1
|
Toorie A, Hall CD, Vassoler FM, Peltz G, Byrnes EM. Preconception opioids interact with mouse strain to alter morphine withdrawal in the next generation. Psychopharmacology (Berl) 2024; 241:1435-1446. [PMID: 38503843 DOI: 10.1007/s00213-024-06574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
RATIONALE Transgenerational effects of preconception morphine exposure in female rats have been reported which suggest that epigenetic modifications triggered by female opioid exposure, even when that exposure ends several weeks prior to pregnancy, has significant ramifications for their future offspring. OBJECTIVE The current study compares two mouse strains with well-established genetic variation in their response to mu opioid receptor agonists, C57BL/6J (BL6) and 129S1/svlmJ (129) to determine whether genetic background modifies the impact of preconception opioid exposure. METHODS Adolescent females from both strains were injected daily with morphine for a total of 10 days using an increasing dosing regimen with controls receiving saline. Several weeks after their final injection, aged-matched BL6 and 129 morphine (Mor-F0) or saline (Sal-F0) females were mated with drug naïve males to generate Mor-F1 and Sal-F1 offspring, respectively. As adults, F1 mice were made morphine dependent using thrice daily morphine injections for 4 days. On day 5, mice were administered either saline or morphine followed 3 h later by naloxone. Behavioral and physiological signs of withdrawal were then measured. RESULTS Regardless of strain or sex, morphine-dependent Mor-F1 mice had significantly lower levels of withdrawal-induced corticosterone but significantly higher glucose levels when compared to Sal-F1 controls. In contrast, both strain- and preconception opioid exposure effects on physical signs of morphine dependence were observed.
Collapse
Affiliation(s)
- Anika Toorie
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA
- Department of Biology, Rhode Island College, 600 Mount Pleasant Ave, Providence, RI, USA
| | - Claire Davidson Hall
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA
| | - Fair M Vassoler
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, USA
| | - Elizabeth M Byrnes
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd, North Grafton, MA, USA.
| |
Collapse
|
2
|
Szumlinski KK, Coelho MA, Tran T, Stailey N, Lieberman D, Gabriella I, Swauncy I, Brewin LW, Ferdousian S. Who is HOT and who is LOT? Detailed characterization of prescription opioid-induced changes in behavior between 129P3/J and 129S1/SvlmJ mouse substrains. GENES BRAIN AND BEHAVIOR 2019; 19:e12609. [PMID: 31489753 DOI: 10.1111/gbb.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Genetic factors are theorized to contribute to the substantial inter-individual variability in opioid abuse/addiction. To advance the behavioral genetics of prescription opioid abuse, our prior work identified the 129S1/SvlmJ (S1) and related 129P3/J (P3) mouse substrains, respectively, as low and high opioid-taking. Herein, we related our prior results to measures of sucrose reward/reinforcement, basal anxiety, opioid-induced place-conditioning, locomotor activity and Straub tail reaction, as well as behavioral and physiological signs of withdrawal. Substrains were also re-examined for higher-dose oxycodone and fentanyl intake under limited-access drinking procedures. S1 mice failed to acquire sucrose self-administration under various operant-conditioning procedures and exhibited lower sucrose intake in the home-cage. However, sucrose intake under limited-access procedures escalated in both substrains with repeated sucrose experience. S1 mice exhibited less spontaneous locomotor activity, as well as less opioid-induced locomotor activity and Straub tail reaction, than P3 mice and failed to exhibit an oxycodone-induced place-preference. The lack of conditioned behavior by S1 mice was unrelated to behavioral signs of withdrawal-induced negative affect or dependence severity, but might reflect high levels of basal anxiety-like behavior. Intriguingly, S1 and P3 mice initially exhibited equivalent oxycodone and fentanyl consumption in the home-cage; however opioid intake escalated only in P3 mice with repeated opioid experience. No sex differences were observed for any of our measures. These data provide additional evidence for robust differences in opioid addiction-related behaviors between P3 and S1 substrains and suggest that anxiety, learning, and/or motivational impairments might confound interpretation of operant- and place-conditioning studies employing the S1 substrain.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California.,The Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Tori Tran
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Nicholas Stailey
- Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California
| | - Dylan Lieberman
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Ivette Gabriella
- Department of Psychology, California State University Dominguez Hills, Carson, California
| | - Isaiah Swauncy
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Lindsey W Brewin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Sami Ferdousian
- Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
3
|
Fultz EK, Martin DL, Hudson CN, Kippin TE, Szumlinski KK. Methamphetamine-alcohol interactions in murine models of sequential and simultaneous oral drug-taking. Drug Alcohol Depend 2017; 177:178-186. [PMID: 28601731 PMCID: PMC6445265 DOI: 10.1016/j.drugalcdep.2017.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND A high degree of co-morbidity exists between methamphetamine (MA) addiction and alcohol use disorders and both sequential and simultaneous MA-alcohol mixing increases risk for co-abuse. As little preclinical work has focused on the biobehavioral interactions between MA and alcohol within the context of drug-taking behavior, we employed simple murine models of voluntary oral drug consumption to examine how prior histories of either MA- or alcohol-taking influence the intake of the other drug. METHODS In one study, mice with a 10-day history of binge alcohol-drinking [5,10, 20 and 40% (v/v); 2h/day] were trained to self-administer oral MA in an operant-conditioning paradigm (10-40mg/L). In a second study, mice with a 10-day history of limited-access oral MA-drinking (5, 10, 20 and 40mg/L; 2h/day) were presented with alcohol (5-40% v/v; 2h/day) and then a choice between solutions of 20% alcohol, 10mg/L MA or their mix. RESULTS Under operant-conditioning procedures, alcohol-drinking mice exhibited less MA reinforcement overall, than water controls. However, when drug availability was not behaviorally-contingent, alcohol-drinking mice consumed more MA and exhibited greater preference for the 10mg/L MA solution than drug-naïve and combination drug-experienced mice. Conversely, prior MA-drinking history increased alcohol intake across a range of alcohol concentrations. DISCUSSION These exploratory studies indicate the feasibility of employing procedurally simple murine models of sequential and simultaneous oral MA-alcohol mixing of relevance to advancing our biobehavioral understanding of MA-alcohol co-abuse.
Collapse
Affiliation(s)
- Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Douglas L Martin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Courtney N Hudson
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA; Institute for Collaborative Biotechnology, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA.
| |
Collapse
|
4
|
Jimenez SM, Healy AF, Coelho MA, Brown CN, Kippin TE, Szumlinski KK. Variability in prescription opioid intake and reinforcement amongst 129 substrains. GENES BRAIN AND BEHAVIOR 2017; 16:709-724. [PMID: 28523735 DOI: 10.1111/gbb.12393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022]
Abstract
Opioid abuse in the United States has reached epidemic proportions, with treatment admissions and deaths associated with prescription opioid abuse quadrupling over the past 10 years. Although genetics are theorized to contribute substantially to inter-individual variability in the development, severity and treatment outcomes of opioid abuse/addiction, little direct preclinical study has focused on the behavioral genetics of prescription opioid reinforcement and drug-taking. Herein, we employed different 129 substrains of mice currently available from The Jackson Laboratory (129S1/SvlmJ, 129X1/SvJ, 129S4/SvJaeJ and 129P3/J) as a model system of genetic variation and assayed mice for oral opioid intake and reinforcement, as well as behavioral and somatic signs of dependence. All substrains exhibited a dose-dependent increase in oral oxycodone and heroin preference and intake under limited-access procedures and all, but 129S1/SvlmJ mice, exhibited oxycodone reinforcement. Relative to the other substrains, 129P3/J mice exhibited higher heroin and oxycodone intake. While 129X1/SvJ exhibited the highest anxiety-like behavior during natural opioid withdrawal, somatic and behavior signs of precipitated withdrawal were most robust in 129P3/J mice. These results demonstrate the feasibility and relative sensitivity of our oral opioid self-administration procedures for detecting substrain differences in drug reinforcement/intake among 129 mice, of relevance to the identification of genetic variants contributing to high vs. low oxycodone reinforcement and intake.
Collapse
Affiliation(s)
- S M Jimenez
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - A F Healy
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - M A Coelho
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - C N Brown
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - T E Kippin
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA.,Institute for Collaborative Biotechnology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - K K Szumlinski
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Dissociation of heroin-induced emotional dysfunction from psychomotor activation and physical dependence among inbred mouse strains. Psychopharmacology (Berl) 2015; 232:1957-71. [PMID: 25482274 DOI: 10.1007/s00213-014-3826-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/20/2014] [Indexed: 01/10/2023]
Abstract
RATIONALE Opiate addiction is a brain disorder emerging through repeated intoxication and withdrawal episodes. Epidemiological studies also indicate that chronic exposure to opiates may lead in susceptible individuals to the emergence of depressive symptoms, strongly contributing to the severity and chronicity of addiction. We recently established a mouse model of heroin abstinence, characterized by the development of depressive-like behaviors following chronic heroin exposure. OBJECTIVES While genetic factors regulating immediate behavioral responses to opiates have been largely investigated, little is known about their contribution to long-term emotional regulation during abstinence. Here, we compared locomotor stimulation and physical dependence induced by heroin exposure, as well as emotional dysfunction following abstinence, across mice strains with distinct genetic backgrounds. METHODS Mice from three inbred strains (C57BL/6J, Balb/cByJ, and 129S2/SvPas) were exposed to an escalating chronic heroin regimen (10-50 mg/kg). Independent cohorts were used to assess drug-induced locomotor activity during chronic treatment, naloxone-precipitated withdrawal at the end of chronic treatment, and emotional-like responses after a 4-week abstinence period. RESULTS Distinct behavioral profiles were observed across strains during heroin treatment, with no physical dependence and low locomotor stimulation in 129S2/SvPas. In addition, different behavioral impairments developed during abstinence across the three strains, with increased despair-like behavior in 129S2/SvPas and Balb/cByJ, and low sociability in 129S2/SvPas and C57BL/6J. CONCLUSIONS Our results indicate that depressive-like behaviors emerge during heroin abstinence, whatever the severity of immediate behavioral responses to the drug. In addition, inbred mouse strains will allow studying several aspects of mood-related deficits associated with addiction.
Collapse
|
6
|
Bryant CD, Guido MA, Kole LA, Cheng R. The heritability of oxycodone reward and concomitant phenotypes in a LG/J × SM/J mouse advanced intercross line. Addict Biol 2014; 19:552-61. [PMID: 23231598 DOI: 10.1111/adb.12016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rewarding property of opioids likely contributes to their abuse potential. Therefore, determining the genetic basis of opioid reward could aid in understanding the neurobiological mechanisms of opioid addiction, provided that it is a heritable trait. Here, we characterized the rewarding property of the widely abused prescription opioid oxycodone (OXY) in the conditioned place preference (CPP) assay using LG/J and SM/J parental inbred mouse strains and 17 parent-offspring families of a LG/J × SM/J F47 /F48 advanced intercross line (AIL). Following OXY training (5 mg/kg, i.p.), SM/J mice and AIL mice, but not LG/J mice, showed an increase in preference for the OXY-paired side, suggesting a genetic basis for OXY-CPP. SM/J mice showed greater locomotor activity than LG/J mice in response to both saline and OXY. LG/J, SM/J, and AIL mice all exhibited robust OXY-induced locomotor sensitization. Narrow-sense heritability (h(2) ) estimates of the phenotypes using linear regression and maximum likelihood estimation showed good agreement (r = 0.91). OXY-CPP was clearly not a heritable trait whereas drug-free- and OXY-induced locomotor activity and sensitization were significantly and sometimes highly heritable (h(2) = 0.30-0.84). Interestingly, the number of transitions between the saline- and OXY-paired sides emerged as a reliably heritable trait following OXY training (h(2) = 0.46-0.66) and could represent a genetic component of drug-seeking behavior. Thus, although OXY-CPP does not appear to be amenable to genome-wide quantitative trait locus mapping, this protocol will be useful for mapping other traits potentially relevant to opioid abuse.
Collapse
Affiliation(s)
- Camron D. Bryant
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| | - Michael A. Guido
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| | - Loren A. Kole
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| | - Riyan Cheng
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| |
Collapse
|
7
|
Schlussman SD, Buonora M, Brownstein AJ, Zhang Y, Ho A, Kreek MJ. Regional mRNA expression of GABAergic receptor subunits in brains of C57BL/6J and 129P3/J mice: strain and heroin effects. Brain Res 2013; 1523:49-58. [PMID: 23732339 DOI: 10.1016/j.brainres.2013.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/07/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
Abstract
C57BL/6J and 129 substrains of mice are known to differ in their basal levels of anxiety and behavioral response to drugs of abuse. We have previously shown strain differences in heroin-induced conditioned place preference (CPP) between C57BL/6J (C57) and 129P3/J (129) mice, and in the regional expression of several receptor and peptide mRNAs. In this study, we examined the contribution of the GABAergic system in the cortex, nucleus accumbens (NAc), caudate putamen (CPu) and the region containing the substantia nigra and ventral tegmental area (SN/VTA) to heroin reward by measuring mRNA levels of 7 of the most commonly expressed GABA-A receptor subunits, and both GABA-B receptor subunits, in these same mice following saline (control) or heroin administration in a CPP design. Using real-time PCR, we studied the effects of strain and heroin administration on GABA-A α1, α2, α3, β2, and γ2 subunits, which typically constitute synaptic GABA-A receptors, GABA-A α4 and δ subunits, which typically constitute extrasynaptic GABA-A receptors, and GABA-B R1 and R2 subunits. In saline-treated animals, we found an experiment-wise significant strain difference in GABA-Aα2 mRNA expression in the SN/VTA. Point-wise significant strain differences were also observed in GABA-Aα2, GABA-Aα3, and GABA-Aα4 mRNA expression in the NAc, as well as GABA-BR2 mRNA expression in the NAc and CPu, and GABA-BR1 mRNA expression in the cortex. For all differences, 129 mice had higher mRNA expression compared to C57 animals, with the exception of GABA-BR1 mRNA in the cortex where we observed lower levels in 129 mice. Therefore, it may be possible that known behavioral differences between these two strains are, in part, due to differences in their GABAergic systems. While we did not find heroin dose-related changes in mRNA expression levels in C57 mice, we did observe dose-related differences in 129 mice. These results may relate to our earlier behavioral finding that 129 mice are hyporesponsive to the rewarding effects of heroin.
Collapse
Affiliation(s)
- S D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - M Buonora
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - A J Brownstein
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Y Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - A Ho
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - M J Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
8
|
A history of chronic morphine exposure during adolescence increases despair-like behaviour and strain-dependently promotes sociability in abstinent adult mice. Behav Brain Res 2013; 243:44-52. [PMID: 23295400 DOI: 10.1016/j.bbr.2012.12.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 11/22/2022]
Abstract
A crucial issue in treating opiate addiction, a chronic relapsing disorder, is to maintain a drug-free abstinent state. Prolonged abstinence associates with mood disorders, strongly contributing to relapse. In particular, substance use disorders occurring during adolescence predispose to depression later in adulthood. Using our established mouse model of opiate abstinence, we characterized emotional consequences into adulthood of morphine exposure during adolescence. Our results indicate that morphine treatment in adolescent mice has no effect on anxiety-like behaviours in adult mice, after abstinence. In contrast, morphine treatment during adolescence increases behavioural despair in adult mice. We also show that morphine exposure strain-dependently enhances sociability in adult mice. Additional research will be required to understand where and how morphine acts during brain maturation to affect emotional and social behaviours into adulthood.
Collapse
|
9
|
Seip-Cammack KM, Reed B, Zhang Y, Ho A, Kreek MJ. Tolerance and sensitization to chronic escalating dose heroin following extended withdrawal in Fischer rats: possible role of mu-opioid receptors. Psychopharmacology (Berl) 2013; 225:127-40. [PMID: 22829433 PMCID: PMC3494815 DOI: 10.1007/s00213-012-2801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
RATIONALE/OBJECTIVES Heroin addiction is characterized by recurrent cycles of drug use, abstinence, and relapse. It is likely that neurobiological changes during chronic heroin exposure persist across withdrawal and impact behavioral responses to re-exposure. We hypothesized that, after extended withdrawal, heroin-withdrawn rats would express behavioral tolerance and/or sensitization in response to heroin re-exposure and that these responses might be associated with altered mu-opioid receptor (MOPr) activity. METHODS Male Fischer rats were exposed chronically to escalating doses of heroin (7.5-75 mg/kg/day), experienced acute spontaneous withdrawal and extended (10-day) abstinence, and were re-exposed chronically to heroin. Homecage behaviors and locomotor activity in response to heroin, as well as somatic withdrawal signs, were recorded. Separate groups of rats were sacrificed after extended abstinence and MOPr expression and G-protein coupling were analyzed using [(3)H]DAMGO and [(35)S]GTPγS assays. RESULTS The depth of behavioral stupor was lower during the initial days of heroin re-exposure compared to the initial days of the first exposure period. Behavioral responses (e.g., stereotypy) and locomotion were elevated in response to heroin re-exposure at low doses. Rats conditioned for heroin place preference during the chronic re-exposure period expressed heroin preference during acute withdrawal; this preference was stronger than rats conditioned during chronic heroin exposure that followed chronic saline and injection-free periods. Extended withdrawal was associated with increased MOPr expression in the caudate-putamen and frontal and cingulate cortices. No changes in G-protein coupling were identified. CONCLUSIONS Aspects of tolerance/sensitization to heroin are present even after extended abstinence and may be associated with altered MOPr density.
Collapse
Affiliation(s)
- Katharine M Seip-Cammack
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Given that social influences are among the strongest predictors of adolescents' drug use, this study examines the effects of social interactions on morphine sensitization in both adolescent and adult rats. Rats treated with morphine (twice daily, 6 days, 2.5-10 mg/kg, subcutaneously, s.c.) or saline were group-housed in two different conditions. Thus, four experimental groups were examined for each age group: (1) morphine-treated rats housed physically and visually separate from saline-injected rats ('morphine only'); (2) morphine-treated rats housed together with saline-injected rats ('morphine cage-mates'); (3) saline-injected rats housed together with morphine-treated rats ('saline cage-mates'); and (4) saline-injected rats housed physically and visually separate from morphine-treated rats ('saline only'). Starting 9 days following the last morphine injection, rats were individually examined once daily for 5 consecutive days for their locomotor response to 2.5 mg/kg of morphine. For both age groups, there were no significant differences in morphine-induced hyper-locomotion between saline cage-mates and saline only rats. Morphine only rats exhibited morphine locomotor sensitization as compared to both the saline only and saline cage-mates rats. Notably, a significant difference was observed between the adolescent morphine cage-mates and morphine only rats. The adolescent morphine cage-mates did not exhibit the enhanced locomotor response as compared to the saline only and saline cage-mate rats. A trend of reduced morphine locomotor sensitization was observed in the adult morphine cage-mates as compared to morphine only but it did not reach statistical significance. Thus, this study demonstrates social influences on morphine sensitization which are more prevalent in adolescents as compared to adults.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, 77843, USA.
| | | | | | | |
Collapse
|
11
|
Schlussman SD, Cassin J, Zhang Y, Levran O, Ho A, Kreek MJ. Regional mRNA expression of the endogenous opioid and dopaminergic systems in brains of C57BL/6J and 129P3/J mice: strain and heroin effects. Pharmacol Biochem Behav 2011; 100:8-16. [PMID: 21807019 DOI: 10.1016/j.pbb.2011.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/08/2011] [Accepted: 07/17/2011] [Indexed: 12/12/2022]
Abstract
We have previously shown strain and dose differences in heroin-induced behavior, reward and regional expression of somatostatin receptor mRNAs in C57BL/6J and 129P3/J mice. Using Real Time PCR we examined the effects of five doses of heroin on the levels of the transcripts of endogenous opioid peptides and their receptors and dopaminergic receptors in the mesocorticolimbic and nigrostriatal pathways in these same mice. Compared to C57BL/6J animals, 129P3/J mice had higher mRNA levels of Oprk1 in the nucleus accumbens and of Oprd1 in the nucleus accumbens and a region containing both the substantia nigra and ventral tegmental area (SN/VTA). In the cortex of 129P3/J mice, lower levels of both Oprk1 and Oprd1 mRNAs were observed. Pdyn mRNA was also lower in the caudate putamen of 129P3/J mice. Strain differences were not found in the levels of Oprm1, Penk or Pomc mRNAs in any region examined. Within strains, complex patterns of heroin dose-dependent changes in the levels of Oprm1, Oprk1 and Oprd1 mRNAs were observed in the SN/VTA. Additionally, Oprd1 mRNA was dose-dependently elevated in the hypothalamus. Also in the hypothalamus, we found higher levels of Drd1a mRNA in C57BL/6J mice than in 129P3/J animals and higher levels of DAT (Slc6a3) mRNA in the caudate putamen of C57BL/6J animals than in 129P3/J counterparts. Heroin had dose-related effects on Drd1a mRNA in the hypothalamus and on Drd2 mRNA in the caudate putamen.
Collapse
Affiliation(s)
- S D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Bailey A, Metaxas A, Al-Hasani R, Keyworth HL, Forster DM, Kitchen I. Mouse strain differences in locomotor, sensitisation and rewarding effect of heroin; association with alterations in MOP-r activation and dopamine transporter binding. Eur J Neurosci 2010; 31:742-53. [PMID: 20384817 DOI: 10.1111/j.1460-9568.2010.07104.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is growing agreement that genetic factors play an important role in the risk to develop heroin addiction, and comparisons of heroin addiction vulnerability in inbred strains of mice could provide useful information on the question of individual vulnerability to heroin addiction. This study examined the rewarding and locomotor-stimulating effects of heroin in male C57BL/6J and DBA/2J mice. Heroin induced locomotion and sensitisation in C57BL/6J but not in DBA/2J mice. C57BL/6J mice developed conditioned place preference (CPP) to the highest doses of heroin, while DBA/2J showed CPP to only the lowest heroin doses, indicating a higher sensitivity of DBA/2J mice to the rewarding properties of heroin vs C57BL/6J mice. In order to investigate the neurobiological substrate underlying some of these differences, the effect of chronic 'intermittent' escalating dose heroin administration on the opioid, dopaminergic and stress systems was explored. Twofold higher mu-opioid receptor (MOP-r)-stimulated [35S]GTPgammaS binding was observed in the nucleus accumbens and caudate of saline-treated C57BL/6J mice compared with DBA/2J. Heroin decreased MOP-r density in brain regions of C57BL/6J mice, but not in DBA/2J. A higher density of dopamine transporters (DAT) was observed in nucleus accumbens shell and caudate of heroin-treated DBA/2J mice compared with heroin-treated C57BL/6J. There were no effects on D1 and D2 binding. Chronic heroin administration decreased corticosterone levels in both strains with no effect of strain. These results suggest that genetic differences in MOP-r activation and DAT expression may be responsible for individual differences in vulnerability to heroin addiction.
Collapse
Affiliation(s)
- Alexis Bailey
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Given that social influences are among the strongest predictors of adolescents' drug use, this study examined the effect of social interaction on morphine-induced hyperlocomotion in both adolescent and adult mice. Three experimental groups of adolescent and adult male mice were examined (i) morphine-treated mice (twice daily, 10-40 mg/kg, subcutaneous), (ii) saline-injected mice housed together with the morphine-treated mice ('saline cage-mates'), and (iii) saline-injected mice housed physically and visually separated from the morphine-treated mice ('saline alone'). After the treatment period, mice were tested individually for their locomotor response to 10 mg/kg morphine (subcutaneous). Adolescent saline cage-mates, though administered morphine for the very first time, exhibited an enhanced hyperlocomotion response similar to the locomotor sensitization response exhibited by the morphine-treated mice. This was not observed in adults. In adults, there were no significant differences in morphine-induced hyperlocomotion between saline alone and saline cage-mates. As expected, morphine-treated adults and adolescents both exhibited locomotor sensitization. These results show a vulnerability to social influences in adolescent mice, which does not exist in adult mice.
Collapse
|
14
|
Solecki W, Turek A, Kubik J, Przewlocki R. Motivational effects of opiates in conditioned place preference and aversion paradigm--a study in three inbred strains of mice. Psychopharmacology (Berl) 2009; 207:245-55. [PMID: 19787337 DOI: 10.1007/s00213-009-1672-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 08/17/2009] [Indexed: 12/01/2022]
Abstract
RATIONALE Interstrain differences in the motivational properties of morphine and heroin have been previously reported in mice, suggesting the involvement of a genotype-dependent modulation of the rewarding effects of opiates. Yet, interstrain differences in the motivational effects of naloxone have not been described. OBJECTIVES The aim of our study was to examine genotype modulation of the motivational effects of opiates in inbred stains of mice with known, distinct, opiate-induced phenotypes, and morphine-induced striatal transcriptional responses. METHODS We studied the rewarding properties of morphine (5, 10, and 20 mg/kg i.p.) and heroin (1, 5, and 10 mg/kg i.p.) in conditioned place preference (CPP) as well as the aversive properties of naloxone (1, 10, and 20 mg/kg i.p.) in the conditioned place aversion (CPA) paradigm in C57Bl/6J (C57), DBA/2J (DBA), and SWR/J (SWR) inbred strains of mice. RESULTS Our results show that morphine and heroin as well as naloxone induce CPP and CPA, respectively, in a genotype- and dose-dependent manner in these studied inbred strains of mice. Interestingly, C57 mice are the most sensitive in the case of the rewarding properties of morphine and heroin but are the least sensitive to the aversive effects of naloxone, whereas the DBA strain exhibit the opposite behavioral effects. CONCLUSIONS We suggest that motivational homeostasis can be modulated by mu opioid receptors in mice, with the C57 mice representing a genotype that is more sensitive to processes related to rewards, whereas the genotype of DBA is more sensitive to aversion.
Collapse
Affiliation(s)
- Wojciech Solecki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Science, 12 Smetna Street, 31-343, Krakow, Poland
| | | | | | | |
Collapse
|
15
|
Schlussman SD, Zhang Y, Hsu NM, Allen JM, Ho A, Kreek MJ. Heroin-induced locomotor activity and conditioned place preference in C57BL/6J and 129P3/J mice. Neurosci Lett 2008; 440:284-8. [PMID: 18579303 DOI: 10.1016/j.neulet.2008.05.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
Differences in the locomotor stimulating and rewarding properties of drugs of abuse have been described in several inbred strains of mice, and comparisons of inbred strains with differing responses to drugs of abuse may provide crucial insight into the question of individual vulnerability to the effects of drugs of abuse. The present study was designed to examine the rewarding and locomotor-stimulating effects of heroin in C57BL/6J and 129P3/J mice. Heroin produced a robust dose-dependent locomotor stimulation in both strains. Both strains also developed conditioned place preference to heroin, again in a dose-dependent manner. However C57BL/6J mice developed conditioned place preference to only the two lowest doses of heroin tested, while the 129P3/J counterparts showed conditioned place preference to only the three highest doses tested. These studies indicate that 129P3/J mice are less sensitive to the rewarding effects of heroin than are age-matched C57BL/6J mice.
Collapse
Affiliation(s)
- Stefan D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, Box 171, 1230 York Avenue, New York, NY 10065, United States.
| | | | | | | | | | | |
Collapse
|
16
|
McCutcheon JE, Fisher AS, Guzdar E, Wood SA, Lightman SL, Hunt SP. Genetic background influences the behavioural and molecular consequences of neurokinin-1 receptor knockout. Eur J Neurosci 2008; 27:683-90. [PMID: 18279320 DOI: 10.1111/j.1460-9568.2008.06043.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic background affects animal phenotype and therefore is of particular relevance to studies using genetically manipulated mice. Strain differences in hypothalamic-pituitary-adrenocortical (HPA) axis activity may contribute to background-specificity of some mutations. Here, we analysed components of the HPA axis in mice lacking a functional neurokinin-1 receptor (NK1-/-) on two backgrounds: backcrossed C57BL/6 (B6) and mixed C57BL/6 x 129/sv (129B6). We hypothesized that HPA axis activity would vary between these strains, leading to differences in the NK1-/- phenotype. We compared levels of plasma corticosterone between the groups, and found 129B6 mice exhibited elevated levels of stress-induced corticosterone compared with B6 mice, regardless of genotype. Although the level of basal corticotrophin-releasing factor and stress-induced c-fos mRNAs did not differ between the genotypes of either strain, examination of glucocorticoid receptor immunoreactivity within the hippocampus revealed that NK1-/- mice on the 129B6 background had elevated expression compared with wild-type, whilst there was no difference between genotypes in the B6 strain. Similarly, hippocampal neurogenesis in NK1-/- mice was greater than in wild-type on the 129B6 strain, and did not differ between genotypes on the B6 background. Finally, novelty- and morphine-induced locomotion were assessed. NK1-/- mice on the 129B6 background exhibited hyperlocomotion in response to novelty and greater sensitivity to the locomotor-stimulating properties of morphine than wild-type. In contrast, in B6 mice, no differences were observed between genotypes for either locomotor behaviour. In summary, we find that HPA axis activity differs between the strains and that there are profoundly background-specific effects of the NK1 receptor mutation.
Collapse
Affiliation(s)
- J E McCutcheon
- Department of Anatomy & Developmental Biology, UCL, Gower St, London, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1021] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
18
|
Szumlinski KK, Liu A, Penzner JH, Lominac KD. Protracted 'pro-addictive' phenotype produced in mice by pre-adolescent phenylpropanolamine. Neuropsychopharmacology 2007; 32:1760-73. [PMID: 17251912 DOI: 10.1038/sj.npp.1301306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
For decades, the sympathomimetic phenylpropanolamine (PPA; +/- -norepinephrine) was an active ingredient found in popular children's over-the-counter (OTC) cold, cough, and allergy medications. To examine the possibility that pre-adolescent PPA exposure may induce neuroadaptations that influence behavioral and neurochemical responding to cocaine, C57BL/6J mice were pretreated with PPA (0-40 mg/kg) during postnatal days 21-31. The behavioral and neurochemical responses to acute and repeated cocaine (4 x 15 mg/kg) were then assessed in adulthood when the mice were 10 weeks of age. Whereas pre-adolescent PPA exposure did not influence the acute locomotor response to 15 mg/kg cocaine, PPA pre-exposure dose-dependently enhanced the expression of cocaine-induced place conditioning, reduced the expression of locomotor sensitization, but did not influence cocaine-induced stereotypy. Pre-adolescent PPA exposure completely prevented the capacity of cocaine to elevate extracellular levels of catecholamines in the nucleus accumbens, but facilitated the development of cocaine-induced glutamate sensitization. Neither acute nor repeated cocaine altered extracellular GABA levels in the accumbens of control mice; however, 15 mg/kg cocaine lowered GABA levels by approximately 40% in PPA pretreated mice and this effect showed tolerance with repeated cocaine administration. These data provide the first evidence that early exposure to an OTC compound produces protracted effects upon cocaine-induced changes in nucleus accumbens neurotransmission that may contribute to a 'pro-addictive' phenotype in adulthood.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
20
|
Ruiz-Durántez E, Hall SK, Steffen C, Self DW. Enhanced acquisition of cocaine self-administration by increasing percentages of C57BL/6J genes in mice with a nonpreferring outbred background. Psychopharmacology (Berl) 2006; 186:553-60. [PMID: 16586086 DOI: 10.1007/s00213-006-0379-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 03/06/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE Individual differences in the propensity to acquire drug self-administration may have a substantial genetic basis. OBJECTIVES To study the genetic contribution to cocaine self-administration by comparing hybrids of cocaine preferring (C57BL/6J) and nonpreferring (ICR) mice. METHODS ICR and C57BL/6J parental strains were compared to hybrids with 75% ICR:25% C57BL/6J, 50% ICR:50% C57BL/6J, and 25% ICR:75% C57BL/6J genetic backgrounds for acquisition of sucrose pellet and intravenous cocaine self-administration in 1-h test sessions. Mice that acquired cocaine self-administration were subsequently tested in a between-session self-administration dose-response procedure. RESULTS Increasing presence of C57BL/6J genes increased the percentage of mice that acquired sucrose pellet self-administration in the first test session. In lever-trained mice, only 19% of ICR mice met acquisition criteria for cocaine self-administration after 15 sessions, whereas 76% of C57BL/6J mice met acquisition criteria, although both strains initially sampled a similar number of cocaine injections. Increasing the percentage of C57BL/6J genes in the nonpreferring ICR background to 50 and 75% led to increasing percentages of mice that met acquisition criteria to 31 and 52%, respectively. In mice that acquired self-administration, only mice with 75% C57BL/6J genes showed a typical inverted U-shaped self-administration dose-response curve, whereas the curve was flat across doses for mice with < or = 50 and 100% C57BL/6J genes. CONCLUSIONS The findings are consistent with a genetically based dose-dependent enhancement of cocaine reinforcement by C57BL/6J genes. These results suggest that heritable traits impart a substantial genetic load that facilitates the propensity for cocaine addiction among individuals in outbred populations.
Collapse
Affiliation(s)
- Eduardo Ruiz-Durántez
- Department of Psychiatry, The Seay Center for Basic and Applied Research in Psychiatric Illness, UT Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | | | | | |
Collapse
|