1
|
Rios SM, Mootz JRK, Phillips TJ, Ingram SL. Absence of TAAR1 function increases methamphetamine-induced excitability of dorsal raphe serotonin neurons and drives binge-level methamphetamine intake. Neuropsychopharmacology 2025:10.1038/s41386-025-02063-w. [PMID: 39934409 DOI: 10.1038/s41386-025-02063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Methamphetamine (MA) is a potent psychostimulant capable of exerting both rewarding and aversive effects, the balance of which likely drives variation in voluntary MA intake. Understanding the genetic factors underlying sensitivity to these effects of MA is critical for developing effective treatments. The activity of dorsal raphe serotonin neurons is linked to reward processing. Here, we performed whole-cell patch-clamp electrophysiology in dorsal raphe serotonin neurons from mice with high or low MA intake corresponding with high or low MA reward sensitivity. The MA drinking (MADR) mice consist of the MA reward sensitive MA high drinking (MAHDR) and the MA reward insensitive MA low drinking (MALDR) lines. MA is a trace amine-associated receptor 1 (TAAR1) agonist, and MAHDR mice are homozygous for a mutation in the Taar1 gene, Taar1m1J, that encodes non-functional TAAR1, whereas MALDR mice possess at least one copy of the reference Taar1+ allele that encodes functional TAAR1. Our previous research using CRISPR-Cas9-generated MAHDR-Taar1+/+ knock-in mice in which Taar1m1J was replaced with Taar1+, and non-edited MAHDR-Taar1m1J/m1J controls demonstrated that lack of TAAR1 function is critical for heightened MA consumption and MA reward sensitivity. Here, electrophysiological recordings in the MADR lines demonstrate a MA-induced decrease in dorsal raphe serotonin neuron activity from MALDR, but not MAHDR mice. However, in the presence of serotonin autoreceptor antagonists, MA potentiates dorsal raphe serotonin neuron activity of MAHDR, but not MALDR mice. Importantly, potentiation in the presence of the antagonists is abolished in knock-in mice expressing functional TAAR1. The knock-in mice did not display binge-level MA intake, consistent with the loss of MA-reward sensitivity previously reported in mice with functional TAAR1. Finally, because MA is a substrate of the serotonin transporter, we evaluated whether the serotonin transporter is necessary for MA-induced potentiation of dorsal raphe serotonin neuron activity in mice with non-functional TAAR1. The serotonin transporter antagonist fluoxetine blocks MA-induced potentiation for both MAHDR and MAHDR-Taar1m1J/m1J mice. Thus, TAAR1 function directly impacts MA reward sensitivity and MA intake and serves as a critical regulator of MA-induced activity of dorsal raphe serotonin neurons through its interaction with the serotonin transporter.
Collapse
Affiliation(s)
- Samantha M Rios
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - John R K Mootz
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Fultz EK, Nei AYT, Chi JC, Lichter JN, Szumlinski KK. Effects of systemic pretreatment with the NAALADase inhibitor 2-PMPA on oral methamphetamine reinforcement in C57BL/6J mice. Front Psychiatry 2024; 15:1297275. [PMID: 38638417 PMCID: PMC11024460 DOI: 10.3389/fpsyt.2024.1297275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repeated exposure to methamphetamine (MA) in laboratory rodents induces a sensitization of glutamate release within the corticoaccumbens pathway that drives both the rewarding and reinforcing properties of this highly addictive drug. Such findings argue the potential for pharmaceutical agents inhibiting glutamate release or its postsynaptic actions at glutamate receptors as treatment strategies for MA use disorder. One compound that may accomplish both of these pharmacological actions is the N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA). 2-PMPA elevates brain levels of the endogenous agonist of glutamate mGluR3 autoreceptors, N-acetyl-aspartatylglutamate (NAAG), while potentially acting as an NMDA glutamate receptor antagonist. Of relevance to treating psychomotor stimulant use disorders, 2-PMPA is reported to reduce indices of both cocaine and synthetic cathinone reward, as well as cocaine reinforcement in preclinical rodent studies. Method Herein, we conducted three experiments to pilot the effects of systemic pretreatment with 2-PMPA (0-100 mg/kg, IP) on oral MA self-administration in C57BL/6J mice. The first experiment employed female mice with a prolonged history of MA exposure, while the mice in the second (females) and third (males and females) experiment were MA-naïve prior to study. In all experiments, mice were trained daily to nose-poke for delivery of unadulterated MA solutions until responding stabilized. Then, mice were pretreated with 2-PMPA prior to operant-conditioning sessions in which nose-poking behavior was reinforced by delivery of 120 mg/L or 200 mg/L MA (respectively, in Experiments 1 and 2/3). Results Contrary to our expectations, 30 mg/kg 2-PMPA pretreatment altered neither appetitive nor consummatory measures related to MA self-administration. In Experiment 3, 100 mg/kg 2-PMPA reduced responding in the MA-reinforced hole, as well as the number of reinforcers earned, but did not significantly lower drug intake. Discussion These results provide mixed evidenced related to the efficacy of this NAALADase inhibitor for reducing oral MA reinforcement in female mice.
Collapse
Affiliation(s)
- Elissa K. Fultz
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Andrea Y. T. Nei
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Joyce C. Chi
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline N. Lichter
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
3
|
Denning CJE, Madory LE, Herbert JN, Cabrera RA, Szumlinski KK. Neuropharmacological Evidence Implicating Drug-Induced Glutamate Receptor Dysfunction in Affective and Cognitive Sequelae of Subchronic Methamphetamine Self-Administration in Mice. Int J Mol Sci 2024; 25:1928. [PMID: 38339206 PMCID: PMC10856401 DOI: 10.3390/ijms25031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Methamphetamine (MA) is a highly addictive drug, and MA use disorder is often comorbid with anxiety and cognitive impairment. These comorbid conditions are theorized to reflect glutamate-related neurotoxicity within the frontal cortical regions. However, our prior studies of MA-sensitized mice indicate that subchronic, behaviorally non-contingent MA treatment is sufficient to dysregulate glutamate transmission in mouse brain. Here, we extend this prior work to a mouse model of high-dose oral MA self-administration (0.8, 1.6, or 3.2 g/L; 1 h sessions × 7 days) and show that while female C57BL/6J mice consumed more MA than males, MA-experienced mice of both sexes exhibited some signs of anxiety-like behavior in a behavioral test battery, although not all effects were concentration-dependent. No MA effects were detected for our measures of visually cued spatial navigation, spatial learning, or memory in the Morris water maze; however, females with a history of 3.2 g/L MA exhibited reversal-learning deficits in this task, and mice with a history of 1.6 g/L MA committed more working-memory incorrect errors and relied upon a non-spatial navigation strategy during the radial-arm maze testing. Relative to naïve controls, MA-experienced mice exhibited several changes in the expression of certain glutamate receptor-related proteins and their downstream effectors within the ventral and dorsal areas of the prefrontal cortex, the hippocampus, and the amygdala, many of which were sex-selective. Systemic pretreatment with the mGlu1-negative allosteric modulator JNJ 162596858 reversed the anxiety-like behavior expressed by MA-experienced mice in the marble-burying test, while systemic pretreatment with NMDA or the NMDA antagonist MK-801 bi-directionally affected the MA-induced reversal-learning deficit. Taken together, these data indicate that a relatively brief history of oral MA is sufficient to induce some signs of anxiety-like behavior and cognitive dysfunction during early withdrawal that reflect, at least in part, MA-induced changes in the corticolimbic expression of certain glutamate receptor subtypes of potential relevance to treating symptoms of MA use disorder.
Collapse
Affiliation(s)
- Christopher J. E. Denning
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Ryan A. Cabrera
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Shabani S, Houlton S, Ghimire B, Tonello D, Reed C, Baba H, Aldrich S, Phillips TJ. Robust aversive effects of trace amine-associated receptor 1 activation in mice. Neuropsychopharmacology 2023; 48:1446-1454. [PMID: 37055488 PMCID: PMC10425385 DOI: 10.1038/s41386-023-01578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
Drugs that stimulate the trace amine-associated receptor 1 (TAAR1) are under clinical investigation as treatments for several neuropsychiatric disorders. Previous studies in a genetic mouse model of voluntary methamphetamine intake identified TAAR1, expressed by the Taar1 gene, as a critical mediator of aversive methamphetamine effects. Methamphetamine is a TAAR1 agonist, but also has actions at monoamine transporters. Whether exclusive activation of TAAR1 has aversive effects was not known at the time we conducted our studies. Mice were tested for aversive effects of the selective TAAR1 agonist, RO5256390, using taste and place conditioning procedures. Hypothermic and locomotor effects were also examined, based on prior evidence of TAAR1 mediation. Male and female mice of several genetic models were used, including lines selectively bred for high and low methamphetamine drinking, a knock-in line in which a mutant form of Taar1 that codes for a non-functional TAAR1 was replaced by the reference Taar1 allele that codes for functional TAAR1, and their matched control line. RO5256390 had robust aversive, hypothermic and locomotor suppressing effects that were found only in mice with functional TAAR1. Knock-in of the reference Taar1 allele rescued these phenotypes in a genetic model that normally lacks TAAR1 function. Our study provides important data on TAAR1 function in aversive, locomotor, and thermoregulatory effects that are important to consider when developing TAAR1 agonists as therapeutic drugs. Because other drugs can have similar consequences, potential additive effects should be carefully considered as these treatment agents are being developed.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
- Department of Biology, Minot State University, Minot, ND, USA
- Biomedical Sciences at Grand Valley State University, Allendale, MI, USA
| | - Sydney Houlton
- Department of Biology, Minot State University, Minot, ND, USA
| | - Bikalpa Ghimire
- Department of Biology, Minot State University, Minot, ND, USA
| | - Derek Tonello
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Sara Aldrich
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
- VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
5
|
Honeywell KM, Doren EV, Szumlinski KK. Selective Inhibition of PDE4B Reduces Methamphetamine Reinforcement in Two C57BL/6 Substrains. Int J Mol Sci 2022; 23:4872. [PMID: 35563262 PMCID: PMC9099926 DOI: 10.3390/ijms23094872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug, and the number of MA-related overdose deaths has reached epidemic proportions. Repeated MA exposure induces a robust and persistent neuroinflammatory response, and the evidence supports the potential utility of targeting neuroimmune function using non-selective phosphodiesterase 4 (PDE4) inhibitors as a therapeutic strategy for attenuating addiction-related behavior. Off-target, emetic effects associated with non-selective PDE4 blockade led to the development of isozyme-selective inhibitors, of which the PDE4B-selective inhibitor A33 was demonstrated recently to reduce binge drinking in two genetically related C57BL/6 (B6) substrains (C57BL/6NJ (B6NJ) and C57BL/6J (B6J)) that differ in their innate neuroimmune response. Herein, we determined the efficacy of A33 for reducing MA self-administration and MA-seeking behavior in these two B6 substrains. Female and male mice of both substrains were first trained to nose poke for a 100 mg/L MA solution followed by a characterization of the dose-response function for oral MA reinforcement (20 mg/L-3.2 g/L), the demand-response function for 400 mg/L MA, and cue-elicited MA seeking following a period of forced abstinence. During this substrain comparison of MA self-administration, we also determined the dose-response function for A33 pretreatment (0-1 mg/kg) on the maintenance of MA self-administration and cue-elicited MA seeking. Relative to B6NJ mice, B6J mice earned fewer reinforcers, consumed less MA, and took longer to reach acquisition criterion with males of both substrains exhibiting some signs of lower MA reinforcement than their female counterparts during the acquisition phase of the study. A33 pretreatment reduced MA reinforcement at all doses tested. These findings provide the first evidence that pretreatment with a selective PDE4B inhibitor effectively reduces MA self-administration in both male and female mice of two genetically distinct substrains but does not impact cue-elicited MA seeking following abstinence. If relevant to humans, these results posit the potential clinical utility of A33 or other selective PDE4B inhibitors for curbing active drug-taking in MA use disorder.
Collapse
Affiliation(s)
- Kevin M. Honeywell
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Eliyana Van Doren
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| |
Collapse
|
6
|
Riley AL, Manke HN, Huang S. Impact of the Aversive Effects of Drugs on Their Use and Abuse. Behav Neurol 2022; 2022:8634176. [PMID: 35496768 PMCID: PMC9045991 DOI: 10.1155/2022/8634176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Drug use and abuse are complex issues in that the basis of each may involve different determinants and consequences, and the transition from one to the other may be equally multifaceted. A recent model of the addiction cycle (as proposed by Koob and his colleagues) illustrates how drug-taking patterns transition from impulsive (acute use) to compulsive (chronic use) as a function of various neuroadaptations leading to the downregulation of DA systems, upregulation of stress systems, and the dysregulation of the prefrontal/orbitofrontal cortex. Although the nature of reinforcement in the initiation and mediation of these effects may differ (positive vs. negative), the role of reinforcement in drug intake (acute and chronic) is well characterized. However, drugs of abuse have other stimulus properties that may be important in their use and abuse. One such property is their aversive effects that limit drug intake instead of initiating and maintaining it. Evidence of such effects comes from both clinical and preclinical populations. In support of this position, the present review describes the aversive effects of drugs (assessed primarily in conditioned taste aversion learning), the fact that they occur concurrently with reward as assessed in combined taste aversion/place preference designs, the role of aversive effects in drug-taking (in balance with their rewarding effects), the dissociation of these affective properties in that they can be affected in different ways by the same manipulations, and the impact of various parametric, experiential, and subject factors on the aversive effects of drugs and the consequent impact of these factors on their use and abuse potential.
Collapse
Affiliation(s)
- Anthony L. Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Hayley N. Manke
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| |
Collapse
|
7
|
Stafford AM, Yamamoto BK, Phillips TJ. Combined and sequential effects of alcohol and methamphetamine in animal models. Neurosci Biobehav Rev 2021; 131:248-269. [PMID: 34543650 PMCID: PMC8642292 DOI: 10.1016/j.neubiorev.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Comorbid drug use, often alcohol with other drugs, poses significant health and societal concerns. Methamphetamine is among the illicit drugs most often co-used with alcohol. The current review examines the animal literature for impacts of comorbid alcohol and methamphetamine exposure. We found evidence for additive or synergistic effects of combined or sequential exposure on behavior and physiology. Dopaminergic, serotonergic, and glutamatergic systems are all impacted by combined exposure to alcohol and methamphetamine and cyclooxygenase-2 activity plays an important role in their combined neurotoxic effects. Adverse consequences of comorbid exposure include altered brain development with prenatal exposure, impaired learning and memory, motor deficits, gastrotoxicity, hepatotoxicity, and augmented intake under some conditions. Given high susceptibility to drug experimentation in adolescence, studies of co-exposure during the adolescent period and of how adolescent exposure to one drug impacts later use or sensitivity to the other drug should be a priority. Further, to gain traction on prevention and treatment, additional research to identify motivational and neurobiological drivers and consequences of comorbid use is needed.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
8
|
Phillips TJ, Roy T, Aldrich SJ, Baba H, Erk J, Mootz JRK, Reed C, Chesler EJ. Confirmation of a Causal Taar1 Allelic Variant in Addiction-Relevant Methamphetamine Behaviors. Front Psychiatry 2021; 12:725839. [PMID: 34512422 PMCID: PMC8428522 DOI: 10.3389/fpsyt.2021.725839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitivity to rewarding and reinforcing drug effects has a critical role in initial use, but the role of initial aversive drug effects has received less attention. Methamphetamine effects on dopamine re-uptake and efflux are associated with its addiction potential. However, methamphetamine also serves as a substrate for the trace amine-associated receptor 1 (TAAR1). Growing evidence in animal models indicates that increasing TAAR1 function reduces drug self-administration and intake. We previously determined that a non-synonymous single nucleotide polymorphism (SNP) in Taar1 predicts a conformational change in the receptor that has functional consequences. A Taar1 m1J mutant allele existing in DBA/2J mice expresses a non-functional receptor. In comparison to mice that possess one or more copies of the reference Taar1 allele (Taar1 +/+ or Taar1 +/m1J ), mice with the Taar1 m1J/m1J genotype readily consume methamphetamine, express low sensitivity to aversive effects of methamphetamine, and lack sensitivity to acute methamphetamine-induced hypothermia. We used three sets of knock-in and control mice in which one Taar1 allele was exchanged with the alternative allele to determine if other methamphetamine-related traits and an opioid trait are impacted by the same Taar1 SNP proven to affect MA consumption and hypothermia. First, we measured sensitivity to conditioned rewarding and aversive effects of methamphetamine to determine if an impact of the Taar1 SNP on these traits could be proven. Next, we used multiple genetic backgrounds to study the consistency of Taar1 allelic effects on methamphetamine intake and hypothermia. Finally, we studied morphine-induced hypothermia to confirm prior data suggesting that a gene in linkage disequilibrium with Taar1, rather than Taar1, accounts for prior observed differences in sensitivity. We found that a single SNP exchange reduced sensitivity to methamphetamine conditioned reward and increased sensitivity to conditioned aversion. Profound differences in methamphetamine intake and hypothermia consistently corresponded with genotype at the SNP location, with only slight variation in magnitude across genetic backgrounds. Morphine-induced hypothermia was not dependent on Taar1 genotype. Thus, Taar1 genotype and TAAR1 function impact multiple methamphetamine-related effects that likely predict the potential for methamphetamine use. These data support further investigation of their potential roles in risk for methamphetamine addiction and therapeutic development.
Collapse
Affiliation(s)
- Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tyler Roy
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| | - Sara J. Aldrich
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R. K. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Elissa J. Chesler
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| |
Collapse
|
9
|
Fultz EK, Quadir SG, Martin D, Flaherty DM, Worley PF, Kippin TE, Szumlinski KK. ERK-Directed Phosphorylation of mGlu5 Gates Methamphetamine Reward and Reinforcement in Mouse. Int J Mol Sci 2021; 22:ijms22031473. [PMID: 33540617 PMCID: PMC7867251 DOI: 10.3390/ijms22031473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
Methamphetamine (MA) is a highly addictive psychomotor stimulant drug. In recent years, MA use has increased exponentially on a global scale, with the number of MA-involved deaths reaching epidemic proportions. There is no approved pharmacotherapy for treating MA use disorder, and we know relatively little regarding the neurobiological determinants of vulnerability to this disease. Extracellular signal-regulated kinase (ERK) is an important signaling molecule implicated in the long-lasting neuroadaptations purported to underlie the development of substance use disorders, but the role for this kinase in the propensity to develop addiction, particularly MA use disorder, is uncharacterized. In a previous MA-induced place-conditioning study of C57BL/6J mice, we characterized mice as MA-preferring, -neutral, or -avoiding and collected tissue from the medial prefrontal cortex (mPFC). Using immunoblotting, we determined that elevated phosphorylated ERK expression within the medial prefrontal cortex (mPFC) is a biochemical correlate of the affective valence of MA in a population of C57BL/6J mice. We confirmed the functional relevance for mPFC ERK activation for MA-induced place-preference via site-directed infusion of the MEK inhibitor U0126. By contrast, ERK inhibition did not have any effect upon MA-induced locomotion or its sensitization upon repeated MA treatment. Through studies of transgenic mice with alanine point mutations on T1123/S1126 of mGlu5 that disrupt ERK-dependent phosphorylation of the receptor, we discovered that ERK-dependent mGlu5 phosphorylation normally suppresses MA-induced conditioned place-preference (MA-CPP), but is necessary for this drug’s reinforcing properties. If relevant to humans, the present results implicate individual differences in the capacity of MA-associated cues/contexts to hyper-activate ERK signaling within mPFC in MA Use Disorder vulnerability and pose mGlu5 as one ERK-directed target contributing to the propensity to seek out and take MA.
Collapse
Affiliation(s)
- Elissa K. Fultz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Sema G. Quadir
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Douglas Martin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Daniel M. Flaherty
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Correspondence: ; Tel.: +1-805-893-2987; Fax: +1-805-893-4303
| |
Collapse
|
10
|
Reed C, Stafford AM, Mootz JRK, Baba H, Erk J, Phillips TJ. A breeding strategy to identify modifiers of high genetic risk for methamphetamine intake. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12667. [PMID: 32424970 PMCID: PMC7671946 DOI: 10.1111/gbb.12667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Trace amine-associated receptor 1 (Taar1) impacts methamphetamine (MA) intake. A mutant allele (Taar1m1J ) derived from the DBA/2J mouse strain codes for a non-functional receptor, and Taar1m1J/m1J mice consume more MA than mice possessing the reference Taar1+ allele. To study the impact of this mutation in a genetically diverse population, heterogeneous stock-collaborative cross (HS-CC) mice, the product of an eight-way cross of standard and wild-derived strains, were tested for MA intake. HS-CC had low MA intake, so an HS-CC by DBA/2J strain F2 intercross was created to transfer the mutant allele onto the diverse background, and used for selective breeding. To study residual variation in MA intake existing in Taar1m1J/m1J mice, selective breeding for higher (MAH) vs lower (MAL) MA intake was initiated from Taar1m1J/m1J F2 individuals; a control line of Taar1+/+ individuals (MAC) was retained. The lines were also examined for MA-induced locomotor and thermal responses, and fluid and tastant consumption. Taar1m1J/m1J F2 mice consumed significantly more MA than Taar1+/+ F2 mice. Response to selection was significant by generation 2 and there were corresponding differences in fluid consumed. Fluid consumption was not different in non-MA drinking studies. Taar1m1J/m1J genotype (MAL or MAH vs MAC mice) was associated with heighted MA locomotor and reduced hypothermic responses. MAL mice exhibited greater sensitization than MAH mice, but the selected lines did not consistently differ for thermal or tastant phenotypes. Residual variation among high-risk Taar1m1J/m1J mice appears to involve mechanisms associated with neuroadaptation to MA, but not sensitivity to hypothermic effects of MA.
Collapse
Affiliation(s)
- Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Alexandra M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - John RK Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
- Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
11
|
Blum K, Cadet JL, Gold MS. Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: Digging out of a hypodopaminergic ditch. J Neurol Sci 2021; 420:117252. [PMID: 33279726 DOI: 10.1016/j.jns.2020.117252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Approved food and drug administration (FDA) medications to treat Psychostimulant Use Disorder (PUD) are needed. Both acute and chronic neurological deficits related to the neurophysiological effects of these powerfully addictive drugs can cause stroke and alterations in mood and cognition. OBJECTIVE This article presents a brief review of the psychiatric and neurobiological sequelae of methamphetamine use disorder, some known neurogenetic associations impacted by psychostimulants, and explores treatment modalities and outcomes. HYPOTHESIS The authors propose that gentle D2 receptor stimulation accomplished via some treatment modalities can induce dopamine release, causing alteration of D2-directed mRNA and thus enhanced function of D2 receptors in the human. This proliferation of D2 receptors, in turn, will induce the attenuation of craving behavior, especially in genetically compromised high-risk populations. DISCUSSION A better understanding of the involvement of molecular neurogenetic opioid, mesolimbic dopamine, and psychostimulant connections in "wanting" supports this hypothesis. While both scientific and, clinical professionals search for an FDA approved treatment for PUD the induction of dopamine homeostasis, via activation of the brain reward circuitry, offers treatment for underlying neurotransmitter functional deficits, potential prophylaxis, and support for recovery efforts. CONCLUSION Dopamine regulation may help people dig out of their hypodopaminergia ditch.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA, Baltimore, MD, United States of America.
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, United States of America
| | - Mark S Gold
- Department of Psychiatry, Washington University, St Louis, MO, United States of America.
| |
Collapse
|
12
|
Carroll ME, Zlebnik NE, Holtz NA. Preference for Palatable Food, Impulsivity, and Relation to Drug Addiction in Rats. NEUROMETHODS 2021. [DOI: 10.1007/978-1-0716-0924-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Stafford AM, Reed C, Phillips TJ. Non-genetic factors that influence methamphetamine intake in a genetic model of differential methamphetamine consumption. Psychopharmacology (Berl) 2020; 237:3315-3336. [PMID: 32833064 PMCID: PMC7572688 DOI: 10.1007/s00213-020-05614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Genetic and non-genetic factors influence substance use disorders. Our previous work in genetic mouse models focused on genetic factors that influence methamphetamine (MA) intake. The current research examined several non-genetic factors for their potential influence on this trait. OBJECTIVES We examined the impact on MA intake of several non-genetic factors, including MA access schedule, prior forced MA exposure, concomitant ethanol (EtOH) access, and gamma-aminobutyric acid type B (GABAB) receptor activation. Selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mice participated in this research. RESULTS MAHDR, but not MALDR, mice increased MA intake when given intermittent access, compared with continuous access, with a water choice under both schedules. MA intake was not altered by previous exposure to forced MA consumption. Male MAHDR mice given simultaneous access to MA, EtOH, and an EtOH+MA mixture exhibited a strong preference for MA over EtOH and EtOH+MA; MA intake was not affected by EtOH in female MAHDR mice. When independent MAHDR groups were given access to MA, EtOH, or EtOH+MA vs. water in each case, MA intake was reduced in the water vs. EtOH+MA group, compared with the water vs. MA group. The GABAB receptor agonist R(+)-baclofen (BAC) not only reduced MA intake but also reduced water intake and locomotor activity in MAHDR mice. There was a residual effect of BAC, such that MA intake was increased after termination of BAC treatment. CONCLUSIONS These findings demonstrate that voluntary MA intake in MAHDR mice is influenced by non-genetic factors related to MA access schedule and co-morbid EtOH exposure.
Collapse
Affiliation(s)
- A M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - T J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
14
|
Shab G, Fultz EK, Page A, Coelho MA, Brewin LW, Stailey N, Brown CN, Bryant CD, Kippin TE, Szumlinski KK. The motivational valence of methamphetamine relates inversely to subsequent methamphetamine self-administration in female C57BL/6J mice. Behav Brain Res 2020; 398:112959. [PMID: 33053382 DOI: 10.1016/j.bbr.2020.112959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/21/2023]
Abstract
Understanding the mechanisms underpinning individual variance in addiction vulnerability requires the development of validated, high-throughput screens. In a prior study of a large sample of male isogenic C57BL/6J mice, the direction and magnitude of methamphetamine (MA)-induced place-conditioning predicts the propensity to acquire oral MA self-administration, as well as the efficacy of MA to serve as a reinforcer. The present study examined whether or not such a predictive relationship also exists in females. Adult C57BL/6J females underwent a 4-day MA place-conditioning paradigm (once daily injections of 2 mg/kg) and were then trained to nose-poke for delivery of a 20 mg/L MA solution under increasing schedules of reinforcement, followed by dose-response testing (5-400 mg/L MA). Akin to males, 53 % of the females exhibited a conditioned place-preference, while 32 % of the mice were MA-neutral and 15 % exhibited a conditioned place-aversion. However, unlike males, the place-conditioning phenotype did not transfer to MA-reinforced nose-poking behavior under operant-conditioning procedures, with 400 mg/L MA intake being inversely correlated place-conditioning. While only one MA-conditioning dose has been assayed to date, these data indicate that sex does not significantly shift the proportion of C57BL/6J mice that perceive MA's interoceptive effects as positive, neutral or aversive. However, a sex difference appears to exist regarding the predictive relationship between the motivational valence of MA and subsequent drug-taking behavior; females exhibit MA-taking behavior and reinforcement, despite their initial perception of the stimulant interoceptive effects as positive, neutral or negative.
Collapse
Affiliation(s)
- Gabriella Shab
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Ariana Page
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Lindsey W Brewin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Nicholas Stailey
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA; Institute for Collaborative Biology, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
15
|
Mootz JRK, Miner NB, Phillips TJ. Differential genetic risk for methamphetamine intake confers differential sensitivity to the temperature-altering effects of other addictive drugs. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12640. [PMID: 31925906 PMCID: PMC7286770 DOI: 10.1111/gbb.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/03/2023]
Abstract
Mice selectively bred for high methamphetamine (MA) drinking (MAHDR), compared with mice bred for low MA drinking (MALDR), exhibit greater sensitivity to MA reward and insensitivity to aversive and hypothermic effects of MA. Previous work identified the trace amine-associated receptor 1 gene (Taar1) as a quantitative trait gene for MA intake that also impacts thermal response to MA. All MAHDR mice are homozygous for the mutant Taar1 m1J allele, whereas all MALDR mice possess at least one copy of the reference Taar1 + allele. To determine if their differential sensitivity to MA-induced hypothermia extends to drugs of similar and different classes, we examined sensitivity to the hypothermic effect of the stimulant cocaine, the amphetamine-like substance 3,4-methylenedioxymethamphetamine (MDMA), and the opioid morphine in these lines. The lines did not differ in thermal response to cocaine, only MALDR mice exhibited a hypothermic response to MDMA, and MAHDR mice were more sensitive to the hypothermic effect of morphine than MALDR mice. We speculated that the μ-opioid receptor gene (Oprm1) impacts morphine response, and genotyped the mice tested for morphine-induced hypothermia. We report genetic linkage between Taar1 and Oprm1; MAHDR mice more often inherit the Oprm1 D2 allele and MALDR mice more often inherit the Oprm1 B6 allele. Data from a family of recombinant inbred mouse strains support the influence of Oprm1 genotype, but not Taar1 genotype, on thermal response to morphine. These results nominate Oprm1 as a genetic risk factor for morphine-induced hypothermia, and provide additional evidence for a connection between drug preference and drug thermal response.
Collapse
Affiliation(s)
- John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Nicholas B Miner
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
- Division of Research, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
16
|
Brown CN, Fultz EK, Ferdousian S, Rogers S, Lustig E, Page A, Shahin JR, Flaherty DM, Von Jonquieres G, Bryant CD, Kippin TE, Szumlinski KK. Transgenic Analyses of Homer2 Function Within Nucleus Accumbens Subregions in the Regulation of Methamphetamine Reward and Reinforcement in Mice. Front Psychiatry 2020; 11:11. [PMID: 32116834 PMCID: PMC7013000 DOI: 10.3389/fpsyt.2020.00011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023] Open
Abstract
Problems associated with the abuse of amphetamine-type stimulants, including methamphetamine (MA), pose serious health and socioeconomic issues world-wide. While it is well-established that MA's psychopharmacological effects involve interactions with monoamine neurotransmission, accumulating evidence from animal models implicates dysregulated glutamate in MA addiction vulnerability and use disorder. Recently, we discovered an association between genetic vulnerability to MA-taking and increased expression of the glutamate receptor scaffolding protein Homer2 within both the shell and core subregions of the nucleus accumbens (NAC) and demonstrated a necessary role for Homer2 within the shell subregion in MA reward and reinforcement in mice. This report extends our earlier work by interrogating the functional relevance of Homer2 within the NAC core for the conditioned rewarding and reinforcing properties of MA. C57BL/6J mice with a virus-mediated knockdown of Homer2b expression within the NAC core were first tested for the development and expression of a MA-induced conditioned place-preference/CPP (four pairings of 2 mg/kg MA) and then were trained to self-administer oral MA under operant-conditioning procedures (5-80 mg/L). Homer2b knockdown in the NAC core augmented a MA-CPP and shifted the dose-response function for MA-reinforced responding, above control levels. To determine whether Homer2b within NAC subregions played an active role in regulating MA reward and reinforcement, we characterized the MA phenotype of constitutive Homer2 knockout (KO) mice and then assayed the effects of virus-mediated overexpression of Homer2b within the NAC shell and core of wild-type and KO mice. In line with the results of NAC core knockdown, Homer2 deletion potentiated MA-induced CPP, MA-reinforced responding and intake, as well as both cue- and MA-primed reinstatement of MA-seeking following extinction. However, there was no effect of Homer2b overexpression within the NAC core or the shell on the KO phenotype. These data provide new evidence indicating a globally suppressive role for Homer2 in MA-seeking and MA-taking but argue against specific NAC subregions as the neural loci through which Homer2 actively regulates MA addiction-related behaviors.
Collapse
Affiliation(s)
- Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sami Ferdousian
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sarina Rogers
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elijah Lustig
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ariana Page
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - John R Shahin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daniel M Flaherty
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Georg Von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.,Center for Collaborative Biotechnology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
17
|
Stafford AM, Reed C, Baba H, Walter NAR, Mootz JRK, Williams RW, Neve KA, Fedorov LM, Janowsky AJ, Phillips TJ. Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. eLife 2019; 8:e46472. [PMID: 31274109 PMCID: PMC6682400 DOI: 10.7554/elife.46472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Nicole AR Walter
- Division of NeuroscienceOregon National Primate Research CenterPortlandUnited States
| | - John RK Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Robert W Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Sciences CenterMemphisUnited States
| | - Kim A Neve
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Aaron J Janowsky
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
- Department of PsychiatryOregon Health & Science UniversityPortlandUnited States
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| |
Collapse
|
18
|
Hitzemann R, Iancu OD, Reed C, Baba H, Lockwood DR, Phillips TJ. Regional Analysis of the Brain Transcriptome in Mice Bred for High and Low Methamphetamine Consumption. Brain Sci 2019; 9:E155. [PMID: 31262025 PMCID: PMC6681006 DOI: 10.3390/brainsci9070155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Transcriptome profiling can broadly characterize drug effects and risk for addiction in the absence of drug exposure. Modern large-scale molecular methods, including RNA-sequencing (RNA-Seq), have been extensively applied to alcohol-related disease traits, but rarely to risk for methamphetamine (MA) addiction. We used RNA-Seq data from selectively bred mice with high or low risk for voluntary MA intake to construct coexpression and cosplicing networks for differential risk. Three brain reward circuitry regions were explored, the nucleus accumbens (NAc), prefrontal cortex (PFC), and ventral midbrain (VMB). With respect to differential gene expression and wiring, the VMB was more strongly affected than either the PFC or NAc. Coexpression network connectivity was higher in the low MA drinking line than in the high MA drinking line in the VMB, oppositely affected in the NAc, and little impacted in the PFC. Gene modules protected from the effects of selection may help to eliminate certain mechanisms from significant involvement in risk for MA intake. One such module was enriched in genes with dopamine-associated annotations. Overall, the data suggest that mitochondrial function and glutamate-mediated synaptic plasticity have key roles in the outcomes of selective breeding for high versus low levels of MA intake.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Harue Baba
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Denesa R Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
19
|
García-Cabrerizo R, García-Fuster MJ. Methamphetamine binge administration dose-dependently enhanced negative affect and voluntary drug consumption in rats following prolonged withdrawal: role of hippocampal FADD. Addict Biol 2019; 24:239-250. [PMID: 29282816 DOI: 10.1111/adb.12593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
While prior studies have established various interacting mechanisms and neural consequences (i.e. monoaminergic nerve terminal damage) that might contribute to the adverse effects caused by methamphetamine administration, the precise mechanisms that mediate relapse during withdrawal remain unknown. This study evaluated the long-term consequences of binge methamphetamine administration (three pulses/day, every 3 hours, 4 days, i.p.; dose-response: 2.5, 5 and 7.5 mg/kg) in adult Sprague-Dawley rats at two behavioral levels following 25 days of withdrawal: (1) negative affect (behavioral despair-forced-swim test, and anhedonia-1% sucrose consumption, two-bottle choice test) and (2) voluntary methamphetamine consumption (20 mg/l, two-bottle choice test). Striatal and hippocampal brain samples were dissected to quantify monoamines content by high-performance liquid chromatography and to evaluate neurotoxicity (dopaminergic and serotonergic markers) and neuroplasticity markers [i.e. cell fate regulator (Fas-associated protein with death domain) FADD] by Western blot. The results showed that methamphetamine administration induced dose-dependent negative effects during prolonged withdrawal in adult rats. In particular, rats treated repeatedly with methamphetamine (7.5 mg/kg) showed (1) enhanced negative affect-increased anhedonia associated with behavioral despair, (2) increased voluntary methamphetamine consumption, (3) enhanced neurotoxicity-decreased dopamine and metabolites in striatum and decreased serotonin in hippocampus, (4) altered neuroplasticity markers-decreased FADD protein and increased p-FADD/FADD balance selectively in hippocampus and (5) higher consumption rates of methamphetamine that were associated with lower FADD content in hippocampus. These results confirm that methamphetamine withdrawal dose-dependently induced negative affect and decreased monoamines content, while also increased voluntary methamphetamine consumption and suggested a role for hippocampal FADD neuroplasticity in these drug-withdrawal adaptations.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS; University of the Balearic Islands; Palma Spain
- Balearic Islands Health Research Institute (IdISBa); Palma Spain
| | - M. Julia García-Fuster
- IUNICS; University of the Balearic Islands; Palma Spain
- Balearic Islands Health Research Institute (IdISBa); Palma Spain
| |
Collapse
|
20
|
Shabani S, Schmidt B, Ghimire B, Houlton SK, Hellmuth L, Mojica E, Phillips TJ. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12533. [PMID: 30375183 PMCID: PMC6399044 DOI: 10.1111/gbb.12533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022]
Abstract
Binge methamphetamine (MA) users have higher MA consumption, relapse rates and depression-like symptoms during early periods of withdrawal, compared with non-binge users. The impact of varying durations of MA abstinence on depression-like symptoms and on subsequent MA intake was examined in mice genetically prone to binge-level MA consumption. Binge-level MA intake was induced using a multiple-bottle choice procedure in which mice were offered one water drinking tube and three tubes containing increasing concentrations of MA in water, or four water tubes (control group). In two studies, depression-like symptoms were measured using a tail-suspension test and a subsequent forced-swim test, after forced abstinence of 6 and 30 hours from a 28-day course of chronic MA intake. An additional study measured the same depression-like symptoms, as well as MA intake, after prolonged abstinence of 1 and 2 weeks. MA high drinking mice and one of their progenitor strains DBA/2J escalated their MA intake with increasing MA concentration; however, MA high drinking mice consumed almost twice as much MA as DBA/2J mice. Depression-like symptoms were significantly higher early after MA access was withdrawn, compared to levels in drug-naïve controls, with more robust effects of MA withdrawal observed in MA high drinking than DBA/2J mice. When depression-like symptoms were examined after 1 or 2 weeks of forced abstinence in MA high drinking mice, depression-like symptoms dissipated, and subsequent MA intake was high. The MA high drinking genetic mouse model has strong face validity for human binge MA use and behavioral sequelae associated with abstinence.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Grand Valley State University, Allendale, MI, USA
- Minot State University, Minot, ND, USA
| | | | | | | | | | | | - Tamara J. Phillips
- Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
21
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
22
|
Eastwood EC, Eshleman AJ, Janowsky A, Phillips TJ. Verification of a genetic locus for methamphetamine intake and the impact of morphine. Mamm Genome 2018; 29:260-272. [PMID: 29127441 PMCID: PMC5889309 DOI: 10.1007/s00335-017-9724-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
A quantitative trait locus (QTL) on proximal chromosome (Chr) 10 accounts for > 50% of the genetic variance in methamphetamine (MA) intake in mice selectively bred for high (MAHDR) and low (MALDR) voluntary MA drinking. The µ-opioid receptor (MOP-r) gene, Oprm1, resides at the proximal end of Chr 10, and buprenorphine reduces MA intake in MAHDR mice. However, this drug has only partial agonist effects at MOP-r. We investigated the impact of a full MOP-r agonist, morphine, on MA intake and saccharin intake, measured MOP-r density and affinity in several brain regions of the MA drinking lines and their C57BL/6J (B6) and DBA/2J (D2) progenitor strains, and measured MA intake in two congenic strains of mice to verify the QTL and reduce the QTL interval. Morphine reduced MA intake in the MAHDR line, but also reduced saccharin and total fluid intake. MOP-r density was lower in the medial prefrontal cortex of MAHDR, compared to MALDR, mice, but not in the nucleus accumbens or ventral midbrain; there were no MOP-r affinity differences. No significant differences in MOP-r density or affinity were found between the progenitor strains. Finally, Chr 10 congenic results were consistent with previous data suggesting that Oprm1 is not a quantitative trait gene, but is impacted by the gene network underlying MA intake. Stimulation of opioid pathways by a full agonist can reduce MA intake, but may also non-specifically affect consummatory behavior; thus, a partial agonist may be a better pharmacotherapeutic.
Collapse
Affiliation(s)
- Emily C Eastwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Department of Human Biology, Fred Hutchinson Cancer Research Center, D4-100, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| | - Amy J Eshleman
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
| | - Aaron Janowsky
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA.
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR, 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA.
- VA Portland Health Care System, R & D 32, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA.
| |
Collapse
|
23
|
Reed C, Baba H, Zhu Z, Erk J, Mootz JR, Varra NM, Williams RW, Phillips TJ. A Spontaneous Mutation in Taar1 Impacts Methamphetamine-Related Traits Exclusively in DBA/2 Mice from a Single Vendor. Front Pharmacol 2018; 8:993. [PMID: 29403379 PMCID: PMC5786530 DOI: 10.3389/fphar.2017.00993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
Major gene effects on traits associated with substance use disorders are rare. Previous findings in methamphetamine drinking (MADR) lines of mice, bred for high or low voluntary MA intake, and in null mutants demonstrate a major impact of the trace amine-associated receptor 1 (Taar1) gene on a triad of MA-related traits: MA consumption, MA-induced conditioned taste aversion and MA-induced hypothermia. While inbred strains are fundamentally genetically stable, rare spontaneous mutations can become fixed and result in new or aberrant phenotypes. A single nucleotide polymorphism in Taar1 that encodes a missense proline to threonine mutation in the second transmembrane domain (Taar1m1J ) has been identified in the DBA/2J strain. MA is an agonist at this receptor, but the receptor produced by Taar1m1J does not respond to MA or endogenous ligands. In the present study, we used progeny of the C57BL/6J × DBA/2J F2 cross, the MADR lines, C57BL/6J × DBA/2J recombinant inbred strains, and DBA/2 mice sourced from four vendors to further examine Taar1-MA phenotype relations and to define the chronology of the fixation of the Taar1m1J mutation. Mice homozygous for Taar1m1J were found at high frequency early in selection for high MA intake in multiple replicates of the high MADR line, whereas Taar1m1J homozygotes were absent in the low MADR line. The homozygous Taar1m1J genotype is causally linked to increased MA intake, reduced MA-induced conditioned taste aversion, and reduced MA-induced hypothermia across models. Genotype-phenotype correlations range from 0.68 to 0.96. This Taar1 polymorphism exists in DBA/2J mice sourced directly from The Jackson Laboratory, but not DBA/2 mice sourced from Charles River (DBA/2NCrl), Envigo (formerly Harlan Sprague Dawley; DBA/2NHsd) or Taconic (DBA/2NTac). By genotyping archived samples from The Jackson Laboratory, we have determined that this mutation arose in 2001-2003. Our data strengthen the conclusion that the mutant Taar1m1J allele, which codes for a non-functional receptor protein, increases risk for multiple MA-related traits, including MA intake, in homozygous Taar1m1J individuals.
Collapse
Affiliation(s)
- Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Zhen Zhu
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Nicholas M. Varra
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
24
|
Huckans M, Wilhelm CJ, Phillips TJ, Huang ET, Hudson R, Loftis JM. Parallel Effects of Methamphetamine on Anxiety and CCL3 in Humans and a Genetic Mouse Model of High Methamphetamine Intake. Neuropsychobiology 2018; 75:169-177. [PMID: 29402784 PMCID: PMC5911417 DOI: 10.1159/000485129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Methamphetamine (MA) abuse causes immune dysfunction and neuropsychiatric impairment. The mechanisms underlying these deficits remain unidentified. METHODS The effects of MA on anxiety-like behavior and immune function were investigated in mice selectively bred to voluntarily consume high amounts of MA [i.e., MA high drinking (MAHDR) mice]. MA (or saline) was administered to mice using a chronic (14-day), binge-like model. Performance in the elevated zero maze (EZM) was determined 5 days after the last MA dose to examine anxiety-like behavior. Cytokine and chemokine expressions were measured in the hippocampus using quantitative polymerase chain reaction (qPCR). Human studies were also conducted to evaluate symptoms of anxiety using the General Anxiety Disorder-7 Scale in adults with and without a history of MA dependence. Plasma samples collected from human research participants were used for confirmatory analysis of murine qPCR results using an enzyme-linked immunosorbent assay. RESULTS During early remission from MA, MAHDR mice exhibited increased anxiety-like behavior on the EZM and reduced expression of chemokine (C-C motif) ligand 3 (ccl3) in the hippocampus relative to saline-treated mice. Human adults actively dependent on MA and those in early remission had elevated symptoms of anxiety as well as reductions in plasma levels of CCL3, relative to adults with no history of MA abuse. CONCLUSIONS The results highlight the complex effects of MA on immune and behavioral function and suggest that alterations in CCL3 signaling may contribute to the mood impairments observed during remission from MA addiction.
Collapse
Affiliation(s)
- Marilyn Huckans
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Clare J. Wilhelm
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Tamara J. Phillips
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Elaine T. Huang
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
| | - Jennifer M. Loftis
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
25
|
Abstract
Drug addiction involves long-term behavioral abnormalities that arise in response to repeated exposure to drugs of abuse in vulnerable individuals. It is a multifactorial syndrome involving a complex interplay between genes and the environment. Evidence suggests that the underlying mechanisms regulating these persistent behavioral abnormalities involve changes in gene expression throughout the brain's reward circuitry, in particular, in the mesolimbic dopamine system. In the past decade, investigations have begun to reveal potential genes involved in the risk for addiction through genomewide association studies. Additionally, a crucial role for epigenetic mechanisms, which mediate the enduring effects of drugs of abuse on the brain in animal models of addiction, has been established. This chapter focuses on recent evidence that genetic and epigenetic regulatory events underlie the changes throughout the reward circuitry in humans, as well as animal models of addiction. While further investigations are necessary, a picture of genetic and epigenetic mechanisms involved in addiction is beginning to emerge and the insight gained from these studies will be key to the identification of novel targets for improved diagnosis and treatment of addiction syndromes in humans.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Miner NB, Elmore JS, Baumann MH, Phillips TJ, Janowsky A. Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity. Neurotoxicology 2017; 63:57-69. [PMID: 28919515 PMCID: PMC5683899 DOI: 10.1016/j.neuro.2017.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is activated by methamphetamine (MA) and modulates dopaminergic (DA) function. Although DA dysregulation is the hallmark of MA-induced neurotoxicity leading to behavioral and cognitive deficits, the intermediary role of TAAR1 has yet to be characterized. To investigate TAAR1 regulation of MA-induced neurotoxicity, Taar1 transgenic knock-out (KO) and wildtype (WT) mice were administered saline or a neurotoxic regimen of 4 i.p. injections, 2h apart, of MA (2.5, 5, or 10mg/kg). Temperature data were recorded during the treatment day. Additionally, striatal tissue was collected 2 or 7days following MA administration for analysis of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. MA elicited an acute hypothermic drop in body temperature in Taar1-WT mice, but not in Taar1-KO mice. Two days following treatment, DA and TH levels were lower in Taar1-KO mice compared to Taar1-WT mice, regardless of treatment, and were dose-dependently decreased by MA. GFAP expression was significantly increased by all doses of MA at both time points and greater in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. Seven days later, DA levels were decreased in a similar pattern: DA was significantly lower in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. TH levels were uniformly decreased by MA, regardless of genotype. These results indicate that activation of TAAR1 potentiates MA-induced hypothermia and TAAR1 confers sustained neuroprotection dependent on its thermoregulatory effects.
Collapse
Affiliation(s)
- Nicholas B Miner
- Research Service, VA Portland Health Care System, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Josh S Elmore
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tamara J Phillips
- Research Service, VA Portland Health Care System, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
27
|
Riley AL, Hempel BJ, Clasen MM. Sex as a biological variable: Drug use and abuse. Physiol Behav 2017; 187:79-96. [PMID: 29030249 DOI: 10.1016/j.physbeh.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/11/2023]
Abstract
The study of sex as a biological variable is a necessary emphasis across a wide array of endpoints, including basic neuroscience, medicine, mental health, physiology and behavior. The present review summarizes work from clinical and preclinical populations on sex differences in drug use and abuse, ranging from initiation to escalation/dysregulation and from drug cessation/abstinence to relapse. These differences are analyzed in the context of the addiction cycle conceptualization of Koob and his colleagues and address patterns of drug use (binge/intoxication), motivation underlying its use (withdrawal/negative affect) and likelihood and causes of craving and relapse of drug taking (preoccupation/anticipation). Following this overview, an assessment of the basis for the reported sex differences is discussed in the context of the affective (rewarding and aversive) properties of drugs of abuse and how such properties and their balance vary with sex and contribute to drug intake. Finally, the interaction of sex with several experiential (drug history) and subject (age) factors and how these interactions affect reward and aversion are discussed to highlight the importance of understanding such interactions in predicting drug use and abuse. We note that sex as a biological variable remains one of critical evaluation and that such investigations of sex differences in drug use and abuse continue and be expanded to assess all facets of their mediation, including these affective properties, how their balance may be impacted by the multiple conditions under which drugs are taken and how this overall balance affects drug use and addiction vulnerability.
Collapse
Affiliation(s)
- Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| |
Collapse
|
28
|
Orso R, Creutzberg KC, Centeno-Silva A, Carapeços MS, Levandowski ML, Wearick-Silva LE, Viola TW, Grassi-Oliveira R. NFκB1 and NFκB2 gene expression in the prefrontal cortex and hippocampus of early life stressed mice exposed to cocaine-induced conditioned place preference during adolescence. Neurosci Lett 2017; 658:27-31. [DOI: 10.1016/j.neulet.2017.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 11/29/2022]
|
29
|
Fultz EK, Martin DL, Hudson CN, Kippin TE, Szumlinski KK. Methamphetamine-alcohol interactions in murine models of sequential and simultaneous oral drug-taking. Drug Alcohol Depend 2017; 177:178-186. [PMID: 28601731 PMCID: PMC6445265 DOI: 10.1016/j.drugalcdep.2017.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND A high degree of co-morbidity exists between methamphetamine (MA) addiction and alcohol use disorders and both sequential and simultaneous MA-alcohol mixing increases risk for co-abuse. As little preclinical work has focused on the biobehavioral interactions between MA and alcohol within the context of drug-taking behavior, we employed simple murine models of voluntary oral drug consumption to examine how prior histories of either MA- or alcohol-taking influence the intake of the other drug. METHODS In one study, mice with a 10-day history of binge alcohol-drinking [5,10, 20 and 40% (v/v); 2h/day] were trained to self-administer oral MA in an operant-conditioning paradigm (10-40mg/L). In a second study, mice with a 10-day history of limited-access oral MA-drinking (5, 10, 20 and 40mg/L; 2h/day) were presented with alcohol (5-40% v/v; 2h/day) and then a choice between solutions of 20% alcohol, 10mg/L MA or their mix. RESULTS Under operant-conditioning procedures, alcohol-drinking mice exhibited less MA reinforcement overall, than water controls. However, when drug availability was not behaviorally-contingent, alcohol-drinking mice consumed more MA and exhibited greater preference for the 10mg/L MA solution than drug-naïve and combination drug-experienced mice. Conversely, prior MA-drinking history increased alcohol intake across a range of alcohol concentrations. DISCUSSION These exploratory studies indicate the feasibility of employing procedurally simple murine models of sequential and simultaneous oral MA-alcohol mixing of relevance to advancing our biobehavioral understanding of MA-alcohol co-abuse.
Collapse
Affiliation(s)
- Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Douglas L Martin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Courtney N Hudson
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA; Institute for Collaborative Biotechnology, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA.
| |
Collapse
|
30
|
Szumlinski KK, Lominac KD, Campbell RR, Cohen M, Fultz EK, Brown CN, Miller BW, Quadir SG, Martin D, Thompson AB, von Jonquieres G, Klugmann M, Phillips TJ, Kippin TE. Methamphetamine Addiction Vulnerability: The Glutamate, the Bad, and the Ugly. Biol Psychiatry 2017; 81:959-970. [PMID: 27890469 PMCID: PMC5391296 DOI: 10.1016/j.biopsych.2016.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND The high prevalence and severity of methamphetamine (MA) abuse demands greater neurobiological understanding of its etiology. METHODS We conducted immunoblotting and in vivo microdialysis procedures in MA high/low drinking mice, as well as in isogenic C57BL/6J mice that varied in their MA preference/taking, to examine the glutamate underpinnings of MA abuse vulnerability. Neuropharmacological and Homer2 knockdown approaches were also used in C57BL/6J mice to confirm the role for nucleus accumbens (NAC) glutamate/Homer2 expression in MA preference/aversion. RESULTS We identified a hyperglutamatergic state within the NAC as a biochemical trait corresponding with both genetic and idiopathic vulnerability for high MA preference and taking. We also confirmed that subchronic subtoxic MA experience elicits a hyperglutamatergic state within the NAC during protracted withdrawal, characterized by elevated metabotropic glutamate 1/5 receptor function and Homer2 receptor-scaffolding protein expression. A high MA-preferring phenotype was recapitulated by elevating endogenous glutamate within the NAC shell of mice and we reversed MA preference/taking by lowering endogenous glutamate and/or Homer2 expression within this subregion. CONCLUSIONS Our data point to an idiopathic, genetic, or drug-induced hyperglutamatergic state within the NAC as a mediator of MA addiction vulnerability.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California; Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California.
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Rianne R Campbell
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Sema G Quadir
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Douglas Martin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Andrew B Thompson
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Tamara J Phillips
- Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University; VA Portland Health Care System, Portland, Oregon
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California; Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California; Neuroscience Research Institute, and Institute for Collaborative Biotechnology, University of California at Santa Barbara, Santa Barbara, California
| |
Collapse
|
31
|
Hashimoto JG, Gavin DP, Wiren KM, Crabbe JC, Guizzetti M. Prefrontal cortex expression of chromatin modifier genes in male WSP and WSR mice changes across ethanol dependence, withdrawal, and abstinence. Alcohol 2017; 60:83-94. [PMID: 28433423 PMCID: PMC5497775 DOI: 10.1016/j.alcohol.2017.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Alcohol-use disorder (AUD) is a relapsing disorder associated with excessive ethanol consumption. Recent studies support the involvement of epigenetic mechanisms in the development of AUD. Studies carried out so far have focused on a few specific epigenetic modifications. The goal of this project was to investigate gene expression changes of epigenetic regulators that mediate a broad array of chromatin modifications after chronic alcohol exposure, chronic alcohol exposure followed by 8 h withdrawal, and chronic alcohol exposure followed by 21 days of abstinence in Withdrawal-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) selected mouse lines. We found that chronic vapor exposure to highly intoxicating levels of ethanol alters the expression of several chromatin remodeling genes measured by quantitative PCR array analyses. The identified effects were independent of selected lines, which, however, displayed baseline differences in epigenetic gene expression. We reported dysregulation in the expression of genes involved in histone acetylation, deacetylation, lysine and arginine methylation and ubiquitinationhylation during chronic ethanol exposure and withdrawal, but not after 21 days of abstinence. Ethanol-induced changes are consistent with decreased histone acetylation and with decreased deposition of the permissive ubiquitination mark H2BK120ub, associated with reduced transcription. On the other hand, ethanol-induced changes in the expression of genes involved in histone lysine methylation are consistent with increased transcription. The net result of these modifications on gene expression is likely to depend on the combination of the specific histone tail modifications present at a given time on a given promoter. Since alcohol does not modulate gene expression unidirectionally, it is not surprising that alcohol does not unidirectionally alter chromatin structure toward a closed or open state, as suggested by the results of this study.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL, 60612, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, 60612, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States.
| |
Collapse
|
32
|
Voluntary inhalation of methamphetamine: a novel strategy for studying intake non-invasively. Psychopharmacology (Berl) 2017; 234:739-747. [PMID: 28028601 DOI: 10.1007/s00213-016-4510-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE The abuse of the psychostimulant methamphetamine (MA) is associated with substantial costs and limited treatment options. To understand the mechanisms that lead to abuse, animal models of voluntary drug intake are crucial. OBJECTIVES We aimed to develop a protocol to study long-term non-invasive voluntary intake of MA in mice. METHODS Mice were maintained in their home cages and allowed daily 1 h access to an attached tunnel leading to a test chamber in which nebulized MA was available. Restated, if they went to the nebulizing chamber, they self-administered MA by inhalation. This protocol was compared to injected and to imposed exposure to nebulized MA, in a series of seven experiments. RESULTS We established a concentration of nebulized MA at which motor activity increases following voluntary intake resembled that following MA injection and imposed inhalation. We found that mice regulated their exposure to MA, self-administering for shorter durations when concentrations of nebulized MA were increased. Mice acquire the available MA by repeatedly running in and out of the nebulizing chamber for brief bouts of intake. Such exposure to nebulized MA elevated plasma MA levels. There was limited evidence of sensitization of locomotor activity. Finally, blocking access to the wheel did not affect time spent in the nebulizing chamber. CONCLUSIONS We conclude that administration of MA by nebulization is an effective route of self-administration, and our new protocol represents a promising tool for examining the transitions from first intake to long-term use and its behavioral and neural consequences in a non-invasive protocol.
Collapse
|
33
|
Akinyeke T, Weber SJ, Davenport AT, Baker EJ, Daunais JB, Raber J. Effects of alcohol on c-Myc protein in the brain. Behav Brain Res 2016; 320:356-364. [PMID: 27832980 DOI: 10.1016/j.bbr.2016.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
Alcoholism is a disorder categorized by significant impairment that is directly related to persistent and extreme use of alcohol. The effects of alcoholism on c-Myc protein expression in the brain have been scarcely studied. This is the first study to investigate the role different characteristics of alcoholism have on c-Myc protein in the brain. We analyzed c-Myc protein in the hypothalamus and amygdala from five different animal models of alcohol abuse. c-Myc protein was increased following acute ethanol exposure in a mouse knockout model and following chronic ethanol consumption in vervet monkeys. We also observed increases in c-Myc protein exposure in animals that are genetically predisposed to alcohol and methamphetamine abuse. Lastly, c-Myc protein was increased in animals that were acutely exposed to methamphetamine when compared to control treated animals. These results suggest that in substance abuse c-Myc plays an important role in the brain's response.
Collapse
Affiliation(s)
- Tunde Akinyeke
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States
| | - Sydney J Weber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27106, United States
| | - Erich J Baker
- School of Engineering and Department of Computer Science, Baylor University Waco, TX 76978, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27106, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States.
| |
Collapse
|
34
|
Shabani S, Houlton SK, Hellmuth L, Mojica E, Mootz JRK, Zhu Z, Reed C, Phillips TJ. A Mouse Model for Binge-Level Methamphetamine Use. Front Neurosci 2016; 10:493. [PMID: 27853417 PMCID: PMC5090006 DOI: 10.3389/fnins.2016.00493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Binge/crash cycles of methamphetamine (MA) use are frequently reported by individuals suffering from MA use disorders. A MA binge is self-reported as multiple daily doses that commonly accumulate to 800 mg/day (~10 mg/kg/day for a 170 pound human). A genetic animal model with a similar vulnerability to binge-level MA intake is missing. We used selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mouse lines to determine whether several procedural variations would result in binge-level MA intake. Data were also collected in two progenitor populations of the MA drinking lines, the DBA/2J (D2) strain and the F2 cross of the D2 and C57BL/6J strains. The impact of 3 factors was examined: (1) concentration of MA in the two-bottle choice procedure used for selective breeding; (2) ratio of bottles containing MA vs. water, and (3) length of the withdrawal (or abstinence) period between MA drinking sessions. When MA concentration was progressively increased every 4 days in 20 mg/l amounts from 20 to 140 mg/l, maximum intake in MALDR mice was 1.1 mg/kg, whereas MAHDR mice consumed as much as 14.6 mg/kg. When these concentrations were tested in a multiple bottle choice procedure, the highest ratio of MA to water bottles (3:1) was associated with escalated MA intake of up to 29.1 mg/kg in MAHDR mice and 12.0 mg/kg in F2 mice; MALDR mice did not show a ratio-dependent escalation in MA intake. Finally, MAHDR and D2 mice were offered 3 bottles of MA vs. water at increasing concentrations from 20 to 80 mg/l, and tested under an intermittent 6-h withdrawal period, which was lengthened to 30 h (D2 mice) or to 30 or 78 h (MAHDR). D2 and MAHDR mice initially consumed similar amounts of 14-16 mg/kg MA, but D2 mice reduced their MA intake 3-fold after introduction of 30-h abstinence periods, whereas MAHDR mice retained their high level of intake regardless of withdrawal period. MAHDR mice provide a genetic model of binge-level MA intake appropriate for the study of associated MA-induced neurobiological changes and pharmaceutical treatments.
Collapse
Affiliation(s)
| | | | - Laura Hellmuth
- Department of Biology, Minot State UniversityMinot, ND, USA
| | - Erika Mojica
- Department of Biology, Minot State UniversityMinot, ND, USA
| | - John R. K. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Zhen Zhu
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
- VA Portland Health Care SystemPortland, OR, USA
| |
Collapse
|
35
|
Hostetler CM, Phillips TJ, Ryabinin AE. Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles. PLoS One 2016; 11:e0158178. [PMID: 27380172 PMCID: PMC4933333 DOI: 10.1371/journal.pone.0158178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
Methamphetamine (MA) abuse has been linked to violence, risk-taking behaviors, decreased sexual inhibition, and criminal activity. It is important to understand mechanisms underlying these drug effects for prevention and treatment of MA-associated social problems. Previous studies have demonstrated that experimenter-administered amphetamine inhibits pair bonding and increases aggression in monogamous prairie voles. It is not currently known whether similar effects on social behaviors would be obtained under conditions during which the drug is voluntarily (actively) administered. The current study investigated whether MA drinking affects pair bonding and what neurocircuits are engaged. In Experiment 1, we exposed male and female voles to 4 days each of 20 and 40 mg/L MA under a continuous 2-bottle choice (2BC) procedure. Animals were housed either singly or in mesh-divided cages with a social partner. Voles consumed MA in a drinking solution, but MA drinking was not affected by either sex or housing condition. In Experiment 2, we investigated whether MA drinking disrupts social bonding by measuring aggression and partner preference formation following three consecutive days of 18-hour/day access to 100 mg/L MA in a 2BC procedure. Although aggression toward a novel opposite-sex animal was not affected by MA exposure, partner preference was inhibited in MA drinking animals. Experiment 3 examined whether alterations in hypothalamic neuropeptides provide a potential explanation for the inhibition of partner preference observed in Experiment 2. MA drinking led to significant decreases in oxytocin, but not vasopressin, in the paraventricular nucleus of the hypothalamus. These experiments are the first investigation into how voluntary pre-exposure to MA affects the development of social attachment in a socially monogamous species and identify potential neural circuits involved in these effects.
Collapse
Affiliation(s)
- Caroline M. Hostetler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
36
|
Shi X, Walter NAR, Harkness JH, Neve KA, Williams RW, Lu L, Belknap JK, Eshleman AJ, Phillips TJ, Janowsky A. Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function. PLoS One 2016; 11:e0152581. [PMID: 27031617 PMCID: PMC4816557 DOI: 10.1371/journal.pone.0152581] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (MA) and neurotransmitter precursors and metabolites such as tyramine, octopamine, and β-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2) mice express a non-synonymous single nucleotide polymorphism (SNP) in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6) mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD) family of recombinant inbred (RI) strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30-40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options.
Collapse
Affiliation(s)
- Xiao Shi
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nicole A. R. Walter
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John H. Harkness
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kim A. Neve
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - John K. Belknap
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Amy J. Eshleman
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Tamara J. Phillips
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Aaron Janowsky
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- The Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
37
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
38
|
Lominac KD, Quadir SG, Barrett HM, McKenna CL, Schwartz LM, Ruiz PN, Wroten MG, Campbell RR, Miller BW, Holloway JJ, Travis KO, Rajasekar G, Maliniak D, Thompson AB, Urman LE, Kippin TE, Phillips TJ, Szumlinski KK. Prefrontal glutamate correlates of methamphetamine sensitization and preference. Eur J Neurosci 2016; 43:689-702. [PMID: 26742098 PMCID: PMC4783259 DOI: 10.1111/ejn.13159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022]
Abstract
Methamphetamine (MA) is a widely misused, highly addictive psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated MA impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relationship between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of MA (ten injections of 2 mg/kg, i.p.) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high vs. low MA-drinking selectively bred mouse lines (MAHDR vs. MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated MA sensitized drug-induced glutamate release and lowered indices of N-methyl-d-aspartate receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. Elevated basal glutamate, blunted MA-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high vs. low MA drinking, and Homer2a/b levels were inversely correlated with the motivational valence of MA in C57BL/6J mice. These data provide novel evidence that repeated, low-dose MA is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in MA addiction vulnerability/resiliency.
Collapse
Affiliation(s)
- Kevin D. Lominac
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Sema G. Quadir
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Hannah M. Barrett
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Courtney L. McKenna
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Lisa M. Schwartz
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Paige N. Ruiz
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Rianne R. Campbell
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Bailey W. Miller
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - John J. Holloway
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Katherine O. Travis
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Ganesh Rajasekar
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Dan Maliniak
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Andrew B. Thompson
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Lawrence E. Urman
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Tamara J. Phillips
- Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University; VA Portland Health Care System, Portland, OR, 97239, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| |
Collapse
|
39
|
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:1863-77. [PMID: 26431116 PMCID: PMC4594192 DOI: 10.1111/acer.12810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.
Collapse
Affiliation(s)
- Angela R. Ozburn
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J. Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - John C. Crabbe
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
40
|
Phillips TJ, Shabani S. An animal model of differential genetic risk for methamphetamine intake. Front Neurosci 2015; 9:327. [PMID: 26441502 PMCID: PMC4585292 DOI: 10.3389/fnins.2015.00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
The question of whether genetic factors contribute to risk for methamphetamine (MA) use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine-associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1) agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the development of a binge model of MA intake, examining the effect of withdrawal from chronic MA on MA intake, and studying potential Taar1 gene × gene and gene × environment interactions. These and other studies are intended to improve our genetic model with regard to its translational value to human addiction.
Collapse
Affiliation(s)
- Tamara J. Phillips
- VA Portland Health Care SystemPortland, OR, USA
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | | |
Collapse
|
41
|
Harkness JH, Shi X, Janowsky A, Phillips TJ. Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits. Neuropsychopharmacology 2015; 40:2175-84. [PMID: 25740289 PMCID: PMC4613607 DOI: 10.1038/npp.2015.61] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
Abstract
Continued methamphetamine (MA) use is dependent on a positive MA experience and is likely attenuated by sensitivity to the aversive effects of MA. Bidirectional selective breeding of mice for high (MAHDR) or low (MALDR) voluntary consumption of MA demonstrates a genetic influence on MA intake. Quantitative trait locus (QTL) mapping identified a QTL on mouse chromosome 10 that accounts for greater than 50% of the genetically-determined differences in MA intake in the MAHDR and MALDR lines. The trace amine-associated receptor 1 gene (Taar1) is within the confidence interval of the QTL and encodes a receptor (TAAR1) that modulates monoamine neurotransmission and at which MA serves as an agonist. We demonstrate the existence of a non-functional allele of Taar1 in the DBA/2J mouse strain, one of the founder strains of the selected lines, and show that this non-functional allele co-segregates with high MA drinking and with reduced sensitivity to MA-induced conditioned taste aversion (CTA) and hypothermia. The functional Taar1 allele, derived from the other founder strain, C57BL/6J, segregates with low MA drinking and heightened sensitivity to MA-induced CTA and hypothermia. A role for TAAR1 in these phenotypes is corroborated in Taar1 transgenic mice: Taar1 knockout mice consume more MA and exhibit insensitivity to MA-induced CTA and hypothermia, compared with Taar1 wild-type mice. These are the first data to show that voluntary MA consumption is, in part, regulated by TAAR1 function. Behavioral and physiological studies indicate that TAAR1 function increases sensitivity to aversive effects of MA, and may thereby protect against MA use.
Collapse
Affiliation(s)
- John H Harkness
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Xiao Shi
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Tamara J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
42
|
Nesil T, Kanit L, Ugur M, Pogun S. Nicotine withdrawal in selectively bred high and low nicotine preferring rat lines. Pharmacol Biochem Behav 2015; 131:91-7. [DOI: 10.1016/j.pbb.2015.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 01/17/2023]
|
43
|
Eastwood EC, Barkley-Levenson AM, Phillips TJ. Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine. Behav Brain Res 2014; 272:111-20. [PMID: 24978098 PMCID: PMC4167388 DOI: 10.1016/j.bbr.2014.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/20/2023]
Abstract
Genetic factors likely influence individual sensitivity to positive and negative effects of methamphetamine (MA) and risk for MA dependence. Genetic influence on MA consumption has been confirmed by selectively breeding mouse lines to consume high (MAHDR) or low (MALDR) amounts of MA, using a two-bottle choice MA drinking (MADR) procedure. Here, we employed a lickometer system to characterize the microstructure of MA (20, 40, and 80mg/l) and water intake in MAHDR and MALDR mice in 4-h limited access sessions, during the initial 4hours of the dark phase of their 12:12h light:dark cycle. Licks at one-minute intervals and total volume consumed were recorded, and bout analysis was performed. MAHDR and MALDR mice consumed similar amounts of MA in mg/kg on the first day of access, but MAHDR mice consumed significantly more MA than MALDR mice during all subsequent sessions. The higher MA intake of MAHDR mice was associated with a larger number of MA bouts, longer bout duration, shorter interbout interval, and shorter latency to the first bout. In a separate 4-h limited access MA drinking study, MALDR and MAHDR mice had similar blood MA levels on the first day MA was offered, but MAHDR mice had higher blood MA levels on all subsequent days, which corresponded with MA intake. These data provide insight into the microstructure of MA intake in an animal model of differential genetic risk for MA consumption, which may be pertinent to MA use patterns relevant to genetic risk for MA dependence.
Collapse
Affiliation(s)
- Emily C Eastwood
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA.
| | - Amanda M Barkley-Levenson
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA.
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA; Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
44
|
Cunningham CL. Genetic relationship between ethanol-induced conditioned place preference and other ethanol phenotypes in 15 inbred mouse strains. Behav Neurosci 2014; 128:430-45. [PMID: 24841742 DOI: 10.1037/a0036459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genetic relationships between different behaviors used to index the rewarding or reinforcing effects of alcohol are poorly understood. To address this issue, ethanol-induced conditioned place preference (CPP) was tested in a genetically diverse panel of inbred mouse strains, and strain means from this study and other inbred strain studies were used to examine the genetic correlation between CPP and several ethanol-related phenotypes, including activity measures recorded during CPP training and testing. Mice from each strain were exposed to a well-characterized unbiased place conditioning procedure using ethanol doses of 2 or 4 g/kg; an additional group from each strain was exposed to saline alone on all trials. Genotype had a significant effect on CPP, basal locomotor activity, ethanol-stimulated activity, and the effect of repeated ethanol exposure on activity. Correlational analyses showed significant negative genetic correlations between CPP and sweetened ethanol intake and between CPP and test session activity, as well as a significant positive genetic correlation between CPP and chronic ethanol withdrawal severity. Moreover, there was a trend toward a positive genetic correlation between CPP and ethanol-induced conditioned taste aversion. These genetic correlations suggest overlap in the genetic mechanisms underlying CPP and each of these traits. The patterns of genetic relationships suggest a greater impact of ethanol's aversive effects on drinking and a greater impact of ethanol's rewarding effects on CPP. Overall, these data support the idea that genotype influences ethanol's rewarding effect, a factor that may contribute importantly to addictive vulnerability.
Collapse
|
45
|
Lominac KD, McKenna CL, Schwartz LM, Ruiz PN, Wroten MG, Miller BW, Holloway JJ, Travis KO, Rajasekar G, Maliniak D, Thompson AB, Urman LE, Phillips TJ, Szumlinski KK. Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation. Front Syst Neurosci 2014; 8:70. [PMID: 24847220 PMCID: PMC4019853 DOI: 10.3389/fnsys.2014.00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/10/2014] [Indexed: 11/16/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychomotor stimulant, with life-time prevalence rates of abuse ranging from 5-10% world-wide. Yet, a paucity of research exists regarding MA addiction vulnerability/resiliency and neurobiological mediators of the transition to addiction that might occur upon repeated low-dose MA exposure, more characteristic of early drug use. As stimulant-elicited neuroplasticity within dopamine neurons innervating the nucleus accumbens (NAC) and prefrontal cortex (PFC) is theorized as central for addiction-related behavioral anomalies, we used a multi-disciplinary research approach in mice to examine the interactions between sub-toxic MA dosing, motivation for MA and mesocorticolimbic monoamines. Biochemical studies of C57BL/6J (B6) mice revealed short- (1 day), as well as longer-term (21 days), changes in extracellular dopamine, DAT and/or D2 receptors during withdrawal from 10, once daily, 2 mg/kg MA injections. Follow-up biochemical studies conducted in mice selectively bred for high vs. low MA drinking (respectively, MAHDR vs. MALDR mice), provided novel support for anomalies in mesocorticolimbic dopamine as a correlate of genetic vulnerability to high MA intake. Finally, neuropharmacological targeting of NAC dopamine in MA-treated B6 mice demonstrated a bi-directional regulation of MA-induced place-conditioning. These results extend extant literature for MA neurotoxicity by demonstrating that even subchronic exposure to relatively low MA doses are sufficient to elicit relatively long-lasting changes in mesocorticolimbic dopamine and that drug-induced or idiopathic anomalies in mesocorticolimbic dopamine may underpin vulnerability/resiliency to MA addiction.
Collapse
Affiliation(s)
- Kevin D. Lominac
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Courtney L. McKenna
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Lisa M. Schwartz
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Paige N. Ruiz
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Bailey W. Miller
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - John J. Holloway
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Katherine O. Travis
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Ganesh Rajasekar
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Dan Maliniak
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Andrew B. Thompson
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Lawrence E. Urman
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Tamara J. Phillips
- Behavioral Neuroscience, Methamphetamine Abuse Research Center, Veterans Affairs Medical Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
46
|
Ye T, Pozos H, Phillips TJ, Izquierdo A. Long-term effects of exposure to methamphetamine in adolescent rats. Drug Alcohol Depend 2014; 138:17-23. [PMID: 24629630 PMCID: PMC4066881 DOI: 10.1016/j.drugalcdep.2014.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/31/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Flexible cognition is a set of processes mediated by the prefrontal cortex (PFC), an area of the brain that continues to develop during adolescence and into adulthood. Adult rodents exhibit impairments specific to reversal learning across various dosing regimens of methamphetamine (mAMPH). For adolescent rodents, ongoing PFC development can be assessed by discrimination reversal learning, a task dependent on frontostriatal integrity. The task may also index an increased vulnerability for mAMPH sampling in adulthood. METHODS The purpose of the present study was to investigate the long-term effects of escalating, adolescent mAMPH exposure on reversal learning, a PFC-dependent task (Experiment 1) and the likelihood of later sampling of mAMPH in adulthood (Experiment 2). RESULTS Unlike previous research in adult-treated rats, our results show more generalized learning impairments after adolescent mAMPH exposure to include both attenuated visual discrimination as well as reversal learning. Additionally, we found that rats pre-exposed to mAMPH during adolescence consumed significantly more drug in adulthood. Intake of mAMPH was positively correlated with this learning. Taken together, these findings show that even modest exposure to mAMPH during adolescence may induce general learning impairments in adulthood, and an enduring sensitivity to the effects of mAMPH.
Collapse
Affiliation(s)
- Tony Ye
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Hilda Pozos
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Tamara J Phillips
- Oregon Health & Science University, Veterans Affairs Medical Center and Methamphetamine Abuse Research Center, Portland, OR, USA
| | - Alicia Izquierdo
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Eastwood EC, Phillips TJ. Opioid sensitivity in mice selectively bred to consume or not consume methamphetamine. Addict Biol 2014; 19:370-9. [PMID: 23145527 PMCID: PMC3796126 DOI: 10.1111/adb.12003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There has been little investigation of genetic factors and associated mechanisms that influence risk for development of methamphetamine (MA) dependence. Selectively bred mouse lines that exhibit high (MAHDR) or low (MALDR) levels of MA intake in a two-bottle choice MA drinking (MADR) procedure provide a genetic tool for this purpose. These lines were used to determine whether opioid sensitivity and MA intake are genetically associated, because opioid-mediated pathways influence some effects of MA. Sensitivity to the analgesic effects of the μ-opioid receptor (MOP-r) agonist fentanyl (0.05, 0.1, 0.2, 0.4 mg/kg) was examined using two acute thermal tests (hot plate and tail flick) and one chronic pain test (magnesium sulfate abdominal constriction). Locomotor stimulant responses to fentanyl (0.05, 0.1, 0.2, 0.4 mg/kg) and morphine (10, 20, 30 mg/kg) were also examined. In addition, MADR was measured in the progenitor strains [(C57BL/6J (B6), DBA/2J (D2)] of the F2 population from which the selected lines were generated. The MADR lines did not differ in sensitivity to the analgesic effects of fentanyl; however, MALDR mice exhibited greater locomotor activation than MAHDR mice to both fentanyl and morphine. D2 mice consumed more MA than B6 mice. The line differences for MA consumption and morphine activation recapitulated B6 and D2 strain differences for these two traits, but not strain differences previously found for opioid analgesic responses. These results support a negative genetic correlation between MA consumption and sensitivity to the stimulant effects of opioids and suggest the involvement of MOP-r regulated systems in MA intake.
Collapse
Affiliation(s)
- Emily C. Eastwood
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA
- Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd., Portland, Oregon, 97239, USA
| |
Collapse
|
48
|
Eastwood EC, Phillips TJ. Morphine intake and the effects of naltrexone and buprenorphine on the acquisition of methamphetamine intake. GENES, BRAIN, AND BEHAVIOR 2014; 13:226-35. [PMID: 24152140 PMCID: PMC3976242 DOI: 10.1111/gbb.12100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/23/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
Abstract
Some common genetic factors appear to influence risk for drug dependence across multiple drugs of abuse. In previous research, mice that were selectively bred for higher amounts of methamphetamine consumption, using a two-bottle choice methamphetamine drinking procedure, were found to be less sensitive to the locomotor stimulant effects of morphine and of the more selective μ-opioid receptor agonist fentanyl, compared to mice that were bred for low methamphetamine consumption. This suggested that μ-opioid receptor-mediated pathways may influence genetic risk for methamphetamine consumption. We hypothesized that these differences in opioid sensitivity would impact opioid intake in the methamphetamine drinking lines and that drugs with μ-opioid receptor activity would impact methamphetamine intake. Consumption of morphine was examined in 2, two-bottle choice studies, one that compared morphine to quinine consumption and another that used a saccharin fading procedure. Next, naltrexone (0, 0.5, 1, 2, 5, 10 and 20 mg/kg), a μ-opioid receptor antagonist, and buprenorphine (0, 1, 2 or 4 mg/kg), a μ-opioid receptor partial agonist, were each examined for their effects on the acquisition of methamphetamine consumption. Low methamphetamine drinking mice consumed more morphine compared to high methamphetamine drinking mice. Naltrexone did not alter methamphetamine consumption in either selected line; however, buprenorphine reduced methamphetamine intake in the high methamphetamine drinking line. These data show that greater sensitivity to opioids is associated with greater opioid intake and warrant further investigation of drugs with μ-opioid receptor-specific agonist activity in genetically determined differences in methamphetamine consumption.
Collapse
Affiliation(s)
- Emily C. Eastwood
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA
- Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd., Portland, Oregon, 97239, USA
| |
Collapse
|
49
|
Belknap JK, McWeeney S, Reed C, Burkhart-Kasch S, McKinnon CS, Li N, Baba H, Scibelli AC, Hitzemann R, Phillips TJ. Genetic factors involved in risk for methamphetamine intake and sensitization. Mamm Genome 2013; 24:446-58. [PMID: 24217691 PMCID: PMC3880562 DOI: 10.1007/s00335-013-9484-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
Abstract
Lines of mice were created by selective breeding for the purpose of identifying genetic mechanisms that influence the magnitude of the selected trait and to explore genetic correlations for additional traits thought to be influenced by shared mechanisms. DNA samples from high and low methamphetamine-drinking (MADR) and high and low methamphetamine-sensitization lines were used for quantitative trait locus (QTL) mapping. Significant additive genetic correlations between the two traits indicated a common genetic influence, and a QTL on chromosome X was detected for both traits, suggesting one source of this commonality. For MADR mice, a QTL on chromosome 10 accounted for more than 50 % of the genetic variance in that trait. Microarray gene expression analyses were performed for three brain regions for methamphetamine-naïve MADR line mice: nucleus accumbens, prefrontal cortex, and ventral midbrain. Many of the genes that were differentially expressed between the high and low MADR lines were shared in common across the three brain regions. A gene network highly enriched in transcription factor genes was identified as being relevant to genetically determined differences in methamphetamine intake. When the mu opioid receptor gene (Oprm1), located on chromosome 10 in the QTL region, was added to this top-ranked transcription factor network, it became a hub in the network. These data are consistent with previously published findings of opioid response and intake differences between the MADR lines and suggest that Oprm1, or a gene that impacts activity of the opioid system, plays a role in genetically determined differences in methamphetamine intake.
Collapse
Affiliation(s)
- John K. Belknap
- Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR, 97239 USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Shannon McWeeney
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, 97239 USA
- Division of Biostatistics of Public Health & Preventative Medicine, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Sue Burkhart-Kasch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Carrie S. McKinnon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Na Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Harue Baba
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Angela C. Scibelli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Robert Hitzemann
- Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR, 97239 USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| | - Tamara J. Phillips
- Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR, 97239 USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239 USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, 97239 USA
| |
Collapse
|
50
|
Olsen RH, Allen CN, Derkach VA, Phillips TJ, Belknap JK, Raber J. Impaired memory and reduced sensitivity to the circadian period lengthening effects of methamphetamine in mice selected for high methamphetamine consumption. Behav Brain Res 2013; 256:197-204. [PMID: 23954232 PMCID: PMC3815974 DOI: 10.1016/j.bbr.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/04/2023]
Abstract
Drug abuse runs in families suggesting the involvement of genetic risk factors. Differences in addiction-related neurobiological systems, including learning and memory and circadian rhythms, may exist prior to developing addiction. We characterized the cognitive phenotypes and the free-running circadian period of mouse lines selectively bred for high methamphetamine (MA) drinking (MA high drinking or MAHDR) and low MA drinking (MA low drinking or MALDR). MA-naïve MALDR mice showed spatial memory retention while MAHDR mice did not. MA-naïve MAHDR mice had elevated hippocampal levels of the AMPA receptor subunits GluA2 (old terminology: GluR2), but not GluA1 (old terminology: GluR1). There were no line differences in the free running period (τ) when only water was available. During a 25 mg/L MA solution access period (vs water), there was an increase in τ in MALDR but not MAHDR mice, although MAHDR mice consumed significantly more MA. During a 50 mg/L MA solution access period (vs water), both lines showed an increased τ. There was a positive correlation between MA consumption and τ from baseline in MALDR, but not MAHDR, mice. Thus, a heritable proclivity for elevated MA self-administration may be associated with impairments in hippocampus-dependent memory and reduced sensitivity to effects of MA on lengthening of the circadian period.
Collapse
Affiliation(s)
- Reid H.J. Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Charles N. Allen
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Victor A. Derkach
- Vollum Institute, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Portland VA Medical Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - John K. Belknap
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Portland VA Medical Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Division of Neuroscience ONPRC, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|