Truncated alpha1-microglobulin was found in the ulcer fluids and exogenously added alpha1-microglobulin was processed into the truncated alpha1-microglobulin form. Histochemical analysis of chronic wound tissue showed the presence of iron deposits, heme/porphyrins in infiltrating cells basement membranes and fibrin cuffs around vessels, and alpha1-microglobulin ubiquitously distributed but especially abundant in basement membranes around vessels and at fibrin cuffs. Our results suggest that alpha1-microglobulin constitutes a previously unknown defense mechanism against high heme and iron levels during skin wound healing. Excessive heme and iron, which are not buffered by alpha1-microglobulin, may underlie the chronic inflammation in chronic ulcers.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, Lund University, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
20
|
Allhorn M, Berggård T, Nordberg J, Olsson ML, Akerström B. Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 2002; 99:1894-901. [PMID: 11877257 DOI: 10.1182/blood.v99.6.1894] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha(1)-microglobulin is a 26-kd protein, widespread in plasma and tissues and well-conserved among vertebrates. Alpha(1)-microglobulin belongs to the lipocalins, a protein superfamily with highly conserved 3-dimensional structures, forming an internal ligand binding pocket. The protein, isolated from urine, has a heterogeneous yellow-brown chromophore bound covalently to amino acid side groups around the entrance of the lipocalin pocket. Alpha(1)-microglobulin is found in blood both in free form and complex-bound to immunoglobulin A (IgA) via a half-cystine residue at position 34. It is shown here that an alpha(1)-microglobulin species, which we name t-alpha(1)-microglobulin (t = truncated), with a free Cys34 thiol group, lacking its C-terminal tetrapeptide, LIPR, and with a more polar environment around the entrance of the lipocalin pocket, is released from IgA-alpha(1)-microglobulin as well as from free alpha(1)-microglobulin when exposed to the cytosolic side of erythrocyte membranes or to purified oxyhemoglobin. The processed t-alpha(1)-microglobulin binds heme and the alpha(1)-microglobulin-heme complex shows a time-dependent spectral rearrangement, suggestive of degradation of heme concomitantly with formation of a heterogeneous chromophore associated with the protein. The processed t-alpha(1)-microglobulin is found in normal and pathologic human urine, indicating that the cleavage process occurs in vivo. The results suggest that alpha(1)-microglobulin is involved in extracellular heme catabolism.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, University Hospital, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
21
|
Larsson J, Wingårdh K, Berggård T, Davies JR, Lögdberg L, Strand SE, Akerström B. Distribution of iodine 125-labeled alpha1-microglobulin in rats after intravenous injection. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 137:165-75. [PMID: 11241026 DOI: 10.1067/mlc.2001.112957] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 28-kd plasma protein alpha(1)-microglobulin is found in the blood of mammals and fish in a free, monomeric form and as high-molecular-weight complexes with molecular masses above 200 kd. In this study, iodine 125-labeled free and high-molecular weight rat alpha(1)-microglobulin (a mixture of alpha(1)-microglobulin/alpha(1)-inhibitor-3 and alpha(1)-microglobulin/fibronectin complexes) were injected intravenously into rats. The distribution of the proteins was measured by using scintillation camera imaging. Both forms of (125)I-labeled alpha(1)-microglobulin were rapidly cleared from the blood, with a half-life of 2 and 16 minutes for the initial and late phase, respectively, for free alpha(1)-microglobulin; and a half-life of 3 and 130 minutes for the initial and late phase, respectively, for the complexes. After 45 minutes, 6%, 16%, 27%, 13%, and 34% of the free (125)I-labeled alpha(1)-microglobulin and 18%, 21%, 6%, 10%, and 42% of the (125)I-labeled alpha(1)-microglobulin complexes were found in the blood, gastrointestinal tract, kidneys, liver, and the remainder of the body, respectively. The local distribution of injected (125)I-labeled alpha(1)-microglobulin in intestines and kidneys was investigated by microscopy and autoradiography. In the intestine, both forms were distributed in the basal layers, villi, and luminal contents. The results also suggested intracellular labeling of epithelial cells. Well-defined local regions containing higher concentrations of injected protein could be seen in the intestine. In the kidneys, both forms were found mostly in the cortex. Free (125)I-labeled alpha(1)-microglobulin was found predominantly in epithelial cells of a subset of the tubules, whereas the (125)I-labeled complexes were more evenly distributed. Intracellular labeling was indicated for both alpha(1)-microglobulin forms. The results thus indicate a rapid transport of (125)I-labeled alpha(1)-microglobulin from the blood to most tissues.
Collapse
Affiliation(s)
- J Larsson
- Section for Molecular Signalling, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Lögdberg LE, Akerström B, Badve S. Tissue distribution of the lipocalin alpha-1 microglobulin in the developing human fetus. J Histochem Cytochem 2000; 48:1545-52. [PMID: 11036097 DOI: 10.1177/002215540004801111] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alpha-1 microglobulin (alpha(1)m), a lipocalin, is an evolutionarily conserved immunomodulatory plasma protein. In all species studied, alpha(1)m is synthesized by hepatocytes and catabolized in the renal proximal tubular cells. alpha(1)m deficiency has not been reported in any species, suggesting that its absence is lethal and indicating an important physiological role for this protein To clarify its functional role, tissue distribution studies are crucial. Such studies in humans have been restricted largely to adult fresh/frozen tissue. Formalin-fixed, paraffin-embedded multi-organ block tissue from aborted fetuses (gestational age range 7-22 weeks) was immunohistochemically examined for alpha(1)m reactivity. Moderate to strong reactivity was seen at all ages in hepatocytes, renal proximal tubule cells, and a subset of pancreatic islet cells. Muscle (cardiac, skeletal, or smooth), adrenal cortex, a scattered subset of intestinal mucosal cells, tips of small intestinal villi, and Leydig cells showed weaker and/or variable levels of reactivity. Connective tissue stained with variable location and intensity. The following cells/sites were consistently negative: thymus, spleen, hematopoietic cells, lung parenchyma, glomeruli, exocrine pancreas, epidermis, cartilage/bone, ovary, seminiferous tubules, epididymis, thyroid, and parathyroid. The results underscore the dominant role of liver and kidney in fetal alpha(1)m metabolism and provide a framework for understanding the functional role of this immunoregulatory protein.
Collapse
Affiliation(s)
- L E Lögdberg
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
23
|
Akerström B, Lögdberg L, Berggård T, Osmark P, Lindqvist A. alpha(1)-Microglobulin: a yellow-brown lipocalin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:172-84. [PMID: 11058759 DOI: 10.1016/s0167-4838(00)00157-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.
Collapse
Affiliation(s)
- B Akerström
- Department of Cell and Molecular Biology, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Lögdberg L, Wester L. Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:284-97. [PMID: 11058769 DOI: 10.1016/s0167-4838(00)00164-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A subset of the lipocalins, notably alpha(1)-acid glycoprotein, alpha(1)-microglobulin, and glycodelin, exert significant immunomodulatory effects in vitro. Interestingly, all three are encoded from the q32-34 region of human chromosome 9, together with at least four other lipocalins (neutrophil gelatinase-associated lipocalin, complement factor gamma-subunit, tear prealbumin, and prostaglandin D synthase) that also may have anti-inflammatory and/or antimicrobial activity. This review addresses important features of this genetically linked subfamily of lipocalins (involvement with the acute phase response, immunomodulatory and anti-inflammatory properties, the tissue localization, complex formation with other proteins and receptors, etc.). It is likely that these proteins have evolved to be an integrated part of the body's defense system as part of the extended cytokine network. Its members exert a regulatory, dampening influence on the inflammatory cascade, thereby protecting against tissue damage from excessive inflammation. That most major mammalian allergens are lipocalins may reflect this connection of lipocalins with the immune system. We propose that this immunologically active lipocalin subset be named the 'immunocalins', signifying not only the structural homology and close genetic linkage of its members, but also their protective involvement with immunological and inflammatory processes. As immune mediators, immunocalins appear to use at least three interactive sites: the lipocalin 'pocket', binding sites for other plasma proteins, and binding sites for cell surface receptors.
Collapse
Affiliation(s)
- L Lögdberg
- Laboratory of Stem Cell Biology, New York Blood Center, NY 10021, USA.
| | | |
Collapse
|