1
|
Keesey IW, Doll G, Chakraborty SD, Baschwitz A, Lemoine M, Kaltenpoth M, Svatoš A, Sachse S, Knaden M, Hansson BS. Neuroecology of alcohol risk and reward: Methanol boosts pheromones and courtship success in Drosophila melanogaster. SCIENCE ADVANCES 2025; 11:eadi9683. [PMID: 40173238 PMCID: PMC11963984 DOI: 10.1126/sciadv.adi9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Attraction of Drosophila melanogaster toward by-products of alcoholic fermentation, especially ethanol, has been extensively studied. Previous research has provided several interpretations of this attraction, including potential drug abuse, or a self-medicating coping strategy after mate rejection. We posit that the ecologically adaptive value of alcohol attraction has not been fully explored. Here, we assert a simple yet vital biological rationale for this alcohol preference. Flies display attraction to fruits rich in alcohol, specifically ethanol and methanol, where contact results in a rapid amplification of fatty acid-derived pheromones that enhance courtship success. We also identify olfactory sensory neurons that detect these alcohols, where we reveal roles in both attraction and aversion, and show that valence is balanced around alcohol concentration. Moreover, we demonstrate that methanol can be deadly, and adult flies must therefore accurately weigh the trade-off between benefits and costs for exposure within their naturally fermented and alcohol-rich environments.
Collapse
Affiliation(s)
- Ian W. Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Georg Doll
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sudeshna Das Chakraborty
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- European Neuroscience Institute (ENI), Neural Computation and Behavior, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Amelie Baschwitz
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Marion Lemoine
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
2
|
Peterson SK, Ahmad ST. A Brief Overview of Ethanol Tolerance and Its Potential Association with Circadian Rhythm in Drosophila. Int J Mol Sci 2024; 25:12605. [PMID: 39684317 PMCID: PMC11641815 DOI: 10.3390/ijms252312605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Alcohol consumption and addiction remain global health concerns, with significant loss of productivity, morbidity, and mortality. Drosophila melanogaster, a widely used model organism, offers valuable insights into the genetic and neuronal mechanisms underlying ethanol-induced behaviors (EIBs) such as sedation, recovery, and tolerance. This narrative review focuses on studies in the Drosophila model system suggesting an association between circadian rhythm genes as modulators of ethanol tolerance. Mutations in these genes disrupt both the circadian cycle and tolerance, underscoring the interplay between circadian rhythm and ethanol processing although the exact mechanisms remain largely unknown. Additionally, genes involved in stress response, gene expression regulation, neurotransmission, and synaptic activity were implicated in ethanol tolerance modulation. At the neuronal level, recent studies have highlighted the involvement of corazonin (CRZ) and neuropeptide F (NPF) neurons in modulating EIBs. Understanding the temporal dynamics of tolerance development is crucial for describing the molecular basis of ethanol tolerance. Ultimately, insights gained from Drosophila studies hold promise for elucidating the neurobiological underpinnings of alcohol use disorders and addiction, contributing to more effective interventions and treatments.
Collapse
Affiliation(s)
| | - S. Tariq Ahmad
- Department of Biology, Colby College, Waterville, ME 04901, USA;
| |
Collapse
|
3
|
Larnerd C, Kachewar N, Wolf FW. Drosophila learning and memory centers and the actions of drugs of abuse. Learn Mem 2024; 31:a053815. [PMID: 38862166 PMCID: PMC11199947 DOI: 10.1101/lm.053815.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
| | - Neha Kachewar
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Health Sciences Research Institute, University of California, Merced, California 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
4
|
Nuñez KM, Catalano JL, Scaplen KM, Kaun KR. Ethanol Behavioral Responses in Drosophila. Cold Spring Harb Protoc 2023; 2023:719-24. [PMID: 37019606 PMCID: PMC10551053 DOI: 10.1101/pdb.top107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Drosophila melanogaster is a powerful genetic model for investigating the mechanisms underlying ethanol-induced behaviors, metabolism, and preference. Ethanol-induced locomotor activity is especially useful for understanding the mechanisms by which ethanol acutely affects the brain and behavior. Ethanol-induced locomotor activity is characterized by hyperlocomotion and subsequent sedation with increased exposure duration or concentration. Locomotor activity is an efficient, easy, robust, and reproducible behavioral screening tool for identifying underlying genes and neuronal circuits as well as investigating genetic and molecular pathways. We introduce a detailed protocol for performing experiments investigating how volatilized ethanol affects locomotor activity using the fly Group Activity Monitor (flyGrAM). We introduce installation, implementation, data collection, and subsequent data-analysis methods for investigating how volatilized stimuli affect activity. We also introduce a procedure for how to optogenetically probe neuronal activity to identify the neural mechanisms underlying locomotor activity.
Collapse
Affiliation(s)
- Kavin M Nuñez
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Jamie L Catalano
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, Rhode Island 02917, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, Rhode Island 02917, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
5
|
Lange AP, Wolf FW. Alcohol tolerance encoding in sleep regulatory circadian neurons in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526363. [PMID: 36778487 PMCID: PMC9915517 DOI: 10.1101/2023.01.30.526363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alcohol tolerance is a simple form of behavioral and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was comprised of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
| |
Collapse
|
6
|
Playing to the crowd: Using Drosophila to dissect mechanisms underlying plastic male strategies in sperm competition games. ADVANCES IN THE STUDY OF BEHAVIOR 2023. [DOI: 10.1016/bs.asb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
8
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Baker BM, Mokashi SS, Shankar V, Hatfield JS, Hannah RC, Mackay TFC, Anholt RRH. The Drosophila brain on cocaine at single-cell resolution. Genome Res 2021; 31:1927-1937. [PMID: 34035044 PMCID: PMC8494231 DOI: 10.1101/gr.268037.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Whereas the neurological effects of cocaine have been well documented, effects of acute cocaine consumption on genome-wide gene expression across the brain remain largely unexplored. This question cannot be readily addressed in humans but can be approached using the Drosophila melanogaster model, where gene expression in the entire brain can be surveyed at once. Flies exposed to cocaine show impaired locomotor activity, including climbing behavior and startle response (a measure of sensorimotor integration), and increased incidence of seizures and compulsive grooming. To identify specific cell populations that respond to acute cocaine exposure, we analyzed single-cell transcriptional responses in duplicate samples of flies that consumed fixed amounts of sucrose or sucrose supplemented with cocaine, in both sexes. Unsupervised clustering of the transcriptional profiles of a total of 86,224 cells yielded 36 distinct clusters. Annotation of clusters based on gene markers revealed that all major cell types (neuronal and glial) as well as neurotransmitter types from most brain regions were represented. The brain transcriptional responses to cocaine showed profound sexual dimorphism and were considerably more pronounced in males than females. Differential expression analysis within individual clusters indicated cluster-specific responses to cocaine. Clusters corresponding to Kenyon cells of the mushroom bodies and glia showed especially large transcriptional responses following cocaine exposure. Cluster specific coexpression networks and global interaction networks revealed a diverse array of cellular processes affected by acute cocaine exposure. These results provide an atlas of sexually dimorphic cocaine-modulated gene expression in a model brain.
Collapse
Affiliation(s)
- Brandon M Baker
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Sneha S Mokashi
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Vijay Shankar
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Jeffrey S Hatfield
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Rachel C Hannah
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646, USA
| |
Collapse
|
10
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Kang YY, Wachi Y, Engdorf E, Fumagalli E, Wang Y, Myers J, Massey S, Greiss A, Xu S, Roman G. Normal Ethanol Sensitivity and Rapid Tolerance Require the G Protein Receptor Kinase 2 in Ellipsoid Body Neurons in Drosophila. Alcohol Clin Exp Res 2020; 44:1686-1699. [PMID: 32573992 PMCID: PMC7485117 DOI: 10.1111/acer.14396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND G protein signaling pathways are key neuromodulatory mechanisms for behaviors and neurological functions that affect the impact of ethanol (EtOH) on locomotion, arousal, and synaptic plasticity. Here, we report a novel role for the Drosophila G protein-coupled receptor kinase 2 (GPRK2) as a member of the GRK4/5/6 subfamily in modulating EtOH-induced behaviors. METHODS We studied the requirement of Drosophila Gprk2 for naïve sensitivity to EtOH sedation and ability of the fly to develop rapid tolerance after a single exposure to EtOH, using the loss of righting reflex (LORR) and fly group activity monitor (FlyGrAM) assays. RESULTS Loss-of-function Gprk2 mutants demonstrate an increase in alcohol-induced hyperactivity, reduced sensitivity to the sedative effects of EtOH, and diminished rapid tolerance after a single intoxicating exposure. The requirement for Gprk2 in EtOH sedation and rapid tolerance maps to ellipsoid body neurons within the Drosophila brain, suggesting that wild-type Gprk2 is required for modulation of locomotion and alertness. However, even though Gprk2 loss of function leads to decreased and fragmented sleep, this change in the sleep state does not depend on Gprk2 expression in the ellipsoid body. CONCLUSION Our work on GPRK2 has established a role for this GRK4/5/6 subfamily member in EtOH sensitivity and rapid tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shiyu Xu
- University of HoustonHoustonTexas
| | - Gregg Roman
- University of MississippiUniversityMississippi
| |
Collapse
|
13
|
Park SJ, Ja WW. Absolute ethanol intake predicts ethanol preference in Drosophilamelanogaster. J Exp Biol 2020; 223:jeb224121. [PMID: 32366685 PMCID: PMC7295594 DOI: 10.1242/jeb.224121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Factors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste and ethanol concentration. Both sexes showed an ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption.
Collapse
Affiliation(s)
- Scarlet J Park
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William W Ja
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Altered Actin Filament Dynamics in the Drosophila Mushroom Bodies Lead to Fast Acquisition of Alcohol Consumption Preference. J Neurosci 2019; 39:8877-8884. [PMID: 31558618 DOI: 10.1523/jneurosci.0973-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Alcohol use is highly prevalent in the United States and across the world, and every year millions of people suffer from alcohol use disorders (AUDs). Although the genetic contribution to developing AUDs is estimated to be 50-60%, many of the underlying molecular mechanisms remain unclear. Previous studies from our laboratory revealed that Drosophila melanogaster lacking RhoGAP18B and Ras Suppressor 1 (Rsu1) display reduced sensitivity to ethanol-induced sedation. Both Rsu1 and RhoGAP18B are negative regulators of the small Rho-family GTPase, Rac1, a modulator of actin dynamics. Here we investigate the role of Rac1 and its downstream target, the actin-severing protein cofilin, in alcohol consumption preference. We show that these two regulators of actin dynamics can alter male experience-dependent alcohol preference in a bidirectional manner: expressing either activated Rac1 or dominant-negative cofilin in the mushroom bodies (MBs) abolishes experience-dependent alcohol preference. Conversely, dominant-negative Rac1 or activated cofilin MB expression lead to faster acquisition of alcohol preference. Our data show that Rac1 and cofilin activity are key to determining the rate of acquisition of alcohol preference, revealing a critical role of actin dynamics regulation in the development of voluntary self-administration in Drosophila SIGNIFICANCE STATEMENT The risks for developing an alcohol use disorder (AUD) are strongly determined by genetic factors. Understanding the genes and molecular mechanisms that contribute to that risk is therefore a necessary first step for the development of targeted therapeutic intervention. Here we show that regulators of actin cytoskeleton dynamics can bidirectionally determine the acquisition rate of alcohol self-administration, highlighting this process as a key mechanism contributing to the risk of AUD development.
Collapse
|
15
|
Parkhurst SJ, Adhikari P, Navarrete JS, Legendre A, Manansala M, Wolf FW. Perineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance. Cell Rep 2019; 22:1647-1656. [PMID: 29444420 PMCID: PMC5831198 DOI: 10.1016/j.celrep.2018.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity. The perineurial glia form the continuous outer cellular layer of the blood-brain barrier and are the interface between the brain and the circulation. Ethanol tolerance development requires the A kinase anchoring protein Akap200 specifically in perineurial glia. Akap200 tightly coordinates protein kinase A, actin, and calcium signaling at the membrane to control tolerance. Furthermore, ethanol causes a structural remodeling of the actin cytoskeleton and perineurial membrane topology in an Akap200-dependent manner, without disrupting classical barrier functions. Our findings reveal an active molecular signaling process in the cells at the blood-brain interface that permits a form of behavioral plasticity induced by ethanol.
Collapse
Affiliation(s)
- Sarah J Parkhurst
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Pratik Adhikari
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Jovana S Navarrete
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Arièle Legendre
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Miguel Manansala
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA; Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
16
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
17
|
Mustard JA, Oquita R, Garza P, Stoker A. Honey Bees (Apis mellifera) Show a Preference for the Consumption of Ethanol. Alcohol Clin Exp Res 2018; 43:26-35. [PMID: 30347437 DOI: 10.1111/acer.13908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse and alcoholism are significant global issues. Honey bees are excellent models for learning and other complex behaviors; furthermore, they share many behavioral responses to ethanol (EtOH) with humans and animal models. We develop a 2-feeder choice assay to determine whether honey bees will self-administer and preferentially consume solutions containing EtOH. METHODS Gustatory responsiveness to EtOH is determined using the proboscis extension reflex and consumption assays. A 2-feeder choice assay is used to examine preference for the consumption of EtOH. Survival assays assess the metabolic and toxic effects of EtOH consumption. RESULTS Honey bees find the taste of EtOH to be aversive when in water, but addition of sucrose masks the aversive taste. Even though the taste of EtOH is not appetitive, honey bees preferentially consume sucrose solutions containing 1.25 to 2.5% EtOH in a dose-dependent manner. Based on survival assays, honey bees may not be able to derive caloric value from EtOH, and EtOH concentrations of 2.5% or higher lead to significant increases in mortality. CONCLUSIONS Honey bees will self-administer EtOH and show a preference for consuming solutions containing EtOH. Bees may not be able to efficiently utilize EtOH as an energy source, but EtOH-dependent increases in mortality complicate separating the effects of caloric value and toxicity.
Collapse
Affiliation(s)
- Julie A Mustard
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Ramiro Oquita
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Paulina Garza
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Alexander Stoker
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
18
|
Monitoring food preference in Drosophila by oligonucleotide tagging. Proc Natl Acad Sci U S A 2018; 115:9020-9025. [PMID: 30127010 DOI: 10.1073/pnas.1716880115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster is a powerful model organism for dissecting the neurogenetic basis of appetitive and aversive behaviors. However, some methods used to assay food preference require or cause starvation. This can be problematic for fly ethanol research because it can be difficult to dissociate caloric preference for ethanol from pharmacological preference for the drug. We designed BARCODE, a starvation-independent assay that uses trace levels of oligonucleotide tags to differentially mark food types. In BARCODE, flies feed ad libitum, and relative food preference is monitored by qPCR of the oligonucleotides. Persistence of the ingested oligomers within the fly records the feeding history of the fly over several days. Using BARCODE, we identified a sexually dimorphic preference for ethanol. Females are attracted to ethanol-laden foods, whereas males avoid consuming it. Furthermore, genetically feminizing male mushroom body lobes induces preference for ethanol. In addition, we demonstrate that BARCODE can be used for multiplex diet measurements when animals are presented with more than two food choices.
Collapse
|
19
|
Ethanol Regulates Presynaptic Activity and Sedation through Presynaptic Unc13 Proteins in Drosophila. eNeuro 2018; 5:eN-NWR-0125-18. [PMID: 29911175 PMCID: PMC6001265 DOI: 10.1523/eneuro.0125-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 11/21/2022] Open
Abstract
Ethanol has robust effects on presynaptic activity in many neurons, however, it is not yet clear how this drug acts within this compartment to change neural activity, nor the significance of this change on behavior and physiology in vivo. One possible presynaptic effector for ethanol is the Munc13-1 protein. Herein, we show that ethanol binding to the rat Munc13-1 C1 domain, at concentrations consistent with binge exposure, reduces diacylglycerol (DAG) binding. The inhibition of DAG binding is predicted to reduce the activity of Munc13-1 and presynaptic release. In Drosophila, we show that sedating concentrations of ethanol significantly reduce synaptic vesicle release in olfactory sensory neurons (OSNs), while having no significant impact on membrane depolarization and Ca2+ influx into the presynaptic compartment. These data indicate that ethanol targets the active zone in reducing synaptic vesicle exocytosis. Drosophila, haploinsufficent for the Munc13-1 ortholog Dunc13, are more resistant to the effect of ethanol on presynaptic inhibition. Genetically reducing the activity of Dunc13 through mutation or expression of RNAi transgenes also leads to a significant resistance to the sedative effects of ethanol. The neuronal expression of Munc13-1 in heterozygotes for a Dunc13 loss-of-function mutation can largely rescue the ethanol sedation resistance phenotype, indicating a conservation of function between Munc13-1 and Dunc13 in ethanol sedation. Hence, reducing Dunc13 activity leads to naïve physiological and behavioral resistance to sedating concentrations of ethanol. We propose that reducing Dunc13 activity, genetically or pharmacologically by ethanol binding to the C1 domain of Munc13-1/Dunc13, promotes a homeostatic response that leads to ethanol tolerance.
Collapse
|
20
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
22
|
Gonzalez DA, Jia T, Pinzón JH, Acevedo SF, Ojelade SA, Xu B, Tay N, Desrivières S, Hernandez JL, Banaschewski T, Büchel C, Bokde AL, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland PA, Heinz A, Ittermann B, Lathrop M, Martinot JL, Paus T, Smolka MN, IMAGEN consortium, Rodan AR, Schumann G, Rothenfluh A. The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry 2018; 23:621-628. [PMID: 28607459 PMCID: PMC5729071 DOI: 10.1038/mp.2017.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitously expressed genes have been implicated in a variety of specific behaviors, including responses to ethanol. However, the mechanisms that confer this behavioral specificity have remained elusive. Previously, we showed that the ubiquitously expressed small GTPase Arf6 is required for normal ethanol-induced sedation in adult Drosophila. Here, we show that this behavioral response also requires Efa6, one of (at least) three Drosophila Arf6 guanine exchange factors. Ethanol-naive Arf6 and Efa6 mutants were sensitive to ethanol-induced sedation and lacked rapid tolerance upon re-exposure to ethanol, when compared with wild-type flies. In contrast to wild-type flies, both Arf6 and Efa6 mutants preferred alcohol-containing food without prior ethanol experience. An analysis of the human ortholog of Arf6 and orthologs of Efa6 (PSD1-4) revealed that the minor G allele of single nucleotide polymorphism (SNP) rs13265422 in PSD3, as well as a haplotype containing rs13265422, was associated with an increased frequency of drinking and binge drinking episodes in adolescents. The same haplotype was also associated with increased alcohol dependence in an independent European cohort. Unlike the ubiquitously expressed human Arf6 GTPase, PSD3 localization is restricted to the brain, particularly the prefrontal cortex (PFC). Functional magnetic resonance imaging revealed that the same PSD3 haplotype was also associated with a differential functional magnetic resonance imaging signal in the PFC during a Go/No-Go task, which engages PFC-mediated executive control. Our translational analysis, therefore, suggests that PSD3 confers regional specificity to ubiquitous Arf6 in the PFC to modulate human alcohol-drinking behaviors.
Collapse
Affiliation(s)
- Dante A. Gonzalez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tianye Jia
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jorge H. Pinzón
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Summer F. Acevedo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shamsideen A. Ojelade
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bing Xu
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Nicole Tay
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Sylvane Desrivières
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jeannie L. Hernandez
- Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Arun L.W. Bokde
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Patricia J. Conrod
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom,Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Canada
| | - Herta Flor
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l’Energie Atomique, Gif-sur-Yvette, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Departments of Psychiatry and Psychology, University of Vermont, Burlington, USA
| | - Penny A. Gowland
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Ontario, Canada
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 “Imaging & Psychiatry”, University Paris Sud, Orsay, and AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Tomás Paus
- School of Psychology, University of Nottingham, United Kingdom,Rotman Research Institute, University of Toronto, Toronto, Canada,Montreal Neurological Institute, McGill University, Canada
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Germany,Neuroimaging Center, Department of Psychology, Technische Universität Dresden, Germany
| | | | - Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX,Department of Internal Medicine, Division of Nephrology, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Gunter Schumann
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX,Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| |
Collapse
|
23
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
24
|
Ethanol Stimulates Locomotion via a G αs-Signaling Pathway in IL2 Neurons in Caenorhabditis elegans. Genetics 2017; 207:1023-1039. [PMID: 28951527 PMCID: PMC5676223 DOI: 10.1534/genetics.117.300119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Alcohol abuse is among the top causes of preventable death, generating considerable financial, health, and societal burdens. Paradoxically, alcohol... Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative. The exact molecular mechanisms for the acute effects of ethanol on neurons, as either a stimulant or a sedative, however remain unclear. We investigated the role that the heat shock transcription factor HSF-1 played in determining a stimulatory phenotype of Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 mM; 0.1% v/v). Using genetic techniques, we demonstrate that either RNA interference of hsf-1 or use of an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol exposure evident in wild-type animals. We identify that the requirement for HSF-1 in this phenotype was IL2 neuron-specific and required the downstream expression of the α-crystallin ortholog HSP-16.48. Using a combination of pharmacology, optogenetics, and phenotypic analyses we determine that ethanol activates a Gαs-cAMP-protein kinase A signaling pathway in IL2 neurons to stimulate nematode locomotion. We further implicate the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as an end point for the Gαs-dependent signaling pathway. These findings establish and characterize a distinct neurosensory cell signaling pathway that determines the stimulatory action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway.
Collapse
|
25
|
Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J Neurosci 2017; 36:5241-51. [PMID: 27170122 DOI: 10.1523/jneurosci.0499-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that multiple forms of ethanol behavioral plasticity that are relevant to alcoholism are initiated by a shared mechanism. Finally, they link these events to the Drosophila brain region that associates context with innate approach and avoidance responses to code for reward and other higher-order behavior, similar in aspects to the role of the vertebrate mesolimbic system.
Collapse
|
26
|
Beaulieu M, Franke K, Fischer K. Feeding on ripening and over-ripening fruit: interactions between sugar, ethanol and polyphenol contents in a tropical butterfly. ACTA ACUST UNITED AC 2017. [PMID: 28646036 DOI: 10.1242/jeb.162008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In ripe fruit, energy mostly derives from sugar, while in over-ripe fruit, it also comes from ethanol. Such ripeness differences may alter the fitness benefits associated with frugivory if animals are unable to degrade ethanol when consuming over-ripe fruit. In the tropical butterfly Bicyclus anynana, we found that females consuming isocaloric solutions mimicking ripe (20% sucrose) and over-ripe fruit (10% sucrose, 7% ethanol) of the palm Astrocaryum standleyanum exhibited higher fecundity than females consuming a solution mimicking unripe fruit (10% sucrose). Moreover, relative to butterflies consuming a solution mimicking unripe fruit, survival was enhanced when butterflies consumed a solution mimicking either ripe fruit supplemented with polyphenols (fruit antioxidant compounds) or over-ripe fruit devoid of polyphenols. This suggests that (1) butterflies have evolved tolerance mechanisms to derive the same reproductive benefits from ethanol and sugar, and (2) polyphenols may regulate the allocation of sugar and ethanol to maintenance mechanisms. However, variation in fitness owing to the composition of feeding solutions was not paralleled by corresponding physiological changes (alcohol dehydrogenase activity, oxidative status) in butterflies. The fitness proxies and physiological parameters that we measured therefore appear to reflect distinct biological pathways. Overall, our results highlight that the energy content of fruit primarily affects the fecundity of B. anynana butterflies, while the effects of fruit consumption on survival are more complex and vary depending on ripening stage and polyphenol presence. The actual underlying physiological mechanisms linking fruit ripeness and fitness components remain to be clarified.
Collapse
Affiliation(s)
- Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Kristin Franke
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
27
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
28
|
Zer S, Ryvkin J, Wilner HJ, Zak H, Shmueli A, Shohat-Ophir G. A Simple Way to Measure Alterations in Reward-seeking Behavior Using Drosophila melanogaster. J Vis Exp 2016. [PMID: 28060352 DOI: 10.3791/54910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We describe a protocol for measuring ethanol self-administration in fruit flies (Drosophila melanogaster) as a proxy for changes in reward states. We demonstrate a simple way to tap into the fly reward system, modify experiences related to natural reward, and use voluntary ethanol consumption as a measure for changes in reward states. The approach serves as a relevant tool to study the neurons and genes that play a role in experience-mediated changes of internal state. The protocol is composed of two discrete parts: exposing the flies to rewarding and nonrewarding experiences, and assaying voluntary ethanol consumption as a measure of the motivation to obtain a drug reward. The two parts can be used independently to induce the modulation of experience as an initial step for further downstream assays or as an independent two-choice feeding assay, respectively. The protocol does not require a complicated setup and can therefore be applied in any laboratory with basic fly culture tools.
Collapse
Affiliation(s)
- Shir Zer
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University
| | - Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University
| | - Harel J Wilner
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University
| | - Hila Zak
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University
| | - Anat Shmueli
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University;
| |
Collapse
|
29
|
Entler BV, Cannon JT, Seid MA. Morphine addiction in ants: a new model for self-administration and neurochemical analysis. ACTA ACUST UNITED AC 2016; 219:2865-2869. [PMID: 27655824 DOI: 10.1242/jeb.140616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
Abstract
Conventional definitions of drug addiction are focused on characterizing the neurophysiological and behavioral responses of mammals. Although mammalian models have been invaluable in studying specific and complex aspects of addiction, invertebrate systems have proven advantageous in investigating how drugs of abuse corrupt the most basic motivational and neurochemical systems. It has recently been shown that invertebrates and mammals have remarkable similarities in their behavioral and neurochemical responses to drugs of abuse. However, until now only mammals have demonstrated drug seeking and self-administration without the concurrent presence of a natural reward, e.g. sucrose. Using a sucrose-fading paradigm, followed by a two-dish choice test, we establish ants as an invertebrate model of opioid addiction. The ant species Camponotus floridanus actively seeks and self-administers morphine even in the absence of caloric value or additional natural reward. Using HPLC equipped with electrochemical detection, the neurochemicals serotonin, octopamine and dopamine were identified and subsequently quantified, establishing the concurrent neurochemical response to the opioid morphine within the invertebrate brain. With this study, we demonstrate dopamine to be governing opioid addiction in the brains of ants. Thus, this study establishes ants as the first non-mammalian model of self-administration that is truly analogous to mammals.
Collapse
Affiliation(s)
- Brian V Entler
- Biology Department, Neuroscience Program, The University of Scranton, 800 Linden Street, Scranton, PA 18510, USA Chemistry Department, The University of Scranton, 800 Linden Street, Scranton, PA 18510, USA
| | - J Timothy Cannon
- Biology Department, Neuroscience Program, The University of Scranton, 800 Linden Street, Scranton, PA 18510, USA Psychology Department, The University of Scranton, 800 Linden Street, Scranton, PA 18510, USA
| | - Marc A Seid
- Biology Department, Neuroscience Program, The University of Scranton, 800 Linden Street, Scranton, PA 18510, USA
| |
Collapse
|
30
|
Alpha-ketoglutarate reduces ethanol toxicity in Drosophila melanogaster by enhancing alcohol dehydrogenase activity and antioxidant capacity. Alcohol 2016; 55:23-33. [PMID: 27788775 DOI: 10.1016/j.alcohol.2016.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
Abstract
Ethanol at low concentrations (<4%) can serve as a food source for fruit fly Drosophila melanogaster, whereas at higher concentrations it may be toxic. In this work, protective effects of dietary alpha-ketoglutarate (AKG) against ethanol toxicity were studied. Food supplementation with 10-mM AKG alleviated toxic effects of 8% ethanol added to food, and improved fly development. Two-day-old adult flies, reared on diet containing both AKG and ethanol, possessed higher alcohol dehydrogenase (ADH) activity as compared with those reared on control diet or diet with ethanol only. Native gel electrophoresis data suggested that this combination diet might promote post-translational modifications of ADH protein with the formation of a highly active ADH form. The ethanol-containing diet led to significantly higher levels of triacylglycerides stored in adult flies, and this parameter was not altered by AKG supplement. The influence of diet on antioxidant defenses was also assessed. In ethanol-fed flies, catalase activity was higher in males and the levels of low molecular mass thiols were unchanged in both sexes compared to control values. Feeding on a mixture of AKG and ethanol did not affect catalase activity but caused a higher level of low molecular mass thiols compared to ethanol-fed flies. It can be concluded that both a stimulation of some components of antioxidant defense and the increase in ADH activity may be responsible for the protective effects of AKG diet supplementation in combination with ethanol. The results suggest that AKG might be useful as a treatment option to neutralize toxic effects of excessive ethanol intake and to improve the physiological state of D. melanogaster and other animals, potentially including humans.
Collapse
|
31
|
Sekhon ML, Lamina O, Hogan KE, Kliethermes CL. Common genes regulate food and ethanol intake in Drosophila. Alcohol 2016; 53:27-34. [PMID: 27286934 DOI: 10.1016/j.alcohol.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022]
Abstract
The abuse liability of alcohol (ethanol) is believed to result in part from its actions on neurobiological substrates that underlie the motivation toward food and other natural reinforcers, and a growing body of evidence indicates that these substrates are broadly conserved among animal phyla. Understanding the extent to which the substrates regulating ethanol and food intake overlap is an important step toward developing therapeutics that selectively reduce ethanol intake. In the current experiments, we measured food and ethanol intake in Recombinant Inbred (RI) lines of Drosophila melanogaster using several assays, and then calculated genetic correlations to estimate the degree to which common genes might underlie behavior in these assays. We found that food intake and ethanol intake as measured in the capillary assay are genetically correlated traits in D. melanogaster, as well as in a panel of 11 Drosophila species that we tested subsequently. RI line differences in food intake in a dyed food assay were genetically unrelated to ethanol intake in the capillary assay or to ethanol preference measured using an olfactory trap apparatus. Using publicly available gene expression data, we found that expression profiles across the RI lines of a number of genes (including the D2-like dopamine receptor, DOPA decarboxylase, and fruitless) correlated with the RI line differences in food and ethanol intake we measured, while the expression profiles of other genes, including NPF, and the NPF and 5-HT2 receptors, correlated only with ethanol intake or preference. Our results suggest that food and ethanol intake are regulated by some common genes in Drosophila, but that other genes regulate ethanol intake independently of food intake. These results have implications toward the development of therapeutics that preferentially reduce ethanol intake.
Collapse
Affiliation(s)
- Morgan L Sekhon
- Drake University, Department of Psychology and Neuroscience, Des Moines, IA, USA
| | - Omoteniola Lamina
- Drake University, Department of Psychology and Neuroscience, Des Moines, IA, USA
| | - Kerry E Hogan
- Drake University, Department of Psychology and Neuroscience, Des Moines, IA, USA
| | | |
Collapse
|
32
|
Landayan D, Wolf FW. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila. Biomed J 2016; 38:496-509. [PMID: 27013449 PMCID: PMC6138758 DOI: 10.1016/j.bj.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/13/2015] [Indexed: 01/06/2023] Open
Abstract
The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior. Recent progress in Drosophila has revealed not only some common substrates for the actions of drugs of abuse and for the regulation of feeding, but also a remarkable level of conservation with vertebrates for key neuromodulatory transmitters. We speculate that Drosophila may serve as a model for distinguishing the neural mechanisms underlying normal and pathological motivational states that will be applicable to mammals.
Collapse
Affiliation(s)
- Dan Landayan
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - Fred W Wolf
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
33
|
De Nobrega AK, Lyons LC. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila. J Biol Rhythms 2016; 31:142-60. [PMID: 26833081 DOI: 10.1177/0748730415627067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Delineating the factors that affect behavioral and neurological responses to alcohol is critical to facilitate measures for preventing or treating alcohol abuse. The high degree of conserved molecular and physiological processes makes Drosophila melanogaster a valuable model for investigating circadian interactions with alcohol-induced behaviors and examining sex-specific differences in alcohol sensitivity. We found that wild-type Drosophila exhibited rhythms in alcohol-induced sedation under light-dark and constant dark conditions with considerably greater alcohol exposure necessary to induce sedation during the late (subjective) day and peak sensitivity to alcohol occurring during the late (subjective) night. The circadian clock also modulated the recovery from alcohol-induced sedation with flies regaining motor control significantly faster during the late (subjective) day. As predicted, the circadian rhythms in sedation and recovery were absent in flies with a mutation in the circadian gene period or arrhythmic flies housed in constant light conditions. Flies lacking a functional circadian clock were more sensitive to the effects of alcohol with significantly longer recovery times. Similar to other animals and humans, Drosophila exhibit sex-specific differences in alcohol sensitivity. We investigated whether the circadian clock modulated the rhythms in the loss-of-righting reflex, alcohol-induced sedation, and recovery differently in males and females. We found that both sexes demonstrated circadian rhythms in the loss-of-righting reflex and sedation with the differences in alcohol sensitivity between males and females most pronounced during the late subjective day. Recovery of motor reflexes following alcohol sedation also exhibited circadian modulation in male and female flies, although the circadian clock did not modulate the difference in recovery times between the sexes. These studies provide a framework outlining how the circadian clock modulates alcohol-induced behaviors in Drosophila and identifies sexual dimorphisms in the circadian modulation of alcohol behaviors.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| |
Collapse
|
34
|
Sulaj Z, Kuqo A, Vyshka G. The developmental perspective of the chronic alcoholism: Who’s holding the burden of proof? JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015; 9:79-85. [DOI: 10.1016/j.jmhi.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 2015; 6:161. [PMID: 26300775 PMCID: PMC4523784 DOI: 10.3389/fphar.2015.00161] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local) regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.
Collapse
Affiliation(s)
- Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University , Athens, OH, USA
| |
Collapse
|
36
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
37
|
Peru y Colón de Portugal RL, Ojelade SA, Penninti PS, Dove RJ, Nye MJ, Acevedo SF, Lopez A, Rodan AR, Rothenfluh A. Long-lasting, experience-dependent alcohol preference in Drosophila. Addict Biol 2014; 19:392-401. [PMID: 24164972 DOI: 10.1111/adb.12105] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To understand the molecular and neural mechanisms underlying alcohol addiction, many models ranging from vertebrates to invertebrates have been developed. In Drosophila melanogaster, behavioral paradigms from assaying acute responses to alcohol and to behaviors more closely modeling addiction have emerged in recent years. However, both the CAFÉ assay, similar to a two-bottle choice consumption assay, as well as conditioned odor preference, where ethanol is used as the reinforcer, are labor intensive and have low throughput. To address this limitation, we have established a novel ethanol consumption preference assay, called FRAPPÉ, which allows for fast, high throughput measurement of consumption in individual flies, using a fluorescence plate reader. We show that naïve flies do not prefer to consume ethanol, but various pre-exposures, such as ethanol vapor or voluntary ethanol consumption, induce ethanol preference. This ethanol-primed preference is long lasting and is not driven by calories contained in ethanol during the consumption choice. Our novel experience-dependent model of ethanol preference in Drosophila-a highly genetically tractable organism-therefore recapitulates salient features of human alcohol abuse and will facilitate the molecular understanding of the development of alcohol preference.
Collapse
Affiliation(s)
- Raniero L. Peru y Colón de Portugal
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
- Program in Neuroscience; UT Southwestern Medical Center; Dallas TX USA
| | - Shamsideen A. Ojelade
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
- Program in Neuroscience; UT Southwestern Medical Center; Dallas TX USA
| | | | - Rachel J. Dove
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
| | - Matthew J. Nye
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
| | - Summer F. Acevedo
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
| | - Antonio Lopez
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
| | - Aylin R. Rodan
- Division of Nephrology and Department of Internal Medicine; UT Southwestern Medical Center; Dallas TX USA
| | - Adrian Rothenfluh
- Department of Psychiatry; UT Southwestern Medical Center; Dallas TX USA
- Program in Neuroscience; UT Southwestern Medical Center; Dallas TX USA
| |
Collapse
|
38
|
Das J, Xu S, Pany S, Guillory A, Shah V, Roman GW. The pre-synaptic Munc13-1 binds alcohol and modulates alcohol self-administration in Drosophila. J Neurochem 2013; 126:715-26. [PMID: 23692447 DOI: 10.1111/jnc.12315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
Abstract
Munc13-1 is a pre-synaptic active-zone protein essential for neurotransmitter release and involved in pre-synaptic plasticity in brain. Ethanol, butanol, and octanol quenched the intrinsic fluorescence of the C1 domain of Munc13-1 with EC₅₀ s of 52 mM, 26 mM, and 0.7 mM, respectively. Photoactive azialcohols photolabeled Munc13-1 C1 exclusively at Glu-582, which was identified by mass spectrometry. Mutation of Glu-582 to alanine, leucine, and histidine reduced the alcohol binding two- to five-fold. Circular dichroism studies suggested that binding of alcohol increased the stability of the wild-type Munc13-1 compared with the mutants. If Munc13-1 plays some role in the neural effects of alcohol in vivo, changes in the activity of this protein should produce differences in the behavioral responses to ethanol. We tested this prediction with a loss-of-function mutation in the conserved Dunc-13 in Drosophila melanogaster. The Dunc-13(P84200) /+ heterozygotes have 50% wild-type levels of Dunc-13 mRNA and display a very robust increase in ethanol self-administration. This phenotype is reversed by the expression of the rat Munc13-1 protein within the Drosophila nervous system. The present studies indicate that Munc13-1 C1 has binding site(s) for alcohols and Munc13-1 activity is sufficient to restore normal self-administration to Drosophila mutants deficient in Dunc-13 activity. The pre-synaptic Mun13-1 protein is a critical regulator of synaptic vesicle fusion and may be involved in processes that lead to ethanol abuse and addiction. We studied its interaction with alcohol and identified Glu-582 as a critical residue for ethanol binding. Munc13-1 can functionally complement the Dunc13 haploinsufficient ethanol self-administration phenotype in Drosophila melanogaster, indicating that this protein participates in alcohol-induced behavioral plasticity.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Devineni AV, Heberlein U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci 2013; 36:121-38. [PMID: 23642133 DOI: 10.1146/annurev-neuro-062012-170256] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models have been widely used to gain insight into the mechanisms underlying the acute and long-term effects of alcohol exposure. The fruit fly Drosophila melanogaster encounters ethanol in its natural habitat and possesses many adaptations that allow it to survive and thrive in ethanol-rich environments. Several assays to study ethanol-related behaviors in flies, ranging from acute intoxication to self-administration and reward, have been developed in the past 20 years. These assays have provided the basis for studying the physiological and behavioral effects of ethanol and for identifying genes mediating these effects. In this review we describe the ecological relationship between flies and ethanol, the effects of ethanol on fly development and behavior, the use of flies as a model for alcohol addiction, and the interaction between ethanol and social behavior. We discuss these advances in the context of their utility to help decipher the mechanisms underlying the diverse effects of ethanol, including those that mediate ethanol dependence and addiction in humans.
Collapse
Affiliation(s)
- Anita V Devineni
- Program in Neuroscience and Department of Anatomy, University of California-San Francisco, CA 94158, USA.
| | | |
Collapse
|
40
|
Abstract
Animals use gustatory information to assess the suitability of potential food sources and make critical decisions on what to consume. For example, the taste of sugar generally signals a potent dietary source of carbohydrates. However, the intensity of the sensory response to a particular sugar, or "sweetness," is not always a faithful reporter of its nutritional value, and recent evidence suggests that animals can sense the caloric content of food independently of taste. Here, we demonstrate that the vinegar fly Drosophila melanogaster uses both taste and calorie sensing to determine feeding choices, and that the relative contribution of each changes over time. Using the capillary feeder assay, we allowed flies to choose between sources of sugars that varied in their ratio of sweetness to caloric value. We found that flies initially consume sugars according to taste. However, over several hours their preference shifts toward the food source with higher caloric content. This behavioral shift occurs more rapidly following food deprivation and is modulated by cAMP and insulin signaling within neurons. Our results are consistent with the existence of a taste-independent calorie sensor in flies, and suggest that calorie-based reward modifies long-term feeding preferences.
Collapse
|
41
|
|