1
|
Dawson EP, Lanza DG, Webster NJ, Benton SM, Suetake I, Heaney JD. Delayed male germ cell sex-specification permits transition into embryonal carcinoma cells with features of primed pluripotency. Development 2018; 145:dev156612. [PMID: 29545285 PMCID: PMC6514421 DOI: 10.1242/dev.156612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023]
Abstract
Testicular teratomas result from anomalies in embryonic germ cell development. In 129 inbred mice, teratoma initiation coincides with germ cell sex-specific differentiation and the mitotic-meiotic switch: XX and XY germ cells repress pluripotency, XX germ cells initiate meiosis, and XY germ cells activate male-specific differentiation and mitotic arrest. Here, we report that expression of Nanos2, a gene that is crucial to male sex specification, is delayed in teratoma-susceptible germ cells. Decreased expression of Nanos2 was found to be due, in part, to the Nanos2 allele present in 129 mice. In teratoma-susceptible germ cells, diminished expression of genes downstream of Nanos2 disrupted processes that were crucial to male germ cell differentiation. Deficiency for Nanos2 increased teratoma incidence in 129 mice and induced developmental abnormalities associated with tumor initiation in teratoma-resistant germ cells. Finally, in the absence of commitment to the male germ cell fate, we discovered that a subpopulation of teratoma-susceptible germ cells transition into embryonal carcinoma (EC) cells with primed pluripotent features. We conclude that delayed male germ cell sex-specification facilitates the transformation of germ cells with naïve pluripotent features into primed pluripotent EC cells.
Collapse
Affiliation(s)
- Emily P Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Nicholas J Webster
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Susan M Benton
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Isao Suetake
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Center For Reproductive Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
2
|
Lanza DG, Dawson EP, Rao P, Heaney JD. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle 2016; 15:919-30. [PMID: 26901436 DOI: 10.1080/15384101.2016.1149272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.
Collapse
Affiliation(s)
- Denise G Lanza
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Emily P Dawson
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Priya Rao
- b Department of Pathology , MD Anderson Cancer Center, The University of Texas , Houston , TX , USA
| | - Jason D Heaney
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,c Dan L Duncan Cancer Center, Baylor College of Medicine , Houston , TX , USA.,d Center For Reproductive Medicine, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
3
|
Creasy D, Bube A, de Rijk E, Kandori H, Kuwahara M, Masson R, Nolte T, Reams R, Regan K, Rehm S, Rogerson P, Whitney K. Proliferative and nonproliferative lesions of the rat and mouse male reproductive system. Toxicol Pathol 2013; 40:40S-121S. [PMID: 22949412 DOI: 10.1177/0192623312454337] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the male reproductive system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the Internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the male reproductive system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Dianne Creasy
- Huntingdon Life Sciences, East Millstone, New Jersey 08875, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Heaney JD, Anderson EL, Michelson MV, Zechel JL, Conrad PA, Page DC, Nadeau JH. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 2012; 139:1577-86. [PMID: 22438569 DOI: 10.1242/dev.076851] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Lau YFC, Li Y, Kido T. Gonadoblastoma locus and the TSPY gene on the human Y chromosome. ACTA ACUST UNITED AC 2009; 87:114-22. [PMID: 19306348 DOI: 10.1002/bdrc.20144] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The gonadoblastoma (GBY) locus is the only oncogenic locus on the human Y chromosome. It is postulated to serve a normal function in the testis, but could exert oncogenic effects in dysgenetic gonads of individuals with intersex and/or dysfunctional testicular phenotypes. Recent studies establish the testis-specific protein Y-encoded (TSPY) gene to be the putative gene for GBY. TSPY serves normal functions in male stem germ cell proliferation and differentiation, but is ectopically expressed in early and late stages of gonadoblastomas, testicular carcinoma in situ (the premalignant precursor for all testicular germ cell tumors), seminomas, and selected nonseminomas. Aberrant TSPY expression stimulates protein synthetic activities, accelerates cell proliferation, and promotes tumorigenicity in athymic mice. TSPY binds to type B cyclins, enhances an activated cyclin B-CDK1 kinase activity, and propels a rapid G(2)/M transition in the cell cycle. TSPY also counteracts the normal functions of its X-homologue, TSPX, which also binds to cyclin B and modulates the cyclin B-CDK1 activity to insure a proper G(2)/M transition in the cell cycle. Hence, ectopic expression and actions of the Y-located TSPY gene in incompatible germ cells, such as those in dysgenetic or ovarian environments and dysfunctional testis, disrupt the normal cell cycle regulation and predispose the host cells to tumorigenesis. The contrasting properties of TSPY and TSPX suggest that somatic cancers, such as intracranial germ cell tumors, melanoma, and hepatocellular carcinoma, with detectable TSPY expression could exhibit sexual dimorphisms in the initiation and/or progression of the respective oncogenesis.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
6
|
Heaney JD, Nadeau JH. Testicular germ cell tumors in mice: new ways to study a genetically complex trait. Methods Mol Biol 2008; 450:211-231. [PMID: 18370062 DOI: 10.1007/978-1-60327-214-8_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Testicular germ cell tumors (TGCTs) are the most common cancer affecting young men. Although TGCTs are common and the genetic component of susceptibility is unusually strong, discovery of TGCT susceptibility genes in humans has been challenging. The 129/Sv inbred mouse strain is an important experimental model for studying the genetic control of TGCT susceptibility. It is the only inbred mouse strain with an appreciable frequency of spontaneous TGCTs. TGCTs in 129/Sv males share various developmental and histological characteristics with human pediatric TGCTs. As in humans, susceptibility in 129/Sv is a genetically complex trait that is too complex for conventional genetic approaches. However, several genetic variants, when congenic or isogenic on the 129/Sv background, act as genetic modifiers of TGCT susceptibility. Alternative experimental approaches based on these modifier genes can be used to unravel the complex genetic control of TGCT susceptibility. We discuss the application of modifier genes in genetic interaction tests and sensitized polygenic trait analyses toward the understanding of the complex genetics and biology of TGCT susceptibility in mice.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
7
|
Almstrup K, Sonne SB, Hoei-Hansen CE, Ottesen AM, Nielsen JE, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. From embryonic stem cells to testicular germ cell cancer - should we be concerned? ACTA ACUST UNITED AC 2006; 29:211-8. [PMID: 16466542 DOI: 10.1111/j.1365-2605.2005.00643.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since the discovery of testicular carcinoma in situ (CIS) -- the precursor cell for the vast majority of germ cell tumours -- it has been proposed that CIS cells could be derived from transformed primordial germ cells or gonocytes. Here, we review recent discoveries not only substantiating that initial hypothesis but also indicating that CIS cells have a striking phenotypic similarity to embryonic stem cells (ESC). Many cancers have been proposed to originate from tissue-specific stem cells [so-called 'cancer stem cells' (CSC)] and we argue that CIS may be a very good example of a CSC, but with exceptional features due to the retention of embryonic pluripotency. In addition, considering the fact that pre-invasive CIS cells are transformed from early fetal cells, possibly due to environmentally induced alterations of the niche, we discuss potential risks linked to the uncontrolled therapeutic use of ESC.
Collapse
Affiliation(s)
- Kristian Almstrup
- University Department of Growth & Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Browne CM, Hime GR, Koopman P, Loveland KL. Genetic basis of human testicular germ cell cancer: insights from the fruitfly and mouse. Cell Tissue Res 2005; 322:5-19. [PMID: 16094543 DOI: 10.1007/s00441-005-1128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Accepted: 03/30/2005] [Indexed: 12/28/2022]
Abstract
The prevalence of tumours of the germ line is increasing in the male population. This complex disease has a complex aetiology. We examine the contribution of genetic mutations to the development of germ line tumours in this review. In particular, we concentrate on fly and mouse experimental systems in order to demonstrate that mutations in some conserved genes cause pathologies typical of certain human germ cell tumours, whereas other mutations elicit phenotypes that are unique to the experimental model. Despite these experimental systems being imperfect, we show that they are useful models of human testicular germ cell tumourigenesis.
Collapse
Affiliation(s)
- Catherine M Browne
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
9
|
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the gametes of the adult animal, can give rise to two types of pluripotent stem cells. In vivo, PGCs can give rise to embryonal carcinoma cells, the pluripotent stem cells of testicular tumors. Cultured PGCs exposed to a specific cocktail of growth factors give rise to embryonic germ cells, pluripotent stem cells that can contribute to all the lineages of chimeric embryos including the germline. The conversion of PGCs into pluripotent stem cells is a remarkably similar process to nuclear reprogramming in which a somatic nucleus is reprogrammed in the egg cytoplasm. Understanding the genetics of embryonal carcinoma cell formation and the growth factor signaling pathways controlling embryonic germ cell derivation could tell us much about the molecular controls on developmental potency in mammals.
Collapse
Affiliation(s)
- Peter J Donovan
- Kimmel Cancer Center, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
10
|
Spinella MJ, Kerley JS, White KA, Curtin JC. Retinoid target gene activation during induced tumor cell differentiation: human embryonal carcinoma as a model. J Nutr 2003; 133:273S-276S. [PMID: 12514308 DOI: 10.1093/jn/133.1.273s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many agents that exhibit chemopreventive activity are able to mediate a differentiation response in premalignant and malignant tissues. One of the most widely studied classes of tumor differentiation agents is the retinoids. There is rapidly evolving evidence for beneficial retinoid actions in the prevention or treatment of clinical tumors. However, the use of retinoids in the clinic is limited by acquired resistance and toxicity, especially when administered chronically in preventive strategies. Although retinoids are known to regulate gene transcription by activating retinoid receptors, the identity of the target genes that mediate the beneficial effects of retinoids are largely unknown. Here we review a useful model of retinoid-induced tumor cell differentiation: human embryonal carcinoma. The pluripotent nature and ease of use make human embryonal carcinoma cells a valuable and practical complement to human embryonic stem cells as an in vitro model of early human development. In addition, retinoid treatment of human embryonal carcinoma is an important model of induced tumor cell differentiation because retinoids cause the reversal of the malignant phenotype coincident with terminal neuronal differentiation. We have used both de novo and candidate approaches with this system in an effort to uncover critical downstream targets of retinoid receptors during differentiation induction.
Collapse
Affiliation(s)
- Michael J Spinella
- The Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
11
|
Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ. Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 2002; 21:2880-9. [PMID: 11973648 DOI: 10.1038/sj.onc.1205408] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 01/28/2002] [Accepted: 02/19/2002] [Indexed: 12/17/2022]
Abstract
Embryonal carcinoma is a model of embryonic development as well as tumor cell differentiation. In response to all-trans retinoic acid (RA), the human embryonal carcinoma (EC) cell line, NT2/D1, differentiates toward a neuronal lineage with associated loss of cell growth and tumorigenicity. Through the use of cDNA-based microarrays we sought to identify the early downstream targets of RA during differentiation commitment of NT2/D1 cells. A total of 57 genes were induced and 37 genes repressed by RA. RA regulated genes were restricted at 8 h with 27 genes induced and five repressed. The total number of RA-responsive transcripts increased at 24 and 48 h and their pattern of expression was more symmetrical. For a given time point less than 1% of the 9128 cDNAs on the expression array were regulated by RA. Many of these gene products are associated with developmental pathways including those of TGF-beta (Lefty A, NMA, follistatin), homeo domain (HoxD1, Meis2, Meis1, Gbx2), IGF (IGFBP3, IGFBP6, CTGF), Notch (manic fringe, ADAM11), Hedgehog (patched) and Wnt (Frat2, secreted frizzled-related protein 1) signaling. In addition a large cassette of genes induced by RA at 24-48 h are associated with cell adhesion, cytoskeletal and matrix remodeling, growth suppression and intracellular signaling cascades. The majority of repressed genes are associated with protein/RNA processing, turnover or metabolism. The early induced genes identified may play a regulatory role in RA-mediated growth suppression and terminal differentiation and may have physiologic or pharmacologic importance during normal human development and retinoid-based cancer therapy or prevention.
Collapse
Affiliation(s)
- Sarah J Freemantle
- The Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, NH 03755, USA
| | | | | | | | | |
Collapse
|
12
|
Leschek EW, Chan WY, Diamond DA, Kaefer M, Jones J, Barnes KM, Cutler GB. Nodular Leydig cell hyperplasia in a boy with familial male-limited precocious puberty. J Pediatr 2001; 138:949-51. [PMID: 11391350 DOI: 10.1067/mpd.2001.114477] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In boys with familial male-limited precocious puberty, an activating mutation of the luteinizing hormone receptor causes Leydig cell hyperplasia, resulting in excess testosterone production. There are no reports of Leydig cell masses in boys with familial male-limited precocious puberty. We describe a 10-year-old boy with familial male-limited precocious puberty who developed Leydig cell nodules.
Collapse
Affiliation(s)
- E W Leschek
- National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Dr., MSC 1862, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Curtin JC, Dragnev KH, Sekula D, Christie AJ, Dmitrovsky E, Spinella MJ. Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function. Oncogene 2001; 20:2559-69. [PMID: 11420666 DOI: 10.1038/sj.onc.1204370] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Revised: 12/18/2000] [Accepted: 02/12/2001] [Indexed: 11/09/2022]
Abstract
Although retinoids are known to regulate gene transcription by activating retinoid receptors, the targets of retinoid receptors are largely unknown. This study indicates effective all-trans retinoic acid (RA)-induced differentiation of human embryonal carcinoma cells engages p53. Unexpectedly, RA has been found to activate the transactivation function of p53 in the human embryonal carcinoma cell line, NT2/D1, in a retinoid receptor-dependent manner. A derived RA-resistant line, NT2/D1-R1, is deficient in this activity and is co-resistant to cisplatin. This indicates that RA and cisplatin responses may share a common pathway involving p53 in embryonal carcinomas. RA has no effect on p53 steady-state protein levels in either line. RA enhances endogenous p53 transactivation activity in NT2/D1 but not NT2/D1-R1 cells. In addition, RA induces transactivation activity of a gal4-p53 fusion protein, suggesting that RA activates p53 independent of increasing p53 levels or sequence-specific DNA binding. This activity is absent in retinoic acid receptor gamma (RARgamma)-deficient NT2/D1-R1 cells but can be restored upon co-transfection with specific RARs. Transient transfection of a dominant-negative p53 construct in NT2/D1 cells blocks the RA-mediated transcriptional decline of a differentiation-sensitive reporter plasmid and enhances survival of NT2/D1 cells following cisplatin treatment. Taken together, these findings indicate that RA activates the intrinsic activation function of p53 by a novel mechanism independent of effects on p53 stability or DNA binding and that this activation may be a general mechanism that contributes to RA-mediated G1 arrest.
Collapse
Affiliation(s)
- J C Curtin
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sundström J, Pelliniemi LJ, Kuopio T, Veräjänkorva E, Fröjdman K, Harley V, Salminen E, Pöllänen P. Characterization of the model for experimental testicular teratoma in 129/SvJ-mice. Br J Cancer 1999; 80:149-60. [PMID: 10389991 PMCID: PMC2363015 DOI: 10.1038/sj.bjc.6690334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An animal model of experimental testicular teratoma has been established to study how a teratoma affects the host testis and how the host testis reacts against the teratoma. 129/SvJ-mice were used as experimental animals. To induce the experimental testicular teratoma, male gonadal ridges from 12-day-old 129/SvJ-mouse fetuses were grafted into the testes of adult mice for 1-12 weeks. The developing tumour was analysed by light and electron microscopy and by immunocytochemical localization of transcription factors SOX9 and c-kit, glial fibrillary acidic protein (GFAP) and type IV collagen. Testicular teratoma was observed in 36 out of 124 testes with implanted fetal gonadal ridges (frequency 29%). One spontaneous testicular teratoma was observed in this material from 70 male mice (1.5%). One week after implantation intracordal clusters of cells were seen in embryonic testicular cords of the graft as the first sign of testicular teratomas. Four weeks after implantation the embryonic testicular cords had totally disappeared from grafts with teratomas, and the tumour tissue had enlarged the testis and invaded the interstitium of the host testis. It consisted of solitary pieces of immature cartilage as well as of glial cells and of primitive neuroepithelium. Six to eight weeks after implantation the tumour tissue had expanded so that the enlarged testis could be detected by macroscopic enlargement of the scrotum. The testicular tissue of the host had practically disappeared, and only solitary disrupted seminiferous tubules of the host were seen surrounding the teratoma. Neuroepithelial structures of some teratomas cultured for 8 weeks had cells with a granular nucleus as a sign of obvious apoptosis. Eleven to 12 weeks after implantation the growth of the teratoma had stopped, and the histology corresponded to that of a mature cystic teratoma. GFAP, SOX9 and type IV collagen were strongly positive in some parts of the tumours cultured for 4 and 8 weeks, while only occasional c-kit-positive areas were observed in tumours cultured for 8 weeks. As conclusions: (1) the metastasizing capacity of the experimental testicular teratoma is very low during 12 weeks, but the behaviour of the tumour in the testicular tissue of the graft is invasive; (2) the growth of experimental testicular teratomas cease 6-8 weeks after implantation of the fetal gonadal ridges with the obvious apoptosis of the immature tissue components; (3) the model of experimental testicular teratoma in the mouse is suitable for studying how the teratoma affects the host testis and how the host testis reacts to teratoma.
Collapse
Affiliation(s)
- J Sundström
- Department of Anatomy, University of Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|