1
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Liu G, He X, Zhao G, Lu Z. Complement regulation in tumor immune evasion. Semin Immunol 2024; 76:101912. [PMID: 39579520 DOI: 10.1016/j.smim.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The complement system plays crucial roles in both innate and adaptive immune responses, facilitating the elimination of pathogens such as microorganisms and damaged cells, including cancer cells. It is tightly regulated and integrated with cell-mediated immunity. In the tumor microenvironment, the complement system performs both immune and nonimmune functions in tumor and immune cells through pathways that depend on or are independent of complement activation, thereby promoting immune evasion and tumor progression.
Collapse
Affiliation(s)
- Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Xuxiao He
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266061, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
3
|
Steggerda JA, Heeger PS. The Promise of Complement Therapeutics in Solid Organ Transplantation. Transplantation 2024; 108:1882-1894. [PMID: 38361233 DOI: 10.1097/tp.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.
Collapse
Affiliation(s)
- Justin A Steggerda
- Division of Abdominal Transplant Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
4
|
Pizzato HA, Alonso-Guallart P, Woods J, Johannesson B, Connelly JP, Fehniger TA, Atkinson JP, Pruett-Miller SM, Monsma FJ, Bhattacharya D. Engineering Human Pluripotent Stem Cell Lines to Evade Xenogeneic Transplantation Barriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546594. [PMID: 37425790 PMCID: PMC10326974 DOI: 10.1101/2023.06.27.546594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Allogeneic human pluripotent stem cell (hPSC)-derived cells and tissues for therapeutic transplantation must necessarily overcome immunological rejection by the recipient. To define these barriers and to create cells capable of evading rejection for preclinical testing in immunocompetent mouse models, we genetically ablated β2m, Tap1, Ciita, Cd74, Mica, and Micb to limit expression of HLA-I, HLA-II, and natural killer cell activating ligands in hPSCs. Though these and even unedited hPSCs readily formed teratomas in cord blood-humanized immunodeficient mice, grafts were rapidly rejected by immunocompetent wild-type mice. Transplantation of these cells that also expressed covalent single chain trimers of Qa1 and H2-Kb to inhibit natural killer cells and CD55, Crry, and CD59 to inhibit complement deposition led to persistent teratomas in wild-type mice. Expression of additional inhibitory factors such as CD24, CD47, and/or PD-L1 had no discernible impact on teratoma growth or persistence. Transplantation of HLA-deficient hPSCs into mice genetically deficient in complement and depleted of natural killer cells also led to persistent teratomas. Thus, T cell, NK cell, and complement evasion are necessary to prevent immunological rejection of hPSCs and their progeny. These cells and versions expressing human orthologs of immune evasion factors can be used to refine tissue- and cell type-specific immune barriers, and to conduct preclinical testing in immunocompetent mouse models.
Collapse
Affiliation(s)
- Hannah A. Pizzato
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - James Woods
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Jon P. Connelly
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Liu A, Luo P, Huang H. New insight of complement system in the process of vascular calcification. J Cell Mol Med 2023; 27:1168-1178. [PMID: 37002701 PMCID: PMC10148053 DOI: 10.1111/jcmm.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The complement system defences against pathogenic microbes and modulates immune homeostasis by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement system contributes to the pathogenesis of some autoimmune diseases and cardiovascular diseases (CVD). Vascular calcification is the pivotal pathological basis of CVD, and contributes to the high morbidity and mortality of CVD. Increasing evidences indicate that the complement system plays a key role in chronic kidney diseases, atherosclerosis, diabetes mellitus and aging-related diseases, which are closely related with vascular calcification. However, the effect of complement system on vascular calcification is still unclear. In this review, we summarize current evidences about the activation of complement system in vascular calcification. We also describe the complex network of complement system and vascular smooth muscle cells osteogenic transdifferentiation, systemic inflammation, endoplasmic reticulum stress, extracellular matrix remodelling, oxidative stress, apoptosis in vascular calcification. Hence, providing a better understanding of the potential relationship between complement system and vascular calcification, so as to provide a direction for slowing the progression of this burgeoning health concern.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines Macau University of Science and Technology Macau China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| |
Collapse
|
6
|
Washburn RL, Dufour JM. Complementing Testicular Immune Regulation: The Relationship between Sertoli Cells, Complement, and the Immune Response. Int J Mol Sci 2023; 24:ijms24043371. [PMID: 36834786 PMCID: PMC9965741 DOI: 10.3390/ijms24043371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Sertoli cells within the testis are instrumental in providing an environment for spermatogenesis and protecting the developing germ cells from detrimental immune responses which could affect fertility. Though these immune responses consist of many immune processes, this review focuses on the understudied complement system. Complement consists of 50+ proteins including regulatory proteins, immune receptors, and a cascade of proteolytic cleavages resulting in target cell destruction. In the testis, Sertoli cells protect the germ cells from autoimmune destruction by creating an immunoregulatory environment. Most studies on Sertoli cells and complement have been conducted in transplantation models, which are effective in studying immune regulation during robust rejection responses. In grafts, Sertoli cells survive activated complement, have decreased deposition of complement fragments, and express many complement inhibitors. Moreover, the grafts have delayed infiltration of immune cells and contain increased infiltration of immunosuppressive regulatory T cells as compared to rejecting grafts. Additionally, anti-sperm antibodies and lymphocyte infiltration have been detected in up to 50% and 30% of infertile testes, respectively. This review seeks to provide an updated overview of the complement system, describe its relationship with immune cells, and explain how Sertoli cells may regulate complement in immunoprotection. Identifying the mechanism Sertoli cells use to protect themselves and germ cells against complement and immune destruction is relevant for male reproduction, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Rachel L Washburn
- Immunology and Infectious Diseases, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| |
Collapse
|
7
|
Iglesias M, Brennan DC, Larsen CP, Raimondi G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front Immunol 2022; 13:926648. [PMID: 36119093 PMCID: PMC9478663 DOI: 10.3389/fimmu.2022.926648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| |
Collapse
|
8
|
Estrada CC, Cardona S, Guo Y, Revelo MP, D'Agati VD, Koganti S, Devaraj J, He JC, Heeger PS, Mallipattu SK. Endothelial-specific loss of Krüppel-Like Factor 4 triggers complement-mediated endothelial injury. Kidney Int 2022; 102:58-77. [PMID: 35483525 DOI: 10.1016/j.kint.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Stephanie Cardona
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Siva Koganti
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jason Devaraj
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, USA.
| |
Collapse
|
9
|
Li C, Patel K, Tu Z, Yang X, Kulik L, Alawieh A, Allen P, Cheng Q, Wallace C, Kilkenny J, Kwon J, Gibney B, Cantu E, Sharma A, Pipkin M, Machuca T, Emtiazjoo A, Goddard M, Holers VM, Nadig S, Christie J, Tomlinson S, Atkinson C. A novel injury site-natural antibody targeted complement inhibitor protects against lung transplant injury. Am J Transplant 2021; 21:2067-2078. [PMID: 33210808 PMCID: PMC8246004 DOI: 10.1111/ajt.16404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/25/2023]
Abstract
Complement is known to play a role in ischemia and reperfusion injury (IRI). A general paradigm is that complement is activated by self-reactive natural IgM antibodies (nAbs), after they engage postischemic neoepitopes. However, a role for nAbs in lung transplantation (LTx) has not been explored. Using mouse models of LTx, we investigated the role of two postischemic neoepitopes, modified annexin IV (B4) and a subset of phospholipids (C2), in LTx. Antibody deficient Rag1-/- recipient mice were protected from LTx IRI. Reconstitution with either B4 or C2nAb restored IRI, with C2 significantly more effective than B4 nAb. Based on these information, we developed/characterized a novel complement inhibitor composed of single-chain antibody (scFv) derived from the C2 nAb linked to Crry (C2scFv-Crry), a murine inhibitor of C3 activation. Using an allogeneic LTx, in which recipients contain a full nAb repertoire, C2scFv-Crry targeted to the LTx, inhibited IRI, and delayed acute rejection. Finally, we demonstrate the expression of the C2 neoepitope in human donor lungs, highlighting the translational potential of this approach.
Collapse
Affiliation(s)
- Changhai Li
- The Hepatic Surgery Centre at Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Kunal Patel
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Zhenxiao Tu
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- Department of Surgery, Hepatic and Vascular Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Liudmila Kulik
- Department of Medicine and Immunology, University of Colorado Denver, Aurora, Colorado, USA
| | - Ali Alawieh
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Patterson Allen
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Qi Cheng
- The Hepatic Surgery Centre at Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Caroline Wallace
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Jane Kilkenny
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Jennie Kwon
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Barry Gibney
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
| | - Ashish Sharma
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Mauricio Pipkin
- Division of Thoracic and Cardiovascular Surgery, University of Florida, Gainesville, Florida, USA
| | - Tiago Machuca
- Division of Thoracic and Cardiovascular Surgery, University of Florida, Gainesville, Florida, USA
| | - Amir Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Martin Goddard
- Pathology Department, Papworth Hospital, NHS Trust, Papworth Everard, Cambridge, UK
| | - V Michael Holers
- Department of Medicine and Immunology, University of Colorado Denver, Aurora, Colorado, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Satish Nadig
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- Department of Surgery, University of Florida, Gainesville, Florida, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, South Carolina, USA
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To discuss the crosstalk between the complement system and hemostatic factors (coagulation cascade, platelet, endothelium, and Von Willebrand Factor), and the consequences of this interaction under physiologic and pathologic conditions. RECENT FINDINGS The complement and coagulation systems are comprised of serine proteases and are genetically related. In addition to the common ancestral genes, the complement system and hemostasis interact directly, through protein-protein interactions, and indirectly, on the surface of platelets and endothelial cells. The close interaction between the complement system and hemostatic factors is manifested both in physiologic and pathologic conditions, such as in the inflammatory response to thrombosis, thrombosis at the inflamed area, and thrombotic complications of complement disorders. SUMMARY The interaction between the complement system and hemostasis is vital for homeostasis and the protective response of the host to tissue injury, but also results in the pathogenesis of several thrombotic and inflammatory disorders.
Collapse
|
11
|
Angeletti A, Cantarelli C, Petrosyan A, Andrighetto S, Budge K, D'Agati VD, Hartzell S, Malvi D, Donadei C, Thurman JM, Galešić-Ljubanović D, He JC, Xiao W, Campbell KN, Wong J, Fischman C, Manrique J, Zaza G, Fiaccadori E, La Manna G, Fribourg M, Leventhal J, Da Sacco S, Perin L, Heeger PS, Cravedi P. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J Exp Med 2021; 217:151976. [PMID: 32717081 PMCID: PMC7478737 DOI: 10.1084/jem.20191699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Kidney glomerulosclerosis commonly progresses to end-stage kidney failure, but pathogenic mechanisms are still poorly understood. Here, we show that podocyte expression of decay-accelerating factor (DAF/CD55), a complement C3 convertase regulator, crucially controls disease in murine models of adriamycin (ADR)-induced focal and segmental glomerulosclerosis (FSGS) and streptozotocin (STZ)-induced diabetic glomerulosclerosis. ADR induces enzymatic cleavage of DAF from podocyte surfaces, leading to complement activation. C3 deficiency or prevention of C3a receptor (C3aR) signaling abrogates disease despite DAF deficiency, confirming complement dependence. Mechanistic studies show that C3a/C3aR ligations on podocytes initiate an autocrine IL-1β/IL-1R1 signaling loop that reduces nephrin expression, causing actin cytoskeleton rearrangement. Uncoupling IL-1β/IL-1R1 signaling prevents disease, providing a causal link. Glomeruli of patients with FSGS lack DAF and stain positive for C3d, and urinary C3a positively correlates with the degree of proteinuria. Together, our data indicate that the development and progression of glomerulosclerosis involve loss of podocyte DAF, triggering local, complement-dependent, IL-1β–induced podocyte injury, potentially identifying new therapeutic targets.
Collapse
Affiliation(s)
- Andrea Angeletti
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Sofia Andrighetto
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Kelly Budge
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Susan Hartzell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deborah Malvi
- "F. Addarii" Institute of Oncology and Transplantation Pathology, Bologna University, Bologna, Italy
| | - Chiara Donadei
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - John Cijiang He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wenzhen Xiao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kirk N Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jenny Wong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Clara Fischman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Gaetano La Manna
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Miguel Fribourg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Peter S Heeger
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
12
|
Llaudo I, Fribourg M, Medof ME, Conde P, Ochando J, Heeger PS. C5aR1 regulates migration of suppressive myeloid cells required for costimulatory blockade-induced murine allograft survival. Am J Transplant 2019; 19:633-645. [PMID: 30106232 PMCID: PMC6375810 DOI: 10.1111/ajt.15072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/25/2023]
Abstract
Costimulatory blockade-induced murine cardiac allograft survival requires intragraft accumulation of CD11b+ Ly6Clo Ly6G- regulatory myeloid cells (Mregs) that expand regulatory T cells (Tregs) and suppress effector T cells (Teffs). We previously showed that C5a receptor (C5aR1) signaling on T cells activates Teffs and inhibits Tregs, but whether and/or how C5aR1 affects Mregs required for transplant survival is unknown. Although BALB/c hearts survived >60 days in anti-CD154 (MR1)-treated or cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig-treated wild-type (WT) recipients, they were rejected at ~30 days in MR1-treated or CTLA4-Ig-treated recipients selectively deficient in C5aR1 restricted to myeloid cells (C5ar1fl/fl xLysM-Cre). This accelerated rejection was associated with ~2-fold more donor-reactive T cells and ~40% less expansion of donor-reactive Tregs. Analysis of graft-infiltrating mononuclear cells on posttransplant day 6 revealed fewer Ly6Clo monocytes in C5ar1fl/fl xLysM-Cre recipients. Expression profiling of intragraft Ly6Clo monocytes showed that C5aR1 deficiency downregulated genes related to migration/locomotion without changes in genes associated with suppressive function. Cotransfer of C5ar1fl/fl and C5ar1fl/fl xLysM-Cre myeloid cells into MR1-treated allograft recipients resulted in less accumulation of C5ar1-/- cells within the allografts, and in vitro assays confirmed that Ly6Chi myeloid cells migrate to C5a/C5aR1-initiated signals. Together, our results newly link myeloid cell-expressed C5aR1 to intragraft accumulation of myeloid cells required for prolongation of heart transplant survival induced by costimulatory blockade.
Collapse
Affiliation(s)
- Ines Llaudo
- Translational Transplant Research Center,,Department of Medicine, and Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miguel Fribourg
- Translational Transplant Research Center,,Department of Neurology, Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland OH
| | - Patricia Conde
- Department of Medicine, and Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jordi Ochando
- Department of Medicine, and Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter S. Heeger
- Translational Transplant Research Center,,Department of Medicine, and Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Verghese DA, Chun N, Paz K, Fribourg M, Woodruff TM, Flynn R, Hu Y, Xiong H, Zhang W, Yi Z, Du J, Blazar BR, Heeger PS. C5aR1 regulates T follicular helper differentiation and chronic graft-versus-host disease bronchiolitis obliterans. JCI Insight 2018; 3:124646. [PMID: 30568034 DOI: 10.1172/jci.insight.124646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/17/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells are specialized providers of T cell help to B cells and can function as pathogenic mediators of murine antibody-dependent chronic graft-versus-host disease (GvHD). Using a parent→F1 model of lupus-like chronic GvHD, in which Tfh cell and germinal center (GC) B cell differentiation occurs over 14 days, we demonstrate that absence of CD4+ T cell-expressed C5a receptor 1 (C5ar1) or pharmacological C5aR1 blockade abrogated generation/expansion of Tfh cells, GC B cells, and autoantibodies. In a Tfh cell-dependent model of chronic GvHD manifested by bronchiolitis obliterans syndrome (BOS), C5aR1 antagonism initiated in mice with established disease ameliorated BOS and abolished the associated differentiation of Tfh and GC B cells. Guided by RNA-sequencing data, mechanistic studies performed using murine and human T cells showed that C5aR1 signaling amplifies IL-6-dependent expression of the transcription factor c-MAF and the cytokine IL-21 via phosphorylating phosphokinase B (AKT) and activating the mammalian target of rapamycin (mTOR). In addition to linking C5aR1-initiated signaling to Tfh cell differentiation, our findings suggest that C5aR1 may be a useful therapeutic target for prevention and/or treatment of individuals with Tfh cell-dependent diseases, including those chronic GvHD patients who have anti-host reactive antibodies.
Collapse
Affiliation(s)
- Divya A Verghese
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Chun
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Katelyn Paz
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miguel Fribourg
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Ryan Flynn
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Hu
- Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huabao Xiong
- Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jing Du
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Mulligan JK, Patel K, Williamson T, Reaves N, Carroll W, Stephenson SE, Gao P, Drake RR, Neely BA, Tomlinson S, Schlosser RJ, Atkinson C. C3a receptor antagonism as a novel therapeutic target for chronic rhinosinusitis. Mucosal Immunol 2018; 11:1375-1385. [PMID: 29907871 PMCID: PMC6162114 DOI: 10.1038/s41385-018-0048-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease with an unknown etiology. Recent studies have implicated the complement system as a potential modulator of disease immunopathology. We performed proteomic pathway enrichment analysis of differentially increased proteins, and found an enrichment of complement cascade pathways in the nasal mucus of individuals with CRSwNP as compared to control subjects. Sinonasal mucus levels of complement 3 (C3) correlated with worse subjective disease severity, whereas no significant difference in systemic C3 levels could be determined in plasma samples. Given that human sinonasal epithelial cells were the predominate sinonasal source of C3 and complement anaphylatoxin 3a (C3a) staining, we focused on their role in in vitro studies. Baseline intracellular C3 levels were higher in CRSwNP cells, and following exposure to Aspergillus fumigatus (Af) extract, they released significantly more C3 and C3a. Inhibition of complement 3a receptor (C3aR) signaling led to a decrease in Af-induced C3 and C3a release, both in vitro and in vivo. Finally, we found in vivo that C3aR deficiency or inhibition significantly reduced inflammation and CRS development in a mouse model of Af-induced CRS. These findings demonstrate that local sinonasal complement activation correlates with subjective disease severity, and that local C3aR antagonism significantly ameliorates Af-induced CRS in a rodent model.
Collapse
Affiliation(s)
- Jennifer K Mulligan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Kunal Patel
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Tucker Williamson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Nicholas Reaves
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - William Carroll
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sarah E Stephenson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Peng Gao
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin A Neely
- Marine Biochemical Sciences, National Institute of Standards and Technology, Charleston, SC, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Lee Patterson Allen Transplant Immunobiology Laboratory, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
16
|
Michielsen LA, van Zuilen AD, Kardol-Hoefnagel T, Verhaar MC, Otten HG. Association Between Promoter Polymorphisms in CD46 and CD59 in Kidney Donors and Transplant Outcome. Front Immunol 2018; 9:972. [PMID: 29867953 PMCID: PMC5960667 DOI: 10.3389/fimmu.2018.00972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Complement regulating proteins, including CD46, CD55, and CD59, protect cells against self-damage. Because of their expression on the donor endothelium, they are hypothesized to be involved in accommodation. Polymorphisms in their promoter regions may affect their expression. The aim of this study was to investigate if donor polymorphisms in complement regulating proteins influence kidney transplant outcomes. We included 306 kidney transplantations between 2005 and 2010. Five polymorphisms in the promoters of CD46, CD55, and CD59 were genotyped. A CD59 promoter polymorphism (rs147788946) in donors was associated with a lower 1-year rejection-free survival [adjusted hazard ratio (aHR) 2.18, 95% CI 1.12–4.24] and a trend toward impaired 5-year graft survival (p = 0.08). Patients receiving a kidney with at least one G allele for the CD46 promoter polymorphism rs2796267 (A/G) showed a lower rejection-free survival, though this became borderline significant after adjustment for potential confounders (aHR 1.87, 95% CI 0.96–3.65). A second CD46 promoter polymorphism (rs2796268, A/G), was also associated with a lower freedom from acute rejection in the presence of at least one G allele (aHR 1.95, 95% CI 1.03–3.68). Finally, the combined presence of both favorable genotypes of rs2796267 and rs147788946 had an additional protective effect both on acute rejection (p = 0.006) and graft survival (p = 0.03). These findings could help to identify patients who could benefit from intensified immunosuppressive therapy or novel complement inhibitory therapeutics.
Collapse
Affiliation(s)
- Laura A Michielsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Tineke Kardol-Hoefnagel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Jane-Wit D, Fang C, Goldstein DR. Innate immune mechanisms in transplant allograft vasculopathy. Curr Opin Organ Transplant 2017; 21:253-7. [PMID: 27077602 DOI: 10.1097/mot.0000000000000314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Allograft vasculopathy is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury and donor-specific antibody-induced complement activation confer heightened risk for allograft vasculopathy via numerous innate immune mechanisms, including MyD88, high-mobility group box 1 (HMGB1), and complement-induced noncanonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. RECENT FINDINGS The role of MyD88, a signal adaptor downstream of the Toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced allograft vasculopathy. Importantly, triggering receptor on myeloid receptor 1, a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of allograft vasculopathy in mice. HMGB1, a nuclear protein that activates Toll-like receptors, also enhanced the development of allograft vasculopathy. Complement activation elicits assembly of membrane attack complexes on endothelial cells which activate noncanonical NF-κB signaling, a novel complement effector pathway that induces proinflammatory genes and potentiates endothelial cell-mediated alloimmune T-cell activation, processes which enhance allograft vasculopathy. SUMMARY Innate immune mediators, including HMGB1, MyD88, and noncanonical NF-κB signaling via complement activation contribute to allograft vasculopathy. These pathways represent potential therapeutic targets to reduce allograft vasculopathy after solid organ transplantation.
Collapse
Affiliation(s)
- Dan Jane-Wit
- aDepartment of Cardiovascular Medicine bDepartment of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Despite considerable advances in controlling acute rejection, the longevity of cardiac and renal allografts remains significantly limited by chronic rejection in the form of allograft vasculopathy. This review discusses recently reported mechanistic insights of allograft vasculopathy pathogenesis as well as recent clinical evaluations of new therapeutic approaches. RECENT FINDINGS Although adaptive immunity is the major driver of allograft vasculopathy, natural killer cells mediate vasculopathic changes in a transplanted mouse heart following treatment with donor-specific antibody (DSA). However, natural killer cells may also dampen chronic inflammatory responses by killing donor-derived tissue-resident CD4 T cells that provide help to host B cells, the source of DSA. DSA may directly contribute to vascular inflammation by inducing intracellular signaling cascades that upregulate leukocyte adhesion molecules, facilitating recruitment of neutrophils and monocytes. DSA-mediated complement activation additionally enhances endothelial alloimmunogenicity through activation of noncanonical NF-κB signaling. New clinical studies evaluating mammalian target of rapamycin and proteasome inhibitors to target these pathways have been reported. SUMMARY Allograft vasculopathy is a disorder resulting from several innate and adaptive alloimmune responses. Mechanistic insights from preclinical studies have identified agents that are currently being investigated in clinical trials.
Collapse
|
19
|
Chun N, Fairchild RL, Li Y, Liu J, Zhang M, Baldwin WM, Heeger PS. Complement Dependence of Murine Costimulatory Blockade-Resistant Cellular Cardiac Allograft Rejection. Am J Transplant 2017; 17:2810-2819. [PMID: 28444847 PMCID: PMC5912159 DOI: 10.1111/ajt.14328] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/03/2017] [Accepted: 04/20/2017] [Indexed: 01/25/2023]
Abstract
Building on studies showing that ischemia-reperfusion-(I/R)-injury is complement dependent, we tested links among complement activation, transplantation-associated I/R injury, and murine cardiac allograft rejection. We transplanted BALB/c hearts subjected to 8-h cold ischemic storage (CIS) into cytotoxic T-lymphocyte associated protein 4 (CTLA4)Ig-treated wild-type (WT) or c3-/- B6 recipients. Whereas allografts subjected to 8-h CIS rejected in WT recipients with a median survival time (MST) of 37 days, identically treated hearts survived >60 days in c3-/- mice (p < 0.05, n = 4-6/group). Mechanistic studies showed recipient C3 deficiency prevented induction of intragraft and serum chemokines/cytokines and blunted the priming, expansion, and graft infiltration of interferon-γ-producing, donor-reactive T cells. MST of hearts subjected to 8-h CIS was >60 days in mannose binding lectin (mbl1-/- mbl2-/- ) recipients and 42 days in factor B (cfb-/- ) recipients (n = 4-6/group, p < 0.05, mbl1-/- mbl2-/- vs. cfb-/- ), implicating the MBL (not alternative) pathway. To pharmacologically target MBL-initiated complement activation, we transplanted BALB/c hearts subjected to 8-h CIS into CTLA4Ig-treated WT B6 recipients with or without C1 inhibitor (C1-INH). Remarkably, peritransplantation administration of C1-INH prolonged graft survival (MST >60 days, p < 0.05 vs. controls, n = 6) and prevented CI-induced increases in donor-reactive, IFNγ-producing spleen cells (p < 0.05). These new findings link donor I/R injury to T cell-mediated rejection through MBL-initiated, complement activation and support testing C1-INH administration to prevent CTLA4Ig-resistant rejection of deceased donor allografts in human transplant patients.
Collapse
Affiliation(s)
- N Chun
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - R L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, OH
| | - Y Li
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - J Liu
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Zhang
- SUNY Downstate Medical Center, Brooklyn, NY
| | - W M Baldwin
- Department of Immunology, Cleveland Clinic, Cleveland, OH
| | - P S Heeger
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
20
|
Sheen JH, Strainic MG, Liu J, Zhang W, Yi Z, Medof ME, Heeger PS. TLR-Induced Murine Dendritic Cell (DC) Activation Requires DC-Intrinsic Complement. THE JOURNAL OF IMMUNOLOGY 2017; 199:278-291. [PMID: 28539427 DOI: 10.4049/jimmunol.1700339] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023]
Abstract
Induction of proinflammatory T cell immunity is augmented by innate dendritic cell (DC) maturation commonly initiated by TLR signaling. We demonstrate that ligation of TLR3, TLR4, and TLR9 induces murine DC production of complement components and local production of the anaphylatoxin C5a. In vitro, ex vivo, and in vivo analyses show that TLR-induced DC maturation, as assessed by surface phenotype, expression profiling by gene array, and functional ability to stimulate T cell responses, requires autocrine C3a receptor and C5a receptor (C3ar1/C5ar1) signaling. Studies using bone marrow chimeric animals and Foxp3-GFP/ERT2-Cre/dTomato fate-mapping mice show that TLR-initiated DC autocrine C3ar1/C5ar1 signaling causes expansion of effector T cells and instability of regulatory T cells and contributes to T cell-dependent transplant rejection. Together, our data position immune cell-derived complement production and autocrine/paracrine C3ar1/C5ar1 signaling as crucial intermediary processes that link TLR stimulation to DC maturation and the subsequent development of effector T cell responses.
Collapse
Affiliation(s)
- Joong-Hyuk Sheen
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Michael G Strainic
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Jinbo Liu
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zhengzi Yi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Peter S Heeger
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; .,Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| |
Collapse
|
21
|
Abstract
In addition to being a component of innate immunity and an ancient defense mechanism against invading pathogens, complement activation also participates in the adaptive immune response, inflammation, hemostasis, embryogenesis, and organ repair and development. Activation of the complement system via classical, lectin, or alternative pathways generates anaphylatoxins (C3a and C5a) and membrane attack complex (C5b-9) and opsonizes targeted cells. Complement activation end products and their receptors mediate cell-cell interactions that regulate several biological functions in the extravascular tissue. Signaling of anaphylatoxin receptors or assembly of membrane attack complex promotes cell dedifferentiation, proliferation, and migration in addition to reducing apoptosis. As a result, complement activation in the tumor microenvironment enhances tumor growth and increases metastasis. In this Review, I discuss immune and nonimmune functions of complement proteins and the tumor-promoting effect of complement activation.
Collapse
|
22
|
Valenzuela NM, Hickey MJ, Reed EF. Antibody Subclass Repertoire and Graft Outcome Following Solid Organ Transplantation. Front Immunol 2016; 7:433. [PMID: 27822209 PMCID: PMC5075576 DOI: 10.3389/fimmu.2016.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
Long-term outcomes in solid organ transplantation are constrained by the development of donor-specific alloantibodies (DSA) against human leukocyte antigen (HLA) and other targets, which elicit antibody-mediated rejection (ABMR). However, antibody-mediated graft injury represents a broad continuum, from extensive complement activation and tissue damage compromising the function of the transplanted organ, to histological manifestations of endothelial cell injury and mononuclear cell infiltration but without concurrent allograft dysfunction. In addition, while transplant recipients with DSA as a whole fare worse than those without, a substantial minority of patients with DSA do not experience poorer graft outcome. Taken together, these observations suggest that not all DSA are equally pathogenic. Antibody effector functions are controlled by a number of factors, including antibody concentration, antigen availability, and antibody isotype/subclass. Antibody isotype is specified by many integrated signals, including the antigen itself as well as from antigen-presenting cells or helper T cells. To date, a number of studies have described the repertoire of IgG subclasses directed against HLA in pretransplant patients and evaluated the clinical impact of different DSA IgG subclasses on allograft outcome. This review will summarize what is known about the repertoire of antibodies to HLA and non-HLA targets in transplantation, focusing on the distribution of IgG subclasses, as well as the general biology, etiology, and mechanisms of injury of different humoral factors.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michelle J Hickey
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F Reed
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ? Semin Immunol 2016; 28:250-9. [PMID: 27179705 DOI: 10.1016/j.smim.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
The part of the innate immune system that communicates and effectively primes the adaptive immune system was termed "complement" by Ehrlich to reflect its complementarity to antibodies having previously been described as "alexine" (i.e protective component of serum) by Buchner and Bordet. It has been established that complement is not solely produced systemically but may have origin in different tissues where it can influence organ specific functions that may affect the outcome of transplanted organs. This review looks at the role of complement in particular to kidney transplantation. We look at current literature to determine whether blockade of the peripheral or central compartments of complement production may prevent ischaemic reperfusion injury or rejection in the transplanted organ. We also review new therapeutics that have been developed to inhibit components of the complement cascade with varying degrees of success leading to an increase in our understanding of the multiple triggers of this complex system. In addition, we consider whether biomarkers in this field are effective markers of disease or treatment.
Collapse
Affiliation(s)
- R M Montero
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| | - S H Sacks
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom.
| | - R A Smith
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, NIHR Comprehensive Biomedical Research Centre, King's College London, Guy's & St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
24
|
Cross AR, Lion J, Loiseau P, Charron D, Taupin JL, Glotz D, Mooney N. Donor Specific Antibodies are not only directed against HLA-DR: Minding your Ps and Qs. Hum Immunol 2016; 77:1092-1100. [PMID: 27060781 DOI: 10.1016/j.humimm.2016.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Abstract
During solid organ transplantation, interactions between recipient and donor immune cells occur chiefly in the allograft microvasculature. All three HLA class II antigens, DR, DP and DQ, have been detected on renal EC with a markedly increased expression of HLA class II observed in renal allografts undergoing rejection. Recent studies of donor-specific antibodies (DSA) have exposed the prevalence of de novo DSA directed against HLA-DQ, as well as a strong association between these antibodies and allograft damage. The HLA-DQ molecule can be distinguished from the other class II antigens by its transcription, expression and peptide repertoire. The distinct intragraft expression and immunogenicity of HLA-DQ may contribute to the incidence of HLA-DQ DSA, as well as directing the DSA-mediated damage. The possibility of HLA class II antigen-specific signaling in EC may reveal different mechanisms of allograft damage that act in tandem with complement-dependent injury. This review addresses the features of the HLA-DQ heterodimer that may underlie the high incidence of HLA-DQ directed DSA and their association with allograft damage. We also consider existing data in hematopoietic stem cell transplantation concerning HLA directed DSA.
Collapse
Affiliation(s)
- Amy R Cross
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France
| | - Julien Lion
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France
| | - Pascale Loiseau
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France; Laboratoire de Histocompatibilité, Hôpital Saint Louis, Paris 75010, France
| | - Dominique Charron
- Laboratoire de Histocompatibilité, Hôpital Saint Louis, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, F-75013, France
| | - Jean-Luc Taupin
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France; Laboratoire de Histocompatibilité, Hôpital Saint Louis, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, F-75013, France
| | - Denis Glotz
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France; Service de Néphrologie et Transplantation, Hôpital Saint Louis, Paris 75010, France; Université Paris Diderot, Sorbonne Paris Cité, F-75013, France
| | - Nuala Mooney
- INSERM UMRs 1160, Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint Louis, Paris 75010, France; LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris 75010, France.
| |
Collapse
|
25
|
Cho MS, Rupaimoole R, Choi HJ, Noh K, Chen J, Hu Q, Sood AK, Afshar-Kharghan V. Complement Component 3 Is Regulated by TWIST1 and Mediates Epithelial-Mesenchymal Transition. THE JOURNAL OF IMMUNOLOGY 2015; 196:1412-8. [PMID: 26718342 DOI: 10.4049/jimmunol.1501886] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
Abstract
We have previously shown that complement component 3 (C3) is secreted by malignant epithelial cells. To understand the mechanism of upregulation of C3 expression in tumor cells, we studied the C3 promoter and identified that twist basic helix-loop-helix transcription factor 1 (TWIST1) binds to the C3 promoter and enhances its expression. Because TWIST1 mediates epithelial-mesenchymal transition (EMT), we studied the effect of C3 on EMT and found that C3 decreased E-cadherin expression on cancer cells and promoted EMT. We showed that C3-induced reduction in E-cadherin expression in ovarian cancer cells was mediated by C3a and is Krüppel-like factor 5 dependent. We investigated the association between TWIST1 and C3 in malignant tumors and in murine embryos. TWIST1 and C3 colocalized at the invasive tumor edges, and in the neural crest and limb buds of mouse embryos. Our results identified TWIST1 as a transcription factor that regulates C3 expression during pathologic and physiologic EMT.
Collapse
Affiliation(s)
- Min Soon Cho
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hyun-Jin Choi
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jichao Chen
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Qianghua Hu
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and Center for RNA Intereference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Vahid Afshar-Kharghan
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
| |
Collapse
|
26
|
Seol HS, Lee SE, Song JS, Rhee JK, Singh SR, Chang S, Jang SJ. Complement proteins C7 and CFH control the stemness of liver cancer cells via LSF-1. Cancer Lett 2015; 372:24-35. [PMID: 26723877 DOI: 10.1016/j.canlet.2015.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022]
Abstract
Tumor-initiating cells are important for the formation and maintenance of tumor bulks in various tumors. To identify surface markers of liver tumor-initiating cells, we performed primary tumorsphere culture and analyzed the expression of cluster of differentiation (CD) antigen genes using NanoString. Interestingly, we found significant upregulation of the complement proteins (p = 1.60 × 10(-18)), including C7 and CFH. Further studies revealed that C7 and CFH are required to maintain stemness in liver cancer cells. Knockdown of C7 and CFH expression abrogated tumorsphere formation and induced differentiation, whereas overexpression stimulated stemness factor expression as well as in vivo cell growth. Mechanistically, by studying C7 and CFH-dependent LSF-1 expression and its direct role on stemness factor transcription, we found that LSF-1 is involved in this regulation. Taken together, our data demonstrate the unprecedented role of complement proteins on the maintenance of stemness in liver tumor-initiating cells.
Collapse
Affiliation(s)
- Hyang Sook Seol
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Eun Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Je-Keun Rhee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Shree Ram Singh
- Basic Research Laboratory, Stem Cell Regulation and Animal Aging Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Se Jin Jang
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To summarize the current knowledge regarding mechanisms linking the complement system to transplant injury, highlighting findings reported since 2013. RECENT FINDINGS Building upon the documentation that complement activation is a pathogenic mediator of posttransplant ischemia-reperfusion injury, emerging evidence from animal models indicates that blocking either the classical or lectin pathways attenuates ischemia-reperfusion injury. Immune cell-derived and locally activated complement, including intracellular C3, positively modulates alloreactive T-cell activation and expansion, whereby simultaneously inhibiting regulatory T-cell induction and function, and together promoting transplant rejection. Although alloantibody-initiated complement activation directly injures target cells, complement-dependent signals activate endothelial cells to facilitate T-cell-dependent inflammation. Complement activation within allografts contributes to progressive chronic injury and fibrosis. SUMMARY The complement cascade, traditionally considered to be relevant to transplantation only as an effector mechanism of antibody-initiated allograft injury, is now understood to damage the allograft through multiple mechanisms. Complement activation promotes posttransplant ischemia-reperfusion injury, formation and function of alloantibody, differentiation and function of alloreactive T cells, and contributes to chronic progressive allograft failure. The recognition that complement affects transplant injury at many levels provides a foundation for targeting complement as a therapy to prolong transplant survival and improve patient health.
Collapse
|
28
|
Chen Y, Xu LP, Liu KY, Chen H, Chen YH, Zhang XH, Wang Y, Wang FR, Han W, Wang JZ, Yan CH, Zhang YY, Sun YQ, Huang XJ. High incidence of engraftment syndrome after haploidentical allogeneic stem cell transplantation. Eur J Haematol 2015; 96:517-26. [PMID: 26152555 DOI: 10.1111/ejh.12629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Yao Chen
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Lan-Ping Xu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Kai-Yan Liu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Huan Chen
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Yu-Hong Chen
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Xiao-Hui Zhang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Yu Wang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Feng-Rong Wang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Wei Han
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Jing-Zhi Wang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Chen-Hua Yan
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Yu-Qian Sun
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
| | - Xiao-Jun Huang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing China
- Peking-Tsinghua Center for Life Sciences; Beijing China
| |
Collapse
|
29
|
Atkinson C, Qiao F, Yang X, Zhu P, Reaves N, Kulik L, Goddard M, Holers VM, Tomlinson S. Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury. Circulation 2015; 131:1171-80. [PMID: 25825397 DOI: 10.1161/circulationaha.114.010482] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Natural IgM antibodies represent a class of innate pattern recognition receptors that recognize danger-associated molecular patterns expressed on stressed or dying cells. They play important roles in tissue homeostasis by disposing of prenecrotic cells and suppressing inflammation. However, ischemic insult leads to a pathogenic level of IgM binding and complement activation, resulting in inflammation and injury. We investigate the role of self-reactive IgM in the unique setting of transplantation where the donor organ undergoes both cold and warm ischemia and global ischemic insult. METHODS AND RESULTS By transplanting hearts from wild-type donor mice into antibody-deficient mice reconstituted with specific self-reactive IgM monoclonal antibodies, we identified neoepitopes expressed after transplantation and demonstrated a key role for IgM recognition of these epitopes in graft injury. With this information, we developed and characterized a therapeutic strategy that exploited the postischemia recognition system of natural antibodies. On the basis of neoepitope identification, we constructed an anti-annexin IV single-chain antibody (scFv) and an scFv linked to Crry, an inhibitor of C3 activation (scFv-Crry). In an allograft transplantation model in which recipients contain a full natural antibody repertoire, both constructs blocked graft IgM binding and complement activation and significantly reduced graft inflammation and injury. Furthermore, scFv-Crry specifically targeted to the transplanted heart and, unlike complement deficiency, did not affect immunity to infection, an important consideration for immunosuppressed transplant recipients. CONCLUSIONS We identified pathophysiologically important epitopes expressed within the heart after transplantation and described a novel translatable strategy for targeted complement inhibition that has several advantages over currently available approaches.
Collapse
Affiliation(s)
- Carl Atkinson
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Fei Qiao
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Xiaofeng Yang
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Peng Zhu
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Nicholas Reaves
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Liudmila Kulik
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Martin Goddard
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - V Michael Holers
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.)
| | - Stephen Tomlinson
- From Department of Microbiology and Immunology, Medical University of South Carolina, Charleston (CA., F.Q., X.Y., P.Z., N.R., S.T.); Department of Medicine and Immunology, University of Colorado Denver, Aurora (L.K., V.M.H.); Department of Pathology, Papworth Hospital, Cambridgeshire, UK (M.G.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (S.T.).
| |
Collapse
|
30
|
Mathern DR, Heeger PS. Molecules Great and Small: The Complement System. Clin J Am Soc Nephrol 2015; 10:1636-50. [PMID: 25568220 DOI: 10.2215/cjn.06230614] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit testing of the intriguing concept that targeting complement in patients with an assortment of kidney diseases has the potential to abrogate disease progression and improve patient health.
Collapse
Affiliation(s)
- Douglas R Mathern
- Translational Transplant Research Center, Department of Medicine, Recanati Miller Transplant Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter S Heeger
- Translational Transplant Research Center, Department of Medicine, Recanati Miller Transplant Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Li M, Bolduc AR, Hoda MN, Gamble DN, Dolisca SB, Bolduc AK, Hoang K, Ashley C, McCall D, Rojiani AM, Maria BL, Rixe O, MacDonald TJ, Heeger PS, Mellor AL, Munn DH, Johnson TS. The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J Immunother Cancer 2014; 2:21. [PMID: 25054064 PMCID: PMC4105871 DOI: 10.1186/2051-1426-2-21] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/02/2014] [Indexed: 12/31/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an enzyme with immune-suppressive properties that is commonly exploited by tumors to evade immune destruction. Anti-tumor T cell responses can be initiated in solid tumors, but are immediately suppressed by compensatory upregulation of immunological checkpoints, including IDO. In addition to these known effects on the adaptive immune system, we previously showed widespread, T cell-dependent complement deposition during allogeneic fetal rejection upon maternal treatment with IDO-blockade. We hypothesized that IDO protects glioblastoma from the full effects of chemo-radiation therapy by preventing vascular activation and complement-dependent tumor destruction. Methods To test this hypothesis, we utilized a syngeneic orthotopic glioblastoma model in which GL261 glioblastoma tumor cells were stereotactically implanted into the right frontal lobes of syngeneic mice. These mice were treated with IDO-blocking drugs in combination with chemotherapy and radiation therapy. Results Pharmacologic inhibition of IDO synergized with chemo-radiation therapy to prolong survival in mice bearing intracranial glioblastoma tumors. We now show that pharmacologic or genetic inhibition of IDO allowed chemo-radiation to trigger widespread complement deposition at sites of tumor growth. Chemotherapy treatment alone resulted in collections of perivascular leukocytes within tumors, but no complement deposition. Adding IDO-blockade led to upregulation of VCAM-1 on vascular endothelium within the tumor microenvironment, and further adding radiation in the presence of IDO-blockade led to widespread deposition of complement. Mice genetically deficient in complement component C3 lost all of the synergistic effects of IDO-blockade on chemo-radiation-induced survival. Conclusions Together these findings identify a novel mechanistic link between IDO and complement, and implicate complement as a major downstream effector mechanism for the beneficial effect of IDO-blockade after chemo-radiation therapy. We speculate that this represents a fundamental pathway by which the tumor regulates intratumoral vascular activation and protects itself from immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Minghui Li
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Aaron R Bolduc
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Department of Surgery, Georgia Regents University, Augusta, GA, USA
| | - Md Nasrul Hoda
- Department of Neurology, Georgia Regents University, Augusta, GA, USA ; College of Allied Health Sciences Department of Medical Laboratory, Imaging & Radiologic Sciences, Georgia Regents University, Augusta, GA 30912, USA
| | - Denise N Gamble
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA
| | - Sarah-Bianca Dolisca
- Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Anna K Bolduc
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA
| | - Kelly Hoang
- Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Claire Ashley
- Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - David McCall
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA
| | - Amyn M Rojiani
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - Bernard L Maria
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA ; Department of Neurology, Georgia Regents University, Augusta, GA, USA ; Department of Neurosurgery, Georgia Regents University, Augusta, GA, USA
| | - Olivier Rixe
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Tobey J MacDonald
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peter S Heeger
- Department of Medicine, Division of Nephrology, The Immunology Institute, New York, NY 10025, USA ; Recanati-Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA
| | - Andrew L Mellor
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - David H Munn
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| | - Theodore S Johnson
- GRU Cancer Center, Georgia Regents University, Augusta, Georgia, 30912, USA ; Program in Cancer immunology, Inflammation and Tolerance (CIT), Georgia Regents University, Augusta, GA, USA ; Medical College of Georgia Department of Pediatrics, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA CN-4141A, USA
| |
Collapse
|
32
|
Abstract
Complement proteins are generated both by the liver (systemic compartment) and by peripheral tissue-resident cells and migratory immune cells (local compartment). The immune cell-derived, alternative pathway complement components activate spontaneously, yielding local, but not systemic, production of C3a and C5a. These anaphylatoxins bind to their respective G-protein-coupled receptors, the C3a receptor and the C5a receptor, expressed on T cells and antigen-presenting cells, leading to their reciprocal activation and driving T-cell differentiation, expansion, and survival. Complement deficiency or blockade attenuates T-cell-mediated autoimmunity and delays allograft rejection in mice. Increasing complement activation, achieved by genetic removal of the complement regulatory protein decay accelerating factor, enhances murine T-cell immunity and accelerates allograft rejection. Signaling through the C3a receptor and the C5a receptor reduces suppressive activity of natural regulatory T cells and the generation and stability of induced regulatory T cells. The concepts, initially generated in mice, recently were confirmed in human immune cells, supporting the need for testing of complement targeting therapies in organ transplants patients.
Collapse
Affiliation(s)
- Paolo Cravedi
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
33
|
Cravedi P, Heeger PS. Complement as a multifaceted modulator of kidney transplant injury. J Clin Invest 2014; 124:2348-54. [PMID: 24892709 DOI: 10.1172/jci72273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Improvements in clinical care and immunosuppressive medications have positively affected outcomes following kidney transplantation, but graft survival remains suboptimal, with half-lives of approximately 11 years. Late graft loss results from a confluence of processes initiated by ischemia-reperfusion injury and compounded by effector mechanisms of uncontrolled alloreactive T cells and anti-HLA antibodies. When combined with immunosuppressant toxicity, post-transplant diabetes and hypertension, and recurrent disease, among other factors, the result is interstitial fibrosis, tubular atrophy, and graft failure. Emerging evidence over the last decade unexpectedly identified the complement cascade as a common thread in this process. Complement activation and function affects allograft injury at essentially every step. These fundamental new insights, summarized herein, provide the foundation for testing the efficacy of various complement antagonists to improve kidney transplant function and long-term graft survival.
Collapse
|
34
|
Cho MS, Vasquez HG, Rupaimoole R, Pradeep S, Wu S, Zand B, Han HD, Rodriguez-Aguayo C, Bottsford-Miller J, Huang J, Miyake T, Choi HJ, Dalton HJ, Ivan C, Baggerly K, Lopez-Berestein G, Sood AK, Afshar-Kharghan V. Autocrine effects of tumor-derived complement. Cell Rep 2014; 6:1085-1095. [PMID: 24613353 PMCID: PMC4084868 DOI: 10.1016/j.celrep.2014.02.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/11/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022] Open
Abstract
We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.
Collapse
Affiliation(s)
- Min Soon Cho
- Department of Benign Hematology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hernan G Vasquez
- Department of Benign Hematology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sherry Wu
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Behrouz Zand
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hee-Dong Han
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Takahito Miyake
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyun-Jin Choi
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Heather J Dalton
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNAi and Non-Coding RNA, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNAi and Non-Coding RNA, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - Vahid Afshar-Kharghan
- Department of Benign Hematology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Cravedi P, Leventhal J, Lakhani P, Ward SC, Donovan MJ, Heeger PS. Immune cell-derived C3a and C5a costimulate human T cell alloimmunity. Am J Transplant 2013; 13:2530-9. [PMID: 24033923 PMCID: PMC3809075 DOI: 10.1111/ajt.12405] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 01/25/2023]
Abstract
Emerging evidence indicates that complement provides costimulatory signals for murine T cells but whether complement impacts human T cells remains unclear. We observed production of complement activation products C3a and C5a during in vitro cultures of human T cells responding to allogeneic dendritic cells (DC). Both partners expressed the receptors for C3a (C3aR) and C5a (C5aR) and C3aR- and C5aR-antagonists inhibited T cell proliferation. Recombinant C3a/C5a promoted CD4(+) T cell expansion, bypassed the inhibitory effects of CTLA4-Ig, and induced AKT phosphorylation, the latter biochemically linking C3aR/C5aR to known T cell signaling pathways. Lowering DC C3a/C5a production by siRNA knockdown of DC C3 reduced T cell alloresponses. Conversely downregulating DC expression of the complement regulatory protein decay-accelerating factor increased immune cell C3a/C5a and augmented T cell proliferation, identifying antigen presenting cells as the dominant complement source. Pharmacological C5aR blockade reduced graft versus host disease (GVHD) scores, prolonged survival, and inhibited T cell responses in NOD scid γc(null) mouse recipients of human peripheral blood mononuclear cells, verifying that the mechanisms apply in vivo. Together our findings unequivocally document that immune cell-derived complement impacts human T cell immunity and provide the foundation for future studies targeting C3aR/C5aR as treatments of GVHD and organ transplant rejection in humans.
Collapse
Affiliation(s)
- Paolo Cravedi
- Renal Division, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Jeremy Leventhal
- Renal Division, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Parth Lakhani
- Renal Division, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Stephen C. Ward
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - Michael J. Donovan
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - Peter S. Heeger
- Renal Division, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA,Recanati Miller Transplant Institute and Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Physiological and therapeutic complement regulators in kidney transplantation. Curr Opin Organ Transplant 2013; 18:421-9. [PMID: 23838647 DOI: 10.1097/mot.0b013e32836370ce] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review will summarize the key contribution of complement regulators in the immune response to an allograft. RECENT FINDINGS Over the past 10 years, compelling evidences have been accumulated in support of a critical role of complement in the pathological phenomena related to organ transplantation. In addition to recurrence of complement-mediated disease after graft, complement is involved in situations as diverse as brain death induced tissue damages, ischaemia-reperfusion and antibody-mediated rejections. This complement activation is counterbalanced by various regulatory mechanisms. SUMMARY We discuss the role of physiological and therapeutic complement regulators that are designed to overcome the impact of complement overactivation with the aim of improving long-term transplant outcomes. We will focus primarily on renal allograft, but the discussed mechanisms take place to a different degree in any kind of organ transplantation.
Collapse
|
37
|
Jane-Wit D, Manes TD, Yi T, Qin L, Clark P, Kirkiles-Smith NC, Abrahimi P, Devalliere J, Moeckel G, Kulkarni S, Tellides G, Pober JS. Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-κB signaling in endothelial cells. Circulation 2013; 128:2504-16. [PMID: 24045046 DOI: 10.1161/circulationaha.113.002972] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cardiac allograft vasculopathy is the major cause of late allograft loss after heart transplantation. Cardiac allograft vasculopathy lesions contain alloreactive T cells that secrete interferon-γ, a vasculopathic cytokine, and occur more frequently in patients with donor-specific antibody. Pathological interactions between these immune effectors, representing cellular and humoral immunity, respectively, remain largely unexplored. METHODS AND RESULTS We used human panel reactive antibody to form membrane attack complexes on allogeneic endothelial cells in vitro and in vivo. Rather than inducing cytolysis, membrane attack complexes upregulated inflammatory genes, enhancing the capacity of endothelial cells to recruit and activate allogeneic interferon-γ--producing CD4(+) T cells in a manner dependent on the activation of noncanonical nuclear factor-κB signaling. Noncanonical nuclear factor-κB signaling was detected in situ within endothelial cells both in renal biopsies from transplantation patients with chronic antibody-mediated rejection and in panel-reactive antibody--treated human coronary artery xenografts in immunodeficient mice. On retransplantation into immunodeficient hosts engrafted with human T cells, panel-reactive antibody--treated grafts recruited more interferon-γ--producing T cells and enhanced cardiac allograft vasculopathy lesion formation. CONCLUSIONS Alloantibody and complement deposition on graft endothelial cells activates noncanonical nuclear factor-κB signaling, initiating a proinflammatory gene program that enhances alloreactive T cell activation and development of cardiac allograft vasculopathy. Noncanonical nuclear factor-κB signaling in endothelial cells, observed in human allograft specimens and implicated in lesion pathogenesis, may represent a target for new pharmacotherapies to halt the progression of cardiac allograft vasculopathy.
Collapse
Affiliation(s)
- Dan Jane-Wit
- Section of Cardiovascular Medicine, Department of Internal Medicine (D.J.-w.), Department of Immunobiology (T.D.M., N.C.K.-S., P.A., J.D., J.S.P.), Department of Surgery (T.Y., L.W., S.K., G.T.), Department of Neurology (P.C.), and Department of Pathology (G.M., J.S.P.), Yale School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zuber J, Le Quintrec M, Morris H, Frémeaux-Bacchi V, Loirat C, Legendre C. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transplant Rev (Orlando) 2013; 27:117-25. [PMID: 23937869 DOI: 10.1016/j.trre.2013.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Atypical hemolytic and uremic syndrome (aHUS) is associated with a high rate of recurrence and poor outcomes after kidney transplantation. Fortunately, recent advances in the understanding of the pathogenesis of aHUS have permitted an individualized risk assessment of post-transplant recurrence. Acquired or inherited dysregulation of the alternative complement pathway, thought to be the driving force of the disease, is identified in most aHUS patients. Notably, depending on the mutations involved, the risk of recurrence greatly varies, highlighting the importance of undertaking etiological investigations prior to kidney transplantation. In those with moderate to high risk of recurrence, the use of a prophylactic therapy, consisting in either plasmapheresis or eculizumab therapies, represents a major stride forward in the prevention of aHUS recurrence after kidney transplantation. In those who experience aHUS recurrence, a growing number of observations suggest that eculizumab therapy outperforms curative plasma therapy. The optimal duration of both prophylactic and curative therapies remains an important, yet unaddressed, issue. In this respect, the kidney transplant recipients, continuously exposed to endothelial-insulting factors, referred here as to triggers, might have a sustained high risk of recurrence. A global therapeutic approach should thus attempt to reduce exposure to these triggers.
Collapse
Affiliation(s)
- Julien Zuber
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service de Transplantation Rénale adulte, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, France.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Results of studies published since 2002 reveal that T cells and antigen-presenting cells (APCs) produce complement proteins. The immune cell-derived, alternative pathway complement components activate spontaneously, yielding local, but not systemic, production of C3a and C5a. These anaphylatoxins bind to their respective G-protein-coupled receptors, C3aR and C5aR, expressed on both partners. The resultant complement-induced T cell activation and APC activation drive T cell differentiation, expansion and survival. Complement deficiency or blockade attenuates T cell-mediated autoimmunity and delays allograft rejection in mice. Increasing complement activation, achieved by genetic removal of the complement regulatory protein decay-accelerating factor, enhances murine T cell immunity and accelerates allograft rejection. The findings support the need for design and testing of complement inhibitors in humans.
Collapse
Affiliation(s)
- Wing-hong Kwan
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Mount Sinai School of Medicine, Box 1243, One Gustave L. Levy Plaza, New York, NY 10029, USA
| | | | | |
Collapse
|
40
|
Gunn L, Ding C, Liu M, Ma Y, Qi C, Cai Y, Hu X, Aggarwal D, Zhang HG, Yan J. Opposing roles for complement component C5a in tumor progression and the tumor microenvironment. THE JOURNAL OF IMMUNOLOGY 2012; 189:2985-94. [PMID: 22914051 DOI: 10.4049/jimmunol.1200846] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Promoting complement (C) activation may enhance immunological mechanisms of anti-tumor Abs for tumor destruction. However, C activation components, such as C5a, trigger inflammation, which can promote tumor growth. We addressed the role of C5a on tumor growth by transfecting both human carcinoma and murine lymphoma with mouse C5a. In vitro growth kinetics of C5a, control vector, or parental cells revealed no significant differences. Tumor-bearing mice with C5a-transfected xenografted tumor cells had significantly less tumor burden as compared with control vector tumors. NK cells and macrophages infiltrated C5a-expressing tumors with significantly greater frequency, whereas vascular endothelial growth factor, arginase, and TNF-α production were significantly less. Tumor-bearing mice with high C5a-producing syngeneic lymphoma cells had significantly accelerated tumor progression with more Gr-1+CD11b+ myeloid cells in the spleen and overall decreased CD4+ and CD8+ T cells in the tumor, tumor-draining lymph nodes, and the spleen. In contrast, tumor-bearing mice with low C5a-producing lymphoma cells had a significantly reduced tumor burden with increased IFN-γ-producing CD4+ and CD8+ T cells in the spleen and tumor-draining lymph nodes. These studies suggest concentration of local C5a within the tumor microenvironment is critical in determining its role in tumor progression.
Collapse
Affiliation(s)
- Lacey Gunn
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ma Q, Li D, Nurieva R, Patenia R, Bassett R, Cao W, Alekseev AM, He H, Molldrem JJ, Kroll MH, Champlin RE, Sale GE, Afshar-Kharghan V. Reduced graft-versus-host disease in C3-deficient mice is associated with decreased donor Th1/Th17 differentiation. Biol Blood Marrow Transplant 2012; 18:1174-81. [PMID: 22664751 DOI: 10.1016/j.bbmt.2012.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/24/2012] [Indexed: 12/11/2022]
Abstract
Graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation is mediated by the activation of recipient dendritic cells and subsequent proliferation of donor T cells. The complement system was recently shown to modulate adaptive immunity through an interaction of the complement system and lymphocytes. Complement proteins participate in the activation of dendritic cells, antigen presentation to T cells, and proliferation of T cells. Our studies with a murine model of bone marrow transplantation demonstrate that complement system regulates alloimmune responses in GVHD. Mice deficient in the central component of the complement system (C3(-/-)) had significantly lower GVHD-related mortality and morbidity compared with wild-type recipient mice. The numbers of donor-derived T cells, including IFN-γ(+), IL-17(+), and IL-17(+)IFN-γ(+) subsets, were decreased in secondary lymphoid organs of C3(-/-) recipients. Furthermore, the number of recipient CD8α(+)CD11c(+) cells in lymphoid organs was reduced. We conclude that C3 regulates Th1/17 differentiation in bone marrow transplantation, and define a novel function of the complement system in GVHD.
Collapse
Affiliation(s)
- Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The complement system is a key element of the innate immune system, and the production of complement components can be divided into central (hepatic) and peripheral compartments. Essential complement components such as C3 are produced in both of these compartments, but until recently the functional relevance of the peripheral synthesis of complement was unclear. Here, we review recent findings showing that local peripheral synthesis of complement in a transplanted organ is required for the immediate response of the donor organ to tissue stress and for priming alloreactive T cells that can mediate transplant rejection. We also discuss recent insights into the role of complement in antibody-mediated rejection, and we examine how new treatment strategies that take into account the separation of central and peripheral production of complement are expected to make a difference to transplant outcome.
Collapse
|
43
|
Benichou G, Tonsho M, Tocco G, Nadazdin O, Madsen JC. Innate immunity and resistance to tolerogenesis in allotransplantation. Front Immunol 2012; 3:73. [PMID: 22566954 PMCID: PMC3342343 DOI: 10.3389/fimmu.2012.00073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/22/2012] [Indexed: 01/06/2023] Open
Abstract
The development of immunosuppressive drugs to control adaptive immune responses has led to the success of transplantation as a therapy for end-stage organ failure. However, these agents are largely ineffective in suppressing components of the innate immune system. This distinction has gained in clinical significance as mounting evidence now indicates that innate immune responses play important roles in the acute and chronic rejection of whole organ allografts. For instance, whereas clinical interest in natural killer (NK) cells was once largely confined to the field of bone marrow transplantation, recent findings suggest that these cells can also participate in the acute rejection of cardiac allografts and prevent tolerance induction. Stimulation of Toll-like receptors (TLRs), another important component of innate immunity, by endogenous ligands released in response to ischemia/reperfusion is now known to cause an inflammatory milieu favorable to graft rejection and abrogation of tolerance. Emerging data suggest that activation of complement is linked to acute rejection and interferes with tolerance. In summary, the conventional wisdom that the innate immune system is of little importance in whole organ transplantation is no longer tenable. The addition of strategies that target TLRs, NK cells, complement, and other components of the innate immune system will be necessary to eventually achieve long-term tolerance to human allograft recipients.
Collapse
Affiliation(s)
- Gilles Benichou
- Transplant Research Center, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | | | | | | | | |
Collapse
|
44
|
Kim KJ, Kwok SK, Park YJ, Kim WU, Cho CS. Low C3 levels is associated with neutropenia in a proportion of patients with myelodysplastic syndrome: retrospective analysis. Int J Rheum Dis 2012; 15:86-94. [DOI: 10.1111/j.1756-185x.2012.01704.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ki-Jo Kim
- Division of Rheumatology; Department of Internal Medicine; College of Medicine; Catholic University of Korea; Seoul; Korea
| | - Seung-Ki Kwok
- Division of Rheumatology; Department of Internal Medicine; College of Medicine; Catholic University of Korea; Seoul; Korea
| | - Yun-Jung Park
- Division of Rheumatology; Department of Internal Medicine; College of Medicine; Catholic University of Korea; Seoul; Korea
| | - Wan-Uk Kim
- Division of Rheumatology; Department of Internal Medicine; College of Medicine; Catholic University of Korea; Seoul; Korea
| | - Chul-Soo Cho
- Division of Rheumatology; Department of Internal Medicine; College of Medicine; Catholic University of Korea; Seoul; Korea
| |
Collapse
|
45
|
Heeger PS, Kemper C. Novel roles of complement in T effector cell regulation. Immunobiology 2011; 217:216-24. [PMID: 21742404 DOI: 10.1016/j.imbio.2011.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/12/2011] [Indexed: 12/17/2022]
Abstract
Our understanding of the complement system has markedly evolved from its early beginnings as a protein system merely detecting and tagging a pathogen for further clearance. For example, the repertoire of danger that complement recognizes covers currently a wide range of distinct self and non-self danger signals. Further, complement is now firmly established as instructor of adaptive B and T cell immunity. This review focuses on two the recent emerging paradigms in the field. Firstly, that complement is not only vitally required for the induction of Th1 immunity but also for the timely contraction of this protective response and therefore for prevention of autoimmunity and immune homeostasis. Secondly, that local rather than systemic complement is impacting on immune modulation during a T cell response.
Collapse
Affiliation(s)
- Peter S Heeger
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
46
|
Raedler H, Vieyra MB, Leisman S, Lakhani P, Kwan W, Yang M, Johnson K, Faas SJ, Tamburini P, Heeger PS. Anti-complement component C5 mAb synergizes with CTLA4Ig to inhibit alloreactive T cells and prolong cardiac allograft survival in mice. Am J Transplant 2011; 11:1397-406. [PMID: 21668627 PMCID: PMC3128644 DOI: 10.1111/j.1600-6143.2011.03561.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
While activation of serum complement mediates antibody-initiated vascular allograft injury, increasing evidence indicates that complement also functions as a modulator of alloreactive T cells. We tested whether blockade of complement activation at the C5 convertase step affects T cell-mediated cardiac allograft rejection in mice. The anti-C5 mAb BB5.1, which prevents the formation of C5a and C5b, synergized with subtherapeutic doses of CTLA4Ig to significantly prolong the survival of C57BL/6 heart grafts that were transplanted into naive BALB/c recipients. Anti-C5 mAb treatment limited the induction of donor-specific IFNγ-producing T cell alloimmunity without inducing Th2 or Th17 immunity in vivo and inhibited primed T cells from responding to donor antigens in secondary mixed lymphocyte responses. Additional administration of anti-C5 mAb to the donor prior to graft recovery further prolonged graft survival and concomitantly reduced both the in vivo trafficking of primed T cells into the transplanted allograft and decreased expression of T cell chemoattractant chemokines within the graft. Together these results support the novel concept that C5 blockade can inhibit T cell-mediated allograft rejection through multiple mechanisms, and suggest that C5 blockade may constitute a viable strategy to prevent and/or treat T cell-mediated allograft rejection in humans.
Collapse
Affiliation(s)
- H Raedler
- Division of Nephrology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vieyra M, Leisman S, Raedler H, Kwan WH, Yang M, Strainic MG, Medof ME, Heeger PS. Complement regulates CD4 T-cell help to CD8 T cells required for murine allograft rejection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:766-74. [PMID: 21704012 DOI: 10.1016/j.ajpath.2011.04.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 12/19/2022]
Abstract
Although induction of CD8 T-cell responses to transplants requires CD4-cell help, how this help is transmitted remains incompletely characterized. In vitro, cognate interactions between CD4 T cells and dendritic cells (DCs) induce C3a and C5a production. CD8(+) T cells lacking C3a receptor (C3aR) and C5a receptor (C5aR) proliferate weakly to allogeneic DCs despite CD4 help, indicating that CD4-cell help is mediated, in part, through DC-derived C3a/C5a acting on CD8(+) T cell-expressed C3aR/C5aR. In support of this concept, augmenting DC C5a/C3a production bypasses the requirement for CD4- and CD40-dependent help to wild-type CD8(+) T cells. CD4-deficient recipients of allogeneic heart transplants prime weak CD8 responses and do not acutely reject their grafts. In contrast, CD4-deficient chimeric mice possessing decay accelerating factor deficient (Daf1(-/-)) bone marrow, in which DC C3a/C5a production is potentiated, acutely reject transplants through a CD8 cell-dependent mechanism. Furthermore, hearts transplanted into CD40(-/-) mice prime weak CD8-cell responses and survive indefinitely, but hearts transplanted into Daf1(-/-)CD40(-/-) recipients undergo CD8 cell-dependent rejection. Together, the data indicate that heightened production and activation of immune cell-derived complement bypasses the need for CD40/CD154 interactions and implicate antigen-presenting cell-produced C5a and C3a as molecular bridges linking CD4 help to CD8(+) T cells.
Collapse
Affiliation(s)
- Mark Vieyra
- Renal Division, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kalache S, Dinavahi R, Pinney S, Mehrotra A, Cunningham MW, Heeger PS. Anticardiac myosin immunity and chronic allograft vasculopathy in heart transplant recipients. THE JOURNAL OF IMMUNOLOGY 2011; 187:1023-30. [PMID: 21677143 DOI: 10.4049/jimmunol.1004195] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic allograft vasculopathy (CAV) contributes to heart transplant failure, yet its pathogenesis is incompletely understood. Although cellular and humoral alloimmunity are accepted pathogenic mediators, animal models suggest that T cells and Abs reactive to graft-expressed autoantigens, including cardiac myosin (CM), could participate. To test the relationship between CAV and anti-CM autoimmunity in humans, we performed a cross-sectional study of 72 heart transplant recipients: 40 with CAV and 32 without. Sera from 65% of patients with CAV contained anti-CM Abs, whereas <10% contained Abs to other autoantigens (p < 0.05), and only 18% contained anti-HLA Abs (p < 0.05 versus anti-CM). In contrast, 13% of sera from patients without CAV contained anti-CM Abs (p < 0.05; odds ratio [OR], associating CAV with anti-CM Ab = 13, 95% confidence interval [CI] 3.79-44.6). Multivariable analysis confirmed the association to be independent of time posttransplant and the presence of anti-HLA Abs (OR = 28, 95% CI 5.77-133.56). PBMCs from patients with CAV responded more frequently to, and to a broader array of, CM-derived peptides than those without CAV (p = 0.01). Detection of either CM-peptide-reactive T cells or anti-CM Abs was highly and independently indicative of CAV (OR = 45, 95% CI 4.04-500.69). Our data suggest detection of anti-CM immunity could be used as a biomarker for outcome in heart transplantation recipients and support the need for further studies to assess whether anti-CM immunity is a pathogenic mediator of CAV.
Collapse
Affiliation(s)
- Safa Kalache
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
49
|
Decay-accelerating factor regulates T-cell immunity in the context of inflammation by influencing costimulatory molecule expression on antigen-presenting cells. Blood 2011; 118:1008-14. [PMID: 21652682 DOI: 10.1182/blood-2011-04-348474] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated a role of complement in regulating T-cell immunity but the mechanism of action of complement in this process remains to be clarified. Here we studied mice deficient in decay-accelerating factor (DAF), a key membrane complement regulator whose deficiency led to increased complement-dependent T-cell immune responses in vivo. By crossing OT-II and OT-I T-cell receptor transgenic mice with DAF-knockout mice, we found that lack of DAF on T cells did not affect their responses to antigen stimulation. Similarly, lack of DAF on antigen-presenting cells (APCs) of naive mice did not alter their T-cell stimulating activity. In contrast, APCs from DAF-knockout mice treated with inflammatory stimuli were found to be more potent T-cell stimulators than cells from similarly treated wild-type mice. Acquisition of higher T-cell stimulating activity by APCs in challenged DAF-knockout mice required C3 and C5aR and was correlated with decreased surface PD-L1 and/or increased CD40 expression. These findings implied that DAF suppressed T-cell immunity as a complement regulator in the context of inflammation but did not play an intrinsic role on T cells or APCs. Collectively, our data suggest a systemic and indirect role of complement in T-cell immunity.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings implicating complement as an important regulator of T-cell immune responses. We then provide perspective for how these newly described mechanisms apply to allograft injury and how they could ultimately influence therapy. RECENT FINDINGS In addition to known effects of serum complement as an effector arm of antibody-initiated injury, T cells and antigen-presenting cells produce complement proteins and up-regulate complement receptors following cognate interactions. The locally released and activated, immune cell-derived complement signals predominantly through C3a and C5a binding to their receptors expressed on both partners to induce immune cell activation and differentiation. Complement deficiency or blockade limits T-cell-mediated autoimmunity and transplant rejection, whereas removal of the complement regulatory protein decay accelerating factor can enhance T-cell immunity and accelerate graft rejection. SUMMARY Emerging data indicate that immune cell-derived complement physiologically regulates immune cell survival and proliferation, modulating the strength and phenotype of adaptive T-cell immune responses involved in transplant rejection. The recognition of the diversity through which complement participates in allograft injury supports the need for continued design and testing of complement inhibitors in human transplant recipients.
Collapse
Affiliation(s)
- Hugo Raedler
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|