1
|
Shi J, Kuang L, Qi L, Li R, Wu Y. Effect of the TLR9 signaling pathway on acyclovir infection with herpes simplex virus type 2 in HaCaT cells. Front Microbiol 2025; 16:1560340. [PMID: 40196029 PMCID: PMC11974507 DOI: 10.3389/fmicb.2025.1560340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The objective of this study was to investigate the effect of acyclovir (ACV) on the TLR9 signaling pathway after human immortalized epidermal (HaCaT) cell infection with herpes simplex virus type 2 (HSV-2). Methods In this study, an in vitro cell model of HSV-2 infection was successfully constructed by infecting HaCaT with HSV-2 virus. In order to explore the antiviral mechanism of acyclovir (ACV), high-throughput transcriptome sequencing (RNA-seq) was used to analyze the genome-wide expression profiling of infected cells before and after ACV treatment, and to systematically compare the change characteristics of differentially expressed genes (DEGs). Based on the sequencing results, the study further focused on Toll-like receptor (TLR) 9 signaling, using quantitative real-time reverse transcriptase chain reaction (qRT-PCR) to quantitatively detect the effect of ACV intervention on the mRNA expression level of key molecules of TLR 9 signaling pathway in HSV-2 infected HaCaT cells. Results A total of 896 significant changes in gene expression were identified by the transcriptome analysis, including 314 upregulated genes and 582 downregulated genes. GO enrichment analysis showed that the differentially expressed genes were mainly related to CC includes the ubiquitin ligase complex, mitochondrial protein-containing complex, DNA-binding transcription activator activity, exonuclease activity, catabolic process, nuclear-transcribed mRNA catabolic process nuclear-transcribed mRNA catabolic process; KEGG enrichment analysis showed that the differentially expressed genes were mainly related to Toll-like receptor signaling pathway, herpes simplex virus 1 infection, and TNF signaling pathway. The RT-PCR results were confirmed to be basically consistent with the sequencing results. Conclusion ACV altered the transcriptome level of HSV-2 infection in HaCaT cells. The RT-PCR results confirmed that ACV intervened in HSV-2 infection through the TLR9 signaling pathway.
Collapse
Affiliation(s)
- Jialing Shi
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Kuang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qi
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ruoyu Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yangfan Wu
- Xiangxing College of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
He R, Torres CA, Wang Y, He C, Zhong G. Type-I Interferon Signaling Protects against Chlamydia trachomatis Infection in the Female Lower Genital Tract. Infect Immun 2023; 91:e0015323. [PMID: 37191510 PMCID: PMC10269118 DOI: 10.1128/iai.00153-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
We have previously shown that Chlamydia trachomatis is significantly inhibited during the early stage of infection in the female mouse lower genital tract and the anti-C. trachomatis innate immunity is compromised in the absence of cGAS-STING signaling. Since type-I interferon is a major downstream response of the cGAS-STING signaling, we evaluated the effect of type-I interferon signaling on C. trachomatis infection in the female genital tract in the current study. The infectious yields of chlamydial organisms recovered from vaginal swabs along the infection course were carefully compared between mice with or without deficiency in type-I interferon receptor (IFNαR1) following intravaginal inoculation with 3 different doses of C. trachomatis. It was found that IFNαR1-deficient mice significantly increased the yields of live chlamydial organisms on days 3 and 5, providing the 1st experimental evidence for a protective role of type-I interferon signaling in preventing C. trachomatis infection in mouse female genital tract. Further comparison of live C. trachomatis recovered from different genital tract tissues between wild type and IFNαR1-deficient mice revealed that the type-I interferon-dependent anti-C. trachomatis immunity was restricted to mouse lower genital tract. This conclusion was validated when C. trachomatis was inoculated transcervically. Thus, we have demonstrated an essential role of type-I interferon signaling in innate immunity against C. trachomatis infection in the mouse lower genital tract, providing a platform for further revealing the molecular and cellular basis of type-I interferon-mediated immunity against sexually transmitted infection with C. trachomatis.
Collapse
Affiliation(s)
- Rongze He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Caroline Andrea Torres
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yihui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cheng He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Slade JA, Hall JV, Kintner J, Schoborg RV. The type I interferon receptor is not required for protection in the Chlamydia muridarum and HSV-2 murine super-infection model. Pathog Dis 2018; 76:5132873. [PMID: 30321322 PMCID: PMC6208986 DOI: 10.1093/femspd/fty075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/12/2018] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis/HSV-2 vaginal co-infections are seen clinically, suggesting that these sexually transmitted pathogens may interact. We previously established an intravaginal Chlamydia muridarum/HSV-2 super-infection model and observed that chlamydial pre-infection protects mice from a subsequent lethal HSV-2 challenge. However, the mechanism of protection remains unknown. The type I interferon, IFN-β, binds to the type I interferon receptor (IFNR), elicits a host cellular antiviral response and inhibits HSV replication in vitro and in vivo. Previous studies have demonstrated that C. muridarum infection stimulates genital tract (GT) IFN-β production; therefore, we hypothesized that chlamydial pre-infection protects mice from HSV-2 challenge via the IFN-β/IFNR-induced antiviral response. To test this prediction, we quantified IFN-β levels in vaginal swab samples. Detection of IFN-β in C. muridarum singly infected, but not in mock-infected animals, prompted the use of the super-infection model in IFNR knockout (IFNR−/−) mice. We observed that C. muridarum pre-infection reduces HSV-2-induced mortality by 40% in wild-type mice and by 60% IFNR−/− mice. Severity of HSV-2 disease symptoms and viral shedding was also similarly reduced by C. muridarum pre-infection. These data indicate that, while chlamydial infection induces GT production of IFN-β, type I IFN-induced antiviral responses are likely not required for the observed protective effect.
Collapse
Affiliation(s)
- Jessica A Slade
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 2055 Mowry Road, Gainesville, FL 32608, USA
| | - Jennifer V Hall
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Box 70577, Johnson City, TN 37614, USA
| | - Jennifer Kintner
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Box 70577, Johnson City, TN 37614, USA
| | - Robert V Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Box 70577, Johnson City, TN 37614, USA
| |
Collapse
|
4
|
Avunje S, Jung SJ. Poly (I:C) and imiquimod induced immune responses and their effects on the survival of olive flounder (Paralichthys olivaceus) from viral haemorrhagic septicaemia. FISH & SHELLFISH IMMUNOLOGY 2017; 71:338-345. [PMID: 29054829 DOI: 10.1016/j.fsi.2017.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The stimulation of immune genes by polyinosinic:polycytidylic acid (poly (I:C)) and imiquimod in olive flounder (Paralichthys olivaceus) and their role in control of viral haemorrhagic septicaemia virus (VHSV) infection were examined. Poly (I:C) (100 μg/fish) treated olive flounder had very low mortality (5%) post VHSV infection, while the imiquimod treated group had 65% and 85% mortality at a dose of 100 μg/fish and 50 μg/fish, respectively. Though the imiquimod treated group had high mortality, it was lower than the untreated group, which had 90% mortality. In vivo experiments were conducted to determine effect of the two ligands on immune modulation in the head kidney of olive flounder. Poly (I:C) activated the immune genes (TLR-3, TLR-7, MDA-5, LGP-2, IRF-3, IRF-7, IL-1β type I IFN and Mx) very early, within 1 d post stimulation, faster and stronger than imiquimod. Though Mx levels were enhanced by imiquimod, the host was still susceptible to VHSV. The poly (I:C) treated group had a high immune response at the time of infection and 1 dpi, though it decreased at later stages. The imiquimod treated group and the unstimulated group had a higher immune response to VHSV compared to the poly (I:C) treated group. The nucleoprotein copies of VHSV were very low in the poly (I:C) treated group but interestingly, were high in both untreated and imiquimod treated fish. Thus, host survival from a viral infection does not only depend on the quantity of immune response but also the time of response. Although imiquimod enhanced immune gene expression in olive flounder, a delayed response could be the reason for high mortality to VHS compared with poly (I:C), which induced the immune system effectively and efficiently to protect the host.
Collapse
Affiliation(s)
- Satheesha Avunje
- Department of Aqualife Medicine, Chonnam National University, Chonnam 59626, South Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Chonnam 59626, South Korea.
| |
Collapse
|
5
|
Zhou L, Li JL, Zhou Y, Liu JB, Zhuang K, Gao JF, Liu S, Sang M, Wu JG, Ho WZ. Induction of interferon-λ contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells. Mol Hum Reprod 2015; 21:917-29. [PMID: 26502803 PMCID: PMC4664393 DOI: 10.1093/molehr/gav058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/27/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY HYPOTHESIS Is it possible to immunologically activate human cervical epithelial cells to produce antiviral factors that inhibit herpes simplex virus type 2 (HSV-2) replication? STUDY FINDING Our results indicate that human cervical epithelial cells possess a functional TLR3/RIG-I signaling system, the activation of which can mount an Interferon-λ (IFN-λ)-mediated anti-HSV-2 response. WHAT IS KNOWN ALREADY There is limited information about the role of cervical epithelial cells in genital innate immunity against HSV-2 infection. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We examined the expression of toll-like receptors (TLRs) and retinoic acid-inducible I (RIG-I) in End1/E6E7 cells by real-time PCR. The IFN-λ induced by TLR3 and RIG-I activation of End1/E6E7 cells was also examined by real-time PCR and ELISA. HSV-2 infection of End1/E6E7 cells was evaluated by the real-time PCR detection of HSV-2 gD expression. The antibody to IL-10Rβ was used to determine whether IFN-λ contributes to TLR3/RIG-I mediated HSV-2 inhibition. Expression of interferon regulatory factor 3 (IRF3), IRF7, IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA) were determined by the real-time PCR and western blot. End1/E6E7 cells were transfected with shRNA to knockdown the IRF3, IRF7 or RIG-I expression. Student's t-test and post Newman-Keuls test were used to analyze stabilized differences in the immunological parameters above between TLR3/RIG-I-activated cells and control cells. MAIN RESULTS AND THE ROLE OF CHANCE Human cervical epithelial cells expressed functional TLR3 and RIG-I, which could be activated by poly I:C and 5'ppp double-strand RNAs (5'ppp dsRNA), resulting in the induction of endogenous interferon lambda (IFN-λ). The induced IFN-λ contributed to TLR3/RIG-I-mediated inhibition of HSV-2 replication in human cervical epithelial cells, as an antibody to IL-10Rβ, an IFN-λ receptor subunit, could compromise TLR3/RIG-I-mediated inhibition of HSV-2. Further studies showed that TLR3/RIG-I signaling in the cervical epithelial cells by dsRNA induced the expression of the IFN-stimulated genes (ISGs), ISG56, 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA), the key antiviral elements in the IFN signaling pathway. In addition, we observed that the topical treatment of genital mucosa with poly I:C could protect mice from genital HSV-2 infection. LIMITATIONS, REASONS FOR CAUTION Future prospective studies with primary cells and suitable animal models are needed in order to confirm these outcomes. WIDER IMPLICATIONS OF THE FINDINGS The findings provide direct and compelling evidence that there is intracellular expression and regulation of IFN-λ in human cervical epithelial cells, which may have a key role in the innate genital protection against viral infections. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (81301428 to L.Z. and 81271334 to W.-Z.H.), the Fundamental Research Funds for the Central Universities (2042015kf0188 to L.Z.), the China Postdoctoral Science Foundation (2013M531745 to L.Z.), the Development Program of China ('973', 2012CB518900 to W.-Z.H.) from the Ministry of Science and Technology of the People's Republic of China, grants (DA12815 and DA022177 to W.-Z.H.) from the National Institute on Drug Abuse (NIDA) and the open project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (WDCM005 to M.S.). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jin-Biao Liu
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Zhuang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jian-Feng Gao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ming Sang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China Present address: College of Basic Medical Sciences, Central Laboratory of the Fourth Affiliated Hospital in Xiangyang, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 44200, China
| | - Jian-Guo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Wen-Zhe Ho
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Uyangaa E, Patil AM, Eo SK. Prophylactic and therapeutic modulation of innate and adaptive immunity against mucosal infection of herpes simplex virus. Immune Netw 2014; 14:187-200. [PMID: 25177251 PMCID: PMC4148489 DOI: 10.4110/in.2014.14.4.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/01/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4(+) Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
7
|
Bernstein DI, Cardin RD, Bravo FJ, Earwood J, Clark JR, Li Y, Mishra P, Li C, Nayak BP, Miller AT, Wu TYH, Cooke MP, Valiante NM. Topical SMIP-7.7, a toll-like receptor 7 agonist, protects against genital herpes simplex virus type-2 disease in the guinea pig model of genital herpes. Antivir Chem Chemother 2014; 23:189-96. [PMID: 23232327 DOI: 10.3851/imp2499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Development of more effective therapies for genital herpes simplex virus type-2 (HSV-2) infections remains a priority. The toll-like receptors (TLR) are attractive targets for the immunomodulation of primary and recurrent genital herpes infection. The guinea pig model of genital HSV-2 disease was therefore used to evaluate the efficacy of a new TLR-7 agonist, SMIP-7.7. METHODS The effects of SMIP-7.7 at concentrations between 0.90% and 0.09% were compared to the vehicle control or Aldara(®) (3M Health Care Limited, Northridge, CA, USA) as treatment for genital HSV-2 infections. Following intravaginal inoculation of Hartley guinea pigs with 10(6) pfu HSV-2 (MS strain), animals were treated intravaginally beginning at 36 h post-infection. Animals were evaluated for acute disease, acute virus replication, recurrent disease and shedding, as well as infection of the dorsal root ganglia. RESULTS Treatment with SMIP-7.7 significantly decreased mean total lesion scores during primary infection (all doses, P<0.01 compared with vehicle control, and similar to Aldara(®)). Vaginal virus titres were reduced in treated animals compared with vehicle control (P<0.001 for each treatment versus vehicle control on day 4). Treatment with SMIP-7.7 also significantly decreased the number of recurrent lesion days, the number of days with recurrent virus shedding and the infection of the dorsal root ganglia compared to the vehicle control, and was similar to Aldara(®). As opposed to Aldara(®), SMIP-7.7 did not induce fever or weight loss during treatment. CONCLUSIONS SMIP-7.7 improves the outcome of primary and recurrent HSV-2 disease comparable to Aldara(®) but without some of the side effects associated with Aldara(®).
Collapse
|
8
|
Meyer T, Surber C, French LE, Stockfleth E. Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs 2012. [DOI: 10.1517/13543784.2013.749236] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Shin H, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 2012; 491:463-7. [PMID: 23075848 PMCID: PMC3499630 DOI: 10.1038/nature11522] [Citation(s) in RCA: 478] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
The majority of successful existing vaccines rely on neutralizing antibodies, which may not require specific anatomical localization of B cells. However, efficacious vaccines that rely on T cells for protection have been difficult to develop, as robust systemic memory T cell responses do not necessarily correlate with host protection1. In peripheral sites, tissue-resident memory T cells provide superior protection compared to circulating memory T cells2,3. Here, we describe a simple and non-inflammatory vaccine strategy that enables the establishment of a protective memory T cell pool within peripheral tissue. The female genital tract, which is a portal of entry for sexually transmitted infections (STIs), is an immunologically restrictive tissue that prevents entry of activated T cells in the absence of inflammation or infection4. To overcome this obstacle, we explored a vaccine strategy we term “prime and pull” to establish local tissue-resident memory T cells at a site of potential viral exposure. This approach relies on two steps: 1) conventional parenteral vaccination to elicit systemic T cell responses (prime), followed by 2) recruitment of activated T cells via topical chemokine application to the restrictive genital tract (pull), where such T cells establish a long-term niche and mediate protective immunity. Prime and pull protocol reduces the spread of infectious HSV-2 into the sensory neurons and prevents development of clinical disease. These results reveal a promising vaccination strategy against HSV-2, and potentially against other STIs such as HIV-1.
Collapse
Affiliation(s)
- Haina Shin
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
10
|
Berry CM, Hertzog PJ, Mangan NE. Interferons as biomarkers and effectors: lessons learned from animal models. Biomark Med 2012; 6:159-76. [PMID: 22448790 DOI: 10.2217/bmm.12.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) comprise type I, II and III families with multiple subtypes. Via transcription of IFN-stimulated genes (ISGs), IFNs can exert multiple biological effects on the cell. In infectious and chronic inflammatory diseases, the IFNs and their ISG sets can be potentially utilized as biomarkers of disease outcome. Animal models allow investigations into disease pathogenesis and gene knockout models have proved cause and effect relationships of molecules related to the IFN response. Sets of IFN subtypes and their ISG products provide immunological signature patterns for different viral and other diseases. In this article, we give an overview of IFNs in several virus infection models and autoimmune diseases of medical relevance. Lessons learned from animal models inform us of IFN system parameters as indicators of disease outcome and whether clinical research is warranted. Moreover, validated IFN biomarkers for prognosis enhance our understanding of therapeutic and vaccine development.
Collapse
Affiliation(s)
- Cassandra M Berry
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
11
|
Pudney J, Anderson DJ. Expression of toll-like receptors in genital tract tissues from normal and HIV-infected men. Am J Reprod Immunol 2011; 65:28-43. [PMID: 20528831 DOI: 10.1111/j.1600-0897.2010.00877.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PROBLEM cells of the innate immune system use Toll-like receptors (TLRs) to recognize and respond to invading pathogens. This study was carried out to characterize TLR expression in the human male genital tract, an initial infection site for several sexually transmitted pathogens. METHOD OF STUDY immunohistochemistry was used to detect expression of TLRs 1-9 in genital tract tissues from HIV(-) and HIV(+) men. RESULTS in HIV(-) men, TLR1(+) leukocytes were detected throughout the genital tract. Leukocytes in the penile urethra also expressed TLRs2, 3, 5, 7 and 9. Epithelial cells in most tissues did not express TLRs; exceptions were the prostate, where TLRs3 and 8 were observed on the apical surface of luminal epithelial cells, and the penile urethra, where epithelial cells expressed TLR9. In genital tissues from HIV(+) men with AIDS, few TLR(+) cells were detected. CONCLUSION cells in the male genital tract can express a variety of TLRs. The penile urethra contained the highest number of TLR(+) cells, indicating that this tissue plays a major role in the innate immune defense of the male genital tract. Overall, TLR expression was reduced in genital tissues from HIV(+) men.
Collapse
Affiliation(s)
- Jeffrey Pudney
- Department of Obstetrics/Gynecology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
12
|
Jespers V, Francis SC, van de Wijgert J, Crucitti T. Methodological issues in sampling the local immune system of the female genital tract in the context of HIV prevention trials. Am J Reprod Immunol 2010; 65:368-76. [PMID: 21199064 DOI: 10.1111/j.1600-0897.2010.00938.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The spread of HIV continues unabated in the most vulnerable populations of the world. HIV prevention methods, such as a vaginal microbicide, a mucosal vaccine, pre-exposure prophylaxis or a vaccine, are urgently needed in the fight against new infections. We must make a commitment to supporting innovative research and product design, so that one or more of these products provide a halt to the spread of HIV. Above all, these products should be proven to be safe and not negatively disturb the local immune system in a way that facilitates or enhances heterosexual transmission of HIV. HIV specific and non specific cellular and humoral local vaginal immunity must be assessed in clinical trials when testing prevention products for safety or efficacy. A proven, well-documented and standardized sampling strategy will provide high quality data to be able to assess both safety and local immune responses. In this paper, we will discuss methods for vaginal immunology sampling in the context of clinical trials.
Collapse
Affiliation(s)
- Vicky Jespers
- Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| | | | | | | |
Collapse
|
13
|
Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1850-8. [PMID: 20962211 PMCID: PMC3008198 DOI: 10.1128/cvi.00230-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/18/2010] [Accepted: 10/09/2010] [Indexed: 01/01/2023]
Abstract
Norwalk virus (NV) is an enteric pathogen from the genus Norovirus and a major cause of nonbacterial gastroenteritis in humans. NV virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered nasally; however, the correlates of immune protection are unknown, and codelivery with a safe and immunogenic mucosal adjuvant may enhance protective anti-NV immune responses. Resiquimod (R848), an imidazoquinoline-based Toll-like receptor 7 and/or 8 (TLR7/8) agonist, is being evaluated as an adjuvant in FDA-approved clinical vaccine trials. As such, we evaluated the adjuvant activity of two imidazoquinoline-based TLR7 and TLR7/8 agonists when codelivered intranasally with plant-derived NV VLPs. We also compared the activity of these agonists to the gold standard mucosal adjuvant, cholera toxin (CT). Our results indicate that codelivery with the TLR7 agonist, gardiquimod (GARD), induces NV VLP-specific serum IgG and IgG isotype responses and mucosal IgA responses in the gastrointestinal, respiratory, and reproductive tracts that are superior to those induced by R848 and comparable to those induced by the mucosal adjuvant CT. This study supports the continued investigation of GARD as a mucosal adjuvant for NV VLPs and possible use for other VLP-based vaccines for which immune responses at distal mucosal sites (e.g., respiratory and reproductive tracts) are desired.
Collapse
Affiliation(s)
- Lissette S. Velasquez
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, School of Life Sciences, Arizona State University, Tempe, Arizona, Translational Genomics Research Institute, Phoenix, Arizona, Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Brooke E. Hjelm
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, School of Life Sciences, Arizona State University, Tempe, Arizona, Translational Genomics Research Institute, Phoenix, Arizona, Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Charles J. Arntzen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, School of Life Sciences, Arizona State University, Tempe, Arizona, Translational Genomics Research Institute, Phoenix, Arizona, Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Melissa M. Herbst-Kralovetz
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, School of Life Sciences, Arizona State University, Tempe, Arizona, Translational Genomics Research Institute, Phoenix, Arizona, Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| |
Collapse
|
14
|
Abstract
Microbial pathogens have developed complex and efficient ways of counteracting and evading innate and adaptive immune mechanisms. The strategies used by pathogens determine strongly the type of immune response a vaccine should elicit and how the vaccine should be formulated. Improved knowledge of immune response mechanisms has brought successes in the development of vaccines that protect against challenging pathogens as well as vaccines that can be used in immunocompromised and elderly populations. This includes the production of highly purified antigens that provide a better reactogenicity and safety profile than some of the early whole-pathogen vaccines. Successful attempts to improve antigen purity, however, can result in weakened immunogenicity. The search for approaches to overcome this has led to new technologies, such as live vector vaccines, DNA vaccines and novel adjuvant formulations, which have been based on growing knowledge of the interplay between innate and adaptive immune systems and the central role played by antigen-presenting cells. Of these technologies, one of the most promising to date is based on the use of innovative adjuvants combined with careful antigen selection. Vaccine design has therefore become more tailored, and in turn has opened up the potential of extending its application in immunotherapies to tackle diseases such as cancer, Alzheimer disease and immune-mediated disorders.
Collapse
Affiliation(s)
- Fred Zepp
- University Medical Center, Department of Pediatrics, Mainz, Germany.
| |
Collapse
|
15
|
Hedayat M, Takeda K, Rezaei N. Prophylactic and therapeutic implications of toll-like receptor ligands. Med Res Rev 2010; 32:294-325. [DOI: 10.1002/med.20214] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mona Hedayat
- Molecular Immunology Research Center; Department of Immunology; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | | | | |
Collapse
|
16
|
Lee JB, Ohta Y, Hayashi K, Hayashi T. Immunostimulating effects of a sulfated galactan from Codium fragile. Carbohydr Res 2010; 345:1452-4. [DOI: 10.1016/j.carres.2010.02.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
|
17
|
Abstract
Our knowledge of the immune response to genital tract infection has progressed appreciably in recent years. This review focuses on the innate immune system, in particular the role of Toll-like receptors (TLRs), in controlling genital tract infection. Research into the role of TLRs in recognizing 'pathogen-associated molecular patterns' (PAMPS) has provided an important insight into the host's early immune response. TLRs are activated following binding of microbial components leading to cytokine production, which, in turn, stimulate phagocytic and natural killer cells and mobilize T and B lymphocytes of the antigen-specific acquired immune system. The therapeutic use of TLR agonists as topical agents or for improving CD4+ and CD8+ T-cell responses to microbial vaccines is an important area of ongoing research, particularly with respect to genital mucosal infection.
Collapse
Affiliation(s)
- C Sonnex
- Department of GU Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB22QQ, UK.
| |
Collapse
|
18
|
Mahto M, Nathan M, O'Mahony C. More than a decade on: review of the use of imiquimod in lower anogenital intraepithelial neoplasia. Int J STD AIDS 2010; 21:8-16. [PMID: 20029061 DOI: 10.1258/ijsa.2009.009309] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To assess the effectiveness of 5% imiquimod cream (IQ) in the treatment of vulvar, penile and anal intraepithelial neoplasias (VIN, PIN and AIN), we searched Medline, Embase, PubMed and Cochrane Library databases. With regard to VIN there were two randomized controlled trials (RCTs), eight uncontrolled/cohort studies, nine case reports and one review article. Use of IQ in PIN and AIN were only supported by cohort studies (two each for PIN and AIN) and case reports (15 for PIN and 3 for AIN). On pooled analysis of RCTs, uncontrolled and cohort studies, the mean complete response (CR) rate for VIN, PIN and AIN were 51%, 70% and 48%, respectively. The mean partial response (PR) rate for VIN, PIN and AIN were 25%, 30% and 34% respectively. The recurrence (RR) rate for VIN, PIN and AIN were 16%, 0% and 36%, respectively. The follow-up period for VIN, PIN and AIN ranged from 2 to 32 months, 10 to 12 months and 11 to 39 months, respectively. Although the results for PIN look the best, the strongest evidence regarding efficacy of IQ in anogenital intraepithelial neoplasia is for VIN supported by RCTs. Evidence for use of IQ in AIN was essentially limited to HIV-positive men who have sex with men. IQ was reasonably well tolerated with side-effects being managed with reduction in frequency of drug usage and/or rest periods. Based on these results, IQ seems to be a safe mode of treatment and is possibly an alternative to currently available methods of treatment. However, there are no comparative studies assessing its efficacy against traditional modes of treatment.
Collapse
Affiliation(s)
- M Mahto
- Department of Genitourinary Medicine, Cheshire East Community Health (Central and Eastern Cheshire PCT), Assura Health and Wellness Centre, Sunderland Street, Macclesfield SK11 6JL.
| | | | | |
Collapse
|
19
|
McGowin CL, Pyles RB. Mucosal treatments for herpes simplex virus: insights on targeted immunoprophylaxis and therapy. Future Microbiol 2010; 5:15-22. [PMID: 20020827 DOI: 10.2217/fmb.09.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herpes simplex virus (HSV) serotypes 1 and 2 establish lifelong infections that can produce reactivated pools of virus at mucosal sites where primary infections were initiated. No approved vaccines are available. To break the transmission cycle, interventions must either prevent infection or reduce infectivity at mucosal sites. This article discusses the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral loads at genital and ocular mucosa. Current data indicate Toll-like receptor agonists and selected immunomodulating compounds effectively increase the HSV infection threshold and hold promise for genital prophylaxis. Similarly, immunization at genital and extragenital mucosal sites is discussed. Finally, preclinical success with novel immunotherapies for ocular HSV that address herpetic keratitis and corneal blindness is reviewed.
Collapse
Affiliation(s)
- Chris L McGowin
- LSU Health Sciences Center, Department of Medicine, Section of Infectious Diseases, 533 Bolivar Street, CSRB 701 New Orleans, LA 70112-2822, USA.
| | | |
Collapse
|
20
|
Terhorst D, Kalali BN, Ollert M, Ring J, Mempel M. The role of toll-like receptors in host defenses and their relevance to dermatologic diseases. Am J Clin Dermatol 2010; 11:1-10. [PMID: 20000870 DOI: 10.2165/11311110-000000000-00000] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The family of toll-like receptors (TLRs) plays a central role in the cutaneous immune defense system. To date, different TLRs have been found on several major cell populations of the skin, such as keratinocytes, fibroblasts, antigen-presenting cells, and melanocytes. Activation of TLRs leads, via different intracellular signaling pathways, to the production of pro-inflammatory stimuli, and is considered a danger signal that should transform the skin in to the functional state of defense. However, TLRs have also been implicated in tissue homeostasis and renewal. Within the group of TLRs, two types have been identified: surface-expressed TLRs, which are predominantly active against bacterial cell wall compounds; and intracellular receptors, which preferentially recognize virus-associated pattern molecules. In addition, surface-expressed receptors trigger phagocytotic and maturation signals, while the intracellular TLRs lead to the induction of antiviral genes. Our review aims to outline the importance of TLRs in the pathogenesis of numerous skin diseases and the potential of TLR agonists as a treatment option for various skin diseases.
Collapse
Affiliation(s)
- Dorothea Terhorst
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Dasgupta G, Chentoufi AA, Nesburn AB, Wechsler SL, BenMohamed L. New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines 2009; 8:1023-35. [PMID: 19627185 DOI: 10.1586/erv.09.60] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The recent discovery that T cells recognize different sets of herpes simplex virus type 1 and type 2 epitopes from seropositive symptomatic and asymptomatic individuals might lead to a fundamental immunologic advance in vaccine development against herpes infection and diseases. The newly introduced needle-free mucosal (i.e., topical ocular and intravaginal) lipopeptide vaccines provide a novel strategy that might target ocular and genital herpes and possibly provide 'heterologous protection' from HIV-1. Indeed, mucosal self-adjuvanting lipopeptide vaccines are easy to manufacture, simple to characterize, extremely pure, cost-effective, highly immunogenic and safe. In this review, we bring together recent published and unpublished data that illuminates the status of epitope-based herpes vaccine development and present an overview of our recent approach to an 'asymptomatic epitope'-based lipopeptide vaccine.
Collapse
Affiliation(s)
- Gargi Dasgupta
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, Department of Ophthalmology, University of California, Irvine, College of Medicine, Irvine, CA 92697-4375, USA.
| | | | | | | | | |
Collapse
|
22
|
Rhee EG, Barouch DH. Translational Mini-Review Series on Vaccines for HIV: Harnessing innate immunity for HIV vaccine development. Clin Exp Immunol 2009; 157:174-80. [PMID: 19604256 DOI: 10.1111/j.1365-2249.2009.03928.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Innate immunity is critical for shaping vaccine-elicited adaptive immune responses. Several classes of immune sensors, including Toll-like receptors, retinoic acid-inducible gene-I-like receptors, nucleotide-binding oligomerization domain-like receptors and cytosolic DNA receptors mediate important innate immune pathways and provide potential targets for novel adjuvant development. Understanding how innate immunity modulates adaptive immune responses will probably be important for optimizing vaccine candidates. Here, we review recent advances in innate immunity, focusing upon their potential applications in developing adjuvants and vectors for HIV vaccines.
Collapse
Affiliation(s)
- E G Rhee
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
23
|
Hay P, Ugwumadu A. Detecting and treating common sexually transmitted diseases. Best Pract Res Clin Obstet Gynaecol 2009; 23:647-60. [PMID: 19646929 DOI: 10.1016/j.bpobgyn.2009.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
In the UK, many sexually transmitted infections (STIs) are best managed in conjunction with an appropriate specialist, for example, a genitourinary medicine practitioner or a Microbiologist. In most of the world, however, gynaecologists routinely manage STIs in women. This article focuses on the most important infections in women, and those in which management is changing. It also addresses the current status, and new developments around the syndrome of pelvic inflammatory disease (PID), which essentially is an STI.
Collapse
Affiliation(s)
- Phillip Hay
- Department of Genitourinary Medicine, St George's University of London, London, UK
| | | |
Collapse
|
24
|
Biomarkers of Cervicovaginal Inflammation for the Assessment of Microbicide Safety. Sex Transm Dis 2009; 36:S84-91. [DOI: 10.1097/olq.0b013e3181994191] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Zhang X, Chentoufi AA, Dasgupta G, Nesburn AB, Wu M, Zhu X, Carpenter D, Wechsler SL, You S, BenMohamed L. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunol 2009; 2:129-143. [PMID: 19129756 PMCID: PMC4509510 DOI: 10.1038/mi.2008.81] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The next generation of needle-free mucosal vaccines is being rationally designed according to rules that govern the way in which the epitopes are recognized by and stimulate the genital mucosal immune system. We hypothesized that synthetic peptide epitopes extended with an agonist of Toll-like receptor 2 (TLR-2), that are abundantly expressed by dendritic and epithelial cells of the vaginal mucosa, would lead to induction of protective immunity against genital herpes. To test this hypothesis, we intravaginally (IVAG) immunized wild-type B6, TLR-2 (TLR2(-/-)) or myeloid differentiation factor 88 deficient (MyD88(-/-)) mice with a herpes simplex virus type 2 (HSV-2) CD8+ T-cell peptide epitope extended by a palmitic acid moiety (a TLR-2 agonist). IVAG delivery of the lipopeptide generated HSV-2-specific memory CD8+ cytotoxic T cells both locally in the genital tract draining lymph nodes and systemically in the spleen. Moreover, lipopeptide-immunized TLR2(-/-) and MyD88(-/-) mice developed significantly less HSV-specific CD8+ T-cell response, earlier death, faster disease progression, and higher vaginal HSV-2 titers compared to lipopeptide-immunized wild-type B6 mice. IVAG immunization with self-adjuvanting lipid-tailed peptides appears to be a novel mucosal vaccine approach, which has attractive practical and immunological features.
Collapse
Affiliation(s)
- X Zhang
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - AA Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - G Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - AB Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - M Wu
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - X Zhu
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - D Carpenter
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA
| | - SL Wechsler
- Laboratory of Virology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA,Department of Microbiology and Molecular Genetics, University of California Irvine, School of Medicine, Irvine, CA, USA,The Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - S You
- INSERM U580, University Paris Descartes, Paris, France
| | - L BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin S. Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, USA,Center for Immunology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
26
|
Abstract
Herpes simplex virus (HSV) transmitted from mother to child around the time of delivery can cause potentially fatal disease in the newborn. Women who experience their first genital HSV infection in pregnancy are at the highest risk of transmitting the virus to their newborn. Efforts to prevent vertically transmitted HSV disease can be directed in the following three ways: (i) prevent maternal genital HSV infection; (ii) prevent transmission during pregnancy and delivery; or (iii) postnatally prevent disease in an exposed newborn. Oral aciclovir and valaciclovir given prophylactically in late pregnancy have been shown to limit clinical recurrence of genital herpes, shedding of HSV at delivery and the rate of caesarean delivery for past HSV disease. However, there are insufficient data to determine the effect of oral antiviral prophylaxis in pregnancy on neonatal HSV disease. Neonatal HSV disease should always be treated with systemic antiviral therapy. There is currently no vaccine licensed to prevent genital herpes, although a number show promise in clinical trials. The role of intrapartum antiviral therapy and postnatal strategies to prevent neonatal HSV disease require further evaluation.
Collapse
Affiliation(s)
- Cheryl A Jones
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
27
|
Abstract
Toll-like receptors (TLRs) are central mediators of innate antimicrobial and inflammatory responses and play instructive roles in the development of the adaptive immune response. Thus when stimulated by certain agonists, TLRs serve as adjuvant receptors that link innate and adaptive immunity. However, when excessively activated or inadequately controlled during an infection, TLRs may contribute to immunopathology associated with inflammatory diseases, such as periodontitis. Moreover, certain microbial pathogens appear to exploit aspects of TLR signalling in ways that enhance their adaptive fitness. The diverse and important roles played by TLRs suggest that therapeutic manipulation of TLR signalling may have implications in the control of infection, attenuation of inflammation, and the development of vaccine adjuvants for the treatment of periodontitis. Successful application of TLR-based therapeutic modalities in periodontitis would require highly selective and precisely targeted intervention. This would in turn necessitate precise characterization of TLR signalling pathways in response to periodontal pathogens, as well as development of effective and specific agonists or antagonists of TLR function and signalling. This review summarizes the current status of TLR biology as it relates to periodontitis, and evaluates the potential of TLR-based approaches for host-modulation therapy in this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Periodontics/ Oral Health and Systemic Disease, School of Dentistry, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
- Department of Immunology and Microbiology, School of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| |
Collapse
|